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abstract

A New Public-Key Cryptosystem

Chris Hettinger
Department of Mathematics, BYU

Master of Science

Public key cryptosystems offer important advantages over symmetric methods, but the
most important such systems rely on the difficulty of integer factorization (or the related dis-
crete logarithm problem). Advances in quantum computing threaten to render such systems
useless. In addition, public-key systems tend to be slower than symmetric systems because
of their use of number-theoretic algorithms. I propose a new public key system which may
be secure against both classical and quantum attacks, while remaining simple and very fast.
The system’s action is best described in terms of linear algebra, while its security is more
naturally explained in the context of graph theory.
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Chapter 1. Public-Key Cryptography

Symmetric-key cryptography is intuitive and often effective, but it requires that any two

parties wishing to communicate securely somehow exchange a secret key. Public-key cryp-

tography makes it possible for any two parties to set up secure communications using only

a public, insecure channel, such as the internet.

1.1 The Need for Public Key

At its core, cryptography is about sending messages securely over insecure channels. Most

common channels of communication are inherently insecure. Letters can be opened, phone

lines can be tapped, and data packets sent over the internet can be read and/or copied. In

all of these cases, an attacker can steal a message en route while ensuring that it still makes

it to the intended recipient. With care, an attacker can do this such that neither sender nor

receiver knows what happened. This is a problem.

In theory, one solution to this problem would be to create a truly secure channel. For

example, two people who wanted to communicate securely could run a cable between their

computers and use it exclusively to carry their messages. In most cases, this is impractical

or even impossible.

A better solution is for two parties to communicate in their own secret language. Then

they can use an insecure channel without worry. Even if an attacker intercepts their messages,

he cannot obtain any information if he cannot translate the secret language. In practice,

this is achieved by treating messages as numbers (or other mathematical objects) and using

function-inverse pairs to ‘translate’ between normal and encrypted messages.

Suppose f(x) is an invertible function. If two parties both know this function, but nobody

else does, then one can take a message m, compute c = f(m), and send c to the other over an

insecure channel. The other computes m = f−1(c) to recover the message. To an attacker,

c is meaningless.
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This is the idea behind symmetric-key cryptography [12, p. 71]. The key in this case is

the function f(x), which is known to both parties but secret to all others. It is symmetric

in the sense that both parties have the same information and are encrypting and decrypting

messages in the same way. Of course, this view is extremely simplistic. In reality, it is

difficult to make sure that an attacker cannot work out what f(x) is and compromise the

system. Today, however, there are methods of generating such an f(x) — such as the AES

[16, p. 102] and Twofish [13] algorithms — which are considered unbreakable.

The problem with symmetric-key cryptography isn’t that it is easy to break. It isn’t. The

problem is getting it set up in the first place. In order to do so, the two parties must share

some secret information [15, p. 123]. Unless they can meet in person, they are stuck. The

logic is perfectly circular — they can’t communicate securely unless without first sharing a

key, and they can’t share a key without first securing their communications.

Public-key cryptography exists to circumvent this apparent barrier. This is accomplished

through the use of two different keys: a public key and a private key. A person with the

private key is able to encrypt messages, but does not have the capability to invert the

encryption process and decrypt messages. A person with the private key can decrypt any

message encrypted with the public key. Additionally, the private key usually gives the

information necessary to recover the public key and encrypt messages [15, p. 144].

So an individual will generate a public key-private key pair and publish the public key

for all to see while keeping the private key a secret. Then any other individual can use

the public key to send an encrypted message to the first individual (who created the keys),

knowing that no other can decrypt it. No prior communication is required between the two

parties involved.

It is easy to design a function that cannot be inverted, and it is easy to design a function

which anyone can invert. It is difficult to give somebody enough information to compute

values of an invertible function but not enough to compute inverse values or discover the

inverse function.
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1.2 Trapdoors, Factorization, and Discrete Logarithms

A trapdoor is a door which sits flush with a wall or floor, having no handle on its outside

(the side toward which it opens). Thus it is easy to open from the inside, but difficult or

impossible to open from the outside. A trapdoor function t(x) is an invertible function —

that is, given an output y, it is possible to find the unique x such that t(x) = y — with the

property that it is easy to compute t(x) for any x, but difficult to find the x for a given y

[15, p. 145].

A common and important example of such a function is f(p, q) = pq = n, which takes as

its input a pair of primes p and q (order not important) and returns their product n. Given

p and q, it is trivial to compute n. Given n, however, it is very difficult to compute p and q

even though we know that the pair exists and is unique [15, p. 145].

When we say that factoring is difficult, this is not a statement of fact regarding some

sort of inherent difficulty to the problem. Rather, it means that there is no known method

for reliably computing p and q in a reasonable amount of time. If someone were to discover

a fast algorithm which consistently factored semiprimes (products of two prime numbers),

this would no longer be considered a trapdoor function, and the problem of factorization

would no longer be called difficult.

Another important trapdoor involves exponentiation in finite groups — for example, the

multiplicative group of integers modulo some integer n. Let ga(x) = ax be a function that

takes a fixed group element a and returns its xth power. This is generally easy to compute,

especially with optimizations like binary exponentiation. Then g−1(x) = loga(x) is called

a discrete logarithm. Unlike logarithms of real numbers, discrete logarithms are infeasible

to compute in many groups [17, p. 201]. In fact, this problem is closely related to that

of factorization, and algorithms for one tend to have analogues for the other. There are

other trapdoor functions currently being studied. Of particular interest are some involving

lattice reduction and coding theory, but so far no cryptosystem using these has been widely

adopted.
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Public-Key cryptosystems are built around trapdoor functions. The trapdoor sits be-

tween the public and private keys in the sense that it is easy to derive the public key from

the private key, but computationally infeasible to derive the private key from the public key.

We will give several important examples of this which are in use today.

1.3 RSA, ElGamal, and Elliptic Curves

No discussion of modern public-key cryptography can be complete without an explanation

of the RSA algorithm of Rivest, Shamir, and Adelman. It is both one of the oldest notable

examples of a public-key cryptosystem (first published in 1977) and one of the most important

and common systems in use today [15, p. 144].

To create an RSA key pair, a user first chooses two large primes (hundreds of digits long)

p and q and computes n = pq. He then chooses an integer e and computes its inverse d

modulo ϕ(n) = (p − 1)(q − 1). The user publishes e and n as the public key and keeps p,

q, and d secret. To send a message m to this user, one simply computes c = me mod n and

sends c. He then decrypts by computing m = cd mod n [19, p. 89]. It is hard to imagine a

cryptosystem more elegant or simple in its mathematical description.

The security of RSA lies in the fact that an attacker would need to compute d in order

to decrypt messages, but this requires knowledge of ϕ(n) or, equivalently, p and q. It is

generally believed that the best way to attack RSA is to factor n [16, p. 182]. Successful

factorization makes the rest of the attack trivial, but current mathematical methods and

computer technology cannot factor n as long as p and q are chosen sufficiently large. There

are a few caveats — there are special-case factoring algorithms that can succeed if p and/or

q have certain special properties [4, p. 412] — but these details are not a major concern. The

RSA system should be secure as long as factoring is hard and no better method of attack is

doscovered. Consequently, integer factorization is currently a major area of research in both

academia and industry.
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The discrete logarithm problem gives rise to a variety of public-key cryptosystems, most

notably the ElGamal system of Taher Elgamal [6] and a family of systems based in the theory

of elliptic curves [7]. Whereas RSA essentially forces an attacker to factor the product of

two large primes, these systems force an attacker to compute discrete logarithms over groups

for which this is difficult. Some of these systems, including ElGamal, introduce an aspect

of randomness into the encryption process [17, p. 212]. This makes it possible for one m to

be be encrypted as many different c, any of which would be decrypted correctly with the

private key. In practice, this can be an important advantage.

These systems are not without drawbacks. Otherwise, there would be little sense in

coming up with a new public-key cryptosystem. The most important drawback is that while

all are considered reasonably secure now, that security might crumble with the advent of

quantum computing. In 1994, Peter Shor described an algorithm which quickly factors large

integers on a quantum computer [11, p. 63] using discrete Fourtier transforms [1, p. 25]. A

variant of this algorithm efficiently computes discrete logarithms as well [14]. However, so

far quantum computers have not been built with enough size or speed for these methods

to be implemented on a practical scale. If the technology improves, secure communications

everywhere could be totally compromised and the aforementioned cryptosystems rendered

useless. The principal value of this paper lies in the presentation of a public-key cryptosystem

which would be secure not only against attacks with classical computers, but also against

Shor’s algorithm and other quantum computing methods.

Another drawback of lesser but real importance is that public-key methods tend to be

slower than their symmetric counterparts because they involve number-theoretic operations

(such as exponentiation in groups) for which computers are not optimized. This is in contrast

to, for example, the AES (American Encryption Standard) algorithm, which uses only the

simplest operations (mainly bitwise additions and table lookups) and so is very fast [17,

p. 151]. Other symmetric-key methods are similarly fast.
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It would be ideal to have a system with the unique advantages of the public-key setup

and the speed of comparably secure symmetric methods, and the system to be presented is

designed to be just that.

1.4 Digital Signatures

In addition to removing the need to exchange a key securely, public-key systems provide

a solution to the important problem of verifying a message’s source — that is, confirming

that the sender of a message is indeed who he claims to be [16, p. 274]. The ability to

communicate privately is of little value if the identity of the other party is uncertain, and

credentials like email addresses are surprisingly easy to fake.

The verification is accomplished essentially by using a cryptosystem in reverse. Suppose

two users, Alice and Bob (who have been suspiciously absent from the explanation thus far),

each have their own implementation of a public-key cryptosystem, and Bob wants to send

a message to Alice such that can be sure that only he could have sent it. To do this, Bob

takes his message and uses his private key to ‘decrypt’ it as though it were an incoming

encrypted message. He then encrypts the resulting message with Alice’s public key and

sends it off. Upon receipt, Alice decrypts the message with her private key just as she

would any other incoming message. She then uses Bob’s public key to ‘encrypt’ the resulting

message, undoing Bob’s initial decryption and yielding the original message. If Bob’s public

key undoes an operation, it must be the operation of Bob’s private key, which only Bob has,

so the message must be from Bob [15, p. 213]. This underscores the importance of keeping

a private key private. If an attacker can gain access to Bob’s private key without Bob’s

knowledge, he may be able to impersonate Bob with this method.
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1.5 Symmetric Key Exchange

Because of the speed discrepancy between public-key and symmetric encryption, it is com-

mon in practice to implement a hybrid cryptosystem that takes advantage of the strengths

of each. In this case, two users create public-key systems and use them only to securely ex-

change the information to set up a symmetric system, which they then use for all subsequent

communication [17, p. 259].
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Chapter 2. The Encryption and Decryption Functions

An instance of the system comprises a bijective function on the message space. We describe

this function and its inverse, the space upon which they act, and the keys that facilitate

their computation.

2.1 Bits, Words, and Blocks

The role of cryptography today is to secure the transmission of information stored on com-

puters as strings of bits. It is natural, therefore, that a modern cryptosystem should be

designed to work with data in this form. With that in mind, we define a few useful terms.

First, let α be a small positive integer. A ‘word’ is a string of α bits. For example,

if α = 4, then 1101 and 0110 are both valid words. There are 2α possible words, so for

convenience define n = 2α. Let m be another positive integer. A ‘block’ is a list of m

words. An instance of the system will send a block of plaintext to a block of ciphertext and

vice-versa, and so may be thought of as a bijection on the set of blocks.

Let W be the set of words. It is worth noting that W is just that — a set. It will take

on different algebraic structures at different stages and it will be important to keep track of

how elements translate. Good values for α and m will be discussed later, when the proper

context has been established. To give an idea of scale, however, α will likely be around 10,

and m somewhere around 100.

2.2 Permutations

The symmetric group Sn is usually described as the group of permutations on n symbols [8,

p. 46]. Equivalently, we describe it as the group of bijective functions on the aforementioned

set W of n possible words, with composition of functions as the group operation. We’re

going to use lots of functions from this group.

8



Let Smn =
∏m

i=1 Sn be the group (under composition) of functions on the set of blocks

which operate on each word separately (so this is a small subgroup of Snm, which con-

sists of all bijections on the block as a whole). A function f ∈ Smn is written as the tuple

(f1, f2, . . . , fm). If we write a block P as [p1, p2, . . . , pm], then f(P ) = [f1(p1), f2(p2), . . . , fm(pm)].

Such functions will form a sort of ‘buffer’ to keep attackers from gaining information about

the encryption operation.

2.3 Finite Field Arithmetic

Let q(x) ∈ F2[x] be irreducible of degree α and let Fn = F2[x]/(q(x)) be the finite field of

n = 2α elements where F2 = Z/2Z [8, p. 278]. The elements of Fn are polynomials in x with

coefficients in F2 and of degree at most α− 1. We will identify the elements of Fn with the

words of length α in an obvious way, by letting the coefficient of xi correspond to the ith

digit (from the right, counting from zero) of the word. For example, if α = 4, we identify

x3 + x2 + 1 with 1101 and x with 0010. We then can speak of adding and multiplying words

by carrying out the corresponding operations in Fn [15, p. 250].

Addition in particular is very easy, as it amounts to performing a binary XOR on the

words [17, p. 40]. So 1100 + 0111 = 1011 and 1011 + 1010 = 0001. Conveniently, Fn has

characteristic 2, so addition and subtraction are the same operation. Hence we can code

arithmetic only in terms of the former.

Multiplication is not trivial (especially by hand), but can be implemented efficiently. To

naively compute the product of two words, we would compute the product of two polynomials

and then reduce modulo q(x). For example, let α = 4 and q(x) = x4 + x + 1. Then

0101 ·1011 = (x2 + 1) · (x3 +x+ 1) = x5 +x2 +x+ 1 = 1 = 0001, with the last step using the

fact that x5 ≡ x(x4) ≡ x(x + 1) ≡ x2 + x mod x4 + x+ 1. Division is possible in the usual

‘multiplication by the inverse’ sense, so in order to perform division one would have to know

these inverses, which are easy to compute by exponentiation using Fermat’s Little Theorem.

9



In the case where α is very small, it might be advantageous to pre-compute a multipli-

cation table. However, this table quickly becomes very large. A log table expressing the

various field elements as powers of a generator (x is an obvious choice) takes up much less

space and turns multiplication into addition and subtraction of small integers. Then our

previous example becomes 0101 · 1011 = x8 · x7 = x15 = 1 = 0001.

2.4 A Matrix Twist

Let GLm(Fn) be the group (under multiplication) of m ×m invertible matrices over Fn [5,

p. 34]. The most important element of the system will be a matrix T ∈ GLm(Fn). In

addition to its invertibility, T needs to have a special shape.

First, T needs to have exactly three nonzero entries in each row and in each column. The

importance of this condition will be explained later, in terms of a graph closely related to

T . Given the expected size of m, this condition makes T very sparse. Here is an example

of one possible shape for T in the case where m = 7, in which the bullets represent nonzero

entries: 

• • •
• • •

• • •
• • •
• • •
• • •

• • •


In order to use T , we interpret a block P as a column vector over Fn. Then we can

multiply this block by T on the left to get a new block. This operation is essential because

it ‘entangles’ a block at the word level, in the sense that the words in the new block are

functions of several words from the old block. This is in contrast to the action of functions

from Smn , which operate on words individually.

10



2.5 The Private Key

We now have all of the pieces necessary to describe the actions of the encryption and de-

cryption functions. Let F,G ∈ Smn and T be as above. Then define

E(P ) = G(T · F (P )) and D(C) = F−1(T−1 ·G−1(C))

Here P is a block of plaintext and C is its corresponding block of ciphertext. They can be

obtained from one another by E and D, which are easily seen to be inverses.

The private key can consist simply of F , G, and T . The functions F and G may be

stored rather naively as lists of outputs which are treated as lookup tables. For example, in

the case α = 2, m = 3 we might write f1 as [01,11,10,00], meaning f1(00) = 01, f1(01) = 11,

f1(10) = 10, and f1(11) = 00. Writing f2 and f3 likewise, we can store F as a 3× 4 array of

2-bit words.

This method may not be strictly optimal in terms of information density when α is larger,

as it takes nα = log2(n
n) bits to store each Sn function when one could theoretically use only

log2(n!) bits for each, but the added complexity would almost certainly not be worth the

space saved. The first part of the private key consists of F−1 and G−1 stored as described

here. Because F and F−1 take up the same amount of space, it is better to store F−1 than

to store F and waste time inverting it before each use.

It will, on the other hand, be worth storing T instead of T−1 for two reasons. First, T can

be stored in very little space because of its sparsity, which T−1 cannot be expected to share.

Second, the method described here will come in handy later when publishing the public key.

We store T using two m×3 arrays called S and V . S stores the ‘shape’ of T by listing in

ascending order the three columns in which each row has its nonzero entries. In the case of

the diagram on the previous section, S would be [[1, 2, 6], [2, 3, 7], . . . , [1, 5, 7]]. Technically S

could be stored a bit more efficiently (for example, the last row could be inferred from the

previous), but not by a meaningful amount.
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The nice, banded shape of the example might invite an even more streamlined represen-

tation, but in general this will not be the case. The array V then stores the actual nonzero

entries of each row, in order from left to right so as to match the way columns are listed in

S.

T is easy to invert using conventional methods. In particular, inverting a matrix over a

finite field is very nice computationally as stability and precision are not concerns (as they

are when working with, for example, floating-point reals). In most cases, inverting T before

beginning decryption will not add meaningful time to the process. So the second part of the

private key consists of T stored as described.

Of course, one could publish F , G, and T in the same form and allow others to encrypt,

but this would also make public enough information to easily decrypt. In order to assemble

a public key that does the former but not the latter, new pieces are needed.

2.6 Affine Interjection

Let P and C be a plaintext-ciphertext pair again. It is easy to see that an individual word

ci of C is a function of three words of P - the words corresponding to the three columns

in which row i of T has nonzero entries, or the three words indicated by row i of S. That

relationship looks like this:

ci = gi
(
tsi,1,ifsi,1(psi,1) + tsi,2,ifsi,2(psi,2) + tsi,3,ifsi,3(psi,3)

)
For greater generality, we define the function

ei(x, y, z) = gi
(
tsi,1,ifsi,1(x) + tsi,2,ifsi,2(y) + tsi,3,ifsi,3(z)

)
and note that E(P ) can be broken down into the sequence of ei in order to compute the words

of C individually. It’s a bit more complicated conceptually, but computationally equivalent

to what was described before - just with the steps re-ordered.
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Still in the spirit of making changes with no net effect, we define just a few more ob-

jects. Let ai, bi,1, bi,2, bi,3 ∈ Fn with ai nonzero. Let bi = bi,1 + bi,2 + bi,3. Then we define

g′i, f
′
i,1, f

′
i,2, f

′
i,3 ∈ Sn by

g′i(x) = gi((x− bi)/ai) and f ′i,j(x) = aitsi,j ,ifsi,j(x) + bi,j

for 1 ≤ j ≤ 3. Then it is clear that

ei(x, y, z) = g′i
(
f ′i,1(x) + f ′i,2(y) + f ′i,2(z)

)
even though this composition involves four different functions (which are still in Sn) than

those in the definition of ei above. It is this fact that will allow the existence of a public key

that facilitates encryption but not decryption.

2.7 The Public Key

Using the same lookup-list method of representing Sn functions as before, we can put these

newly minted g′i and f ′i,j into convenient arrays. Specifically, we define arrays Ei for 1 ≤ i ≤ m

such that the rows of Ei are, in order from top to bottom: g′i, f
′
i,1, f

′
i,2, f

′
i,3. These m arrays

are all 4×n and their entries are α-bit words. Of course, in order to encrypt, one must know

which plaintext words to plug into these functions, so the final array included in the public

key is S - the same S from the private key that locates the nonzero entries in T .

For any fi in the private key, there are three f ′i,j in the public key which differ from it

(and from each other) only by composition with an affine function. One could cut the size

of the key roughly in half by only giving only one of the three related f ′i,j and then providing

the necessary constants to derive the other two therefrom. For the sake of simplicity, we

won’t worry about this optimization here, but it might be worthwhile in practice.
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2.8 Implementation

In practice, it is important that a key pair for any system be generated with good pseudo-

random methods [17, p. 41]. It is trivial to use a good random number generator iteratively

to make the many permutations in the private key, and to generate all of the ai and bi,j used

in making the public key. Filling in the nonzero elements of T randomly could result in a

singular matrix, but in this case a random (nonzero) change to any element should fix that.

Choosing a shape for T is not at all a random process, as this shape must give certain

specific graph-theoretic properties to be discussed later. However, because the shape is

public, there is no reason to ’generate’ one at all. In fact, it is likely that if this system were

widely implemented that all users would simply select from a handful of particularly good

shapes, and this would not present a problem.
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Chapter 3. Reverse Engineering

The best thing one can hope to do when attacking a public-key cryptosystem is deduce the

private key from available information, so it is paramount that this be infeasible.

3.1 The Symmetric Buffer

The most important part of the system is the matrix T because it creates asymmetry — the

defining characteristic of a public key system. Because T has its particular sparse shape,

but T−1 does not, it is possible to give all of the information needed to encrypt a message

without giving the information needed to decrypt one. By itself, however, the action of T

is just a linear transformation, and a particularly nice one at that. The reason F and G

exist is to prevent an attacker from gaining information about T from either side without

sacrificing the speed and simplicity of the system.

Of course, when it comes to information about a linear transformation, the sparsity of T

together with the shape information available from the public key would seem to be a gold

mine. However, m and n don’t need to be very large for the set of possible T with a given

shape to be enormous. Since there are 3m entries in T , there are (n− 1)3m ways to fill them

in with nonzero elements of Fn. It is possible that some of the (n− 1)3m possible T will fail

to be invertible. It seems reasonable to assume (though it might be hard to prove) that the

determinants of the possible T should be distributed equally, or nearly so, in Fn. As every

element of Fn is a unit, this would make us expect (n−1)3m+1/n valid possible T for a given

shape.

The purpose of the F and G ‘buffers’ is then not to obscure in any way the shape of

the transformation, but rather to make it infeasible to determine the values in V . We shall

discuss how this is accomplished, but first we must show that an attacker needs to discover

the values in V .
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3.2 Equivalent Keys

This system is unusual in that a given key - public or private - does not correspond to

a unique partner. The method of constructing a public key makes this obvious, with the

random selection of ai and bi,j yielding some n3m(n−1)m options that all encrypt identically.

Given one public key, it would be easy to derive many others, though there would be neither

enough time nor enough memory to compute any significant proportion. If one could take a

given public key compute all of the equivalent public keys, one of them would consist of all

of the original gi and fi (three times each) from the private key.

Likewise, two private keys can can decrypt identically. Multiplying T on the left or

right by an invertible diagonal matrix and making commensurate changes in the fi or gi

respectively would yield an equivalent private key. This yields (n − 1)2m identical private

keys, and these could in turn give rise to an even greater set of public keys equivalent to

those described in the previous paragraph.

First, it’s important to note that while these classes of equivalent keys are quite large

in one sense, they are very small relative to the set of possible keys. Given a particular

matrix shape, one could generate (n!)2m(n − 1)3m+1n−1 different private keys, and dividing

into equivalence classes of the aforementioned size barely makes a dent in this number. So

we won’t run out of non-equivalent keys, nor need we worry about the probability that

two keys generated independently will be equivalent (assuming good pseudorandom number

generation, of course).

Second, the issue of equivalent keys is not necessarily cause for alarm. It just requires a

paradigm shift when considering possible attacks. In this chapter, that means analyzing the

difficulty of finding a private key equivalent to the desired one. It’s not a tremendous shift,

but it merits explanation. Since we will be thinking in terms of equivalence classes of keys, it

is natural to want canonical representatives for these classes. This simplifies the discussion

and allows us to talk about these representatives as though they were the classes, as we do

in modular arithmetic. The best representative will depend on the attack being studied.
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3.3 Affine Pass-Through

Another issue in showing that an attacker must get through the buffers, so to speak, is

that linear operators like matrices and our affine functions tend to play very nicely together,

interacting in simple and predictable ways [9, p. 175]. In particular, scalar multiplication

passes right through matrix multiplication. Since the only thing separating the private and

public keys is a handful of affine functions, this sounds problematic.

If we want a working private key, we need an F , a G, and a T . In a sense, we have the

latter two. We can use the g′i as the gi and build a T from the given shape with ones for

all the nonzero entries. There is no expectation that these functions would initially help in

decryption - and this T might not even be invertible - but they are a logical starting point.

The first real hurdle to overcome, though, is choosing some fi.

The public key gives three permutations f ′i,j for each index i with relations of the form

f ′i,j(x) = fi,k(rx+ s) for some r ∈ F×n and s ∈ Fn. Note that here it seems prudent to use r

and s here instead of a and b to avoid confusion with the ai and bi,j used to create the f ′i,j.

Given fi,j and fi,k, it should be trivial to work out the r and s that identify their relation

by matching two outputs from each. Further, it would be easy to take any of the three f ′i,j

and generate a list of n2 − n possible fi. All three f ′i,j would of course appear in this list.

Out of the (n2 − n)m possible F one could choose by selecting an fi from each of these

lists, it is likely that none would work with the naive choices for G and T . Because the only

equivalent private keys are the ones described in the previous section, just using the g′i won’t

work unless bi = 0 for every 1 ≤ i ≤ m. In other words, even though it is easy to generate

the n2 − n possibilities for each fi and gi, being able to generate an equivalent private key

to the original is equivalent to knowing when the constant in the affine transformation is

zero, because while multiplication by constants can ‘pass through’ the matrix multiplication

under some circumstances, addition just cannot. There’s just no way to look at a permutation

individually and say whether this has happened. Plus, all of this assumes guessing the entries

of T correctly, which is certainly unlikely.
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Clearly there are too many things to guess simultaneously before one can check whether

those guesses are good by seeing if the resulting potential private key works as a whole. An

attacker needs a way to guess some parts of the private key and then verify them before

moving on to the next. In order to show that this is difficult, we’re going to need to take a

detour through a branch of mathematics not usually associated with cryptography, especially

of the public-key variety.

3.4 Girth

In chapter one, we talked about shapes for T , stating that it needed to have three nonzero

entries in each row and column without considering why. Now we have the context to give

motivation. We return to the example shape for the m = 7 case for convenience.

• • •
• • •

• • •
• • •
• • •
• • •

• • •


The connections between plaintext words and ciphertext words that we see in this diagram

are more naturally understood in the context of graph theory. As the rows of T correspond

to words of the plaintext and the columns to words of the ciphertext, having a nonzero

entry in the (i, j) position indicates a connection between pi and cj. So we draw a graph in

which the vertices represent words and the edges represent these connections. It will be an

undirected graph, which might be counterintuitive as the encryption operation has a definite

direction. This is because an attacker can ’travel’ along edges in both directions in a manner

to be discussed later.
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In the case of the above example, one might draw this graph as follows:

p1 p2 p3 p4 p5 p6 p7

c1 c2 c3 c4 c5 c6 c7

Drawing the graph in this way makes a few features obvious. First, it is necessarily a

balanced bipartite [18, p. 3] graph on 2m vertices, as both the plaintext and ciphertext blocks

consist of exactly m words and there cannot be connection between words in the same block.

Second, it is obvious from the way T was defined that this is a cubic (or 3-regular) graph

[10, p. 15].

This example is unusual in that its structure is simple and easy to see — even pretty.

For larger m, things will be messier. More importantly, this graph is unusual in that it

exemplifies a trait that will prove crucial to the security of the system: high girth. The girth

of a graph is the length of its shortest cycle. It will be useful to think of girth in terms

of a ‘cycle game’ in which a player starts at a vertex and follows edges around the graph,

attempting to return to the starting vertex in as few moves as possible without using any

edge twice. Note that because our graphs are bipartite, their girth will always be even.

The above graph is known as the Heawood graph and has a girth of 6 [3]. In fact, it is

a 6-cage — it has the least vertices of any cubic graph with girth 6. The converse is true

as well - 6 is the highest possible girth for a cubic graph on 14 vertices. It is known that a

graph of even girth g must have at least 21+g/2− 2 vertices [2]. So the shape shown above is

an ideal choice for T when m = 7. Permuting the rows and/or columns of T will not change

the graph at all, so in this sense there are many equally good shapes.
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If one were going to make an instance of the system with m = 7, it would be foolish to

use any shape but these. Any other would have less-than-optimal girth, making the system

less secure. There is no value in using a different graph than others because it is published

in the public key (in the form of the array S).

3.5 The Cycle Game

Let’s continue with our example. In it, c1 depends on p1, p3, and p7. Suppose an attacker has

guesses for f1, f3, f7, g1, and all the relevant entries of T . By plugging in several triples of

values for p1, p3, and p7, we will have a high chance of quickly identifying our set of guesses

as defective when some triples don’t give the right c1 as output. While this is still crude from

a strategic viewpoint, it’s much less expensive than guessing a whole private key and testing

it for equivalence to the desired one. On the other hand, having guesses that pass this test

is no achievement in itself. A trivial way to pass is to use g′7, its three corresponding f ′i,j,

and ones for the T values. An attacker can generate every passing set by picking random

constants in a method almost identical to the one used in making the public key, with one

small addition.

In order to generate such a set, an attacker starts with the g′i and its f ′i,j. He then

randomly generates r, t1, t2, t3 ∈ F×n and s1, s2, s3 ∈ Fn. and defines s = s1 + s2 + s3. He

then makes the following guesses:

gi(x) = g′i((x− s)/r) and fj(x) = (rf ′i,j(x) + sj)/tj

(where j takes the values of the indices of the three plaintext words that determine ci) for

the true private key functions. The difficulty lies in trying to extend this particular set of

guesses all the way to a full private key without it failing. The difficulty of doing so is a

function of the girth of the graph just described.
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Suppose we have a set of guesses as above. In particular, look at the f1 from that set.

Since f1 is also used in the computation of c6, it needs to pass a test there as well. So we

need to come up with guesses for f5, f6, g6, and a few more entries of T that work with

our f1. This means repeating the process just outlined with the r, sj, and tj but with the

constraint that the constants chosen yield the same guess for f1 that we have already made.

This will uniquely determine r and one each of the sj and tj (the sj and tj corresponding to

f1). The rest of the sj and tj can be chosen randomly.

We can try to continue this process with c7, but trouble will almost certainly arise. In

this case, focusing on c7 would have us look at f2, f6, and f7. We already have guesses for

two of these, and the new guesses we make must agree with both. However, it is highly likely

that our f6 and our f7 will put contradictory constraints on the choices of constants. If so,

it’s the end of the road.

Recall from the section on equivalent keys that some multiplication by constants can

leave a private key intact, but addition of constants cannot because they can’t pull through

the matrix action. So if at any stage in this guessing game the s constants failed to cancel

out the b constants added when the public key was made, we are doomed to fail. Yet this

can only be seen upon completing a cycle of the graph, at which point the contradiction was

apparent. This is the importance of girth. The more steps an attacker must perform on the

way to this contradiction, the more unlikely his success.

In fact, by keeping track of random guesses, we can see that the difficulty of successfully

closing the cycle increases exponentially with the girth g of our graph. If we only consider

the possibility of not cancelling out the added constants (and there are other ways to lose

this game, as T can be picky), an attacker must guess three correct s constants on the initial

step, which will happen 1 in n3 times. Then with each successive step he must guess an

additional two (assuming g > 4, which prevents two ci from having multiple pi in common).

Then g/2 steps to a cycle gives a 1 in n3+g (or 1 in 2α(3+g)) chance of success. As just stated,

this considers only one reason for failure and so constitutes a weak lower bound on difficulty.
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This finally answers the critical question left unanswered in chapter two: how does one

choose a good shape for T? It is smartest to choose α and an even girth g simultaneously so

as to make the cycle game sufficiently difficult as per the formula just given. Then choose a

balanced bipartite cubic graph of girth g either by generating one or (more likely) by using

a well-known example. In particular, it is natural to look at the known cages, as these will

result in the smallest m for a particular girth, which in turn will keep both key size and

runtime down. Then one can use any shape for T which is equivalent to the selected graph

(of the many given by permuting rows and columns).

3.6 Plaintext-Ciphertext Pairs

In symmetric encryption, giving an attacker access to even a small number of pairs of corre-

sponding plaintexts and ciphertexts usually spells doom. Of course, in the public-key case,

an attacker has immediate access to every such pair. It is important to show that one cannot

generate a set of such which reveals helpful information about the private key. We are not

considering cases in which an attacker chooses a ciphertext and somehow (through either

implementation or user error) obtains the corresponding plaintext. This situation will be

treated in the following chapter. Here an attacker is alone with the public key, encrypting

plaintexts and looking for information in the output.

Preventing such an attack is another crucial function of the permutation buffers. Essen-

tially, there are no ‘special’ plaintext-ciphertext pairs for this system because both sides are

randomized. There are many special vectors which can give one information about matrix

multiplication, such as the zero vector and the elementary basis vectors, and the eigenvectors

of a matrix. However, not only can an attacker not intentionally generate a plaintext which

will become such a vector after passing through F , he cannot even tell if a given plaintext

will become such a vector. This is why the fi and gi were chosen from Sn — for maximum

randomness — though in chapter six we will consider choosing them from a smaller group.
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It is difficult to imagine even a large list of plaintext-ciphertext pairs giving any more

information about the private key than is readily apparent just from looking at the functions

in the public key. This is true to some extent for any public-key system, but particularly so

in this case as there is so much randomness obscuring the structure of the system.

3.7 Partial Private Keys

Finally, we ask what an attacker could do if he could obtain a partial private key. It seems

unlikely that many situations would arise in which only some of a key was leaked, but as

this happened just recently to servers around the world, it merits consideration. To make

a long story short, several types of partial private keys would facilitate effective methods of

recovering the rest. As any reasonable person would conclude regardless of this fact, any

leak - partial or complete - is more than sufficient reason to generate a new key pair.

In particular, if an attacker had several fi and/or gi, it could render the cycle game trivial

by reducing the factor of increase in difficulty per step from n2 to n or even 1 if the relevant

functions to be guessed were available. Further, once one cycle is completed, it is possible

to complete other cycles that share several edges with it on the graph much more quickly.

Fortunately, the key space is so large that one user’s leak can be safely expected to leave all

others unaffected if generation is at all random.
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Chapter 4. Cryptanalysis

If the private key is safe, the next priority is naturally to assure that there is no reasonable

algorithm for working out individual plaintexts.

4.1 Differentials

One intuitive but powerful technique in the analysis of a public-key system is to encrypt

closely-related plaintexts and look at the differences in the corresponding plaintexts [17,

p. 118]. In our case, it might be natural to choose two plaintexts which differ in a single

word. In this case, the three ciphertext words depending on that word would change while

the others remained the same. Turning this around, an attacker looking at ciphertexts with

many similar words can deduce that their plaintexts may differ in only a few words, and he

can determine which words those are.

In a naive implementation of the system, this might indeed be a problem, especially if

the plaintext being encrypted had exploitable structure that lined up with the division into

words. For example, if α = 8 and the data to be encrypted consisted of English text encoded

with UTF-8, it might be easy to tell if two blocks of the text differed in a small number of

characters. Other types of data might be similarly exploited by an attacker aware of the

context of the message.

While the system as described here does not address this concern directly, it it not hard

to sort out with existing cryptographic methods. So far we have treated the system as an

electronic code book-type block cipher as it is convenient for most theoretic discussions, but

in practice it would make more sense to use a mode of operation such as cipher block chaining

(with a random initialization vector) or counter mode. This would prevent ciphertext blocks

from revealing if their plaintext blocks were similar or even identical [17, p. 131].
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4.2 Distinguishing

Another classic problem in public-key cryptanalysis is that of ‘distinguishing.’ Essentially,

an attacker wants to be able to look at a ciphertext C1 and several plaintexts P1, P2, . . . and

determine quickly which of these plaintexts was encrypted to give C1. With a deterministic

system, this problem is trivial to solve. One simply needs to encrypt all of the proposed

plaintexts and look for a match. This system is not only deterministic, it’s bijective. Every

possible block of ciphertext corresponds to a unique block of plaintext, so distinguishing is

as easy as it could ever be.

This could be changed through the use of random padding, at the expense of efficiency

[16, p. 128]. It would be silly to do so, however, without establishing the existence of a

problem. Clearly if an attacker knows that a message comes from a small set, he can use

this fact to find out which it is. So if you’re just going to send the message ”Yes” or ”No,”

and an attacker somehow knows this, you should probably fill the rest of the message with

random bits rather than all zeroes. Otherwise, a good mode of operation should handle this

problem as well by making it impossibile to generate a set of possible inputs for a given block

without access to insider information.

4.3 Plaintext Leaks

If there is insider information available in the form of a partial or complete plaintext, then

there may indeed be a problem. Of course, this would be equally true for any cryptosystem,

but it is reasonable to examine the nature of that problem in this specific case.

In the case of a partial leak, the cycle game comes back into play. If an attacker has two

of the plaintext words that determine a certain word of the ciphertext, it is trivial for him

to determine the third. With a relatively small number of the words, one can work out the

rest with a sort of domino effect. As m becomes large, it is reasonable to expect the number

of plain words necessary to grow logarithmically like maximum girth.
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In our by-now-beloved example, say an attacker has p1, p6, and p7 in addition to the

ciphertext. Using p6, p7, and c7, he obtains p2. Using p1, p2, and c2, he then obtains p4.

There are then multiple options for working out p3 and p5. This hints at an interesting

problem in graph theory that might be studied in its own right: given one of these graphs

and all of the ci, what is the smallest set of pi that could be used to work out all the others

in this manner?

So a partial plaintext leak can quickly become a full leak. As stated in the previous chap-

ter, this doesn’t allow an attacker to work out the private key and start decrypting other

ciphertexts. However, the idea of working out the rest of a partially leaked plaintext is im-

portant because it is the basis of the most important attack against the system. Fortunately,

it’s also the one the system is carefully designed to frustrate through graph theory.

4.4 Guess and Check

A discussion of brute-force attacks has been suspiciously absent so far. It’s not just because

the key and message spaces are so large. Just as an attacker can (and should) play the cycle

game as a much more efficient (if still untenable) alternative to true brute force, he can use

short graph cycles to work out a plaintext more efficiently. It just needs to be shown that

this process involves similar road blocks.

Instead of supposing that an attacker has obtained a few plaintext words corresponding

to a known ciphertext in some sort of leak, let him guess those values. Specifically, say an

attacker guesses a triple of plaintext words that give one of the ciphertext words, as one

can easily do. Then he can try to expand this to a full plaintext, checking along the way

for contradictions. If there is going to be a contradiction, naturally he wants to find it as

quickly as possible, so he will follow the shortest available graph cycle back to one of his

original guessed words. If he’s off track, his more recent guesses will imply that this word

is something other than he originally guessed it to be, showing that the original guess was

bad. Then the process has to begin again.
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For a given ciphertext word, there are n2 triples of plaintext words which give it correctly.

Specifically, choosing values for any two of the determining words will fix a unique third.

From there, an attacker can take any of the three words in the triple, choose another cipher-

text word it affects, and look at its triple. He’s already got one value, so he chooses one of

the others from the n possibilities and the third is determined. This process continues until a

ciphertext word other than the ones he has used is fully determined by three of the plaintext

words he has chosen along the way. If that ciphertext word is determined to be something

other than the one in the actual ciphertext, he must begin again. This cannot happen until

he has completed a cycle on the graph, so the attacker has made 1 + g/2 guesses, each out

of n possibilities. The chance of completing a cycle successfully with this method is then 1

in n1+g/2, and even then the job of working out a single plaintext block is not done, though

the hardest part is over.

4.5 Side Channels

Side channel attacks are fascinating because they don’t seek to exploit mathematical struc-

ture or software as much as the actual hardware used to run the software and transmit

messages. We should show that methods that have worked on other public-key systems are

of no use here.

In this system, the time taken for any encryption (respectively, decryption) operation

should be identical regardless of the particular message and key. There will be the same

number of additions and multiplications in every encryption (respectively, decryption) op-

eration. The additions should all take the same time because they are really bitwise xor

operations. In a log table implementation, multiplications become additions of small inte-

gers. For these reasons, the electrical power used and other mechanical metrics should give

no information to an attacker, even if he is the one choosing the messages. This may not be

true for all hardware, however, so it is important to know if a method of addition operates

in constant time.
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This complete uniformity, or lack of structure in the message and key spaces, makes all

sorts of clever cryptanalysis difficult. There aren’t patterns to exploit other than the ones

the system wears on its sleeve, and we have discussed the exploitation of those. Unless we

consider genuine data leaks to be side channel attacks in the loosest sense, such methods

shouldn’t be relevant.
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Chapter 5. Practical Considerations

A secure system is only valuable if it can be implemented with acceptable ease and efficiency

in a full range of applications.

5.1 Temporal and Spatial Complexity

It is easy to say exactly which operations (and how many of each) will be necessary in

actually computing with this system. To do this for encryption, we just look at the ei as

defined earlier. Each one involves four lookups from lists of length n and two additions in

Fn (which are just binary xor operations). We need to compute m of these for a grand total

of just 4m lookups and 2m additions.

Decryption is not quite as fast. Hitting the ciphertext with G−1 and F−1 will take a

grand total of 2m lookups. In between those two steps, we must multiply a vector from Fm
n

by a matrix from GLm(Fn) (with no particular sparsity or other special properties) on the

left. Doing this naively involves m2 multiplications (using smart methods like the log table

described in chapter one) and m2 −m additions. There are asymptotically better methods

for these mutltiplications, but they are unlikely to be superior for the relatively small m in

use here.

Both operations use relatively little computer memory. Decryption can actually be done

entirely in place, so in a sense it requires none at all beyond that needed to hold the private

key and ciphertext. Encryption only requires holding a function from the public key and a

few words at once, so its memory requirement is similarly negligible.

5.2 Key Size

We remember that the public key consists of 4m functions from Sn stored as lists and the

shape array S. Then it has a size of exactly 4mnα+ 3mβ bits if stored as described, where

β = dlog2(m)e is the size of indices needed in S.
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The public key consists of F , G, V , and T which take up mnα, mnα, 3mβ, and 3mα

bits respectively. In practical applications, n will be large enough that we can use the rough

sizes 4mnα for the public key and 2mnα for the private key. So if one chose, for example,

α = 8 (so that words are exactly bytes, for convenience) and m = 63 (as the 12-cage has 126

vertices), we’d be looking at keys of about 32 and 64 kilobytes respectively - about an order

of magnitude larger than those of some other public key systems, but still tiny for modern

technology.

5.3 Scaling

As computers become faster and hold more memory, it could become necessary to increase

our parameters so that methods of cryptanalysis discussed remain impossible to complete in

a realistic amount of time.

5.4 Portability and Nativeness

This system is designed specifically to work with data types and operations for which all

programming languages, operating systems, and hardware types are already optimized on

a deep level, so it should work perfectly in any digital setting without special hardware or

software accomodations.

5.5 The Human Factor

Of course all of cryptography can be trivialized when implemented poorly by programmers

or mishandled by users. These things cannot be prevented mathematically, but designing

the system around common data types and simple operations should minimize confusion and

error. Beyond that, we can only hope that the hardware being used doesn’t already have

spy tech built in.

30



Chapter 6. The Future

Where do we go from here?

6.1 A Smaller Group

The symmetric groups don’t discriminate. They allow any invertible function and so are

quite large. One could argue that in this application they are much larger than they need

to be. Selecting the fi and gi from a significantly smaller subgroup of Sn could reduce the

sizes of both keys quite a bit. In addition, if this subgroups were chosen for computational

properties (for example, one could use a subgroup of polynomial functions), then it might be

possible to encrypt and decrypt quickly without having to expand the functions to lookup

tables.

The most extreme suggestion with any plausibility would be to select fi and gi from the

group of affine functions on Fn. Such functions can be represented with only 2α bits each (as

opposed to nα bits as before) and computed with minimal cost, perhaps even more quickly

than lookups (depending on methods and hardware). Would this compromise security in

some way? If so, could a slightly larger or more complex subgroup avoid this downfall while

offering similar benefits? It certainly merits investigation, as the gains in lightness and

simplicity could be tremendous.

6.2 Efficiency Through Repetition

While the keys for this system aren’t terribly large, it would certainly be nice if they could

be made smaller without decreasing α or m. In the case of the private key, this could be

done rather easily by re-using permutations rather than generating m distinct fi and gi. For

example, one could choose a very small positive integer k, generate fi and gi for 1 ≤ i ≤ k

and then say fi+k = fi for the rest of the fi, and likewise for the gi. In this case, the key

can be stored in a relatively tiny space.
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The size of the public key could be similarly reduced by choosing the entries of T and

the ai and bi,j such that the g′i repeat and there are only a small number of unique f ′i,j whose

occurences can be described with a small table. As before, it should be reasonable for the

public key to be about twice the size of the private key.

Once these smaller keys were expanded for use, encryption and decryption could be

carried on exactly as before. It is natural, however, to be concerned that all this repetition

could be exploited for an effective attack on the system. In particular, if k = 1, one could

easily guess the private key by brute force. Is there some way to establish k and rules

for selecting the T entries and affine functions such that the keys could be meaningfully

reduced without compromising security? In a sufficiently large-scale application, it would

merit investigation.

6.3 New Graphs

In the system as described we used cubic balanced bipartite graphs for several reasons. Most

importantly, vertices with at most two edges could be trivially bypassed in cryptanalysis,

and vertices with more than three edges make high girth harder to achieve, so it seems

natural to make the graph cubic. The simple relations between the ci and the pi dictates

that the graph be balanced bipartite. However, it is conceivable that other (presumably

more complex) graphs could make the crucial ‘cycle game’ more difficult for given n and

m. This might require multiple matrix operations — or entirely new operations combining

multiple plain words in the computation of individual cipher words — in the encryption

process. This could in turn result in spatial gains, but more importantly it could allow for

smaller m, thus speeding up the decryption process.
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6.4 Rings and Ideals

All of the math here is done over a finite field, but could be generalized without difficulty

to any commutative ring. It’s tough to imagine going beyond commutative rings because

we need to invert matrices — though perhaps this could be done cleverly with LU decom-

positions - but even the commutative case gives a much wider range of algebraic structures.

Working over a ring, one would have to take a bit more care in making sure T and the ai

were invertible, but this would not be hard.

The feature that mandates a little extra care is the same one that presents an interesting

possibility here — rings can have nontrivial ideals. Consider the case R = Z/nZ, A ∈

GLm(R), x, y ∈ Rm, and Ax = y. Here, though A is invertible, many of its entries may not

be, and multiplication by one of the non-invertible (in this case, we might equivalently say

‘even’) elements of R necessarily results in a loss of information. Many such multiplications

happen in Ax = y, yet all of the information that is ‘lost’ in a local sense is preserved

elsewhere in the system, because the operation is invertible.

This property could have interesting implications, perhaps forcing an attacker to guess

more simultaneous plaintexts than are already necessary, or at least accelerating the branch-

ing in the cycle game. Using direct products of multiple rings could have structural and

computational advantages, but only if an operation were used in encryption that caused the

individual coordinates of their elements to interact, so that the system could not be pulled

apart into several smaller ones each acting on one coordinate.

6.5 Beyond Affine

Here the public key differs from the private key only by the affine functions ‘interjected’

between the fi and the gi. Could a broader and more complex family of functions be used

for added security (and a larger key space)?
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In other words, given

ei(x, y, z) = gi
(
tsi,1,ifsi,1(x) + tsi,2,ifsi,2(y) + tsi,3,ifsi,3(z)

)
as before, what functions hi, hi,1, hi,2, hi,3 could be used such that

g′i(x) = g (hi(x)) and f ′i,j(x) = hi,j
(
fsi,j(x)

)
for 1 ≤ j ≤ 3 while preserving

ei(x, y, z) = g′i
(
f ′i,1(x) + f ′i,2(x) + f ′i,2(x)

)
as before? It seems likely that going beyond the affine case would require that the the fi and

gi be used in defining the h functions, as to work in general hi needs to ‘split’ as only affine

functions can. A good method for taking the fi and gi and generating non-affine h functions

would both add difficulty to future cryptanalysis and be mathematically interesting in its

own right.

6.6 Layered Encryption

After a round of encryption, each ciphertext word depends on exactly three plaintext words.

If one were to then encrypt the ciphertext again - either with the same public key or with

another - the resulting second ciphertext would have words which depended on up to nine

of the original plaintext words. Some might repeat, making the ‘up to’ necessary, but by

combining complementary matrix shapes this effect could be minimized or, for sufficiently

large m, avoided entirely.

After a few rounds of encryption, one could achieve full dependency in the sense that

every word of ciphertext depended on every word of plaintext. This certainly sounds like a

desriable quality and it would make the attacks in chapter three no better than brute force.

34



However, this could not be accomplished naively by simply sending out several public

keys and instructing the recipient to use them in turn. In that case, an attacker would just

attack them one at a time, in reverse order.

To gain significant security from layered encryptions, one would have to combine these

several public keys into one key which gave the recipient the ability to compute the final

ciphertext without giving the ability to compute the intermediate ones. Using methods

analogous to those in the first chapter would give an unusably large key. If there is a

method that keeps public key size reazonable without giving away private key information,

it could result in an even more secure system and reduce or even remove the graph-theoretic

considerations.

6.7 The Quantum Question

Several quantum algorithms are known which are significantly better than their classical

counterparts [11], and none are more famous than those that compromise today’s most

important public-key cryptosystems. These algorithms tend to gain their advantage from a

few operations which quantum computers perform exceptionally well, such as the discrete

Fourier transform. So far, it does not appear that quantum computers are better at solving

the problems relevant to breaking this system than are classical computers.

As research accelerates, it is possible that this could change. It would not take a tremen-

dous number of qubits to hold a superposition of all the possible ai and bi,j. Whether an

algorithm exists which could operate on this qubit string with a high probability of returning

the correct ai and bi,j, is beyond the scope of this paper At best, we can use heuristics to

deem it unlikely due to the lack of exploitable structure. Then again, someone could con-

ceivably design a classical algorithm to solve the same problems while cleverly avoiding the

pitfalls outlined in chapters two and three. Really, it’s impossible to say.
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