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abstract

Congruences for Fourier Coefficients of Modular Functions of Levels 2 and 4

Eric Brandon Moss
Department of Mathematics, BYU

Master of Science

We give congruences modulo powers of 2 for the Fourier coefficients of certain level 2 modular
functions with poles only at 0, answering a question posed by Andersen and Jenkins. The
congruences involve a modulus that depends on the binary expansion of the modular form’s
order of vanishing at ∞. We also demonstrate congruences for Fourier coefficients of some
level 4 modular functions.
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Chapter 1. Introduction and statement of

results

A modular form f(z) of level N and weight k is a function which is holomorphic on the

complex upper half plane, satisfies the equation

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ Γ0(N),

and is holomorphic at the cusps of Γ0(N). Letting q = e2πiz, these functions have Fourier

series representations of the form f(z) =
∑∞

n=n0
a(n)qn. A weakly holomorphic modular form

is a modular form that is allowed to be meromorphic at the cusps. We define M !
k(N) to be

the space of all weight k level N weakly holomorphic modular forms and M ]
k(N) to be the

subspace of forms which are holomorphic away from the cusp at ∞.

The Fourier coefficients of many modular forms have interesting arithmetic properties.

For instance, let ∆(z) be the unique normalized cusp form of weight 12 for the group SL2(Z).

We write

∆(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Ramanujan [17] proved the congruences for τ(n) given by

τ(pn) ≡ 0 (mod p) where p ∈ {2, 3, 5, 7} .

Such congruences also exist for weakly holomorphic modular forms. Lehner, in [12, 13],

proved that the classical j-function j(z) = q−1 + 744 +
∑∞

n=1 c(n)qn has the beautiful con-

gruence

c(2a3b5c7d) ≡ 0
(
mod 23a+832b+35c+17d

)
for a, b, c, d ≥ 1. (1.1)

Such congruences have been extended from a single form to every element of a canonical

basis for a space of forms. Kolberg [10, 11], Aas [1], and Allatt and Slater [2] strengthened
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Lehner’s congruence for the j-function, and Griffin, in [6], extended Kolberg’s and Aas’s

results to all elements of a canonical basis for M ]
0(1). Congruences and other results have

been proven for the spaces M ]
k(N) for many N > 1. For instance, Andersen, Jenkins, and

Thornton [3, 8, 9] proved congruences for every element of a canonical basis for M ]
0(N) for

many N , including the the genus 0 primes N = 2, 3, 5, and 7, and some prime powers,

including N = 4.

Another way to generalize these results is to work with forms in M [
k(N), which is similar

to M ]
k(N) with elements that are holomorphic away from the cusp at 0. Taking

η(z) = q
1
24

∞∏
n=1

(1− qn)

to be the Dedekind eta function, a Hauptmodul for Γ0(p) where p = 2, 3, 5, 7, or 13 is

φ(p)(z) =

(
η(pz)

η(z)

) 24
p−1

= q +O(q2).

These functions vanish at ∞ and have a pole at 0. Also, the functions
(
φ(p)
)m

(z) for

m ≥ 0 form a basis for M [
0(p). Andersen and Jenkins in [3] used powers of φ(p)(z) to prove

congruences involving

ψ(p)(z) =
1

φ(p)(z)
= q−1 + · · · ∈M ]

0(p),

and made the following remark: “Additionally, it appears that powers of the function φ(p)(z)

have Fourier coefficients with slightly weaker divisibility properties... It would be interesting

to more fully understand these congruences.” In response, the author, Jenkins, and Keck

proved congruences for the forms φm(z) where φ = φ(2).

Theorem 1.1. [7, Theorem 1] Write φm(z) =
∑∞

n=m a(m,n)qn. Let n = 2αn′ where 2 - n′.

Consider the first α digits of the binary expansion of m, aα . . . a2a1, padding the left with
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zeroes if necessary. Let i′ be the index of the rightmost 1, if it exists. Let

γ(m,α) =

{
# {i | ai = 0, i > i′}+ 1 if i′ exists,

0 otherwise.

Then

a(m, 2αn′) ≡ 0
(
mod 23γ(m,α)

)
.

We note that this congruence is not sharp. For m = 1, Allatt and Slater in [2] proved a

stronger result that provides an exact congruence for many n. The function γ(m,α) depends

on α and the structure of the binary expansion of m, in contrast to (1.1) and most of the

results previously mentioned, where the power of a prime in a congruence’s modulus is an

affine function of α.

A natural next step is to investigate congruences for forms in composite levels where we

require a pole at 0 or at another cusp. We will demonstrate congruences for some level 4

modular functions. The congruence subgroup Γ0(4) has 3 cusps, which we take to be ∞, 0,

and 1
2
, so we consider several forms which have different orders of vanishing at these cusps.

We write φ
(4)
c,c′ to be the normalized form in M !

0(4) which has a simple pole at the cusp c and

a simple zero at the cusp c′. We also introduce the notation

(
φ
(4)
c,c′

)m
(z) =

∑
n=n0

a
(4)
c,c′(m,n)qn.

The additional results of this thesis not contained in [7] are as follows.

Theorem 1.2. Let (c, c′) = (0,∞), (0, 1/2), (1/2,∞), or (1/2, 0). Let n = 2αn′ where 2 - n′.

Let α′ = blog2(m)c + 1, which is the number of digits in the binary expansion of m. Then,

if α ≥ α′ + 1,

a
(4)
c,c′(m, 2

αn′) ≡ 0
(

mod 23(α−α′)
)
.

This congruence is not sharp. In particular, we have the following conjectures.
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Conjecture 1.3. Let α, n′, and γ(m,α) be as in Theorem 1.1. If (c, c′) = (0,∞) or (1/2,∞),

then

a
(4)
c,c′(m, 2

αn′) ≡ 0
(
mod 23γ(α,m)

)
.

Conjecture 1.4. If (c, c′) = (0, 1/2) or (1/2, 0), then

a
(4)
c,c′(m, 2

αn′) ≡

{
0 (mod 23(α−1)+3) if m is even and α ≥ 2,

0 (mod 23α+3) if m is odd, or m is even and α = 0, 1.

Chapters 2 and 3 are joint work with Jenkins and Keck, and are essentially the contents

of [7]. Chapter 2 contains results needed for proving Theorem 1.1, and this theorem is proved

in Chapter 3. We construct the functions φ
(4)
c,c′ in Chapter 4. Results for (c, c′) = (∞, 0) and

(∞, 1/2) follow from [8] which is explained in Chapter 4. In Chapter 5, we prove Theorem

1.2, and we discuss Conjectures 1.3 and 1.4.

Chapter 2. Lemmas for Theorem 1.1

The operator Up on a function f(z) is given by

Upf(z) =
1

p

p−1∑
j=0

f

(
z + j

p

)
.

Let M !
k(N) be the space of weakly holomorphic modular forms of weight k and level N . We

have Up : M !
k(N) → M !

k(N) if p divides N , and if p2|N , then Up : M !
k(N) → M !

k(N/p).

If f(z) has the Fourier expansion
∑∞

n=n0
a(n)qn, then the effect of Up on f(z) is given by

Upf(z) =
∑∞

n=n0
a(pn)qn.

The following result describes how Up applied to a modular function behaves under the

Fricke involution. This will help us in Lemma 2.4 to write U2φ
m as a polynomial in φ.

Lemma 2.1. [4, Theorem 4.6] Let p be prime and let f(z) be a level p modular function.
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Then

p(Upf)

(
−1

pz

)
= p(Upf)(pz) + f

(
−1

p2z

)
− f(z).

The Fricke involution

(
0 −1
2 0

)
swaps the cusps of Γ0(2), which are 0 and ∞. We will

use this fact in the proof of Lemma 2.4, and the following relations between φ and ψ = 1
φ

will help us compute this involution.

Lemma 2.2. [3, Lemma 3] The functions φ and ψ satisfy the relations

φ

(
−1

2z

)
= 2−12ψ(z),

ψ

(
−1

2z

)
= 212φ(z).

The following lemma is a special case of a result by Lehner [13]. It provides a polynomial

used in the proof of Theorem 3.1 whose roots are the modular forms that appear in U2φ.

Lemma 2.3. [13, Theorem 2] There exist integers bj such that

U2φ(z) = 2(b1φ(z) + b2φ
2(z)).

Furthermore, let h(z) = 212φ(z/2), g1(z) = 214 (b1φ(z) + b2φ
2(z)), and g2(z) = −214b2φ(z).

Then

h2(z)− g1(z)h(z) + g2(z) = 0.

In the following lemma, we extend the result from the first part of Lemma 2.3 by writing

U2φ
m as an integer polynomial in φ. In particular, we give the least and greatest powers of

the polynomial’s nonzero terms.

Lemma 2.4. For all m ≥ 1, U2φ
m ∈ Z[φ]. In particular,

U2φ
m =

2m∑
j=dm/2e

d(m, j)φj

5



where d(m, j) ∈ Z, and d(m, dm/2e) and d(m, 2m) are not 0.

Proof. Using Lemmas 2.1 and 2.2, we have that

U2φ
m(−1/2z) = U2φ

m(2z) + 2−1φm(−1/4z)− 2−1φm(z)

= U2φ
m(2z) + 2−1−12mψm(2z)− 2−1φm(z)

= 2−1−12mq−2m +O(q−2m+2)

21+12mU2φ
m(−1/2z) = q−2m +O(q−2m+2).

Because φm is holomorphic at∞, U2φ
m is holomorphic at∞. So U2φ

m(−1/2z) is holomorphic

at 0 and, since it starts with q−2m, must be a polynomial of degree 2m in ψ. Let b(m, j) ∈ Z

such that

21+12mU2φ
m(−1/2z) =

2m∑
j=0

b(m, j)ψj(z),

and we note that b(m, 2m) is not 0. Now replace z with −1/2z and use Lemma 2.2 to get

21+12mU2φ
m(z) =

2m∑
j=0

b(m, j)212jφj(z),

which gives

U2φ
m(z) =

2m∑
j=0

b(m, j)212(j−m)−1φj(z).

If m is even, the leading term of the above sum is qm/2, and if m is odd, the leading term

is q(m+1)/2, so the sum starts with j = dm/2e as desired. Notice that b(m, j)212(j−m)−1 is an

integer because the coefficients of φm are integers.

We may repeatedly use Lemma 2.4 to write Uα
2 φ

m as a polynomial in φ. Let

f(`) = d`/2e , f 0(`) = `, and fk(`) = f(fk−1(`)). (2.1)

6



Using Lemma 2.4, the smallest power of q appearing in Uα
2 φ

m is fα(m). Lemma 2.5 provides

a connection between γ(m,α) and the integers fα(m).

Lemma 2.5. The function γ(m,α) as defined in Theorem 1.1 is equal to the number of odd

integers in the list

m, f(m), f 2(m), . . . , fα−1(m).

Proof. Write the binary expansion ofm as ar . . . a2a1, and consider its first α digits, aα . . . a2a1,

where ai = 0 for i > r if α > r. If all ai = 0, then all of the integers in the list are even.

Otherwise, suppose that ai = 0 for 1 ≤ i < i′ and ai′ = 1. Apply f repeatedly to m, which

deletes the beginning 0s from the expansion, until ai′ is the rightmost remaining digit; that

is, f i
′−1(m) = aα . . . ai′−1ai′ . In particular, this integer is odd. Having reduced to the odd

case, we now treat only the case where m is odd.

If m in the list is odd, then a1 = 1, which corresponds to the +1 in the definition of

γ(m,α). Also, f(m) = dm/2e = (m + 1)/2. Applied to the binary expansion of m, this

deletes a1 and propagates a 1 leftward through the binary expansion, flipping 1s to 0s, and

then terminating upon encountering the first 0 (if it exists), which changes to a 1. As in

the even case, we apply f repeatedly to delete the new leading 0s, producing one more odd

output in the list once all the 0s have been deleted. Thus, each 0 to the left of ai′ corresponds

to one odd number in the list.

Chapter 3. Proof of Theorem 1.1

Theorem 1.1 will follow from Theorem 3.1. Let vp(n) be the p-adic valuation of n.

Theorem 3.1. Let f(`) be as in (2.1). Let γ(m,α) be as in Theorem 1.1, and let α ≥ 1.

Define

c(m, j, α) =

{
−1 if fα−1(m) is even and is not 2j,

0 otherwise.
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Write Uα
2 φ

m =
2αm∑

j=fα(m)

d(m, j, α)φj. Then

v2(d(m, j, α)) ≥ 8(j − fα(m)) + 3γ(m,α) + c(m, j, α). (3.1)

Theorem 3.1 is an improvement on the following result by Lehner [13].

Theorem 3.2. [13, Equation 3.4] Write Uα
2 φ

m as
∑
d(m, j, α)φj ∈ Z[φ]. Then

v2(d(m, j, α)) ≥ 8(j − 1) + 3(α−m+ 1) + (1−m).

In particular, Lehner’s bound sometimes only gives the trivial result that the 2-adic valuation

of d(m, j, α) is greater than some negative integer.

We prove Theorem 3.1 by induction on α. The base case is similar to Lemma 6 from

[3], which gives a subring of Z[φ] which is closed under the U2 operator. The polynomials in

this subring are useful because their coefficients are highly divisible by 2. Here, we employ

a similar technique to prove divisibility properties of the polynomial coefficients in Lemma

2.4. This method goes back to Watson [18, Section 3]. Another approach to proving the

base case can be found in [5, Lemma 4.1.1]. We then induct to extend the divisibility results

to the polynomials that arise from repeated application of U2.

Proof of Theorem 3.1. For the base case, we let α = 1, and seek to prove the statement

U2φ
m =

2m∑
j=dm/2e

d(m, j, 1)φj

with

v2(d(m, j, 1)) ≥ 8(j − dm/2e) + c(m, j) (3.2)

8



where

c(m, j) =


3 m is odd,

0 m = 2j,

−1 otherwise.

The term c(m, j) combines c(m, j, α) and 3γ(m,α) for notational convenience. We prove

(3.2) by induction on m.

We follow the proof techniques used in Lemmas 5 and 6 of [3]. From the definition of U2,

we have

U2φ
m(z) = 2−1

(
φm
(z

2

)
+ φm

(
z + 1

2

))
= 2−1−12m (hm0 (z) + hm1 (z))

where h`(z) = 212φ
(
z+`
2

)
. To understand this form, we construct a polynomial whose roots

are h0(z) and h1(z). Let g1(z) = 216 ·3φ(z)+224φ2(z) and g2(z) = −224φ(z). Then by Lemma

2.3, the polynomial F (x) = x2 − g1(z)x + g2(z) has h0(z) as a root. It also has h1(z) as a

root because under z 7→ z + 1, h0(z) 7→ h1(z) and the g` are fixed.

Recall Newton’s identities for the sum of powers of roots of a polynomial. For a polyno-

mial
∏n

i=1(x− xi), let S` = x`1 + · · ·+ x`n and let g` be the `th symmetric polynomial in the

x1, . . . , xn. Then

S` = g1S`−1 − g2S`−2 + · · ·+ (−1)`+1`g`.

We apply this to the polynomial F (x), which has only two roots, to find that

hm0 (z) + hm1 (z) = Sm = g1Sm−1 − g2Sm−2.

Furthermore,

U2φ
m = 2−1−12mSm. (3.3)

Lastly, let R be the set of polynomials of the form d(1)φ+
∑N

n=2 d(n)φn where for n ≥ 2,

v2(d(n)) ≥ 8(n−1). Now we rephrase the theorem statement in terms of Sm and elements of

R. When m is odd, we wish to show that for some r ∈ R, U2φ
m = 2−8(dm/2e−1)+3r. Performing

9



straightforward manipulations using (3.3), this is equivalent to Sm = 28(m+1)r for some r ∈ R.

Similarly, when m is even and is not 2j, we wish to show that U2φ
m = 2−8(dm/2e−1)−1r for

some r ∈ R. This again reduces to showing that Sm = 28(m+1)r for some r ∈ R. If m = 2j,

then (3.2) gives 8(j − d2j/2e) + 0 = 0, which means the polynomial has integer coefficients,

which is true by Lemma 2.4.

When m = 1 or 2, we have that Sm = 28(m+1)r for some r ∈ R, as

S1 = g1 = 28(2)(3φ+ 28φ2),

S2 = g1S1 − 2g2 = 28(3)(2φ+ 2832φ2 + 217φ3 + 224φ4).

Now assume the equality is true for positive integers less than m with m at least 3. Then

for some r1, r2 ∈ R,

Sm = g1Sm−1 − g2Sm−2

= (216(3φ+ 28φ2))(28mr1) + (224φ)(28(m−1)r2)

= 28(m+1)[(3 · 28φ+ 216φ2)r1 + 28φr2],

completing the proof where α = 1.

Assume the theorem is true for Uα
2 φ

m =
2αm∑
j=s

d(j)φj, meaning

v2(d(j)) ≥ 8(j − fα(m)) + 3γ(m,α) + c(m, j, α). (3.4)

Note that s = fα(m). Letting s′ = f(s) and U2φ
j =

∑2j
i=dj/2e b(j, i)φ

i, we define d′(j) as the

10



integers satisfying the following equation:

Uα+1
2 φm = U2

(
2αm∑
j=s

d(j)φj

)

=
2αm∑
j=s

d(j)U2φ
j

=
2αm∑
j=s

2j∑
i=dj/2e

d(j)b(j, i)φi

=
2α+1m∑
j=s′

d′(j)φj. (3.5)

We wish to prove that

v2(d
′(j)) ≥ 8(j − fα+1(m)) + 3γ(m,α + 1) + c(m, j, α + 1). (3.6)

We will prove inequalities that imply (3.6). Observe that

c(m, j, α + 1) =

{
−1 if s is even and not 2j,

0 if s is odd or s = 2j,

and

γ(m,α + 1) =

{
γ(m,α) if s is even,

γ(m,α) + 1 if s is odd.

Also, c(m, s, α) = 0 because if fα−1(m) is even, then s = fα−1(m)/2 so fα−1(m) = 2s.

Therefore, v2(d(s)) ≥ 3γ(m,α) by (3.4).

If s is even, we will show that

v2(d
′(j)) ≥ max {8 (j − s′)− 1 + v2(d(s)), v2(d(s))} , (3.7)

11



because then if j = s′, we have

v2(d
′(s′)) ≥ v2(d(s))

≥ 8(s′ − s′) + 3γ(m,α) + c(m, s′, α + 1),

and for all j,

v2(d
′(j)) ≥ 8(j − s′) + 3γ(m,α) + c(m, j, α + 1)

= 8(j − fα+1(m)) + 3γ(m,α + 1) + c(m, j, α + 1),

so that (3.7) implies (3.6). If s is odd we will show that

v2(d
′(j)) ≥ 8 (j − s′) + 3 + v2(d(s)), (3.8)

because then

v2(d
′(j)) ≥ 8(j − s′) + 3γ(m,α) + 3

= 8(j − s′) + 3(γ(m,α) + 1)

= 8(j − fα+1(m)) + 3γ(m,α + 1) + c(m, j, α + 1),

which is (3.6).

For the sake of brevity, we treat here only the case where s is odd. The case where s

is even has a similar proof. This case breaks into subcases. We will only show the proof

where j ≤ 2s, but the other cases are 2s < j ≤ 2α−1m and 2α−1m < j ≤ 2α+1m, using the

same subcases for when s is even. These subcases are natural to consider because in the first

range of j-values, the d(s) term is included for computing d′(j), in the second range, there

are no d(s) or d(2αm) terms, and in the third range, there is a d(2αm) term.

Let j ≤ 2s. Using (3.5), we know that d′(j) =
∑2j

i=s d(i)b(i, j) by collecting the coefficients

12



of φj. Let δ(i) be given by

δ(i) = v2(d(i)) + v2(b(i, j)).

Let D = {δ(i) | s ≤ i ≤ 2j} . Therefore we have

v2(d
′(j)) ≥ min {v2(d(i)) + v2(b(i, j)) | s ≤ i ≤ 2j}

= minD.

We claim that δ(i) achieves its minimum with δ(s), which proves (3.8). For that element of

D, we know by inequality (3.2) that

δ(s) ≥ v2(d(s)) + 8(j − s′) + 3.

Now suppose i > s. Then every element of D satisfies the following inequality:

δ(i) = v2(d(i)) + 8 (j − di/2e) + c(i, j)

≥ 8 (i− s)− 1 + v2(d(s)) + 8 (j − di/2e) + c(i, j)

≥ 8 (s+ 1− s+ j − d(s+ 1)/2e)− 2 + v2(d(s))

= 8 (j − s′) + 6 + v2(d(s)),

but this is clearly greater than δ(s). Therefore, if j ≤ 2s and s is odd, then v2(d
′(j)) ≥

8 (j − s′) + 3 + v2(d(s)). The other cases are similar.

Now Theorem 1.1 follows easily from Theorem 3.1.

Theorem 1.1. [7, Theorem 1] Write φm(z) =
∑∞

n=m a(m,n)qn. Let n = 2αn′ where 2 - n′.

Consider the first α digits of the binary expansion of m, aα . . . a2a1, padding the left with

13



zeroes if necessary. Let i′ be the index of the rightmost 1, if it exists. Let

γ(m,α) =

{
# {i | ai = 0, i > i′}+ 1 if i′ exists,

0 otherwise.

Then

a(m, 2αn′) ≡ 0
(
mod 23γ(m,α)

)
.

Proof. Letting j = fα(m) in (3.1), the right hand side reduces to

3γ(m,α) + c(m, fα(m), α).

Notice that c(m, fα(m), α) = 0, because if fα−1(m) is even, then fα(m) = fα−1(m)/2 so

fα−1(m) = 2fα(m). The right hand side of (3.1) is minimized when j = fα(m), so we

conclude that v2(a(m, 2αn′)) ≥ 3γ(m,α).

Chapter 4. Constructing the level 4

Hauptmoduln

The forms φ
(4)
c,c′ can be constructed using the theory of η-quotients. We need the following

theorem to compute η-quotients of the desired weight, level, and character.

Theorem 4.1. [15, 16] Let N be a positive integer, and suppose that f(z) =
∏

δ|N η(δz)rδ is

an η-quotient which satisfies the following congruences:

∑
δ|N

δrδ ≡ 0 (mod 24) and
∑
δ|N

N

δ
rδ ≡ 0 (mod 24) .

Then f(z) is weakly modular of weight k = 1
2

∑
δ|N rδ for the group Γ0(N) with character

χ(d) =

(
(−1)ks

d

)
where s =

∏
δ|N

δrδ .

14



We will use the following theorem to compute vanishing of η-quotients.

Theorem 4.2. [14] Let c, d, and N be positive integers with d|N and gcd(c, d) = 1. If f(z)

is an η-quotient of level N , then the order of vanishing of f(z) at the cusp c/d is given by

N

24

∑
δ|N

gcd(d, δ)2rδ
gcd(d,N/d)dδ

.

To construct the forms φ
(4)
c,c′ , we follow Theorem 4.1 to see that the following will guarantee

a form in M !
0(4):

r1 + 2r2 + 4r4 ≡ 0 (mod 24) , (4.1)

4r1 + 2r2 + r4 ≡ 0 (mod 24) , (4.2)

2r24r4 = square of a rational number, (4.3)

r1 + r2 + r4 = 0 = k. (4.4)

If we want φ
(4)
0,∞, for example, we impose the additional condition that the form have a simple

pole at 0 and a simple zero at ∞. We accomplish this by using Theorem 4.2. To this end,

we compute (
1 0
4 1

)
∞ =

1

4
, and

(
1 1
0 1

)
0 =

1

1
.

Therefore, the vanishing of a level 4 η-quotient at the cusp c/d with gcd(c, d) = 1 and d|4 is

equal to

1

6 gcd(d, 4/d)d

(
r1 +

gcd(d, 2)2r2
2

+
gcd(d, 4)2r4

4

)
.

So, the η-quotient for φ
(4)
0,∞ must satisfy

−1 =
1

6

(
r1 +

r2
2

+
r4
4

)
,

15



and

1 =
1

24
(r1 + 2r2 + 4r4) .

These are equivalent to, respectively,

4r1 + 2r2 + r4 = −24

r1 + 2r2 + 4r4 = 24

which are strengthenings of (4.2) and (4.1) respectively. We now have the linear system

formed from these two equations and (4.4),

(
4 2 1
1 2 4
1 1 1

)(
r1
r2
r4

)
=

(−24
24
0

)

which has the unique solution (r1, r2, r4) = (−8, 0, 8). A quick verification shows that this

solution satisfies (4.3), and the order of vanishing of the corresponding form at 1/2 is 0.

Therefore,

φ
(4)
0,∞(z) =

η(4z)8

η(z)8
= q + 8q2 + 44q3 + 192q4 +O(q5).

A similar computation provides the shapes of the remaining η-quotients which are found in

Table 4.1. From the table, it is easy to see several symmetries, and we will prove these in

Chapter 5.

The forms φ
(4)
∞,0 and φ

(4)
∞,1/2 are subsumed in the work of Jenkins and Thornton in [8].

In [8], the form f
(4)
0,m(z) is the element of M ]

0(4) that starts with q−m and has the largest

possible gap in the Fourier expansion thereafter. This is written as

f
(4)
0,m(z) = q−m +

∞∑
n=1

a
(4)
0 (m,n)qn.
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Modular function η-quotient q-expansion

φ
(4)
∞,0(z)

η(z)8

η(4z)8
q−1 − 8 + 20q − 62q3 + 216q5 +O(q7)

φ
(4)
∞,1/2(z)

η(2z)24

η(z)8η(4z)16
q−1 + 8 + 20q − 62q3 + 216q5 +O(q7)

φ
(4)
1/2,0(z)

η(z)16η(4z)8

η(2z)24
1− 16q + 128q2 − 704q3 +O(q4)

φ
(4)
0,1/2(z)

η(2z)24

η(z)16η(4z)8
1 + 16q + 128q2 + 704q3 +O(q4)

φ
(4)
0,∞(z)

η(4z)8

η(z)8
q + 8q2 + 44q3 + 192q4 +O(q5)

φ
(4)
1/2,∞(z)

η(z)8η(4z)16

η(2z)24
q − 8q2 + 44q3 − 192q4 +O(q5)

Table 4.1: The η-quotients and q-expansions of the modular functions for whose powers we
will prove congruences.

These forms make up a canonical basis for the space M ]
0(4), and satisfy the congruence

a
(4)
0 (2αm′, 2βn′) ≡

{
0
(
mod 24(α−β)+8

)
if α > β,

0
(
mod 23(β−α)+8

)
if β > α,

where m′ and n′ are odd [8, Theorem 2]. The f
(4)
0,m(z) basis is more convenient than the bases(

φ
(4)
∞,0

)m
and

(
φ
(4)
∞,1/2

)m
because a given form is expressible in terms of the f

(4)
0,m basis by

simply reading off the coefficients of the nonpositive powers of q. For this reason, we will

not examine congruences for
(
φ
(4)
∞,0

)m
and

(
φ
(4)
∞,1/2

)m
.

17



Chapter 5. Congruences in level 4

5.1 Proof of Theorem 1.2

The main idea for proving Theorem 1.2 is to use the U2 operator to bring level 4 forms down

to the space M [
0(2) and to apply Theorem 1.1. Recall that φ = φ(2) ∈M [

0(2). The following

two lemmas show that U2 applied to
(
φ
(4)
c,c′

)m
can be expressed as an integer polynomial in

the level 2 form φ.

Lemma 5.1. For some integers d(m,n), we have that

U2

(
φ
(4)
1/2,0

)m
= U2

(
φ
(4)
0,1/2

)m
=

m∑
n=0

d(m,n)φn.

Proof. Let f = φ
(4)
1/2,0. Firstly, because 22|4, we have that U2f ∈ M !

0(2). Because the action

of the Up operator on a q-expansion is Up
∑
a(n)qn =

∑
a(pn)qn, we can see from the

q-expansion of f (Table 4.1) that U2f
m is holomorphic at ∞.

Now, we will determine the order of vanishing of U2f
m at 0. By the definition of U2, we

have that

2(U2f
m) = fm

∣∣∣∣(1 0
0 2

)
+ fm

∣∣∣∣(1 1
0 2

)
.

Applying the Fricke involution W2, we have

(2U2f
m)

∣∣∣∣(0 −1
2 0

)
= fm

∣∣∣∣(0 −1
4 0

)
+ fm

∣∣∣∣(1 −1
2 −1

) ∣∣∣∣(2 1
0 2

)
. (5.1)

The form fm has a pole of order m at 1/2 and a zero of order m at 0. The first term of

(5.1) is an expansion of fm at 0, given by the Fricke involution W4. Therefore, this term

contributes no negative powers of q. The second term is the expansion of fm at 1/2 with the

substitution z 7→ (2z + 1)/2 which sends q 7→ −q. Therefore, this term contributes a pole of

order m.
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Therefore, U2f
m is a form in the space M [

0(2) with a pole of order m at 0. We conclude

that it is a polynomial in φ of degreem. Because U2f
m has integer coefficients, the polynomial

has integer coefficients.

For the form φ
(4)
0,1/2, we reduce to the previous case. The matrix

(
2 1
0 2

)
swaps the cusps 0

and 1/2 and sends q to −q. Therefore, the coefficients of φ
(4)
0,1/2 and φ

(4)
1/2,0 are the same up to

sign. In particular, the even-indexed coefficients are equal and the odd-indexed coefficients

are equal but opposite in sign. The same reasoning applies to the mth powers of these forms.

Because U2 only picks off even-indexed coefficients, the coefficients it gathers are of the same

sign. We conclude that

U2

(
φ
(4)
0,1/2

)m
= U2

(
φ
(4)
1/2,0

)m
.

The following lemma is similar to the previous one, except that the resulting polynomial

in φ has its smallest power equal to dm/2e.

Lemma 5.2. For some integers d(m,n), we have that

U2

(
φ
(4)
0,∞

)m
= (−1)mU2

(
φ
(4)
0,∞

)m
=

m∑
n=dm/2e

d(m,n)φn.

Proof. Let f = φ
(4)
0,∞. Again, U2f

m is a level 2 form, and it is holomorphic at∞ by examining

its q-expansion. By a similar argument, equation (5.1) shows that the pole at 0 is of order

m. If m is even, the least power of q in U2f
m is m/2, and if m is odd, the least power is

(m+ 1)/2. Thus the least power of φ in U2f
m is dm/2e .

By a similar argument to that presented in Lemma 5.1, the coefficients of φ
(4)
0,∞ and φ

(4)
1/2,∞

are equal up to sign. Because we are normalizing the forms to have leading coefficient 1 and

these forms begin with an odd power of q, the odd-indexed coefficients are equal and the

even-indexed coefficients are equal but opposite in sign. The same will be true of any odd

power of the two forms for the same reason. In this case, U2 of both forms is equal but

opposite in sign. The pattern reverses when we take an even power of the functions because
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we no longer have to apply a normalizing −1 to every coefficient. In this case, the image of

U2 on both forms is equal, concluding the proof.

We now prove Theorem 1.2. We use Lemmas 5.1 and 5.2 to bring φ
(4)
c,c′ down to level 2,

and then we apply Theorem 1.1.

Theorem 1.2. Let (c, c′) = (0,∞), (0, 1/2), (1/2,∞), or (1/2, 0). Let n = 2αn′ where 2 - n′.

Let α′ = blog2(m)c + 1, which is the number of digits in the binary expansion of m. Then,

if α ≥ α′ + 1,

a
(4)
c,c′(m, 2

αn′) ≡ 0
(

mod 23(α−α′)
)
.

Proof. Let φm(z) =
∑∞

n=m a(m,n)qn. Using Lemmas 5.1 and 5.2, we have that

U2

(
φ
(4)
c,c′

)m
(z) =

∞∑
n=0

a
(4)
c,c′(m, 2n)qn

=
m∑
n=0

d(m,n)φn(z)

=
m∑
n=0

d(m,n)
∞∑
j=n

a(n, j)qj

= 1 +
∞∑
n=1

qn
m∑
j=1

d(m, j)a(j, n).

By comparing coefficients, for n ≥ 1, we have the equation

a
(4)
c,c′(m, 2n) =

m∑
j=1

d(m, j)a(j, n). (5.2)
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Letting n = 2βn′, we compute the inequality

v2

(
a
(4)
c,c′(m, 2n)

)
= v2

(
a
(4)
c,c′(m, 2 · 2

βn′)
)

≥
m

min
j=1

{
v2(d(m, j)a(j, 2βn′))

}
≥

m

min
j=1

{
v2(a(j, 2βn′))

}
≥

m

min
j=1
{3γ(j, β)} , (5.3)

by (5.2) and Theorem 1.1. Therefore, we see that

v2

(
a
(4)
c,c′(m, 2n)

)
= v2

(
a
(4)
c,c′(m, 2 · 2

βn′)
)
≥

m

min
j=1
{3γ(j, β)} . (5.4)

The value of (5.4) may be 0. To illustrate an example, recall the definition of γ(j, β):

Consider the first β digits of the binary expansion of j, padding the left with zeroes if

necessary, written aβ · · · a2a1. Let i′ be the least index i such that ai = 1, if it exists. Then

γ(j, β) =

{
# {i | ai = 0 and β ≥ i > i′}+ 1 if i′ exists,

0 otherwise.

Therefore, if β is small, γ(j, β) is 0 until β reaches the position of the rightmost 1 in the

binary expansion of j. For example, γ(16, β) = 0 for 1 ≤ β ≤ 4 because 1610 = 100002. But,

if we take β large enough, the function γ(j, β) counts the leftmost 1 and the leading 0s of

the binary expansion of j.

Now, let j vary between 1 and m. The integer α′ = blog2(m)c+1 is the leftmost position

of a 1 in any of the binary expansions of the j. If β ≥ α′, then each of γ(j, β) will be at least

1, and incrementing β will increment every one of the γ(j, β). We conclude that if β ≥ α′,

then

v2

(
a
(4)
c,c′(m, 2n)

)
= v2

(
a
(4)
c,c′(m, 2 · 2

βn′)
)
≥ 3(β − α′ + 1).

For a meaningful result, we also need the assumption that β ≥ 1 because α′ ≥ 1.
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We translate the result to be in terms of the notation used in the theorem statement.

Let ` = 2α`′ = 2 · 2βn′, so that

a
(4)
c,c′(m, `) = a

(4)
c,c′(m, 2 · 2

βn′).

In particular, this implies that α = β + 1. Further, we have that

β ≥ α′ ⇐⇒ α ≥ α′ + 1

β ≥ 1 ⇐⇒ α ≥ 2.

We conclude with the result

α ≥ 2 and α ≥ α′ + 1⇒ v2

(
a
(4)
c,c′(m, 2

α`′)
)
≥ 3(α− α′).

The theorem is proved once we observe that ` here is n in the theorem statement.

5.2 Conjectures for forms in level 4

Conjecture 1.3 should be true for the same reason that Theorem 1.1 is true. Recall that

U2φ
m = ddm/2eφ

dm/2e + · · ·+ d2mφ
2m for some integers di. The two key ideas in the proof of

Theorem 1.1 are:

(1) The valuation v2
(
ddm/2e

)
is at least 3 when m is odd, and is at least 0 otherwise.

(2) If 2a||ddm/2e, then 2a|di for i > dm/2e .

These are proved in the base case of Theorem 3.1, and here we summarize the process. It is

easy to prove that the Fourier expansion of φm begins with

φm(z) = qm + 24mqm+1 + · · · .
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If m is odd, the leading term of U2φ
m is 24mq(m+1)/2. So ddm/2e = d(m+1)/2 = 24m and

the 2-adic valuation of this coefficient is v2(24m) = 3. If m is even, then the leading term

of U2φ
m is qm/2. The second condition above guarantees that the 2-adic valuations of the

remaining coefficients is at least 3. Proving this is more difficult, and for this we employed

Watson’s method [18] which used the modular equation for φ.

This same pattern occurs for φ
(4)
0,∞ and φ

(4)
1/2,∞. From their Fourier expansions, it is again

easy to see that (
φ
(4)
0,∞

)m
(z) = qm + 8mqm+1 + · · ·(

φ
(4)
1/2,∞

)m
(z) = qm − 8mqm+1 + · · ·

We take, for example,
(
φ
(4)
0,∞

)m
. From Lemma 5.2, we have that

U2

(
φ
(4)
0,∞

)m
= cdm/2eφ

dm/2e + · · ·+ cmφ
m

for some ci ∈ Z. The first terms in these Fourier expansions are

{
8mq(m+1)/2 if m is odd,

qm/2 if m is even.

The first case contributes 23 to cdm/2e, and the second case gives no information. This is

the same pattern we saw for φ. The obstacle is obtaining condition 2 for the polynomials

presented in Lemma 5.2. To use Watson’s method again, we need a modular equation for

φ
(4)
0,∞ and φ

(4)
1/2,∞. Lehner computes these for φ(p) using Lemma 2.1, and such a result for level

4 forms has thus far eluded the author.

Conjecture 1.4 essentially states that coefficients for
(
φ
(4)
1/2,0

)m
and

(
φ
(4)
0,1/2

)m
follow a

congruence similar to (1.1) and similar to congruences for the canonical bases for M ]
0(N). A
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slight strengthening of Conjecture 1.4 is that, for the same φ
(4)
c,c′ , we have for n > 1,

v2

(
a
(4)
c,c′(m, 2

αn′)
)

= 3α + v2

(
a
(4)
c,c′(m,n

′)
)

if m is odd, or m is even and α = 0,

= 3(α− 1) + v2

(
a
(4)
c,c′(m, 2n

′)
)

if m is even and α ≥ 2,

≥ 3 if α = 0.

This was formulated by observing odd-indexed coefficients and following their 2-adic valua-

tion as the index is multiplied by 2 repeatedly. Certainly, we have Lemma 5.1, which allows

us to potentially apply Theorem 1.1 after applying U2, but we still lack the same result

from the second bullet point above. Further, Conjecture 1.4 does not depend on the binary

expansion of m in any major way, so using Theorem 1.1 would not provide the desired result

either way.
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