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abstract

Subtraction Games: Range and Strict Periodicity

Bryce Emerson Blackham
Department of Mathematics, BYU

Master of Science

In this paper I introduce some background for subtraction games and explore the Sprague-
Grundy functions defined on them. I exhibit some subtraction games where the functions
are guaranteed to be strictly periodic. I also exhibit a class of subtraction games which have
bounded range, and show there are uncountably many of these.

Keywords: Combinatorial Game Theory, Nim, Sprague-Grundy function, Periodicity, Sub-
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Chapter 1. Basic definitions

In this paper, a game is a directed graph with the property that from any vertex v, called a

position, there is a finite upper bound ` such that no path starting at v has length exceeding

`. Some graphs prohibited by this condition are those with cycles and those with infinite

forward chains. To play a game defined this way, two players alternate turns moving a single

marker from a position along an edge in the graph. The game ends when the marker rests on

a position that is a sink and so cannot be moved. The player whose turn it is at that position

loses. Anytime I refer to a losing position, I will mean a position from which the player to

move has no winning strategy. Any game as defined above can be solved inductively as

follows: losing positions are exactly those from which no legal move to a (descendant) losing

position exists, and winning positions are those positions which are not losing positions. The

set of losing positions in a game is sometimes referred to as the kernel for reasons which

will be apparent.

A subtraction game is a game played on the nonnegative integers. Each subtraction

game is defined by a set of positive integers, called the subtraction set. An edge from

vertex n to m exists if n −m belongs to the given subtraction set. A subtraction game is

easily thought of as a game on a pile of objects, from which two players take turns removing

an allowed number of objects. When there are insufficient number of objects to keep playing,

the game is over and the player whose turn it is loses. In this paper I am mostly interested

in subtraction games, though there are some applications to multiple-pile subtraction games

which are a generalization of the game Nim (defined later). These games are extensively

studied in [3], [4], [6], [9], and [12]. They appear easy to study and solve, and in individual

cases are quite simple, but finding generalizations has proven to be far more difficult than

one would think. For example, such games generated from subtraction sets with one or

two elements have been completely solved, but for subtraction sets with three elements the

problem is open and far from being completely solved (see [9]).
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For each game with set of positions V, define the following function G : V → N ∪ {0}

recursively as follows:

G(v) = min{n | G(w) 6= n for all w such that an edge from v to w exists}

= mex{G(w) | an edge from v to w exists}.

The function defined above is the Sprague-Grundy function. For ease of notation,

mex is used to mean the minimum excluded element. It represents the smallest nonnegative

integer excluded from the set it is applied to. Since the definition is easier to work with when

thought of this way I will often mention “excluded elements” in this paper, and by that I

mean the Spraque-Grundy values of positions accessible from the current position.

It is worth noting that positions in a game from which there are no legal moves are

assigned the Sprague-Grundy value of 0, being the smallest nonnegative integer. This is

the analog of a “lost” position being counted as a position from which the player whose

turn it is has no winning strategy. The function is well-defined because of the finite upper

bound condition for a game (which also serves as an upper bound for the Sprague-Grundy

function for any given position). Some authors (see [5] and [7]) choose to use ordinals instead

of nonnegative integers to avoid having to make this bounding restriction. For subtraction

games, integers are more convenient to work with.

Figure 1.1: In this game I have labelled the vertices with their corresponding Sprague-Grundy values.
Unsurprisingly the sinks in the graph have the value 0, but notice how the top-right vertex also has a value
of 0 because no positions it can “access” are in the kernel. Similarly the top-left vertex has the value of 1,
the smallest value not reachable from the position.

For subtraction games, I will notate the Sprague-Grundy function corresponding to the
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game with subtraction set S ⊂ N by GS, and I will think of it as a sequence since it is a

function on the nonnegative integers. Here, the accessible positions become numbers that

are smaller by the right amounts. The function is defined as follows:

GS(n) = mex{G(n− `) | ` ∈ S}.

For example, if S = {1, 2, 3} it is not too hard to see that

GS = {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, ...}

which is a strictly periodic sequence, meaning that there is a number p (here it is 4) such

that GS(n+ p) = GS(n) for all n ≥ 0.

And now I will explain what the Sprague-Grundy function says about the game being

played which makes it worth studying. To begin with, the kernel G−1{0} of the Sprague-

Grundy function is the set of losing positions, sometimes called zero-postions. This is pretty

obvious since positions from which no moves are possible will be assigned the value of 0, and

all other positions assigned to 0 are precisely those which have no legal moves to another

zero-position. Positions assigned a nonzero value by the Sprague-Grundy function have at

least one legal move to a zero-position because zero is not an excluded element in that case.

The obvious question is of what there is to gain from distinguishing the different winning

positions. I spend some time in this paper answering a question about the range of these

Sprague-Grundy functions. Some discussion of range is given in [4] (there, functions with

range {0, 1} are called bipartite because they only return two values), but most study of

subtraction games has focused on the periodicity rather than the range (see [4], [6], and

[14]). What is interesting about the range of Sprague-Grundy functions? The most direct

answer is the application to multiple-pile games. These games are played on a tuple of

nonnegative integers called piles with the legal moves being subtraction by an element of

S from one of the piles. Nim is the multiple-pile subtraction game with subtraction set N.
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More generally, any games can be combined in this way to create a sum of games, whose

positions are the tuples of positions from each of the “summand” games. The easiest way

to think of a sum of games is as a collection of graphs with a marker on a position from

each. On a player’s turn one marker may be moved along an edge. Figure 1.2 shows what

this looks like for the postion (6,5,7) in the multiple-pile subtraction game for subtraction

set S = {1, 2, 3}, along with how to “solve” it using the Sprague-Grundy theorem below.

Theorem 1.1. (Sprague-Grundy)

The Sprague-Grundy value of a position in a sum of n games is as follows:

G(v1, v2, ..., vn) =
n⊕

i=1

G(vi)

where the sum is the Nim-sum given for integers m =
∑r

i=0 2iαi and n =
∑r

i=0 2iβi written

in binary form (so each αi and βi belong to {0, 1}), as follows:

m⊕ n =
r∑

i=0

2i(αi ⊕2 βi).

Because of its usefulness in analyzing games similar to Nim, a Sprague-Grundy function

is often referred to as a Nim sequence. When I refer to Nim values I mean the values of

a Nim sequence.

Figure 1.2: On the left is shown three piles to illustrate the position (6,5,7). A legal move is removing at
least one stone from exactly one pile. On the right is shown the same position in a another way. A legal
move is a move of one red marker at least one space to the left. The Nim values of each pile are given for
the subtraction set {1, 2, 3}. Because 2⊕ 1⊕ 3 = 0, this is a losing position.

The Nim-addition defined above is addition without carries in binary, sometimes called

the digital sum or the xor bitwise operator. For example, the Nim-sum of 13 and 22 is most
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easily computed by writing their binary representations 01101 and 10110. Adding without

carries, the sum is 11011 which is the number 27 in binary. So 13 ⊕ 22 = 27. Similarly

13⊕ 27 = 22 and 22⊕ 27 = 13 and the Nim-sum of any number with itself is zero. Here the

set {0, 13, 22, 27} is a group isomorphic to the Klein four-group under Nim-addition.

I won’t provide a proof of the Sprague-Grundy theorem here, but it can be found on

pages I-20 and I-21 of [12]. The idea of the proof is in three parts: (1) The Nim-sum of zeros

is zero, (2) Given three numbers whose Nim-sum is nonzero, it is always possible to reduce

one of the numbers so that their Nim-sum is zero (read left to right and find the first place

where the sum isn’t zero and change a 1 to a zero in one of the numbers, then change the

digits to the right in that number to match the sum of the others), and (3) changing one

number from a list always changes the Nim-sum of the list.

One of the applications of the range of the Nim sequence for subtraction games comes

from the fact that the set of nonnegative integers under Nim-addition form an Abelian group

isomorphic to the countable direct sum of Z/2Z. The range of a Nim sequence is either all

nonnegative integers or the set {0, 1, 2, ..., r} for some r. This range is a subgroup under

Nim-addition precisely when r is one less than a power of 2. In this case it is always possible

to add a third pile to a two-pile position that creates a losing position. Whether or not there

are infinitely many ways to do this is partially dependent on whether or not the function is

strictly periodic (see the example with S = {1, 4, 10} in Table 1.1). This is a large part of

why I am also interested in when these sequences are strictly periodic. Nim sequences are

easiest to study when they are stricly periodic, and so there has been some study toward

predicting which subtraction sets have strictly periodic Nim sequences (see [9]). It should be

noted that there is also a multiplication operation discovered by John H. Conway explored

in [7] that with Nim addition makes the nonnegative integers into a field. Applications of

this field to games is explored in [5].

Before I continue I will mention one other application of the range. If the range does

not contain 2, as is the case with any subtraction game with S a subset of the odd numbers
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containing 1, then all legal moves from a winning position are to losing positions (so it is

impossible for the player with a winning strategy to fail to win). This makes the game

quite trivial. In a game where the Nim sequence has outputs of 2 or more, it is possible to

move from a 2-position to a 1-position (for example) and that means the game is somewhat

interesting. Thus the range is related to the complexity of a game.

S GS (boldface font is used to show one period when it is periodic)
0,0,0,...

1 0,1,0,1,0,1,...
1,2 0,1,2,0,1,2,0,1,2,...
2 0,0,1,1,0,0,1,1,...
1,4 0,1,0,1,2,0,1,0,1,2,...
2,3 0,0,1,1,2,0,0,1,1,2,...
1,2,3 0,1,2,3,0,1,2,3,...
1,2,6 0,1,2,0,1,2,3,0,1,2,0,1,2,3,...
1,4,10 0,1,0,1,2,0,1,0,1,2,3,2,3,0,1,3,0,1,0,1,2,0,1,2,0,1,2,0,1,0,1,2,0,1,2,0,1,2...
N 0,1,2,3,4,5,6,7,...

Table 1.1: Table of Nim sequences

The periodicity (or lack thereof) is another way to describe the complexity of a subtrac-

tion game, because it is closely related to how much space is necessary to describe a winning

strategy. Here I use the term periodic to describe sequences G for which there are positive

integers n0, p such that G(n + p) = G(n) for all n ≥ n0. Above I have exhibited the Nim

sequences for some simple subtraction games. Later I will provide proof of a lemma used

in computing these. Observe that multiplying all the elements of a subtraction set by some

number N replaces each term in the Nim sequence by a list of N copies of that term. Also

observe that many of these games are periodic, even if they are not strictly periodic. This

fact is true for all finite subtraction games, as stated in Theorem 1.2.

What is particularly interesting about the game given by S = {1, 4, 10} as given in Table

1.1 is that its range is {0, 1, 2, 3} but 3 only shows up in the pre-period, so that it appears

only finitely many times in the range. This means if given two piles having Nim values of

1 and 2 respectively there are finitely many ways to add a third pile (specifically of 10, 12,
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or 15) to make a losing position in the three-pile game (here I use that the Nim-sum of 1,

2, and 3 is zero). Some immediate questions are: is it possible for the pre-period range be

equal to the in-period range? Is it possible for the pre-period range to be greater than the

in-period range? The answer to both questions is yes. I exhibit examples in Table 1.2.

S GS (boldface font indicates periodicity)
1,4,10 0,1,0,1,2,0,1,0,1,2,3,2,3,0,1,3,0,1,0,1,2,0,1,2,0,1,2,0,1,0,1,2,0,1,2,0,1,2,...
1,2,6,11 0,1,2,0,1,2,3,0,1,2,0,1,2,3,4,0,1,2,3,0,1,2,0,1,2,3,4,...
1,8,11 0,1,0,1,0,1,0,1,2,0,1,2,3,2,3,2,0,1,0,1,2,0,1,0,1,0,1,2,0,1,0,1,2,3,2,0,1,0,1,...

Table 1.2: Table of Nim sequences which are not strictly periodic

Theorem 1.2. If S is finite, then GS is periodic.

I won’t provide my proof, but this theorem is well-known and a discussion of it can be

found on page 2 of [2]. The idea is simple. With only finitely many options there are also

only finitely many possible ways to arrange reachable Nim values, and therefore only finitely

many ways to make a finite list of such arrangements. Because a finite set is bounded, as

soon as a list of appropriate size is repeated the excluded elements will follow the same

pattern as before.

So, when are finite subtraction games not only periodic, but strictly periodic? I do not

have the complete answer to this (this is an open question) but I do provide some cases

where subtraction games are guaranteed to be strictly periodic. One case is quite easy to

see. It is the case when S contains all the numbers from 1 to n and no multiples of n + 1.

The Nim sequence in this case is strictly periodic with period n+ 1, given by {0, 1, 2, ..., n}.

Example 1.3. If S = {1, 2, 3, 4, 5} ∪ {prime numbers} then

GS = {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, ...}

because appending nonmultiples of the period length 6 does not introduce to any position

new reachable elements which were previously excluded.
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I will hereafter show two less trivial cases. One is the case of symmetric sets, and the

other is a collection of subtraction sets which each generate a Nim sequence with range

{0, 1, 2} which I explore in chapter 4.

Chapter 2. Symmetric sets

Here I describe one case in which subtraction games are somewhat well-behaved. The in-

tuition behind this case comes from what happens if a game can be reorganized so that it

is played on a finite undirected graph with a subset of its vertices declared “losing”. For

subtraction games, this happens when the subtraction set is symmetric.

Definition. A finite subset S ⊂ N is symmetric if there exists some number r so that

r − s ∈ S whenever s ∈ S.

For example, the set S = {1, 4, 5, 7, 9, 10, 13} is symmetric with r = 14. Note that the

number r above is unique and will hereafter be called the modulus of S. It is the sum of

the kth and kth-to-last elements of S under the natural ordering, and this holds for any k.

In particular, it is the sum of the first and last elements of S.

Theorem 2.1. Let S be a symmetric set with modulus r. Then the Nim sequence of the

subtraction game associated with S is strictly periodic with period dividing r.

Proof. Let S be symmetric with modulus r. Let n be any nonnegative integer and let

i = GS(n). Assume inductively that for any h < i and m a nonnegative integer, GS(m) = h

implies GS(m+ r) = h.

First I show GS(n+ r) ≤ GS(n). For each s ∈ S,

GS((n+ r)− s) = GS(n+ (r − s)) 6= GS(n) = i

because r − s ∈ S by the symmetry of S. Since i is excluded from the collection of

GS((n + r) − s) for all s ∈ S it follows from the definition of GS that GS(n + r), which is
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the smallest such excluded elements, is no bigger than i.

Now suppose by way of contradiction that the inequality is strict. Then 0 ≤ h =

GS(n + r) < i for some h. Thus h is not excluded from the collection of GS(n − s) for

s ∈ S. Let t be an element of S such that GS(n − t) = h. By the inductive hypothesis,

GS((n + r)− t) = GS((n− t) + r) = GS(n− t) = h so that h is also not excluded from the

collection of GS((n+ r)− s for s ∈ S. Thus GS(n+ r) 6= h which is a contradiction.

Since n and i were arbitrary, it follows that GS satisfies period r from the beginning of

the sequence. Thus GS is strictly periodic with period dividing r.

Corollary 2.2. For a finite subtraction set that is an arithmetic progression, the corre-

sponding Nim sequence is strictly periodic with period dividing the sum of the first and last

elements.

Proof. If S is a finite arithmetic progression, then for some n ∈ N, there exists some a, d ∈ N

such that S = {a + kd : k is an integer between 0 and n}. The sum of the first and last

elements of S is a+(a+nd) = 2a+nd. For s ∈ S, I have that s = a+kd for some k between

0 and n. Then (2a+ nd)− s = 2a+ nd− (a+ kd) = a+ (n− k)d ∈ S because n− k is also

an integer between 0 and n. Thus S is symmetric with modulus 2a+ nd.

Corollary 2.3. Any finite subtraction set S having a Nim sequence with period p can be

extended to a set S ′ with no more than double the number of elements of S which is strictly

periodic and also satisfies period p.

Proof. Let S ′ = S ∪ {p − s : s ∈ S} which is the union of S and a set having the same

cardinality as S, so it has no more than double the number of elements S has. It is also

symmetric with modulus p.

Another possible application of Theorem 2.1 could be to use symmetric closures in se-

quences of sets, so that no preperiods need be examined. Note, however, that (pointwise)

limits of strictly periodic sequences need not be strictly periodic. Take the limit of the se-

quence 1,4,7,10,... and the corresponding Nim sequences for an example. Also note that any
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three-element set can be extended to a four-element symmetric set by appending only one

element, so there could be some use of Theorem 2.1 in studying three-element sets.

Chapter 3. Counting Nim sequences

It is known that there are uncountably many sets of natural numbers, each of which can be

used as a subtraction set for a game. However, many of these have the same Nim sequence.

For example, if S is a subtraction set containing the integers from 1 to n, then S may (or

may not) also contain anything which is not a multiple of n + 1, and the Nim sequence is

given by the periodic sequence {0, 1, 2, ..., n, 0, 1, 2, ..., n, ...}. A natural question to ask is are

there still uncountably many subtraction sets with distinct Nim sequences? In other words,

are there really uncountably many subtraction games?

Lemma 3.1. If S is a finite subtraction set, then the kernel of GS is infinite.

Proof. It suffices to show that for any n there is a number N > n such that GS(N) = 0.

Since S is finite is has a largest element t. If GS(n+ i) = 0 for some i between 1 and t, put

N = n+ i. Suppose GS(n+ i) > 0 for all i between 1 and t. Then GS(n+ t+ 1) = 0 because

n+ t+ 1− ` > n for all ` ∈ S. Putting N = n+ t+ 1 satisfies GS(N) = 0.

Theorem 3.2. The set G of all Nim sequences of subtraction games is uncountable.

Proof. I show there is an injection from the set of binary sequences to G. Let Q be a binary

sequence (assume its indices start at 1). Set N0 = 0, S0 = ∅, and for each n > 0 inductively

define Nn to be the smallest integer in the kernel of GSn−1 which is larger than Nn−1 (using

Lemma 3.1), and define Sn = Sn−1 if Q(n) = 0 and Sn = Sn−1∪{Nn} if Q(n) = 1. Map Q to

the limit of the Sn. Now suppose Q1 6= Q2. I show that their corresponding subtraction sets

(denote these S(1) and S(2)) generate distinct Nim sequences, which will finish the proof. Let

n be the first index where Q1 and Q2 differ. Without loss of generality, assume Q1(n) = 0.

For all k < Nn, the Nim sequences are the same because the relevant parts of the subtraction
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sets (only elements less than Nn) are the same. GS(1)(Nn) = 0 because Nn was chosen to

be in the kernel for S = {s ∈ S(1) | s < Nn} and S(1) does not contain Nn (note here that

the Sn are an ascending union). However GS(2)(Nn) > 0 because Nn ∈ S(2). Thus the Nim

sequences differ.

Finite subtraction sets give rise to periodic Nim sequences. If infinite subtraction sets

are used the range of the corresponding Nim sequence may be infinite which precludes the

possibility of a periodic Nim sequence. However, in many cases the discrete derivative of

the Nim sequence is still periodic. For example, consider S = {n ∈ N | n 6≡ 2 (mod 4)}

whose corresponding Nim sequence follows the pattern: 0101 2323 4545 6767... which can be

easily described using differences, since they are -1, 1, 1, 1 repeated for ever. In other words,

though the Nim sequence has infinite range its discrete derivative has not only finite range

but is periodic. Of course there are only countably many such functions, so how do I account

for most of the Nim sequences? Do they typically have infinite range? Is it possible for a

Nim sequence with finite range to be nonperiodic? I do not answer all of these questions in

this paper, but I do answer the last question in the next chapter.

Chapter 4. Sprague-Grundy functions with

Bounded Range

I begin with a useful lemma for computing Nim sequences. It is the lemma used to create

the tables in chapter 1.

Lemma 4.1. If N is the largest element of a finite subtraction set S, and if there exist p

and n such that for all 0 ≤ i < N the equality GS(n + i) = GS(n + i + p) holds; then GS

satisfies period p and GS(n+ i) = GS(n+ i+ p) holds for all i ≥ 0.

This lemma gives an efficient way to compute periodic Nim sequences. I need only check

that periodicity holds for as many consecutive pairs as the largest element in the subtraction

set. For example, when computing the Nim sequence associated with S = {1, 4} I get the
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sequence 0,1,0,1,2,0,1,0,1,... and these nine terms are enough to determine that the function

is periodic satisfying period 5, and is 0,1,0,1,2 repeated indefinitely. This lemma can be

found in page 2 of [9], though I provide a short proof here.

Proof. When computing GS(n+ i+ p) for i ≥ N the set {GS(n+ i+ p− s) | s ∈ S} used is

inductively the same set as {GS(n + i− s) | s ∈ S} because 0 < s ≤ N for all s ∈ S. Thus

the minimum excluded elements of each are the same, so GS(n+ i+ p) = GS(n+ i).

And now I will show that there is a way to build subtraction sets in such a way that

maintains a small range while making the period arbitrarily long in a trivial way. The

example S = {n ∈ N | n ≡ 1 mod 3} is an example that shows it is not enough to simply

increase period length to built a nonperiodic Nim sequence. The Nim sequence for the set

{1, 4, ..., 3k + 1} is given by 0, 1 followed by k repetitions of 0, 1, 2 so that the larger the

set the larger the period indeed, but the resulting function when using the full set S is still

periodic, though not strictly periodic because the initial 0, 1 is never visited again. Theorem

4.2 provides a way to build subtraction games where the pattern does not simplify in this

way, and the corresponding infinite subtraction game (taking a limit) has a nonperiodic Nim

sequence, all while the range is unchanged from that of the game with S = {1, 4}.

Theorem 4.2. Suppose S = {s1, ..., sm} has at least 2 elements, where s1 = 1, s2 = 4, and

for each n > 2, sn > sn−1 and sn = 2sn−1− sn−2 + k(sn−1 + 1) for some nonnegative integer

k. Then GS is strictly periodic with period sm + 1 and range {0, 1, 2}. More specifically,

if {k1, ..., km−2} is a (possibly empty) sequence of k-values so that sn = 2sn−1 − sn−2 +

kn−2(sn−1 + 1) for each n > 2, then inductively define g{k1, ..., km−2} in the following way:
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g∅ = {0, 1, 0, 1, 2}

g′∅ = {0, 1, 2}

and for q > 0 define

g{k1, ..., kq} = {g{k1, ..., kq−1}kq+1, g′{k1, ..., kq−1}}

g′{k1, ..., kq} = {g{k1, ..., kq−1}kq , g′{k1, ..., kq−1}}

where the superscripts indicate number of iterations in the sequence. GS is strictly periodic,

and the function is given by g{k1, ..., km−2}.

Proof. To begin, I will show that the statement about the period and range follows from the

claim that GS is given by g{k1, ..., km−2}, repeated. Since the range of these is obviously

{0, 1, 2} I only need to show that the length of g{k1, ..., km−2} is sm + 1 and that it satisfies

no shorter period.

If m = 2 then sm = 4 and g{k1, ..., km−2} = g∅ has length 5 = sm + 1 as can be seen.

If m = 3 then sm = 7 + 5k1 and g{k1, ..., km−2} = g{k1} = {(g∅)(k1+1), g′∅} has length

5(k1 + 1) + 3 = 7 + 5k1 + 1 = sm + 1. For m ≥ 4, assume inductively that the length

|g{k1, ..., kr}| is sr+2 + 1 for all values of r less than m− 2. Then the length
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|g{k1, ..., km−2}| = (km−2 + 1)|g{k1, ..., km−3}|+ |g′{k1, ..., km−3}|

= (km−2 + 1)|g{k1, ..., km−3}|

+ km−3|g{k1, ..., km−4}|+ |g′{k1, ..., km−4}|

= (km−2 + 1)|g{k1, ..., km−3}|

+ (km−3 + 1)|g{k1, ..., km−4}|

+ |g′{k1, ..., km−4}| − |g{k1, ..., km−4}|

= (km−2 + 1)|g{k1, ..., km−3}|

+ |g{k1, ..., km−3}| − |g{k1, ..., km−4}|

= (km−2 + 2)|g{k1, ..., km−3}| − |g{k1, ..., km−4}|

= (km−2 + 2)(sm−1 + 1)− (sm−2 + 1)

= 2sm−1 − sm−2 + km−2(sm−1 + 1) + 1

= sm + 1.

Now I will show that for all q, the repetition of g{k1, ..., kq−1} gives exactly the sequence

g{k1, ..., kq} up until the last term in g{k1, ..., kq}. This fact will be useful later in the proof,

as well as for showing g{k1, ..., km−2} satisfies no smaller period than sm + 1. I will show this

inductively. First observe that g{k1} = {g∅k1 , g′∅} is indeed repetition of g∅ until the last

term, being the last term of g′∅, since {0, 1, 2} is in agreement with {0, 1, 0, 1, 2} until its final

term. Assume q ≥ 2 and observe how g{k1, ..., kq} = {g{k1, ..., kq−1}kq+1, g′{k1, ..., kq−1}} im-

plies that an equivalent proposition is that g{k1, ..., kq−1} is in agreement with g′{k1, ..., kq−1}

until the last term of the latter (shorter) sequence. Now,

g{k1, ..., kq} = {g{k1, ..., kq−1}kq+1, g′{k1, ..., kq−1}}

= {g{k1, ..., kq−1}kq+1, g{k1, ..., kq−2}kq−1 , g′{k1, ..., kq−2}}

14



which by inductive hypothesis agrees (until the last term) with

{g{k1, ..., kq−1}kq+1, g{k1, ..., kq−2}kq−1 , g{k1, ..., kq−2}}

= {g{k1, ..., kq−1}kq+1, g{k1, ..., kq−2}kq−1+1}

which being longer than the sequence it is to agree with until the last term of that sequence

(g{k1, ..., kq}), may be replaced by the longer

{g{k1, ..., kq−1}kq+1, g{k1, ..., kq−2}kq−1+1, g′{k1, ..., kq−2}} which is equal to

{g{k1, ..., kq−1}kq+1, g{k1, ..., kq−1}} = g{k1, ..., kq−1}kq+2, an excessive repetition of

g{k1, ..., kq−1}. Thus the claim is proven.

In the case where m = 2 the period 5 is clearly minimal. Assume m ≥ 3 and suppose

g{k1, ..., km−2} is periodic with period r < sm + 1. Then g{k1, ..., km−3} (here m − 3 could

be zero – just use the empty set in that case) which agrees with g{k1, ..., km−2} for the first

sm ≥ r terms also satisfies period r. But this implies that r divides the lengths sm + 1 and

sm−1+1 of both of the sequences. The greatest common divisor of sm+1 = 1+2sm−1−sm−2+

km−2(sm−1 + 1) and sm−1 + 1 is the greatest common divisor of −1 − sm−2 = −(1 + sm−2)

and 1 + sm−1. By an easy induction, this is gcd(s1, s2) = gcd(1,4) = 1. So r must be 1 and

all of these g sequences are constant (obviously false). Thus the period sm +1 is the smallest

period satisfied by the sequence g{k1, ..., km−2}.

And now I will show that the Nim sequence of S is as claimed. If S = {1, 4} then the

list of k-values is empty; and an easy computation gives the first 9 values as 0, 1, 0, 1, 2, 0,

1, 0, 1, which with Lemma 4.1 implies GS is {0, 1, 0, 1, 2} = g∅ repeated, as desired.

Now let |S| = m ≥ 3 and assume inductively that for all smaller subtraction sets the

theorem holds. Here, S = {s1, ..., sm} with the elements in ascending order as in the hypoth-

esis, and the list of k-values is {k1, ..., km−2}. For each n < sm the element sm is not used

in computing GS(n), and so GS(n) = G{s1,...,sm−1}(n). Thus the first sm terms of GS are the

first sm terms of the sequence given by repetition of g{k1, ..., km−3}. Recall from earlier that

g{k1, ..., km−2} is exactly this, up until its last term. So now I must show that GS(sm) = 2,
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the last term in the finite sequence g{k1, ..., km−2}.

Clearly the second-to-last term in any of the g{k1, .., kq} is 1. Because 1 ∈ S this means

1 is not an excluded element when calculating GS(sm). And sm ∈ S implies zero is not an

excluded element either. I now show that 2 is excluded from the set {GS(sm − `) |` ∈ S} so

that GS(sm) = 2 as claimed. Clearly GS(sm− sm) = GS(0) = 0 6= 2. Since sm− sm−1 < sm,

GS(sm − sm−1) = G{s1,...,sm−1}(sm − sm−1) = G{s1,...,sm−1}(2sm−1 − sm−2 + km−2(sm−1 + 1)−

sm−1) = G{s1,...,sm−1}(sm−1 − sm−2 + km−2(sm−1 + 1)) = G{s1,...,sm−1}(sm−1 − sm−2) by the

periodicity of G{s1,...,sm−1}. By inductive hypothesis this is not 2 (The range in previous

cases would necessarily include 3 otherwise, so my base case from the main induction works

here). Now I will show that there is a number n < sm for which GS(n) = 2 and GS(n− `) =

GS(sm − `) for each ` < sm−1 so that the set {GS(sm − `) |` ∈ S and ` < sm−1} cannot

contain 2 (which will conclude the proof of the claim GS(sn) = 2).

There are two cases. Either kq = 0 for all q < m−2 or there exists a number 0 < t < m−2

for which kt > 0.

Assume the first case. Then by an easy induction

g′{k1, ..., kq} = {0, 1, 2} for all q < m− 2. This implies that

g{k1, ..., km−2} = g{k1, ..., km−3}km−2+1, 0, 1, 2}

= {g{k1, ..., km−3}km−2 , g{k1, ..., km−3}, 0, 1, 2}.
(4.1)

But by a similar induction

g{k1, ..., kq} = {g{k1, ..., kq−1}, g′{k1, ..., kq−1}}

= {g{k1, ..., kq−1}, 0, 1, 2}

= ...

= {g∅, {0, 1, 2}q}

= {0, 1, {0, 1, 2}q+1} ∀q < m− 2, so that
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g{k1, ..., km−2} = {g{k1, ..., km−3}km−2 , 0, 1, {0, 1, 2}m−2, 0, 1, 2}

= {g{k1, ..., km−3}km−2 , 0, 1, {0, 1, 2}m−1}.
(4.2)

Let n = sm − 3. Clearly GS(n) = 2 and for all ` smaller than the length |{0, 1, 2}m−2| =

3(m− 2), GS(sm− `) = GS(n− `) holds. However, S = {1, 4, 7, ..., 3m− 8, 3m− 5, 3m− 2 +

km−2(3m− 4)} (here I use 2sq − sq−1 = sq + (sq − sq−1)) so that

sm−2 = 3m− 8 = 3(m− 2)− 2 < 3(m− 2).

Thus all elements ` ∈ S smaller than sm−1 satisfy

GS(sm − `) = GS(n− `).

Now assume the second case and let t be the largest positive number smaller than m− 2

such that kt > 0 (note that this assumption forces m ≥ 4). By another easy induction,

g′{k1, ..., kq} = {g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}} (4.3)

for all q with t ≤ q ≤ m− 3. Then

g{k1, ..., km−2} = {g{k1, ..., km−3}km−2+1, g′{k1, ..., km−3}

= {g{k1, ..., km−3}km−2 , g{k1, ..., km−3},

g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}}

and use of a similar induction shows
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g{k1, ..., kq} = {g{k1, ..., kq−1}, g′{k1, ..., kq−1}}

= {g{k1, ..., kq−1}, g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}}

= ...

= {g{k1, ..., kq−(q−t+1)},

({g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}})q−t+1}

= {g{k1, ..., kt−1},

({g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}})q−t+1}

(4.4)

for all q satisfying t ≤ q ≤ m− 3. Combining these,

g{k1, ..., km−2} = {g{k1, ..., km−3}km−2 , g{k1, ..., kt−1},

({g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}})m−3−t+1,

g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}}

= {g{k1, ..., km−3}km−2 , g{k1, ..., kt−1},

({g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}})m−1−t}.

It is clear from the m− 1− t iterations (as in the other case) of

{g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}} that if

n = sm − |{g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}}| then GS(n) = 2 and for each ` < (m − 2 −

t)|{g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}}| there holds GS(sm − `) = GS(n − `). To calculate

|{g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}}| recall that this is
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|g′{k1, ..., km−3}| = |g{k1, ..., km−2}| − (km−2 + 1))|g{k1, ..., km−3}|

= sm + 1− (km−2 + 1)(sm−1 + 1)

= 2sm−1 − sm−2 + km−2(sm−1 + 1)

+ 1− (km−2 + 1)(sm−1 + 1)

= 2sm−1 − sm−2 + 1− (sm−1 + 1)

= sm−1 − sm−2.

Now I will show (m−2−t)(sm−1−sm−2) > sm−2+1. For each 0 < q ≤ m−2−t, I claim that

sm−1−sm−2 = sm−1−q−sm−2−q+km−2−q(sm−1−q+1). I will show this inductively. When q = 1

this is sm−1−sm−2 = −sm−2+2sm−2−sm−3+km−3(sm−2+1) = sm−2−sm−3+km−3(sm−2+1).

Assuming this is true for some fixed q < m− 2− t, we see that

sm−1 − sm−2 = sm−1−q − sm−2−q + km−2−q(sm−1−q + 1)

= 2sm−2−q − sm−3−q + km−3−q(sm−2−q + 1)

− sm−2−q + km−2−q(sm−1−q + 1)

= sm−2−q − sm−3−q + km−3−q(sm−2−q + 1)

because km−2−q = 0 when q < m− 2− t. Now let q be an index variable ranging from 1 to

m− 2− t and add all of these versions of sm−1 − sm−2 to obtain

(m − 2 − t)(sm−1 − sm−2) =
m−2−t∑
q=1

[
sm−1−q − sm−2−q + km−2−q(sm−1−q + 1)

]

which telescopes to sm−2−st+kt(st+1+1) because all of the km−2−q are zero when q < m−2−t.

And so (m−2− t)(sm−1−sm−2) = sm−2−st +kt(st+1 +1) ≥ sm−2−st +(st+1 +1) > sm−2 +1

since S is listed in increasing order. Thus for all ` < sm−1 there holds GS(sm−`) = GS(n−`).

I have shown GS(sm) = 2. To apply Lemma 4.1 I still need to show that for sm +1 ≤ p ≤

2sm that GS(p) = GS(p− sm− 1). Since this is only the next sm terms, and as shown earlier
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g{k1, ..., km−2} is in agreement with repetition g{k1, ..., km−3} until the last term (being the

(sm +1)th); it is enough to show that the finite sequence {GS(p)}2smp=sm+1 is just the repetition

of g{k1, ..., km−3}, which is the Nim sequence of the set S − {sm}. Rewrite p = sm + 1 + p̄

and recall the two above cases:

In the first case kq = 0 for all q < m− 2, and in this case there holds

g{k1, ..., km−2} = {g{k1, ..., km−3}km−2 , 0, 1, {0, 1, 2}m−1}.

Also in this case

g{k1, ..., km−3} = {0, 1, {0, 1, 2}m−2}

(applying equation 4.2 with q = m−3) so that there is agreement in the last 3(m−2) > sm−2

terms.

In the second case there is some (maximal) t < m− 2 for which kt > 0, and in this case

there holds

g{k1, ..., km−2} = {g{k1, ..., km−3}km−2 , g{k1, ..., kt−1},

({g{k1, ..., kt−1}kt , g′{k1, ..., kt−1}})m−1−t}

= {g{k1, ..., km−3}km−2 ,

g{k1, ..., kt−1}, g′{k1, ..., km−3}m−1−t}

(applying equation 4.3). Also in this case

g{k1, ..., km−3} = {g{k1, ..., kt−1}, g′{k1, ..., km−3}m−2−t}

(applying equation 4.4 with q = m− 3 followed by equation 4.3) so that there is agreement

in the last (m− 2− t)|g′{k1, ..., km−3}| > sm+2 terms.

Let S ′ = S−{sm} and S ′′ = S−{sm−1}. I will show that (in both cases) {GS(p−`) | ` ∈

S ′′} = {GS′(sm−1 + 1 + p̄ − `) | ` ∈ S ′}. Then I will only need to show that GS(p − sm−1)
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belongs to this same set, so that this element does not perturb the calculation of the minimum

excluded element. This will show (by known periodicity of GS′) that GS is g{k1, ..., km−3},

repeated as claimed.

Assume inductively for all sm < q < p that {GS(q − `) | ` ∈ S ′′} = {GS′(sm−1 + 1 + q̄ −

`) | ` ∈ S ′} is satisfied, and also for all sm−sm−2 < q < p that GS(q) = GS(q−sm−1) (what

is ultimately desired, and also note that the agreement shown above acts as the sm−2 base

cases as necessary here). By inductive hypothesis GS(q − `) = GS′(sm−1 + 1 + q̄ − `) for all

` ∈ S ′∪S ′′. The only thing left to show here is that GS(q− sm) = GS′(sm−1 + 1 + q̄− sm−1).

The expression on the right is just GS′(1 + q̄) = GS(1 + q̄) because q < p < 2sm implies

q̄ < sm. And then 1 + q̄ = q − sm.

Finally I show GS(p− sm−1) ∈ {GS′(sm−1 + 1 + p̄− `) | ` ∈ S ′}. To do this, divide into

two cases: sm < p ≤ sm + sm−1 − sm−2 and sm + sm−1 − sm−2 < p ≤ 2sm. Assume the first

case. Then

p− sm−1 ≤ sm − sm−2 < sm

=⇒ GS(p− sm−1 = GS′(p− sm−1)

= GS′(sm + 1 + p̄− sm−1)

= GS′(2sm−1 − sm−2 + km−2(sm−1 + 1)

+ 1 + p̄− sm−1)

= GS′(sm−1 + 1 + p̄+ km−2(sm−1 + 1)− sm−2)

= GS′(sm−1 + 1 + p̄− sm−2)

by periodicity of GS′ . Putting ` = sm−2 finishes this case. Now assume the latter case. Then

p− sm−1 > sm− sm−2 where the inductive hypothesis GS(q) = GS(q− sm− 1) is applicable,

so that GS(p − sm−1) = GS(p − sm−1 − sm − 1) = GS(p̄ − sm−1) and since p̄ < sm this is

just GS′(p̄− sm−1) (here in this case p̄ is sufficiently large for this to make sense). Finally by

periodicity of GS′ I have GS(p − sm−1) = GS′(sm−1 + 1 + p̄ − sm−1), and putting ` = sm−1

finishes this case.
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Thus the minimum excluded elements are the same andGS(p) = GS′(p̄) for sm < p < 2sm.

By Lemma 4.1, GS satisfies the period sm+1 and is given by the construction as claimed.

Table 4.1 shows the application of Theorem 4.2 for a few small cases. In it I omit commas

to save space, and since the range for all of these subtraction games is {0, 1, 2} there will

be no ambiguity. None of them have a pre-period because they are all strictly periodic, so I

only show the period in each case.

k-values S GS (one period given)
1,4 01012

0 1,4,7 01012 012
1 1,4,12 {01012}2012
2 1,4,17 {01012}3012
0, 0 1,4,7,10 01{012}3
0, 1 1,4,7,18 {01012012}2012
0, 2 1,4,7,26 {01012012}3012
1, 0 1,4,12,20 {01012}2012 01012 012
1, 1 1,4,12,33 {{01012}2012}201012 012
1, 2 1,4,12,46 {{01012}2012}301012 012
2, 0 1,4,17,30 {01012}3012{01012}2012
2, 1 1,4,17,48 {{01012}3012}2{01012}2012
2, 2 1,4,17,66 {{01012}3012}3{01012}2012
0, 0, 4 1,4,7,10,57 {01{012}3}5012
1, 0, 1 1,4,12,20,49 {{01012}2012 01012 012}201012 012
1, 1, 1 1,4,12,33,88 {{{01012}2012}201012 012}2{01012}2012 01012 012
2, 0, 0 1,4,17,30,43 {01012}3012{{01012}2012}2
2, 0, 1 1,4,17,30,74 {{01012}3012{01012}2012}2{01012}2012
2, 1, 0 1,4,17,48,79 {{01012}3012}2{01012}2012{01012}3012{01012}2012
0,0,0,0,0,5 1,4,7,10,13,16,19,122 {01{012}6}6012

Table 4.1: Table of Nim sequences built from k-values

Lemma 4.3. If {Sn} is an increasing sequence of subsets such that for every n, every element

of Sn+1 − Sn is larger than every element of Sn, then

Glimn→∞ Sn = lim
n→∞

(GSn)

where the limit on the right side is the pointwise limit of the Nim sequences.
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Proof. Since {Sn} is monotone increasing (by inclusion), its limit is its union. By transitivity

of ≥ (and an easy induction) every element of S =
⋃∞

k=1 Sk not belonging to some particular

Sn, is larger than all elements of Sn. Thus when computing the Grundy function GS up to

the largest element N of Sn none of the elements of S missing from Sn are used in exclusion

sets, so GS agrees with GSn up to N .

Fix N . There are two cases. Either Sn contains an element at least as large as N for some

n, or all Sn are bounded above by N . In the first case GS(N) = limn→∞GSn(N) because

the sequence is eventually constant by the above argument. In the second case the sequence

{Sn} is eventually constant, so that there exists some m for which S = Sm and the desired

equality is simply GSm = GSm .

Since both sides are equal for all inputs, the functions are equal.

Now applying Lemma 4.3 it is possible to extend to infinite sequences of k-values which

build limits of subtraction sets in increasing order. Probably the easiest case of this is

where the sequence of k-values is the all-zeros sequence. This builds the subtraction set

S = {1, 4, 7, 10, ...} of natural numbers which are congruent to 1 modulo 3. The Nim

sequence corresponding to this set is 0,1,0,1,2,0,1,2,0,1,2, ... Here the sequence is no longer

strictly periodic, but is still periodic with period length 3. A natural question to ask here

would be “is it possible to build S in such a way that makes the Nim sequence nonperiodic

while keeping the range {0, 1, 2}?” I will show that there are in fact uncountably many ways

to do this.

Theorem 4.4. There exists a set S ⊂ N such that GS both has finite range and is nonperi-

odic.

Proof. I show that two distinct (infinite) sequences of k-values generate subtraction sets

with distinct Nim sequences. Let {k(1)n } and {k(2)n } be the sequences and let q be the index

where the sequences first differ. Assume without loss of generality that k
(1)
q < k

(2)
q . The

respective subtraction sets S1 and S2 agree up until the (q + 2)th element by minimality of

q. Let S ′1 and S ′2 be the sets of the first q + 2 elements of S1 and S2 repectively. Let s and
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t be the respective shared (q + 1)th and qth elements of S1 and S2. The next element of S1

is 2s − t + k
(1)
q (s + 1) and the next element of S2 is 2s − t + k

(2)
q (s + 1). Additions to the

subtraction sets of larger elements (as given by the k-values) does not adjust either of the

Nim sequences for the first terms up to the input q + 2. By Lemma 4.3, the function GS1

is equal to GS′1
for inputs 0 through P = 2s − t + k

(1)
q (s + 1) and GS2 is equal to GS′2

for

inputs 0 through Q = 2s− t+ k
(2)
q (s+ 1). P is smaller than Q by assumption. For inputs 0

through P , GS2 is equal to GS′1∩S′2 and so

GS2(P ) = GS2(2s− t+ k(1)q (s+ 1))

= GS2(s− t− 1)

because GS′1∩S′2 is strictly periodic with period s + 1. If t = 1 is the first element, then

s− t− 1 = 4− 1− 1 = 2 and

GS2(s− t− 1) = GS2(2) = G{1,4}(2) = 0.

Otherwise there is an element u of both S1 and S2 for which s = 2t − u + kq−1(t + 1), and

s− t− 1 = t− u− 1 + kq−1(t+ 1) which being smaller than s has the same Nim value (for

both functions) as t − u − 1 again by periodicity. Continuing this inductively, GS2(P ) = 0.

But GS1(P ) 6= 0 because P ∈ S1 (specifically, the value is 2). Thus the two sequences are

distinct.

The mapping from the uncountable set of infinite k-sequences to the Nim sequences of

their corresponding subtraction sets is thus injective, so that there are uncountably many

of these Nim sequences, all of which have range {0, 1, 2}. Only countably many periodic

sequences exist, so there must be some nonperiodic sequence among them.

And of course, there are uncountably many of these finite-range non-periodic Nim se-

quences. Even better, here are some examples!
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Chapter 5. Curious Examples

Example 5.1. The sequence of k-values {0,0,0,0,...} generates the subtraction set

{1, 4, 7, 10, ... = the set of positive integers which are congruent to 1 modulo 3. The corre-

sponding Nim sequence is

{0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, ...}

which is periodic with period length 3, but is not strictly periodic.

Example 5.2. The sequence of k-values {1, 1, 1, 1, ...} generates the subtraction set

S = {1, 4, 12, 33, 88, ...} = is the sequence F2n − 1 where Fn is the Fibonacci sequence

{1, 1, 2, 3, 5, 8, 13, ...}. The corresponding Nim sequence is

{0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, ...}.

Replacing the words “0,1” and “0,1,2” with “1” and “2” changes this sequence to the

self-generating sequence

{1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 1, ...}

which is sequence A001468 in the Online Encyclopedia of Integer Sequences [1]. The number

of 2’s appearing between consecutive 1’s is given by the sequence itself. It is nonperiodic.

Example 5.3. The sequence of k-values {0, 1, 0, 1, 0, 1, ...} generates the subtraction set

S = {1, 4, 7, 18, 29, 70, 111, ...} is a sequence whose every-other-element subsequences (using

the even or the odd indices) have discrete derivatives that satisfy the recurrence an+2 =

4an+1 − an. Adding one to each term in either subsequence also generates a sequence that
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satisfies this recurrence. The corresponding Nim sequence is

{0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, ...}.

Replacing the words “0,1” and “0,1,2” with “2” and “3” changes this sequence to the

self-generating sequence

{2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, ...}

which is sequence A007538 in the Online Encyclopedia of Integer Sequences [11]. The number

of 3’s appearing between consecutive 2’s is given by the sequence itself. It is nonperiodic.

Example 5.4. The sequence of k-values {1, 0, 1, 0, 1, 0, ...} generates the subtraction set

S = {1, 4, 12, 20, 49, 78, 186, ...} and its corresponding Nim sequence is also related to the

sequence

{2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, ...}

but this time by replacing the words “0,1,0,1,2” and “0,1,0,1,2,0,1,2” with “2” and “3”. It

is nonperiodic.

Example 5.5. The sequence of k-values {0, 0, 1, 0, 0, 1, 0, 0, 1, 0, ...} generates the subtraction

set S = {1, 4, 7, 10, 24, 38, 52, 119, 186, 253, ...} and its corresponding Nim sequence is given

by the self-generating sequence

{3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 3, 4, 4, 4, 4, 3, ...}

(which is sequence A018244 in the Online Encyclopedia of Integer Sequences [8]) with “3”

and “4” replaced by the words “0,1” and “0,1,2”. It is nonperiodic.

More generally, if the k-sequence is periodic with period {0, 0, ..., 0, 1} with r zeros, then

the Nim sequence is given by the self-generating sequence as above, using r+ 1 and r+ 2 in
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the place of 3 and 4, and then replacing r + 1 and r + 2 with the words “0,1” and “0,1,2”.

None of these are periodic.

Example 5.6. The sequence of k-values {2, 2, 2, 2, ...} generates the subtraction set

S = {1, 4, 17, 66, 249, 932, ...} and its corresponding Nim sequence is given by the self-

generating sequence

{3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, ...}

(this is not quite A007538 and it is not an offset of it either, though it is constructed very

similarly, with a different starting condition) with “3” and “2” replaced with the words

“0,1,0,1,2” and “0,1,2”. It is nonperiodic.

More generally, if the k-sequence is constant = {k,...} then the corresponding Nim se-

quence can be built like above, but with k + 1 and k in the stead of 3 and 2. Replace each

k + 1 with the word “0,1,0,1,2” and each k with the word “0,1,2”. Note that this in indeed

another way to describe the “all ones” case described above, with k = 1. In fact, the same

rule holds for the “all zeros” k-sequence, though it’s not the easiest way to think of it.

Example 5.7. The sequence of k-values {0, 0, 1, 1, 0, 0, 1, 1, ...} generates the subtraction set

S = {1, 4, 7, 10, 24, 63, 102, 141, 322, 826, ...} and it should be no surprise that it takes some

more effort to describe its Nim sequence. Taking the sequence and replacing the words “0,1”

and “0,1,2” with “1” and “2” generates the sequence

{1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, ...}

where the number of consecutive 2s is given by the sequence

{3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 3, ...}

and the pattern of consecutive 4s is given again by the first sequence.
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Chapter 6. Conjectures and Unanswered

Questions

Conjecture. The infinite k-sequences that are not eventually zero generate nonperiodic sub-

traction games, while the finite k-sequences and the infinite k-sequences which are eventully

zero generate periodic subtraction games.

Conjecture. The discrete derivative of the Nim sequence corresponding to a periodic sub-

traction set is periodic.

Question. Do these self-generating sequences show up in a predictable way? How does it

relate to the periodicity of the k-sequence?

Question. In one of the above examples the Fibonacci sequence showed up. This was gen-

erated by the same sequence which gives the continued fraction for the golden ratio. The

corresponding Nim sequence is also closely related to the Fibonacci Word (see A003849 in

the Online Encyclopedia of Integer Sequences [10]). Is the continued fraction a coincidence,

or is it related somehow? Does this generalize nicely for recurrances?

Question. Is there a way to use higher-order recurrences to generate Nim sequences with

larger bounded range, like for example {0, 1, 2, 3}?

Question. Is there a way to use the strict periodicity of symmetric sets in limits to solve

more infinite classes of subtraction games?

Question. Any three-element set of natural numbers can be extended to symmetric four-

element set by appending only one element. Can this fact be used to make significant

progress in solving three-element subtraction games? Three-element subtraction games are

known to be deceptively simple but stubborn to solve, and have not yet been generally

solved. See [9] for some further discussion.

Question. What other ways can be used to bound the range of Nim sequences? For example,

if the smallest element of S is s1 and 3s1 also belongs to S then the range contains 3 or does
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not contain 2. This is a direct consequence of Ferguson’s Pairing Property, which is discussed

in [3] and [13]. Are there any nice ways to generalize this fact enough to be useful?
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