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Highlights

• An Eulerian–Lagrangian incompressible SPH (ELI-SPH) formulation with a single interface has been developed.
• A simple Eulerian solid boundary condition within an otherwise Lagrangian framework has been demonstrated.
• ELI-SPH is demonstrated for internal and free-surface flows with convergence.
• Improved accuracy results from the particle uniformity of the Eulerian region.
• Pressure and velocity fields remain noise-free.

Abstract

An Eulerian–Lagrangian incompressible SPH (ELI-SPH) formulation is proposed that improves accuracy over a fully
Lagrangian formulation for many problems. This develops the original formulation of Lind and Stansby (2016) by providing a
sharp interface rather than a transition zone. This is generally convenient and avoids any need for Arbitrary Lagrangian Eulerian
(ALE) particle mass correction. It also enables a simple, accurate solid boundary condition in a Lagrangian formulation by having
the interface close to the solid boundary with an Eulerian fluid domain typically three particles thick with mirror particles. Particle
regularisation is necessary in a Lagrangian domain and we apply a general form based on Fick’s shifting which is modified at the
interface by ignoring Eulerian particles and using mirror particles to give zero concentration gradient and hence zero shifting across
the interface, avoiding spurious migration. Continuity is enforced at the interface as part of the combined Eulerian–Lagrangian
domain. The formulation is validated against the analytical solution for Taylor–Green vortices, vortex spin down in a box, and
propagating waves. The use of mixed kernel order in the Eulerian domain is also demonstrated.
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1. Introduction

The incompressible smoothed particle hydrodynamics (ISPH) scheme satisfies continuity with a divergence-free
velocity field using the projection method, as for mesh-based methods. ISPH is known to be accurate with near noise-
free pressures and kinematics for internal and free-surface flows, following recent developments of the diffusion-
based particle shifting algorithms for particle regularisation [1,2]. However some non-uniformity of particles persists
compared to regular spacing, restricting the accuracy and consequently the convergence of solutions to lower than the
theoretical maximum second-order convergence. Several techniques have been developed to improve the accuracy of
the solution by using kernel corrections with first-order consistency [3] and/or re-meshing of the domain either using
an iterative method or by re-initialisation of the particles to their original distribution [4] but re-meshing techniques
tend to be costly and cumbersome.

The recent development of high-order incompressible SPH within an Eulerian framework [5] has removed the
error associated with non-uniformity of particles, and demonstrated near ideal convergence characteristics defined by
the order of the kernel with up to sixth order tested. However, free-surface or interfacial flows generally require the
Lagrangian form of SPH. Combining the advantages of both Eulerian and Lagrangian incompressible SPH (ELI-SPH)
creates a modelling framework for SPH that improves accuracy without restricting applications and a transition from
Eulerian to Lagrangian form is thus necessary.

Lind and Stansby [5] demonstrated the use of a transition zone for this purpose in an Arbitrary Eulerian–Lagrangian
(ALE) formulation with a smooth weighting for the advection term and applied this successfully to wave propagation.
For many problems a sharp interface would however be convenient without the complication of an intermediate ALE
region. The Eulerian and Lagrangian formulations would thus be unchanged but the interface requires particular
modification of the shifting algorithm necessary in the Lagrangian domain to avoid spurious migration of particles
from the Lagrangian to the Eulerian domain, while satisfying continuity through zero divergence. A method is
presented in this paper based on mirror particles at the interface to define shifting and accuracy and convergence
is demonstrated for canonical two-dimensional internal and wave flows.

With such a scheme the Lagrangian zone may be restricted to the proximity of a free surface or interface, which
may be highly distorted, with high accuracy in the adjoining Eulerian zone. The Eulerian zone may contain regions
with different order of kernels with high order regions further improving accuracy. This approach is also demonstrated.

Wholly Lagrangian formulations may still be preferred for certain flows, for example with multi-phase interactions,
and the present approach provides a simple and accurate way of representing solid boundaries with full kernel support.
This is achieved with a thin Eulerian layer in the flow with mirror particles and an interface close to the boundary. This
is demonstrated here with a layer three particles in thickness. Such an approach applies equally to weakly compressible
SPH.

Potential applications of the scheme are highly non-linear flows where the Lagrangian features of SPH are desirable
near the vicinity of a material interface and a free-surface region, whereas the Eulerian formulation can be applied
on the remaining domain. Another advantage is the framework it provides when coupling to other Eulerian schemes
allowing for a fully Eulerian hybrid solver at the interface and removing the difficulties associated with coupling a
moving Lagrangian zone. Extension to three dimensions is logical.

This paper is organised as follows; Section 2 describes briefly the SPH formalism and Section 3 the Lagrangian
formulation and operators. Section 4 describes the Eulerian–Lagrangian (ELI-SPH) methodology with the interface
approach. In Section 5 the results from canonical periodic and wall-bounded and wave propagation test cases are
shown and discussed. Conclusions are presented in Section 6.

2. SPH formalism

The basic principle of the SPH formulation is the integral representation of a function f which may represent a
numerical or physical variable defined over a domain of interest Ω at a point x. The integral approximation or kernel
approximation reads [6]

f (x) ≈

∫
Ω

f (x′)W
(
x − x′, h

)
dx′, (2.1)

with h defined as the smoothing length that characterises the size of the support domain of the kernel and W the
weighting or kernel function. The kernel function is chosen to be a smooth, isotropic and an even function with
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compact support (i.e. the finite radius of influence around x). In this paper, the fifth-order quintic spline kernel with
compact support of 3h has been used [7]:

W (x − x′, h) = ad

⎧⎪⎪⎨⎪⎪⎩
(3 − R)5

− 6(2 − R)5
+ 15(1 − R)5, 0 ≤ R < 1;

(3 − R)5
− 6(2 − R)5, 1 ≤ R < 2;

(3 − R)5, 2 ≤ R < 3;

0, R ≥ 3;

, (2.2)

where R = |x − x′
|/h and the normalisation constant ad is 7/478π in 2-D space. High-order kernels will also be

used such as the sixth-order Gaussian kernel following Lind and Stansby [5]. The choice of kernels in this work is
influenced by the desired accuracy of the interpolation. The fifth-order quintic spline kernel provides a high degree of
continuity over a compact domain (helping to minimise discretisation error), while also offering consistency and direct
comparison with previous ISPH works [1,2,8]. Meanwhile, the sixth-order Gaussian kernel is necessary to achieve
higher-order convergence in Eulerian SPH [5].

In a discrete domain Eq. (2.1) can be approximated by using an SPH summation in the form of

⟨ f (x)⟩ =

N∑
j

f (x j )W (x − x j , h)V j , (2.3)

where V is the volume of the particle expressed as the ratio of the mass m to density ρ and N is the number of
particles within the support. Throughout this paper the subscript i denotes the interpolating particle and j refers to the
neighbouring particles. The ⟨· · · ⟩ symbol denotes an SPH interpolation and will be dropped for simplicity in the rest
of the paper. The final form of the particle approximation in a discrete form is

f (xi ) =

N∑
j

m j

ρ j
f j Wi j , (2.4)

with Wi j = W (xi − x j , h) and f j = f (x j ). More details of the SPH formulation can be found in [6] and more
recently [9].

3. Formulation of the Lagrangian ISPH model

The Navier–Stokes equations in Lagrangian form for an incompressible flow read

∇ · u = 0, (3.1)

du
dt

=
1
ρ

∇ P + ν∇
2u + g, (3.2)

where the velocity, pressure, kinematic viscosity, gravity and time are denoted respectively as u, P, ν, g and t. Herein,
incompressibility is enforced in the projection method by a pressure Poisson equation [10]. The discretisation operator
for the pressure and viscous terms follows in Section 3.1.

3.1. Discrete SPH operators for the Navier–Stokes equations

The SPH operators employed in this work are similar to [8] and are as follows.

3.1.1. Gradient operator
We employ the following form of the gradient operator

∇φi = −

n∑
j

V j
(
φi − φ j

)
∇Wi j , (3.3)

where φ is a general variable. Lind et al. [11] demonstrated that this form of SPH gradient is best suited for the
calculation of the pressure term and therefore is preferred over others. A similar expression is obtained for the
divergence operator by decomposing the operator onto a series of gradient operators.
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3.1.2. The Laplacian operator
The Laplacian operator employed for a quantity b is that suggested by Morris et al. [7] and will be referred to as

Morris operator henceforth

(∇ · a∇b)i =

n∑
j

m j
(
ai + a j

)
xi j · ∇Wi j

ρ j (r2
i j + η2)

bi j , (3.4)

where η = 0.001h to avoid singularity as ri j → 0 and ri j is the Euclidian distance. Here, a is a scalar variable.
The Laplacian operator was chosen with computational efficiency in mind over other forms such as the Schwaiger
operator [12] which improves accuracy near free surfaces and truncated kernel regions [1].

Hence, the Morris operator will be employed only for internal flows. In cases with free-surface flows, the Schwaiger
operator is used to provide accurate interpolation near the free surface. The Schwaiger operator reads

(∇ · a∇b)i =
tr
(
Γ−1

)
n

⎡⎢⎢⎢⎢⎣
n∑
j

m j
(
ai + a j

)
xi j · ∇Wi j

ρ j (r2
i j + η2)

bi j −

(∇ai bi − bi∇ai + ai∇bi ) ·

n∑
j

m j∇Wi j

ρ j

⎤⎥⎥⎥⎥⎦ , (3.5)

where Γ is defined as

Γ αβ
=

n∑
j

m j xi j · ∇Wi j

ρ j
∆xα∆xβ, (3.6)

where superscripts α and β denote the spatial coordinates. More details on the performance of the operator can be
found in Lind et al. [1] and Schwaiger [12]. It should be noted that both Laplacian operators are non-conservative [1].
The accuracy of this operator has been assessed in Alshaer et al. [13].

3.1.3. Kernel gradient correction
To improve the accuracy near kernel truncated regions and spatially inhomogeneous particle distributions and

restore theoretical zeroth and first order consistency [14] the kernel first derivative is corrected as follows

∇W̃i j = L(x)∇Wi j , (3.7)

where

L(x) =

⎡⎢⎢⎢⎢⎣
n∑
j

V j x j i∇x Wi j

n∑
j

V j x j i∇y Wi j

n∑
j

V j y j i∇x Wi j

n∑
j

V j y j i∇y Wi j

⎤⎥⎥⎥⎥⎦
−1

, (3.8)

in 2-D. For brevity the (∼) symbol is omitted from the gradient operator notation, with correction always applied
unless otherwise stated.

3.2. Lagrangian ISPH algorithm

To enforce incompressibility and ensure a divergence free-velocity field, the projection method of Cummins and
Rudman [10] as described by Xu et al. [8] has been used. Note, that incompressibility implies no volumetric variations;
hence density and mass are constant.

Firstly particles are advected to an intermediate position x∗ with velocity un using

x∗

i = xn
i + un

i ∆t. (3.9)

An intermediate velocity u∗ is calculated at position x∗ based on the viscous forces of the momentum equation

u∗

i = un
i + ν∇

2un
i ∆t. (3.10)
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The pressure at time n + 1 is obtained by the implicit solution of the Poisson equation which has the following form

∇ ·

(
1
ρ

∇ Pn+1
)

i
=

1
∆t

∇ · u∗

i . (3.11)

The discretisation of the left hand side of the Poisson equation (3.11) is performed with either the Morris or Schwaiger
operator. Next the velocity at time n +1 is obtained by the projection of the intermediate velocity onto divergence-free
space such that

un+1
i = u∗

i −

(
1
ρ

∇ Pn+1
i + g

)
∆t, (3.12)

resulting in a divergence-free velocity field. Finally the particles are advected to the n + 1 position by a central
difference scheme

x̃n+1
i = xn

i +

(
un+1

i + un
i

2

)
∆t. (3.13)

In ISPH particles tend to move along the flow field streamlines potentially causing highly distorted inhomogeneous
spatial particle spacing and particle clustering that impacts the accuracy of the SPH interpolation [8]. To ensure
stability and accuracy of the simulation, after the advection of the particles to n + 1, particles are shifted to new
positions according to a numerical diffusion based on Fick’s Law [1], thus the final position of the particles is

xn+1
i = x̃n+1

i + δxi , (3.14)

where δxi is the shifting distance. Further details of the shifting algorithm used in the ELI-SPH formulation are given
in Section 4.3.

The Lagrangian formulation described herein results in a stable algorithm with a near isotropic particle distribution.
Although convergence is second order theoretically, numerical experiments in ISPH have shown that the practical
order of convergence is close to 1.3 [1]. Indeed as shown by Quinlan et al.[15] the advection of particles in a
Lagrangian sense introduces a first-order discretisation error dependent on particle non-uniformity that disrupts
second-order convergence. Theoretical convergence can be recovered however, and recently Lind and Stansby [5],
demonstrated near ideal convergence in ISPH by using a regular particle distribution (thereby effectively removing
error due to non-uniformity) with second and high-order Gaussian kernels.

4. A new Eulerian–Lagrangian ISPH model

4.1. Eulerian ISPH algorithm

In the Eulerian formulation the advection term is retained and the Navier–Stokes equation now reads

∂u
∂t

+ (u · ∇) u = −
1
ρ

∇ P + ν∇
2u + f. (4.1)

As in [5] the particles are fixed in space and the advection term is calculated using an SPH approximation

((u · ∇) u)i =

n∑
j

V j ui j ·
(
ui j ⊗ ∇Wi j

)
. (4.2)

Within the Eulerian formulation, Eqs. (3.9), (3.13) and (3.14) are omitted since particles remain fixed in space. The
intermediate velocity calculation of Eq. (3.10) includes the advection term

u∗

i = un
i +

(
ν∇

2un
i −

(
un

i · ∇
)

un
i

)
∆t, (4.3)

with a divergence free velocity field obtained through Eq. (3.12).
Note, that since the Eulerian particle arrangement has a regular (uniform) distribution, the smoothing error is

of O(h2) for spline kernels as demonstrated by Noutcheuwa and Owens [16]. Another clear advantage from a
computational point of view is the calculation of the kernel derivatives and neighbour particles can be computed
on the first time step and stored unchanged throughout the simulation without the need of kernel correction. A more
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detailed description of the Eulerian ISPH formulation can be found in Lind and Stansby [5] and Noutcheuwa and
Owens [16].

However, the clear advantage of SPH with its Lagrangian nature capable of simulating highly non-linear problems,
such as free surface and interfacial flows, has vanished. To recover the advantages of a Lagrangian method, the
coupling of Eulerian–Lagrangian formulations is proposed.

4.2. Eulerian–Lagrangian ISPH algorithm

We wish to maintain the Eulerian formulation at regions away from free surfaces and non-linear interfaces
and preserve the O(h2) convergence characteristics while retaining the Lagrangian formulation of SPH elsewhere.
Consequently, an interface can be created allowing controlled introduction of the advection term. In the Eulerian
region the advection term is calculated in similar manner to Lind and Stansby [5] and in the Lagrangian region the
advection term is absorbed in the velocity derivative yielding a Lagrangian formulation. This is achieved by writing
the Navier–Stokes equation in the following form

∂u
∂t

+ (1 − α) (u · ∇) u = −
1
ρ

∇ P + ν∇
2u + f, (4.4)

where the parameter α is 0 or 1 such that

α =

{
0 Eulerian
1 Lagrangian.

(4.5)

Now, Eq. (3.9) reads

x∗

i = xn
i + (1 − αi ) un

i ∆t, (4.6)

and Eq. (4.3) retains the advection term so that

u∗

i = un
i +

(
ν∇

2un
i − (1 − αi )

(
un

i · ∇
)

un
i

)
∆t. (4.7)

Also, the n + 1 position of the particles in now obtained by

xn+1
i = xn

i + αi

(
un+1

i + un
i

2

)
∆t. (4.8)

Fig. 4.1 shows a schematic of the proposed configuration, where the two regions are defined.

4.3. Particle shifting for the ELI-SPH

Particle shifting is essential to the creation of a smooth distribution at a sharp interface since a Lagrangian particle
would otherwise either move away or towards the Eulerian region resulting in areas of large particle anisotropy. The
particle shifting distance δxi is governed by Fick’s law [1]

δxi = −Di∇Ci , (4.9)

where D is the shifting coefficient and ∇Ci is the gradient of particle concentration which is simply the derivative of
the kernel zeroth moment. Herein, a combination of the shifting coefficient of Lind et al. [1] and Skillen et al. [2] has
been used to ensure efficient shifting near the interface. The shifting coefficient D reads

Di = max
(

A1h2, A2h|u|i∆t
)
, (4.10)

where A1 and A2 are dimensionless free parameters set to 0.5 and 4 respectively according to Lind et al. [1] and
Skillen et al. [2] and additional numerical experiments. Primitive variables such as the field velocity are corrected via
a Taylor series expansion for the new shifted position by

φn+1
= φ̃n+1

i + δxi i · ∇φ̃n+1
i + O(δx2

i i ) (4.11)

where φ is field variable. Note this is a purely numerical device separate from the flow physics.
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Fig. 4.1. The variation of α at the Eulerian, Lagrangian region and along the interface.

Fig. 4.2. Mirroring of Lagrangian particles at the interface to the Eulerian region.

Near the interface in the Lagrangian region particles are shifted to their new position with the interface treated as
a solid boundary. This is achieved by ignoring inner Eulerian particles and by employing the mirroring technique of
Morris et al. [7] in order to obtain the concentration gradient at the interface, as shown in the schematic of Fig. 4.2. The
Lagrangian region support is thus complete at the interface and truncation is avoided for the concentration gradient in
the shifting procedure.

The advantage of the proposed formulation derives from its simplicity and gains in accuracy (see Section 5.1).
At the interface there are no overlapping regions and no extra SPH interpolations. The transition between Eulerian
and Lagrangian regions occurs without numerical noise, as demonstrated in the next section. The zero divergence
condition and hence continuity in mass flux is maintained across the interface.

5. Results and discussion

In this section unbounded, bounded and free-surface flow test cases are presented. The test cases use periodic and
wall-bounded flows to demonstrate the effectiveness and improvement in accuracy of the method. Also, free-surface
flow test cases have been simulated with success. In addition, higher order kernels have been used in some cases as a
proof of concept of efficient and accurate simulation via the particle method equivalent of ‘p-adaptivity’ [17].

5.1. Taylor–Green vortices

The problem consists of an unbounded periodic 2-D domain of fluid with dimensions of 1 m × 1 m. The domain
is initialised by a smoothed distribution of counter rotating vortices. The flow is incompressible and viscous resulting



G. Fourtakas et al. / Comput. Methods Appl. Mech. Engrg. 329 (2018) 532–552 539

Fig. 5.1. Pressure field of the domain at t = 1 s, Re = 1000, particle spacing L/dx = 40. Regular distributed particles are Eulerian.

in decaying vortices. The analytical solution for the velocity and pressure field reads

u = −e f cos (2π x) sin (2π y) ,

v = e f sin (2π x) cos (2π y) ,

p = −e2 f (cos (4π x) + cos (4π y)) ,

(5.1)

where f = −8π2t/Re and Re = LUmax/ν based on the characteristic length L defined as the vertical length of the
square domain with the origin defined at the centre of the domain and Umax defined as the maximum velocity of
the system. The test case is ideal for assessing the Eulerian–Lagrangian interface since particles stretch and contract
creating undesirable particle structures that follow the streamlines of the flow [8].

5.1.1. Eulerian–Lagrangian flow
The Eulerian zone is located within the limits of y = ±0.25 m with two Lagrangian interfaces at the top and

bottom of the Eulerian region.
Fig. 5.1 shows the pressure and particle distribution of the Taylor–Green vortices at t = 1 s with a Re = 1000

for L/dx = 40 where dx is the initial particle spacing. The effectiveness of the algorithm is apparent throughout the
Lagrangian domain and especially near the interface where voids or high concentration areas are absent with a near
regular particle distribution.

Figs. 5.2–5.3 demonstrate the noise-free results obtained for velocity components and pressure of the scheme by
comparing the SPH simulation with the analytical solution for the particle resolution of dx = 0.0125 m at t = 1 s.
The analytical solution is well reproduced for the horizontal and vertical velocity and pressure, without unphysical
artefacts near or at the interface. Note, D is the horizontal size of the domain.

To assess the accuracy and numerical convergence, the L2 error norm in the horizontal velocity over time is
computed for the different formulations and three different particle resolutions according to Eq. (5.2). Fig. 5.4 shows
a comparison of the ELI-SPH, fully Lagrangian (α = 1), and fully Eulerian (α = 0) simulations for the particle
resolution of L/dx = 40 at Re = 1000. Fig. 5.5 shows a comparison of the ELI-SPH and fully Lagrangian (α = 1)
simulations for three particle resolutions (L/dx = 40, 80, 160) at Re = 1000. The reduction in error is clear when the
ELI-SPH is employed in comparison to the fully Lagrangian simulation.

L2(u) =

(∑
i

(
ui,analytical − ui,ISPH

)2∑
i u2

i,analytical

) 1
2

. (5.2)

The error remains small over long simulation times as particle resolution increases. More specifically, the error
is reduced by 36%, 14.4% and 1.4% respectively for the three particle resolutions. These results demonstrate the
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Fig. 5.2. Normalised horizontal and vertical velocity profile along y/D = 0 and x/D = 0 respectively at t = 1 s with Re = 1000 and particle
resolution L/dx = 80.

Fig. 5.3. Normalised pressure profile along y/D = 0 at t = 1 s with Re = 1000 and particle resolution L/dx = 80.

advantage of the Eulerian–Lagrangian formulation, as the error in the Eulerian region is significantly lower at the
coarser particle resolution of dx = 0.025, as demonstrated in Fig. 5.4. Similar behaviour was observed for longer
durations of the simulation.

Fig. 5.6 shows the absolute error in the u velocity at two different time instances, at t = 1 s and t = 5 s. In
Fig. 5.6(a) the error is mainly present in the Lagrangian region, but at t = 5 s, the error has appeared in the Eulerian
region. Hence, Fig. 5.6 clearly shows that the error propagates from the Lagrangian (non-regular distributed region of
particles) to the Eulerian region. Therefore the order of convergence of the domain is dominated by the Lagrangian
region.

This is supported by Fig. 5.7 which shows the convergence in L2(u) error at t = 1 s for the Re = 1000 case.
Although the convergence order remains similar between the purely Lagrangian and ELI-SPH formulation the error
reduction for ELI-SPH is apparent. Nevertheless, the order of convergence is lower than the theoretical second order
error that is obtained using the Eulerian only formulation as demonstrated by Lind and Stansby [5] due to ELI-SPH
error being contaminated by the purely Lagrangian region.



G. Fourtakas et al. / Comput. Methods Appl. Mech. Engrg. 329 (2018) 532–552 541

Fig. 5.4. Temporal evolution of L2 error velocity profile for L/dx = 40 at Re = 1000 for all three methods, the purely Lagrangian, ELI-SPH and
purely Eulerian formulation.

Fig. 5.5. Temporal evolution of L2 error velocity profile for, L/dx = 40, L/dx = 80 and L/dx = 160 at Re = 1000 for the purely Lagrangian
and ELI-SPH.

5.1.2. Eulerian–Lagrangian SPH with higher order kernels
Herein, we take advantage of the high order (HO) kernels [5] to improve the error within the Eulerian region.
In the inner Eulerian region (coloured red in Fig. 5.8) the sixth-order Gaussian kernel has been used with a

support of 6h. The support for the high order Gaussian extends only over the uniform spaced particles (i.e. the whole
Eulerian region) since the kernel is negative in parts and therefore not suitable for non-uniform (Lagrangian) particle
distributions. The Lagrangian region and the outer Eulerian region (both depicted by the blue particles in Fig. 5.8)
employ the quintic kernel with 3h support. In short, an inner Eulerian particle may only sum over Eulerian particles
using the HO kernel whereas, Lagrangian and outer Eulerian particles use the quintic spline kernel.

This three-zone approach avoids kernel mixing and overlapping between the interfaces, as well as the use of
specialised multi-kernel SPH formulations.
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Fig. 5.6. Absolute error in u for L/dx = 80 and Re = 1000 at (a) t = 1 s and (b) t = 5 s.

Fig. 5.7. Order of convergence in the error at t = 1 s and Re = 1000. The solid lines indicate similar order of convergence of approximately 1.25
for the Lagrangian and ELI-ISPH, dotted line indicate an order of approximately 2.85 order of convergence for the purely Eulerian formulation.

Fig. 5.8. Schematic of the Lagrangian, Eulerian and HO Eulerian regions for the HO kernel configuration.
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Fig. 5.9. Temporal evolution of L2 error velocity profile at Re = 1000 using high order kernels.

The aim here is to demonstrate a methodology where the high-order Eulerian region retains improved error
performance within the Eulerian region. The proposed methodology may be used for a future straightforward p-
adaptivity method with improved accuracy in SPH.

Results of the L2 error from the temporal evolution of the horizontal velocity are shown in Fig. 5.9 illustrating
some improvement with high-order kernels at coarser resolution. They extend over a limited zone in the centre of
the domain and the high-order kernel support overlaps over most of the quintic Eulerian region where the error is
of O(h2). This error propagates into the high-order region. Clearly, there is benefit in maximising the extent of the
high-order region as there also would be in increasing the time integration scheme to second order [5].

This gain in accuracy within the high-order Eulerian region may be exploited within a variable-resolution
framework in view of the fact a lower resolution with a high-order kernel may be used to maintain an overall error
level consistent with any nearby Lagrangian region. Although this concept is not demonstrated here, investigations
into a variable resolution, multi-kernel SPH methodology are underway.

5.2. Vortex spin-down

In a similar manner to the Taylor–Green vortices, the domain is initialised by a smooth distribution of a clockwise
rotating vortex such that

u = Umax(y − 0.5)
v = Umax(0.5 − x), (5.3)

where Umax = 1 m/s and refers to the maximum velocity of the system. However, in the vortex spin-down test case
the domain is bounded by walls with dimensions of 1 m × 1 m with the origin located at the left bottom of the
domain. As in the previous test case, the flow is incompressible and viscous resulting in a decaying vortex. The vortex
spin-down test case demonstrates the ability of the proposed methodology to treat flows where the interface interacts
with the walls. Note that the mirroring methodology of Morris et al. [7] is employed to model the wall boundary
conditions.

In the absence of an analytical solution, the finite volume software StarCCM+ has been taken as the reference
solution using a second order differencing scheme for the advection term with PISO velocity–pressure coupling and
a convergence criterion of 10−5 using 25 600 cells [8]. Fig. 5.10 shows the pressure at t = 10 s as well as the location
of the Eulerian and Lagrangian region separated by the interface. Notably, as with the Taylor–Green vortices, the
interface shows near isotropic particle distribution without any spurious pressure noise.
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Fig. 5.10. Pressure field of the vortex spin-down case for 80 × 80 particles with Re = 1000 and t = 10 s.

Fig. 5.11. Comparison between StarCCM+ and ELI-SPH for the normalised horizontal and vertical velocity profile along y/D = 0 and x/D = 0
respectively at t = 1 s with Re = 100 and for three particle resolutions (L/dx = 40, L/dx = 60 and L/dx = 80).

Figs. 5.11 and 5.13 show a comparison of the velocity results obtained by StarCCM+ and ELI-ISPH for the
horizontal and vertical directions for three different resolutions at Re = 100 and Re = 1000 respectively. Pressure
comparison plots are presented in Figs. 5.12 and 5.14 for the aforementioned Reynolds numbers. Note that the
interface is located at y/D = 0.5. The StarCCM+ solution is well reproduced by ELI-SPH without any spurious
fluctuations near or around the interface and the wall solid boundary especially for the challenging horizontal profile
which is located at the interface along the whole length of the domain. The pressure field is also well reproduced.
Increasing resolution shows the ELI-SPH results converge to the StarCCM+ results.
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Fig. 5.12. Comparison between StarCCM+ and ELI-SPH for the normalised horizontal pressure profile along y/D = 0.5 at t = 1 s with Re = 100
and for three particle resolutions (L/dx = 40, L/dx = 60 and L/dx = 80).

Fig. 5.13. Comparison between StarCCM+ and ELI-SPH for the normalised horizontal and vertical velocity profile along y/D = 0 and x/D = 0
respectively at t = 1 s with Re = 1000 and for three particle resolutions (L/dx = 40, L/dx = 60 and L/dx = 80).

5.3. Lagrangian vortex spin-down with Eulerian boundary conditions

An additional benefit of this development is that a simple solid boundary condition may simply be provided within
a mostly Lagrangian simulation by imposing layers (usually three) of fixed (Eulerian) particles adjacent to the solid
surface within the fluid domain and at mirror positions within the solid surface (or vice versa). Outside the region of
the Eulerian fluid particles the fluid particles revert to Lagrangian form. This is relatively easy to set up with the usual
care required for sharp corners using mirror particles [2].
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Fig. 5.14. Comparison between Star CCM+ and ELI-SPH for the normalised horizontal pressure profile along y/D = 0.5 at t = 1 s with
Re = 1000 and for three particle resolutions (L/dx = 40, L/dx = 60 and L/dx = 80).

Fig. 5.15. Particle type arrangement for the Eulerian wall boundary condition. Red particles (uniformly distributed) denote Eulerian particles near
the wall boundary.

This is conveniently demonstrated here for the vortex spin-down problem. Fig. 5.15 shows the particle arrangement
for the vortex spin down case. Three layers of Eulerian particles (i.e. the particles required to fill our 3h support) are
uniformly distributed near the wall. These particles are purely Eulerian in a similar manner as with the ELI-SPH.
However, the Eulerian particles pose an advantage. Mirroring of the particles properties or applying other velocity
interpolation such as finite differences or a high order extrapolation becomes trivial in the uniform grid. Herein,
we demonstrate the methodology of the Eulerian boundary particle approach, with detailed studies on accuracy and
convergence reserved for a future paper.

Comparisons are shown between StarCCM+ and ISPH with the proposed Eulerian boundary condition (ELI-SPH
BC) in Fig. 5.16 to Fig. 5.17 for the velocity profile along y/D = 0.5 and pressure field at t = 1 s, with very good
agreement between the ELI-SPH BC and StarCCM+.

Using StarCCM+ as a reference solution, a comparison between the horizontal velocity error (defined as
|uSPH − ustarccm+|/Umax of the Lagrangian and ELI-ISPH BC for the velocity profile near the wall boundary along
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Fig. 5.16. Comparison between StarCCM+ and Eulerian wall boundary for the normalised horizontal velocity and pressure profile along y/D = 0.5
at t = 1 s with Re = 100 and for three particle resolutions (L/dx = 40, L/dx = 80 and L/dx = 160).

Fig. 5.17. Comparison between StarCCM+ and Eulerian wall boundary for the normalised horizontal pressure profile along y/D = 0.5 at t = 1 s
with Re = 100 and for three particle resolutions (L/dx = 40, L/dx = 80 and L/dx = 160).

y/D = 0.5 at t = 1 s is shown in Fig. 5.18. Clearly, there is a demonstrable improvement in accuracy using the
ELI-SPH BC over the purely Lagrangian formulation.

5.4. Periodic wave propagation

Although the previous test cases demonstrated the flexibility and error reduction through the purely Eulerian
region with an interface to a purely Lagrangian region in unbounded and bounded test cases, the attractiveness of
the ELI-ISPH formulation can be further demonstrated using a simple free-surface flow case, such as a periodic wave
propagation. In the presence of a free-surface, a Lagrangian region is present in the area of high non-linearity and a
fully Eulerian region is defined near the bed and away from the free-surface. The aim of this test case is to demonstrate
the functionality of the ELI-SPH to deal with non-linear free-surface flows.

Herein, we consider a non-linear inviscid progressive gravity wave within a periodic domain of length equal to two
wave lengths with a wave length of λ = 3.922 m and a period of t = 1.65. The initial water depth is d = 1.0 m
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Fig. 5.18. Comparison of the horizontal velocity error profile of the Lagrangian and Eulerian wall boundary along y/D = 0.5 at t = 1 s with
Re = 100 for L/dx = 160 (reference solution from StarCCM+).

Fig. 5.19. Pressure (Pa) and particle distribution at 10 periods of a wave propagating in the periodic domain and of particle distributions over the
Eulerian to Lagrangian region.

and a wave height of H = 0.12 m. The velocity field and free-surface location is prescribed by SAWW [18] as initial
conditions at time t = 0.0 s which is based on the irrotational stream function theory [19].

Fig. 5.19 shows the pressure field of the Eulerian and Lagrangian region after 10 wave periods with the interface
defined at y = 0.5 m (which is half the water depth) and includes a close-up of the particle distribution at the interface.
The resulting Lagrangian particle distribution is near isotropic with an absence of voids or high concentration areas
or pressure fluctuations.

Figs. 5.20–5.21 show the normalised peak height and trough height respectively for 10 periods. Three different
particle resolutions have been used to demonstrate the convergence characteristics. As shown in Fig. 5.20 the wave
decay after 10 periods is close to 0.5%, which is satisfactory and in approximate agreement with Skillen et al. [2].
Fig. 5.22 presents the wave height profile over 10 periods for 3 different resolutions at the location of x/λ = 0.5.
Evidently the resolution of λ/dx = 400 shows minimal decay. Note that the time integration used in ELI-ISPH is
only first order, thus some wave height decay is present, also shown in the normalised kinetic energy of Fig. 5.23.
Similar characteristics are observed by [2].

The velocity profile at the peak and trough from the ELI-ISPH is compared with the irrotational stream function
theory profiles obtained from SAWW and presented in Fig. 5.24 and Fig. 5.25 for the horizontal and vertical velocity,
with good agreement shown. Note, that the interface between the Eulerian and Lagrangian region did not produce any
spurious velocity fluctuations.
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Fig. 5.20. Maximum free-surface elevation (crest) over first 10 periods of a wave propagating in the periodic domain for 3 different particle
resolutions using the ELI-SPH formulation.

Fig. 5.21. Minimum free-surface elevation (trough) over first 10 periods of a wave propagating in the periodic domain for 3 different particle
resolutions using the ELI-SPH formulation.

6. Conclusions and future work

An Eulerian–Lagrangian ISPH formulation is proposed that improves the accuracy of the SPH solution by
controlling the particle uniformity. Regions with a free surface (or interfacial flows) remain Lagrangian whereas
regions away from such non-linear phenomena are treated using the Eulerian form. Also, for a conventional fully
Lagrangian formulation a simple general solid boundary condition is proposed using the Eulerian formulation near
wall boundaries.

A number of cases have been presented. The Taylor–Green vortex is an ideal case to assess the accuracy of the
proposed methodology. Results have shown that there are potentially significant benefits in error reduction when the
ELI-SPH is employed over the Lagrangian form. The wall bounded case of vortex spin-down in a square box has
been presented to highlight the flexibility of the proposed scheme and its applicability to internal wall bounded flows.
This test case also demonstrates how use of layers (usually three) of fixed fluid particles close to the wall with mirror
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Fig. 5.22. Wave height profile over first 10 periods of a wave propagating in the periodic domain for 3 different particle resolutions using the
ELI-SPH formulation and comparison with SAWW at location x/λ = 0.5.

Fig. 5.23. Normalised kinetic energy over first 10 periods of a wave propagating in the periodic domain for 3 different particle resolutions using
the ELI-SPH formulation.

particles provides a simple solid boundary representation within an otherwise Lagrangian formulation. The scheme
was also applied to free-surface flows using a propagating periodic wave without the need of special treatments at the
Eulerian–Lagrangian interface with good agreement to the stream function theory solution of SAWW demonstrated.

In future work, the novel Eulerian–Lagrangian formulation will be extended to an arbitrary Eulerian–Lagrangian
scheme which, as mentioned, can be complemented with efficient variable particle resolution and multi-kernel
approaches for sustaining accuracy at low resolution. Also, the Eulerian boundary condition approach holds promise
in allowing an accurate and straightforward implementation of boundary conditions in SPH, which have long been
an issue and a topic of sustained research in the SPH community. Further detailed studies on the accuracy and
convergence of the ELI-SPH BC for a range of test cases are reserved for a future paper with the addition of a
3-D implementation.
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Fig. 5.24. Velocity prediction comparison between ELI-ISPH and SAWW in the horizontal direction over a crest and trough after the first 10
periods of a wave propagating in the periodic domain for 3 different particle resolutions using the ELI-SPH formulation.

Fig. 5.25. Velocity prediction comparison between ELI-ISPH and SAWW in the vertical direction over a crest and trough after the first 10 periods
of a wave propagating in the periodic domain for 3 different particle resolutions using the ELI-SPH formulation.
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