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A B S T R A C T

In this paper, a nonlinear theoretical model is developed for the dynamics of a flexible cantilevered pipe that is
simultaneously subjected to internal and partially-confined external axial flows. The pipe under consideration
discharges fluid downwards, which accumulates in a relatively large tank, and then flows upwards through a
generally shorter annular region surrounding the pipe. Thus, the internal and external flows are interdependent
and in opposite directions. A practical application of this system may be found in solution mining processes
for brine production, and in the subsequent usage of the salt-mined caverns for hydrocarbon storage. The
equation of motion is derived using the extended Hamilton’s principle to third-order accuracy with a separate
derivation of the fluid-related forces associated with the internal and external flows. The equation is discretized
using Galerkin’s scheme and solved via the pseudo-arclength continuation method and a direct time integration
technique. Two pipes of different dimensions and materials are considered in this study; the stability of these
pipes is investigated with increasing flow velocity. Also, the influence of varying the length and tightness of
the annular region on the dynamical behaviour of the pipes is explored theoretically. The predictions of the
proposed model are compared to experimental observations from the literature for systems with the same
parameters as those considered in this paper, as well as to predictions of an earlier linear theory. The results
obtained are in excellent qualitative and good quantitative agreement with the experimental observations.
Furthermore, this model predicts the frequencies of oscillation more accurately than linear theory.

1. Introduction

Systems that involve flexible pipes subjected to simultaneous inter-
nal and external axial flows are very common in industry; e.g., they can
be found in heat exchangers, drill strings used in drilling operations and
oil exploration, and brine strings used for brine production. Cesari and
Curioni [1] were the first to investigate the static stability of such a sys-
tem with different boundary conditions. Pipes subjected to concurrent
internal and external axial flows were studied theoretically afterwards
by Hannoyer and Païdoussis [2]; this work was extended by Païdoussis
and Besançon [3] who considered arrays of cylinders with internal
and external flows. Wang and Bloom [4] examined the dynamics of
an inclined pipe subjected to internal and partially-confined external
flows; they formulated a linearized mathematical model to determine
the system eigenfrequencies, and identified the critical parameters
pertaining to stability of the system.

Païdoussis et al. [5] derived a linear theoretical model for a vertical
cantilevered pipe discharging fluid downwards, which then flows up-
wards through an annular region contained by a rigid channel; thus,
the internal and external flows are interdependent and the external
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flow is fully confined; i.e., confined over the whole length of the
pipe. Two sets of system parameters were considered: the first one
corresponds to a bench-top-size system, while the second idealizes a
drill-string-like system. It was concluded in [5] that if the degree of
confinement of the external flow is sufficiently high, the external flow
is dominant and it destabilizes the system. A nonlinear model for that
particular configuration was developed by Abdelbaki et al. [6,7] and
the results obtained were compared to the theoretical results of [5]
and experimental observations by Rinaldi [8]; the model successfully
captures the essentials of the behaviour observed experimentally. The
effects of reversing the flow direction on the dynamical behaviour of
the system in [5] were explored theoretically by Qian et al. [9] who as-
sumed that the hanging pipe is aspirating the fluid in a simple manner.
Recently, Fujita and Moriasa [10] revisited the theoretical modelling
of the same system, considering the two different directions of the
flow velocities [5,9]; they employed the principle of superposition of
linear stability analysis of a pipe subjected to internal and external
flows separately to examine the dynamics of the system. Later on,
Zhao et al. [11] modelled the drill-string as a stepped pipe to take
into account the differences between the drill-pipe and the drill-collar
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diameters; they developed a linear model and explored the influence of
various parameters on the stability of the system.

Moditis et al. [12] studied the dynamics of a discharging cantilever
pipe with reverse, partially-confined, external flow — a system that
models one of the modi operandi of salt-mined caverns used for storage
and subsequent retrieval of hydrocarbons [13]. Moditis et al. extended
the theoretical model of [5] and derived a linear equation of motion
for the pipe. The theoretical analysis was validated by comparison with
experiments in a bench-top-sized system in the same study. In addition,
the linear theory was used to investigate the stability of long brine-
string-like systems [12]; it was found that sufficiently long systems
lose stability with increasing flow velocity via divergence rather than
flutter, the latter being the mode of instability observed experimentally
in the bench-top-sized system. The same configuration was studied
numerically by Kontzialis et al. [14]; the results obtained were in a
good agreement with the experiments in [12].

Moreover, Minas et al. [15] investigated the effect of adding an end-
piece at the free end of the pipe that makes the flow to be discharged
radially instead of axially as in [12,14]; this idea was originally ex-
plored by Rinaldi and Païdoussis [16] experimentally and theoretically,
but for a cantilevered pipe discharging fluid without any external flow.
It was concluded in [15] that discharging the flow radially stabilizes
the system against flutter, the same conclusion reached earlier in [16].

Most recently, Abdelbaki et al. [17] improved the theory in Moditis
et al. [12] by modelling the external flow in a more accurate and real-
istic manner, and thus obtained a better prediction for the thresholds of
instability and the associated frequencies of oscillation, especially for
longer annular regions.

In the present study, the nonlinear dynamics of a hanging can-
tilevered pipe simultaneously subjected to internal and partially-
confined external axial flows is examined by a nonlinear theory for the
first time. The nonlinear equation of motion is derived to third-order
accuracy in Section 2. In Section 3, the new theoretical model is used
to investigate the stability of two pipes of different dimensions and
materials, and with different lengths of the annular region. In Section 4,
the critical flow velocities for instability, as well as the amplitudes
and frequencies of oscillation at various flow velocities, obtained using
the proposed model, are compared to the experimental data reported
in [12] for systems with parameters similar to those considered in
Section 3. The influence of varying the tightness of the annular region
on the stability of the system is investigated theoretically in Section 5.

2. Derivation of the theoretical model

A long flexible cantilevered pipe such as shown in Fig. 1a is con-
sidered, with outer diameter 𝐷𝑜, inner diameter 𝐷𝑖, length 𝐿, flexural
rigidity 𝐸𝐼 and mass per unit length 𝑚. The pipe conveys a fluid
downwards with a uniform flow velocity 𝑈𝑖, discharging it into a
relatively large tank filled with the same fluid. The fluid then flows
upwards with velocity 𝑈𝑜 through an annular region contained by a
rigid tube of internal diameter 𝐷𝑐ℎ and length 𝐿′, exiting at 𝑋 = 0. The
system is oriented vertically, and the neutral axis of the pipe coincides
with the 𝑋-axis and the gravity direction, 𝑔, as shown in Fig. 1a.

The main assumptions made for the system can be listed as follows:
(i) the pipe length-to-diameter ratio is high, so it can be modelled via
Euler–Bernoulli beam theory; (ii) the centreline of the pipe is assumed
to be inextensible; (iii) the pipe may undergo large deformation, but
the strains remain small; (iv) the motion of the pipe is assumed to
be planar, i.e. in the (𝑋, 𝑌 )-plane, and thus the derived model is
two-dimensional; (v) the fluid is incompressible; (vi) the tank size is
assumed to be large; therefore, the external flow velocity is assumed
to have a value of 𝑈𝑜 in the confined region only, while 𝑈𝑜 = 0 over
the unconfined one; and lastly (vii) the internal flow velocity, 𝑈𝑖, and
the external one in the confined region, 𝑈𝑜, are assumed to be uniform,
and they are related to each other according to the law of conservation
of mass.

Fig. 1. (a) Diagram of a vertical hanging pipe discharging fluid downwards, which then
flows upwards through an annular region surrounding the pipe. (b) Diagram defining
the coordinate systems used, and the displacements of point 𝐺 on the neutral axis of
the pipe, located at 𝐺(𝑋, 0) before deformation and at 𝐺′(𝑥, 𝑦) after deformation.

In the following analysis, the Lagrangian coordinate system (𝑋, 𝑌 ,
𝑍, 𝑡) is used to describe the undeformed state of the pipe, while the
Eulerian one (𝑥, 𝑦, 𝑧, 𝑡) is associated with the deformed state. Thus, the
displacements of a point, say 𝐺, on the centreline of the pipe, due to
deformation may be determined by 𝑢 = 𝑥−𝑋, 𝑣 = 𝑦−𝑌 , and 𝑤 = 𝑧−𝑍
— see Fig. 1b. In addition, one can write 𝑌 = 0, 𝑣 = 𝑦 and 𝑧 = 𝑍 =
𝑤 = 0, because the pipe is assumed to move only in the (𝑋, 𝑌 )-plane.
The curvilinear coordinate along the pipe, 𝑠, can be used instead of 𝑋,
where 𝜕𝑠∕𝜕𝑋 = 1+ 𝜀̄ and 𝜀̄ is the axial strain along the pipe centreline;
since the pipe is assumed to be inextensible, 𝜀̄ = 0, 𝜕𝑠∕𝜕𝑋 = 1. Also,
from the relation 1 + 𝜀̄(𝑋) = [(𝜕𝑥∕𝜕𝑋)2 + (𝜕𝑦∕𝜕𝑋)2]1∕2, one can derive
the following inextensibility condition (𝜕𝑥∕𝜕𝑋)2 + (𝜕𝑦∕𝜕𝑋)2 = 1, and
thus obtain the curvature, 𝜅̄, along the deformed pipe,

𝜅̄ =
𝜕2𝑦∕𝜕𝑠2

√

1 − (𝜕𝑦∕𝜕𝑠)2
. (1)

The reader is referred to [18] for detailed derivations.
The equation of motion is derived via the extended Hamilton’s

principle,

𝛿 ∫

𝑡2

𝑡1
d𝑡 + ∫

𝑡2

𝑡1
𝛿𝑊 d𝑡 = 0, (2)

where  is the Lagrangian and 𝛿𝑊 is the total virtual work done on the
pipe. The Lagrangian is expressed as  =  − , where  is the kinetic
energy of the pipe including the conveyed fluid, and  is the associated
potential energy. Also, the total virtual work 𝛿𝑊 = 𝛿𝑊𝑖 + 𝛿𝑊𝑜 consists
of: 𝛿𝑊𝑖, the virtual work due to the fluid forces related to the internal
flow but not included in the Lagrangian, and 𝛿𝑊𝑜, associated with the
external flow. The theoretical model derived in the present study is
exact to third-order of magnitude, (𝜖3), for 𝑦 = 𝑣 ∼ (𝜖) and 𝑢 ∼ (𝜖2).
Hence, all the expressions derived for the virtual work must be correct
to (𝜖3), and all the energy expressions to (𝜖4).

2.1. Total kinetic and potential energies of the pipe including the conveyed
fluid

The nonlinear expressions for the kinetic and potential energies of
a pipe conveying fluid were derived in detail by Semler et al. [18]; the
same expressions can be used for the configuration under study. The
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total kinetic energy,  , is the sum of the kinetic energy of the pipe
𝑝 and the kinetic energy of the internal fluid 𝑓 ; it can be written as
follows:

 = 𝑝 + 𝑓 = 1
2
𝑚∫

𝐿

0
𝑉 2
𝑝 d𝑋 + 1

2
𝑀𝑖 ∫

𝐿

0
𝑉 2
𝑓 d𝑋, (3)

where 𝑉𝑝 = 𝑥̇𝑖⃗+𝑦̇𝑗 is the velocity of a pipe element, with the unit vectors
𝑖⃗ and 𝑗 representing the axial and lateral directions of the undeformed
state of the pipe, respectively. 𝑀𝑖 is the mass of the fluid per unit length
of the pipe, and 𝑉𝑓 = 𝑉𝑝+𝑈𝑖 𝑡⃗ is the velocity of a fluid element, with the
unit vector 𝑡⃗ representing the tangential direction along 𝑠, as indicated
in Fig. 1b. Thus, from the inextensibility condition, one can write 𝑡⃗ =
(𝜕𝑥∕𝜕𝑠)𝑖⃗ + (𝜕𝑦∕𝜕𝑠)𝑗, and consequently, 𝑉𝑓 = [(𝜕∕𝜕𝑡) + 𝑈𝑖(𝜕∕𝜕𝑠)](𝑥𝑖⃗ + 𝑦𝑗).
Substitution of 𝑉𝑝 and 𝑉𝑓 in Eq. (3) yields the following expression:
 = (𝑚∕2) ∫ 𝐿

0 (𝑥̇2 + 𝑦̇2)d𝑠 + (𝑀𝑖∕2) ∫
𝐿
0 [(𝑥̇ + 𝑈𝑥′)2 + (𝑦̇ + 𝑈𝑦′)2]d𝑠, with

( )′ = 𝜕( )∕𝜕𝑠 and ̇( ) = 𝜕( )∕𝜕𝑡. By applying the variational technique
and keeping in mind the orders of magnitude, the following relation
can be obtained — see [18,19]:

𝛿 ∫

𝑡2

𝑡1
 d𝑡 = −∫

𝑡2

𝑡1
∫

𝐿

0
[(𝑚 +𝑀𝑖)𝑥̈ + 2𝑀𝑖𝑈𝑖𝑥̇

′]𝛿𝑥d𝑠d𝑡

− ∫

𝑡2

𝑡1
∫

𝐿

0
[(𝑚 +𝑀𝑖)𝑦̈ + 2𝑀𝑖𝑈𝑖𝑦̇

′]𝛿𝑦d𝑠d𝑡

+𝑀𝑖𝑈𝑖 ∫

𝑡2

𝑡1
[𝑥̇

𝐿
𝛿𝑥

𝐿
+ 𝑦̇

𝐿
𝛿𝑦

𝐿
]d𝑡,

(4)

where 𝑥
𝐿
= 𝑥(𝐿) and 𝑦

𝐿
= 𝑦(𝐿) are the displacements of the free end

of the pipe.
Similarly, the total potential energy,  , is determined by summation

of the strain and gravitational energies of the pipe itself, as well as the
gravitational energy of the fluid. Thus, one can write

 = 1
2
𝐸𝐼 ∫

𝐿

0
𝜅̄2 d𝑋 − (𝑚 +𝑀𝑖)𝑔 ∫

𝐿

0
𝑥d𝑋. (5)

Utilizing the curvature expression (1) and applying the variational
technique leads to

𝛿 ∫

𝑡2

𝑡1
 d𝑡 = 𝐸𝐼 ∫

𝑡2

𝑡1
∫

𝐿

0
[𝑦′′′′ + 4𝑦′𝑦′′𝑦′′′ + 𝑦′′3 + 𝑦′′′′𝑦′2] 𝛿𝑦d𝑠d𝑡

− (𝑚 +𝑀𝑖)𝑔 ∫

𝑡2

𝑡1
∫

𝐿

0
[−(𝑦′ + 1

2
𝑦′3)

+ (𝐿 − 𝑠)(𝑦′′ + 3
2
𝑦′′𝑦′2)] 𝛿𝑦d𝑠d𝑡 + (𝜖5).

(6)

It should be noted that the relation between 𝛿𝑥 and 𝛿𝑦 can be obtained
by applying the variational operator, 𝛿, to the inextensibility condition,
eventually yielding

𝛿𝑥 = −(𝑦′ + 1
2
𝑦′3)𝛿𝑦 + ∫

𝑠

0
(𝑦′′ + 3

2
𝑦′2𝑦′′)𝛿𝑦d𝑠. (7)

2.2. Virtual work due to the internal-fluid-related forces

It was shown in [18] that the virtual work, 𝛿𝑊𝑖, is non-zero even
if there are no explicit external forces applied on the pipe. This is
because of the existence of non-conservative forces associated with
the discharging fluid at the free end of the pipe, as originally shown
by Benjamin [20]; these forces are not included in the expression of
the Lagrangian. According to [18], one can express the virtual work
associated with these forces as follows:

𝛿𝑊𝑖 = −𝑀𝑖𝑈𝑖

( 𝜕𝑟
𝐿

𝜕𝑡
+ 𝑈𝑖 𝑡⃗ 𝐿

)

. 𝛿𝑟
𝐿
, (8)

where 𝑟
𝐿

represents the position unit vector 𝑟 = (𝑥, 𝑦) at the free end of
the pipe, and 𝑡⃗

𝐿
the tangential one at the same position. Eq. (8) leads

Fig. 2. Free-body diagram of an element of the cantilevered pipe considering the effects
of only the internal flow.

to

∫

𝑡2

𝑡1
𝛿𝑊𝑖 d𝑡 = −𝑀𝑖𝑈𝑖 ∫

𝑡2

𝑡1
[(𝑥̇

𝐿
+ 𝑈𝑖𝑥

′
𝐿
)𝛿𝑥

𝐿
+ (𝑦̇

𝐿
+ 𝑈𝑖𝑦

′
𝐿
)𝛿𝑦

𝐿
]d𝑡

= −𝑀𝑖𝑈𝑖 ∫

𝑡2

𝑡1
(𝑥̇

𝐿
𝛿𝑥

𝐿
+ 𝑦̇

𝐿
𝛿𝑦

𝐿
)d𝑡 −𝑀𝑖𝑈

2
𝑖

× ∫

𝑡2

𝑡1
(𝑥′

𝐿
𝛿𝑥

𝐿
+ 𝑦′

𝐿
𝛿𝑦

𝐿
)d𝑡

= 𝐴 + 𝐵.

(9)

Term 𝐴 cancels the last term in Eq. (4) and, by employing the inexten-
sibility condition, the following expression for term 𝐵 can be obtained,
with the aid of Eq. (7):

𝐵 = −𝑀𝑖𝑈
2
𝑖 ∫

𝑡2

𝑡1
∫

𝑠

0

[

𝑦′′ + 𝑦′2𝑦′′ − 𝑦′′ ∫

𝐿

𝑠
(𝑦′𝑦′′)d𝑠

]

𝛿𝑦d𝑠d𝑡. (10)

The analysis presented so far follows exactly that provided in [18]
for a hanging cantilevered pipe conveying fluid. Therefore, substituting
the expressions obtained for the virtual work and the Lagrangian in the
extended Hamilton’s principle (2) leads to the final equation of motion
derived in [18]. However, the pipe in [18] is assumed to be unconfined
and to discharge the fluid to atmosphere, while in the problem in
hand, the pipe is simultaneously subjected to an external flow, and the
pipe is discharging the fluid into a tank that is filled with the same
fluid. Thus, pressurization at the free end of the pipe is important, and
should be taken into account. In the following sub-section, the effects
of pressurization and externally applied tension at the free end of the
pipe are incorporated in the model.

2.3. Pressurization at the free end of the pipe

An element of the pipe of length 𝛿𝑠 that is subjected only to internal
flow is considered, as shown in Fig. 2. The axial force, 𝑄1, shear force,
𝑄2, and bending moment, , on the upper and lower cross-sections are
indicated in the same figure. By considering the equilibrium of forces,
one obtains
𝜕𝑄⃗
𝜕𝑠

+ (𝑚 +𝑀𝑖)𝑔𝑖⃗ = 𝑚𝜕2𝑟
𝜕𝑡2

+𝑀𝑖
D2𝑟
D𝑡2

, (11)

where 𝑄 is the resultant force and D( )∕D𝑡 is the material derivative.
Similarly, applying a balance of moments leads to

𝜕⃗
𝜕𝑠

+ 𝑡⃗ × 𝑄⃗ = 0. (12)

Since Euler–Bernoulli beam theory is employed, one can make use of
the moment–curvature relation given below by neglecting the effect of
rotary motion

⃗ = 𝐸𝐼𝑡⃗ × ⃗̄𝜅. (13)

Decomposing 𝑄⃗ along 𝑡⃗ and 𝑛 gives

𝑄⃗ = (𝑇𝑜 − 𝐴𝑖𝑝𝑖)𝑡⃗ + 𝑡⃗ × 𝜕⃗
𝜕𝑠

, (14)

3
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where 𝑇𝑜 is an externally applied tension, 𝑝𝑖 is the pressure of the
internal fluid, and 𝐴𝑖 = (𝜋∕4)𝐷2

𝑖 is the inner cross-sectional area of the
pipe. By substituting Eqs. (13)–(14) into Eqs. (11)–(12) and projecting
along 𝑥 and 𝑦, one obtains

(𝑚+𝑀𝑖)𝑔−𝐸𝐼 𝜕
4𝑥
𝜕𝑠4

+ 𝜕
𝜕𝑠

[

(𝑇𝑜 −𝐴𝑖𝑝𝑖 −𝐸𝐼𝜅̄2) 𝜕𝑥
𝜕𝑠

]

= 𝑚𝜕2𝑥
𝜕𝑡2

+𝑀𝑖
D2𝑥
D𝑡2

, (15)

−𝐸𝐼
𝜕4𝑦
𝜕𝑠4

+ 𝜕
𝜕𝑠

[

(𝑇𝑜 − 𝐴𝑖𝑝𝑖 − 𝐸𝐼𝜅̄2)
𝜕𝑦
𝜕𝑠

]

= 𝑚
𝜕2𝑦
𝜕𝑡2

+𝑀𝑖
D2𝑦
D𝑡2

. (16)

Integrating Eq. (15) from 𝑠 to 𝐿 and dividing it by 𝜕𝑥∕𝜕𝑠 yields

(𝑇𝑜 − 𝐴𝑖𝑝𝑖 − 𝐸𝐼𝜅̄2) =
(𝑚 +𝑀𝑖)𝑔(𝐿 − 𝑠)

𝜕𝑥∕𝜕𝑠
+

𝐸𝐼(𝜕3𝑥∕𝜕𝑠3)
𝜕𝑥∕𝜕𝑠

+
[(𝑇𝑜 − 𝐴𝑖𝑝𝑖)(𝜕𝑥∕𝜕𝑠)]𝑠=𝐿

𝜕𝑥∕𝜕𝑠

−
∫ 𝐿
𝑠 [𝑚(𝜕2𝑥∕𝜕𝑡2) +𝑀𝑖(D2𝑥∕D𝑡2)]d𝑠

𝜕𝑥∕𝜕𝑠
.

(17)

Substituting Eq. (17) into Eq. (16) and utilizing the inextensibility
condition to eliminate 𝑥 leads to the same equation of motion obtained
via the extended Hamilton’s principle, as concluded earlier in [18].
However, the third term on the right-hand side of Eq. (17) was not
present in [18], because the pipe was assumed to discharge the fluid
to atmosphere and hence there was no tension applied at the free
end. By keeping that term and following the same procedure, one
obtains the same equation as in [18], but with the following extra term:
−
[

(𝑇𝑜 − 𝐴𝑖𝑝𝑖)(1 −
1
2 𝑦

′2)
]

𝑠=𝐿(𝑦
′′ + 3

2 𝑦
′′𝑦′2). This term appears in the final

equation of motion obtained in this study.
Moreover, the relation between the external pressure at the free end

of the pipe, 𝑝𝑜(𝐿), and the internal one, 𝑝𝑖(𝐿), can be determined by an
energy balance of the fluid at 𝑠 = 𝐿. Thus,

𝑝𝑖(𝐿) = 𝑝𝑜(𝐿) −
1
2
𝜌𝑈2

𝑖 + 𝜌𝑔ℎ𝑒, (18)

where ℎ𝑒 = 𝐾𝑒𝑈2
𝑖 ∕(2𝑔) is the head-loss due to the sudden enlargement

of the flow exiting the pipe into the surrounding fluid, with 𝐾𝑒 = 1
according to [21].

2.4. Fluid-related forces associated with the external flow in the annular
region

In this subsection, the external-fluid part of the problem is analysed
in detail. Since the tank, into which the hanging pipe is discharging
fluid, is assumed to be large, the external flow velocity over the
unconfined region, i.e., before the fluid enters the annular region, is
assumed to be 𝑈𝑜 = 0. However, once the fluid enters the annular
region, 𝑈𝑜 ≠ 0; the value of 𝑈𝑜 can be determined via continuity as
follows: 𝑈𝑜 = 𝑈𝑖(𝐴𝑖∕𝐴𝑐ℎ), where 𝐴𝑐ℎ = (𝜋∕4)(𝐷2

𝑐ℎ − 𝐷2
𝑜 ). In the linear

study of [12], the Heaviside step function was utilized to model this
discontinuity in the external flow velocity over the length of the pipe;
reasonable to good quantitative agreement between the theory and
the experiment was achieved in that study. In addition, the logistic
function, which provides a smoother transition as compared to the
Heaviside step function, was later considered by Abdelbaki et al. [17]
to model the discontinuity in the external flow velocity for the same
system. An improvement in the capability of the model to predict the
threshold of instability and the corresponding frequency of oscillations
was reached in [17] as compared to [12]; however, the improvement
was only slight. Therefore, since the Heaviside step function results
in relatively simpler expressions compared to the logistic one, in the
present study it was decided to model the discontinuity in the external
flow velocity by means of the Heaviside step function. Hence, one can
write 𝑈𝑜(𝑠) = 𝑈𝑜[1 − H(𝑠 − 𝐿′)].

The fluid-related forces due to the external flowing fluid are derived
in a separate manner, as in [22], rather than by the direct application
of the Navier–Stokes equations. This approach is well-established in

the literature and simplifies the analysis considerably; moreover, it has
been shown to give acceptable results, e.g. in [22–26].

The analysis below follows closely the derivation of the model
in [26], as the external flow configuration therein is the same as in
the problem under study here.

An element of the deformed pipe, at 𝑠 ≤ 𝐿′, is considered to be
subjected only to the external flow; the following set of forces acting
on the element, as shown in Fig. 3a, are: the inviscid fluid dynamic
force 𝐹𝐴𝛿𝑠, the normal and longitudinal viscous forces, 𝐹𝑁𝛿𝑠 and 𝐹𝐿𝛿𝑠,
respectively, and the hydrostatic forces in the 𝑥- and 𝑦-direction, 𝐹𝑝𝑥𝛿𝑠
and 𝐹𝑝𝑦𝛿𝑠, respectively.

2.4.1. The inviscid fluid dynamic force, 𝐹𝐴
This force is derived by extending the linear slender-body potential

flow theory of Lighthill [27] to a third-order nonlinear formulation.
This procedure was elaborated in [19] for a cantilevered cylinder in
axial flow, but in the present study the direction of the external flow
is reversed; i.e. it is in the opposite direction. Basically, the idea is to
assume a velocity potential of the following form: 𝜙 = −𝑈𝑜𝑋+𝜙1, where
−𝑈𝑜𝑋 is the potential due to the mean flow, and 𝜙1 is the potential
due to the motion of the pipe. First, this potential is determined by
satisfying these conditions: (i) the fluid velocity must have a zero value
at the outer rigid tube forming the annulus; (ii) the fluid does not
penetrate the pipe; and (iii) the solution is 2𝜋-periodic around the pipe,
and even with respect to 𝑍. Second, the pressure distribution around
the pipe, 𝑃 , is determined via the Bernoulli equation,

𝑃 = −𝜌
𝜕𝜙
𝜕𝑡

− 1
2
𝜌(∇𝜙)2 + 1

2
𝜌𝑈2

𝑜 , (19)

where 𝜌 is the fluid density. As explained in [27], the expression
obtained for 𝑃 in Eq. (19) can be written as 𝑃 = 𝑃0+𝑃2+𝑃1, where 𝑃0 is
the pressure distribution due to the steady flow around an undeformed
motionless pipe, 𝑃2 is due to the steady motion of the pipe through
a stagnant fluid, and 𝑃1 is the remainder of the pressure distribution.
Neither 𝑃0 nor 𝑃2 contributes to a net force on the pipe [19], and in
accord with [26], one obtains

𝑃1 = − 𝜌
{ {

𝜕
𝜕𝑡

+
[

−𝑈𝑜

(

1 − 𝜕𝑢
𝜕𝑋

)

−
(

𝜕𝑢
𝜕𝑡

− 𝑈𝑜
𝜕𝑢
𝜕𝑋

)]

𝜕
𝜕𝑋

}

𝜙1

+ 1
2

(

𝜕𝜙1
𝜕𝑋

)2
− 𝜕𝑣

𝜕𝑋
𝜕𝜙1
𝜕𝑌

𝜕𝜙1
𝜕𝑋

}

+(𝜖5).
(20)

Third, the lift force per unit length is determined by 𝐿(𝑋, 𝑡) = ∮𝑆𝑋
𝑃1 (−d𝑍), where 𝑆𝑋 is the outer circumference of the pipe. The inviscid
force, 𝐹𝐴, has the same magnitude as the lift, but, as used here,
it acts in the opposite direction. After straightforward mathematical
manipulations, one can obtain

𝐹𝐴(𝑋, 𝑡) =
{

𝜕
𝜕𝑡

+
[

−𝑈𝑜(1 −
𝜕𝑢
𝜕𝑋

) − ( 𝜕𝑢
𝜕𝑡

− 𝑈𝑜)
𝜕𝑢
𝜕𝑋

]

𝜕
𝜕𝑋

}

×
[

𝑉𝑜 − ( 𝜕𝑢
𝜕𝑡

𝜕𝑣
𝜕𝑋

− 2𝑈𝑜
𝜕𝑢
𝜕𝑋

𝜕𝑣
𝜕𝑋

) − 1
2
𝑉𝑜(

𝜕𝑣
𝜕𝑋

)2
]

𝑀𝑜

− 1
2
𝑀𝑜𝑉𝑜

𝜕𝑣
𝜕𝑋

𝜕𝑉𝑜
𝜕𝑋

+ (𝜖5),

(21)

where 𝑉𝑜 is the relative fluid–pipe velocity, 𝑀𝑜 = 𝜒𝜌𝐴𝑜 is the virtual
added mass, with 𝜒 = (𝐷2

𝑐ℎ+𝐷2
𝑜 )∕(𝐷

2
𝑐ℎ−𝐷2

𝑜 ) defined as the confinement
parameter [28], and 𝐴𝑜 = 𝜋𝐷2

𝑜∕4 is the pipe outer cross-sectional area.
In addition, 𝑉𝑜 can be defined as 𝑉𝑜 = 𝑦̇𝑗+𝑥̇𝑖⃗−(−𝑈⃗𝑓 ), as shown in Fig. 3b,
with 𝑈𝑓 = 𝑈𝑜[1 − (𝜕𝑢∕𝜕𝑋)] representing the mean axial flow velocity
relative to the deforming pipe. The tangential and normal directions
to the centreline of the deformed pipe can be represented by the unit
vector pair (𝑖1, 𝑗1), which is at angle 𝜃1 to (𝑖⃗, 𝑗), as shown in Fig. 3.
Thus, 𝜃1 can be written as

𝜃1 = 𝑦′ − 𝑢′𝑦′ − 1
3
𝑦′3 + (𝜖5). (22)

Projecting 𝑉𝑜 on 𝑗1, the direction normal to the element, leads to 𝑉𝑜 =
𝑦̇ cos(𝜃1) + (𝑥̇ + 𝑈𝑓 ) cos(𝜃̄1), where 𝜃̄1 =

1
2𝜋 + 𝜃1. Hence,

𝑉𝑜 = 𝑦̇ − 𝑈𝑜𝑦
′ − 1

2
𝑦̇𝑦′2 + 2𝑈𝑜𝑢

′𝑦′ + 1
2
𝑈𝑜𝑦

′3 − 𝑥̇𝑦′ + (𝜖5). (23)
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Fig. 3. (a) Fluid-related forces acting on an element of the cantilevered pipe 𝛿𝑠; (b) determination of the relative fluid–body velocity 𝑉𝑜 associated with the external flow on an
element of the pipe.

Finally, to account for the discontinuity in the external flow velocity
along 𝑠, one can express the inviscid force as follows:

𝐹𝐴(𝑋, 𝑡) =
{

𝜕
𝜕𝑡
+
[

−𝑈𝑜[1 − H(𝑋 − 𝐿′)](1 − 𝜕𝑢
𝜕𝑋

)

− ( 𝜕𝑢
𝜕𝑡

− 𝑈𝑜[1 − H(𝑋 − 𝐿′)]) 𝜕𝑢
𝜕𝑋

]

𝜕
𝜕𝑋

}

×
[

𝑉𝑜 − ( 𝜕𝑢
𝜕𝑡

𝜕𝑣
𝜕𝑋

− 2𝑈𝑜[1 − H(𝑋 − 𝐿′)] 𝜕𝑢
𝜕𝑋

𝜕𝑣
𝜕𝑋

)

− 1
2
𝑉𝑜(

𝜕𝑣
𝜕𝑋

)2
]

𝑀𝑜

− 1
2
𝑀𝑜𝑉𝑜

𝜕𝑣
𝜕𝑋

𝜕𝑉𝑜
𝜕𝑋

+ (𝜖5).

(24)

Moreover, the expression of the virtual added mass has to be modified
to 𝑀𝑜 = [𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜, and the linear form of the relative
fluid–pipe velocity is expressed as 𝑉𝑜 = 𝑦̇ − 𝑈𝑜[1 − H(𝑠 − 𝐿′)]𝑦′.

2.4.2. The viscous forces 𝐹𝑁 and 𝐹𝐿
These forces are derived on the basis of the semi-empirical formulas

provided by Taylor [29], which are suitable for the degree of confine-
ment of the flow considered in this problem; i.e., not too severe, as
discussed in [19]. The expressions given in [29] are

𝐹𝑁 = 1
2
𝜌𝐷𝑜𝑈

2
𝑜 (𝐶𝑁 sin 𝑖 + 𝐶𝐷𝑝 sin2 𝑖), 𝐹𝐿 = 1

2
𝜌𝐷𝑜𝑈

2
𝑜 𝐶𝑇 cos 𝑖, (25)

where 𝐶𝑁 and 𝐶𝑇 are friction coefficients in the normal and tangential
directions of the pipe centreline, respectively; 𝐶𝐷𝑝 is a form-drag coeffi-
cient and the term 1

2𝜌𝐷𝑜𝑈2
𝑜 𝐶𝐷𝑝 sin2𝑖 is the normal steady hydrodynamic

force per unit length, also known as a vortex-lift term — see [30]; 𝑖 is
the angle of attack, which can be determined by 𝑖 = 𝜃1−𝜃2, as indicated
in Fig. 3b, with 𝜃2 = tan−1{(𝜕𝑦∕𝜕𝑡)∕[𝑈𝑓 + (𝜕𝑥∕𝜕𝑡)]}. By following the
framework presented in [19,26] and taking into account the difference
in the value of 𝑈𝑜(𝑠) outside and inside the annular region, the normal
and longitudinal viscous forces can be expressed as

𝐹𝑁 = 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]

[

𝐶𝑁

(

𝑦′ −
𝑦̇
𝑈𝑜

−
𝑦̇𝑢′

𝑈𝑜
− 𝑢′𝑦′ +

𝑥̇𝑦̇
𝑈2
𝑜

− 1
2

(

𝑦′3 −
𝑦̇3

𝑈3
𝑜
−

𝑦′2𝑦̇
𝑈𝑜

+
𝑦′𝑦̇2

𝑈2
𝑜

) )

− 𝐶𝐷𝑝

(

𝑦′|𝑦′| +
𝑦′|𝑦̇| + |𝑦′|𝑦̇

𝑈𝑜
+

𝑦̇|𝑦̇|
𝑈2
𝑜

) ]

−𝑘𝑦̇ + (𝜖5),

𝐹𝐿 = 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇

[

1 − 1
2

(

𝑦′2 − 2
𝑦′𝑦̇
𝑈𝑜

+
𝑦̇2

𝑈2
𝑜

)]

+ (𝜖4).

(26)

It should be noted that the quadratic terms associated with the form-
drag coefficient were modified in a similar way as in [19,31] to obtain

forces that are always opposing motion. Also a viscous damping term,
𝑘𝑦̇, has been added, based on the analysis in [12,24]. The value of
the viscous damping coefficient, 𝑘, should be dependent on the fre-
quency of oscillations and the degree of confinement of the surrounding
flow [12,32,33]. One can make use of the following expression pro-
vided in [12]: 𝑘 = 𝑘𝑢(1 + 𝛾̄3)∕(1 − 𝛾̄2)2, in which 𝛾̄ = 𝐷𝑜∕𝐷𝑐ℎ and 𝑘𝑢 =
2
√

2𝜌𝐴𝑜(𝛺)∕
√

𝑆, where (𝛺) is the circular frequency of oscillations,
𝑆 = (𝛺)𝐷2

𝑜∕4𝜈 is the Stokes number, also known as the oscillatory
Reynolds number, and 𝜈 is the kinematic viscosity of the fluid. Here,
this expression of viscous damping coefficient is modified to account
for the difference between the confined and unconfined regions of the
flow around the pipe, and thus

𝑘 = 𝑘𝑢

[

1 + 𝛾̄3

(1 − 𝛾̄2)2
+ H(𝑠 − 𝐿′)

(

1 −
1 + 𝛾̄3

(1 − 𝛾̄2)2

)]

. (27)

2.4.3. The hydrostatic forces 𝐹𝑝𝑥 and 𝐹𝑝𝑦
These forces are the resultants of the external steady-state pressure

𝑝𝑜 acting on the pipe. The procedure described in [19,24] for a can-
tilevered cylinder in axial flow is used to derive nonlinear expressions
for these forces, taking into account the inverse direction of the annular
flow in the problem under study. The idea is to assume a momentarily
frozen element, 𝛿𝑠, of the pipe immersed in the fluid with 𝐹𝑝𝑥 and
𝐹𝑝𝑦 acting on the two normally wet surfaces, as well as 𝑝𝑜𝐴𝑜 and
𝑝𝑜𝐴𝑜 + [𝜕(𝑝𝑜𝐴𝑜)∕𝜕𝑠]𝛿𝑠 acting on the normally dry surfaces. The net
resultant of all these forces is known: it is the buoyancy force. By
subtracting the known forces from the buoyancy resultant, one obtains
the forces desired here. The pressure gradient in the outer flow for the
problem in hand can be expressed as follows:

𝐴𝑜

(

𝜕𝑝𝑜
𝜕𝑥

)

= 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑋 − 𝐿′)]𝐶𝑇

𝐷𝑜
𝐷ℎ

+ 𝜌𝑔𝐴𝑜 + 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

× 𝛿𝐷(𝑋 − 𝐿′), (28)

where 𝐷ℎ = 𝐷𝑐ℎ − 𝐷𝑜 is the hydraulic diameter, 𝛿𝐷 is the Dirac delta
function, and ℎ𝑎 = 𝐾1𝑈2

𝑜 ∕(2𝑔) is the head-loss associated with the
stagnant fluid entering the annular region, with 0.8 ≤ 𝐾1 ≤ 0.9 [21]. By
rewriting the derivative in Eq. (28) with respect to 𝑋 and integrating
from 𝑋 = 𝑠 to 𝐿, one can obtain:

𝐴𝑜𝑝𝑜(𝑠) = 𝐴𝑜𝑝𝑜(𝐿) −
(

1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇

𝐷𝑜
𝐷ℎ

)

×
[

(𝐿′ − 𝑠) − ∫

𝐿

𝑠

1
2
𝑦′2d𝑠

]

− 𝜌𝑔𝐴𝑜

[

(𝐿 − 𝑠) − ∫

𝐿

𝑠

1
2
𝑦′2d𝑠

]

− 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

× [1 − H(𝑠 − 𝐿′)]

+ 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

∫

𝐿

𝑠

1
2
𝑦′2𝛿𝐷(𝑠 − 𝐿′)d𝑠 + (𝜖4).

(29)
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Proceeding with the derivation, following the procedure utilized
in [19], and by using Eqs. (28) and (29), the following expressions for
the hydrostatic forces are obtained:

−𝐹𝑝𝑥 = 𝑦′2
(

−1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇

𝐷𝑜
𝐷ℎ

− 𝜌𝑔𝐴𝑜

− 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

𝛿𝐷(𝑠 − 𝐿′)
)

−𝑦′𝑦′′𝐴𝑜𝑝𝑜 + (𝜖4),

𝐹𝑝𝑦 = (𝑦′ − 𝑢′𝑦′ − 𝑦′3)
(

1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇

𝐷𝑜
𝐷ℎ

+ 𝜌𝑔𝐴𝑜 + 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

𝛿𝐷(𝑠 − 𝐿′)
)

+ (𝑦′′ − 𝑢′′𝑦′ − 𝑢′𝑦′′ − 3
2
𝑦′2𝑦′′)𝐴𝑜𝑝𝑜 + (𝜖5).

(30)

2.5. Virtual work due to the fluid-related forces associated with the external
flow

Referring to Fig. 3a, an expression for the virtual work done on the
pipe by the external-fluid-related forces can be written as

∫

𝑡2

𝑡1
𝛿𝑊𝑜d𝑡 = ∫

𝑡2

𝑡1
∫

𝐿

0
{[−𝐹𝑝𝑥 − 𝐹𝐿 cos 𝜃1 + (𝐹𝐴 − 𝐹𝑁 ) sin 𝜃1]𝛿𝑥

+ [𝐹𝑝𝑦 − 𝐹𝐿 sin 𝜃1 − (𝐹𝐴 − 𝐹𝑁 ) cos 𝜃1]𝛿𝑦}d𝑠d𝑡.
(31)

By substituting Eqs. (24), (26) and (30) into Eq. (31), and with the aid
of Eqs. (7) and (22), the virtual work can finally be determined — not
given here for brevity.

2.6. Equation of motion and boundary conditions

The following nonlinear equation of motion for the pipe can be ob-
tained by substituting Eqs. (4), (6), (10), and the final form of Eq. (31)
into Eq. (2), after many straightforward but tedious manipulations and
transformations, and by truncating to third order of magnitude:

{𝑚 +𝑀𝑖 + [𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜}𝑦̈ + 2𝑀𝑖𝑈𝑖𝑦̇
′(1 + 𝑦′2)

− 2𝜒𝜌𝑈𝑜[1 − H(𝑠 − 𝐿′)]𝑦̇′
(

1 − 1
4
𝑦′2

)

+ 𝑀𝑖𝑈
2
𝑖 𝑦

′′(1 + 𝑦′2) + 𝜒𝜌𝑈2
𝑜 [1 − H(𝑠 − 𝐿′)]𝑦′′(1 + 2𝑦′2)

− 3
2
[𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜𝑦̇𝑦

′𝑦̇′

+ 3
2
[𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜𝑈𝑜[1 − H(𝑠 − 𝐿′)]𝑦̇𝑦′𝑦′′

− 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑁

(

𝑦′ + 1
2
𝑦′3

)

+ 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇 (𝐿′ − 𝑠)

(

𝑦′′ + 3
2
𝑦′2𝑦′′

)

− 𝐴𝑝𝑜(𝐿)(𝑦′′ + 𝑦′2𝑦′′)

−
[

(𝑇𝑜 − 𝐴𝑖𝑝𝑖)(1 −
1
2
𝑦′2)

]

𝑠=𝐿
(𝑦′′ + 3

2
𝑦′2𝑦′′)

−
{

1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇

𝐷𝑜
𝐷ℎ

− (𝑚 +𝑀𝑖)𝑔 + 𝜌𝑔𝐴𝑜

+ 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

𝛿𝐷(𝑠 − 𝐿′)
} (

𝑦′ + 1
2
𝑦′3

)

+ 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑇

𝐷𝑜
𝐷ℎ

(𝐿′ − 𝑠)

×
(

𝑦′′ + 3
2
𝑦′2𝑦′′

)

+ [𝜌𝑔𝐴𝑜 − (𝑚 +𝑀𝑖)𝑔](𝐿 − 𝑠)
(

𝑦′′ + 3
2
𝑦′2𝑦′′

)

+ 𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

[1 − H(𝑠 − 𝐿′)]

×
(

𝑦′′ + 1
2
𝑦′2𝑦′′

)

+ 𝐸𝐼(𝑦′′′′ + 4𝑦′𝑦′′𝑦′′′ + 𝑦′′3 + 𝑦′′′′𝑦′2)

+ 1
2
𝜌𝐷𝑜𝐶𝑁 𝑦̇∫

𝑠

0
𝑦′𝑦̇′d𝑠

+ 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝑁

(

𝑦̇
𝑈𝑜

+ 1
2
𝑦′𝑦̇2

𝑈2
𝑜

− 1
2
𝑦′2𝑦̇
𝑈𝑜

−
𝑦̇3

2𝑈3
𝑜

)

+ 1
2
𝜌𝐷𝑜𝑈

2
𝑜 [1 − H(𝑠 − 𝐿′)]𝐶𝐷𝑝

(

𝑦′|𝑦′| +
𝑦′|𝑦̇| + |𝑦′|𝑦̇

𝑈𝑜
+

𝑦̇|𝑦̇|
𝑈2
𝑜

)

+ 𝑘𝑦̇ − (𝑚 +𝑀𝑖)𝑦′′ ∫

𝐿

𝑠 ∫

𝑠

0
(𝑦̇′2 + 𝑦′𝑦̈′)d𝑠d𝑠

+ 2[𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜𝑦̇
′
∫

𝑠

0
𝑦′𝑦̇′d𝑠

− 2𝜒𝜌𝐴𝑜𝑈𝑜[1 − H(𝑠 − 𝐿′)]𝑦′′𝑦̇′ ∫

𝑠

0
𝑦′𝑦̇′d𝑠

− [𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜𝑦
′′
∫

𝐿

𝑠
{𝑦̈𝑦′

− 2𝑈𝑜[1 − H(𝑠 − 𝐿′)]𝑦′𝑦̇′ + 𝑈2
𝑜 𝑦

′𝑦′′[1 − H(𝑠 − 𝐿′)]}d𝑠

+ {𝑚 +𝑀𝑖 + [𝜒 + (1 − 𝜒)H(𝑠 − 𝐿′)]𝜌𝐴𝑜}𝑦′ ∫

𝑠

0
(𝑦′𝑦̈′ + 𝑦̇′2)d𝑠

− 3𝜒𝜌𝐴𝑜𝑈𝑜[1 − H(𝑠 − 𝐿′)]𝑦′ ∫

𝑠

0
(𝑦′𝑦̇′′ + 𝑦′′𝑦̇′)d𝑠

+ 𝑦′′ ∫

𝐿

𝑠
{𝐴𝑝𝑜(𝐿)𝑦′𝑦′′ −

1
4
𝜌𝐷𝑜𝐶𝑇 𝑦̇

2}d𝑠

− 1
2
𝜌𝐷𝑜𝑈

2
𝑜 𝑦

′′(𝐶𝑇 − 𝐶𝑁 )∫

𝐿

𝑠

(

𝑦′2 −
𝑦′𝑦̇
𝑈𝑜

)

[1 − H(𝑠 − 𝐿′)]d𝑠

− 𝑦′′ ∫

𝐿

𝑠
(2𝑀𝑖𝑈𝑖𝑦

′𝑦̇′ +𝑀𝑖𝑈
2
𝑖 𝑦

′𝑦′′)d𝑠

− 1
4
𝑦′′𝜌𝐷𝑜𝑈

2
𝑜 𝐶𝑇

𝐷
𝐷ℎ ∫

𝐿

𝑠
𝑦′2[(𝐿′ − 𝑠)𝛿𝐷(𝑠 − 𝐿′) − H(𝑠 − 𝐿′)]d𝑠

− 𝑦′′𝐴𝑜

(

1
2
𝜌𝑈2

𝑜 + 𝜌𝑔ℎ𝑎

)

∫

𝐿

𝑠
𝑦′𝑦′′ d𝑠 = 0.

(32)

The boundary conditions are the classical ones for a cantilevered
beam, namely

𝑦(0) = 0, 𝑦′(0) = 0, 𝑦′′(𝐿) = 0, and 𝑦′′′(𝐿) = 0. (33)

Defining next the dimensionless quantities

𝜉 = 𝑠
𝐿
, 𝜂 =

𝑦
𝐿
, 𝜏 =

(

𝐸𝐼
𝑚 +𝑀𝑖 + 𝜌𝐴𝑜

)1∕2 𝑡
𝐿2

, 𝑢𝑖 =
(

𝑀𝑖
𝐸𝐼

)1∕2
𝑈𝑖𝐿,

𝑢𝑜 =
(

𝜌𝐴𝑜
𝐸𝐼

)1∕2
𝑈𝑜𝐿, 𝛽𝑖 =

𝑀𝑖
𝑚 +𝑀𝑖 + 𝜌𝐴𝑜

, 𝛽𝑜 =
𝜌𝐴𝑜

𝑚 +𝑀𝑖 + 𝜌𝐴𝑜
,

𝛾 =
(𝑚 +𝑀𝑖 − 𝜌𝐴𝑜)𝑔𝐿3

𝐸𝐼
, 𝛤 =

𝑇𝑜(𝐿)𝐿2

𝐸𝐼
, 𝑐𝑁 = 4

𝜋
𝐶𝑁 , 𝑐𝑇 = 4

𝜋
𝐶𝑇 ,

𝑐𝑑 = 4
𝜋
𝐶𝐷𝑝, 𝜀 = 𝐿

𝐷𝑜
, ℎ =

𝐷𝑜
𝐷ℎ

, 𝛼 =
𝐷𝑖
𝐷𝑜

, 𝛼𝑐ℎ =
𝐷𝑐ℎ
𝐷𝑜

, 𝑟𝑎𝑛𝑛 =
𝐿′

𝐿
,

𝛱𝑖𝐿 =
𝐴𝑖𝑝𝑖(𝐿)𝐿2

𝐸𝐼
, 𝛱𝑜𝐿 =

𝐴𝑜𝑝𝑜(𝐿)𝐿2

𝐸𝐼
, 𝜅 = 𝑘𝐿2

[𝐸𝐼(𝑚 +𝑀𝑖 + 𝜌𝐴𝑜)]1∕2
,

(34)

the equation of motion can be written in the following dimensionless
form:

{1 + 𝛽𝑜(𝜒 − 1)[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]}𝜂̈ + 2𝑢𝑖
√

𝛽𝑖𝜂̇
′(1 + 𝜂′2)

− 2𝜒𝑢𝑜
√

𝛽𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂̇′(1 −
1
4
𝜂′2)

+ 𝑢2𝑖 𝜂
′′(1 + 𝜂′2) + 𝜒𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂′′(1 + 2𝜂′2)

− 3
2
[𝜒 + (1 − 𝜒)H(𝜉 − 𝑟𝑎𝑛𝑛)]𝛽𝑜𝜂̇𝜂′𝜂̇′

+ 3
2
𝜒𝑢𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]

√

𝛽𝑜𝜂̇𝜂
′𝜂′′ − 1

2
𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜀𝑐𝑁 [𝜂′ + 1

2
𝜂′3]

6
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+ 1
2
𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜀𝑐𝑇 (𝑟𝑎𝑛𝑛 − 𝜉)(𝜂′′ + 3

2
𝜂′2𝜂′′) −𝛱𝑜𝐿(𝜂′′ + 𝜂′2𝜂′′)

− (𝛤 −𝛱𝑖𝐿)(𝜂′′ +
3
2
𝜂′2𝜂′′)

+ 1
2
(𝛤 −𝛱𝑖𝐿)𝜂′′

[

𝜂′2
]

𝜉=1−
{

1
2
𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜀𝑐𝑇 ℎ − 𝛾

+ 1
2
𝑢2𝑜(1 +𝐾1)𝛿𝐷(𝜉 − 𝑟𝑎𝑛𝑛)

}

(𝜂′ + 1
2
𝜂′3)

+ 1
2
𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜀𝑐𝑇 ℎ(𝑟𝑎𝑛𝑛 − 𝜉)(𝜂′′ + 3

2
𝜂′2𝜂′′)

− 𝛾(1 − 𝜉)(𝜂′′ + 3
2
𝜂′2𝜂′′)

+ 1
2
𝑢2𝑜(1 +𝐾1)[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)](𝜂′′ +

1
2
𝜂′2𝜂′′)

+ 𝜂′′′′ + 4𝜂′𝜂′′𝜂′′′ + 𝜂′′3 + 𝜂′′′′𝜂′2

+ 1
2
𝜀𝑐𝑁𝛽𝑜𝜂̇ ∫

𝜉

0
𝜂′𝜂̇′d𝑠 + 1

2
𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜀𝑐𝑁

(

√

𝛽𝑜
𝑢𝑜

𝜂̇ + 1
2
𝛽𝑜
𝑢2𝑜

𝜂̇2𝜂′

− 1
2

√

𝛽𝑜
𝑢𝑜

𝜂̇𝜂′2 − 1
2
𝛽3∕2𝑜

𝑢3𝑜
𝜂̇3

)

+ 1
2
𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜀𝑐𝑑

(

𝜂′|𝜂′| +

√

𝛽𝑜
𝑢𝑜

(𝜂′|𝜂̇| + |𝜂′|𝜂̇) +
𝛽𝑜
𝑢𝑜

𝜂̇|𝜂̇|
)

+ 𝜅𝜂̇

− 𝜂′′(1 − 𝛽𝑜)∫

1

𝜉 ∫

𝜉

0
(𝜂̇′2 + 𝜂′𝜂̈′)d𝜉 d𝜉

+ 2[𝜒 + (1 − 𝜒)H(𝜉 − 𝑟𝑎𝑛𝑛)]𝛽𝑜𝜂̇′ ∫

𝜉

0
𝜂′𝜂̇′ d𝜉

− 2𝜒
√

𝛽𝑜𝑢𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂′′ ∫

𝜉

0
𝜂′𝜂̇′ d𝜉

− [𝜒 + (1 − 𝜒)H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂′′ ∫

1

𝜉

{

𝛽𝑜𝜂̈𝜂
′

− 2𝑢𝑜
√

𝛽𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂̇′𝜂′ + 𝑢2𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂′′𝜂′
}

d𝜉

+ {1 + (𝜒 − 1)𝛽𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]}𝜂′ ∫

𝜉

0
(𝜂̇′2 + 𝜂′𝜂̈′)d𝜉

− 3𝜒
√

𝛽𝑜𝑢𝑜[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]𝜂′ ∫

𝜉

0
(𝜂′𝜂̇′′ + 𝜂′′𝜂̇′)d𝜉

+ 𝜂′′ ∫

1

𝜉
{𝛱𝑜𝐿𝜂

′𝜂′′ − 1
4
𝜀𝑐𝑇 𝛽𝑜𝜂̇

2}d𝜉

− 1
2
𝑢2𝑜(𝜀𝑐𝑇 − 𝜀𝑐𝑁 )𝜂′′ ∫

1

𝜉
(𝜂′2 −

√

𝛽𝑜
𝑢𝑜

𝜂′𝜂̇)[1 − H(𝜉 − 𝑟𝑎𝑛𝑛)]d𝜉

− 𝜂′′ ∫

1

𝜉
(2𝑢𝑖

√

𝛽𝑖𝜂
′𝜂̇′ + 𝑢2𝑖 𝜂

′𝜂′′)d𝜉

− 1
4
𝑢2𝑜𝜀𝑐𝑇 ℎ𝜂

′′
∫

1

𝜉
𝜂′2[(𝑟𝑎𝑛𝑛 − 𝜉)𝛿𝐷(𝜉 − 𝑟𝑎𝑛𝑛) − H(𝜉 − 𝑟𝑎𝑛𝑛)]d𝜉

− 1
2
𝑢2𝑜(1 +𝐾1)𝜂′′ ∫

1

𝜉
𝜂′𝜂′′d𝜉 = 0,

(35)

where ( )′ = 𝜕( )∕𝜕𝜉 and ̇( ) = 𝜕( )∕𝜕𝜏. The viscous damping coefficient
may be expressed in dimensionless form as follows: 𝜅 = 𝜅𝑢

{

1+[1−H(𝜉−
𝑟𝑎𝑛𝑛)][(1 + 𝛼−3𝑐ℎ )∕(1 − 𝛼−2𝑐ℎ )

2 − 1]
}

.

2.7. Methods of analysis

The Galerkin technique is employed to discretize the partial dif-
ferential equation of motion (35) into a set of ordinary differential
equations (ODEs). Thus, 𝜂(𝜉, 𝜏) =

∑𝑁
𝑗=1 𝜙𝑗 (𝜉)𝑞𝑗 (𝜏). In the Galerkin

scheme, 𝑁 represents the number of comparison functions used in
the analysis; 𝜙𝑗 (𝜉), with 𝑗 = 1 ∶ 𝑁 , are the comparison functions,
which are chosen to be the cantilever-beam eigenfunctions, as they
satisfy the boundary conditions; 𝑞𝑗 (𝜏) are the corresponding generalized

coordinates. The resultant equations are then multiplied by 𝜙𝑖(𝜉), with
𝑖 = 1 ∶ 𝑁 , and integrated over the domain [0 ∶ 1], which leads to the
following ODEs:

𝑀𝑖𝑗𝑞𝑗 + 𝐶𝑖𝑗 𝑞̇𝑗 +𝐾𝑖𝑗𝑞𝑗 + 𝑟𝑖𝑗𝑘𝑞𝑗 |𝑞𝑘| + 𝑠̄𝑖𝑗𝑘|𝑞𝑗 |𝑞̇𝑘 + 𝑠̃𝑖𝑗𝑘𝑞𝑗 |𝑞̇𝑘| + 𝑡𝑖𝑗𝑘𝑞̇𝑗 |𝑞̇𝑘|

+𝛼𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞𝑙 + 𝛽𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞̇𝑙 + 𝛾𝑖𝑗𝑘𝑙𝑞𝑗 𝑞̇𝑘𝑞̇𝑙 + 𝜂𝑖𝑗𝑘𝑙 𝑞̇𝑗 𝑞̇𝑘𝑞̇𝑙 + 𝜇𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞𝑙 = 0,

(36)

in which the repetition of an index implies summation. The coefficients
of the linear terms: 𝑀𝑖𝑗 , 𝐶𝑖𝑗 and 𝐾𝑖𝑗 correspond to the mass, damping
and stiffness matrices, respectively; they are given by

𝑀𝑖𝑗 = 𝑎𝑖𝑗 (0,1) − 𝛽𝑜(1 − 𝜒)𝑎𝑖𝑗 (0,𝑟𝑎𝑛𝑛),

𝐶𝑖𝑗 = 2𝑢𝑖
√

𝛽𝑖𝑏𝑖𝑗 (0,1) − 2𝜒𝑢𝑜
√

𝛽𝑜𝑏𝑖𝑗 (0,𝑟𝑎𝑛𝑛) +
1
2
𝑢𝑜𝜀𝑐𝑁

√

𝛽𝑜𝑎𝑖𝑗 (0,𝑟𝑎𝑛𝑛)

+ 𝜅𝑢𝑎𝑖𝑗 (0,1) + 𝜅𝑢

[ 1 + 𝛼−3𝑐ℎ
(1 − 𝛼−2𝑐ℎ )

2
− 1

]

𝑎𝑖𝑗 (0,𝑟𝑎𝑛𝑛),

𝐾𝑖𝑗 = 𝜆4𝑗𝑎𝑖𝑗 (0,1) + 𝛾𝑏𝑖𝑗 (0,1) −
1
2
𝑢2𝑜𝜀𝑐𝑇 ℎ𝑏𝑖𝑗 (0,𝑟𝑎𝑛𝑛) −

1
2
𝑢2𝑜𝜀𝑐𝑁𝑏𝑖𝑗 (0,𝑟𝑎𝑛𝑛)

− 1
2
𝑢2𝑜(1 +𝐾1)(𝜙𝑖| 𝜉=𝑟𝑎𝑛𝑛

𝜙𝑗
′
|

𝜉=𝑟𝑎𝑛𝑛
)

− (𝛤 −𝛱𝑖𝐿 +𝛱𝑜𝐿)𝑐𝑖𝑗 (0,1) − 𝛾(𝑐𝑖𝑗 (0,1) − 𝑑𝑖𝑗 (0,1))

+ 1
2
𝑢2𝑜𝜀𝑐𝑇 (1 + ℎ)(𝑟𝑎𝑛𝑛𝑐𝑖𝑗 (0,1) − 𝑑𝑖𝑗 (0,1)) +

1
2
𝑢2𝑜(1 +𝐾2

1 )𝑐𝑖𝑗 (0,𝑟𝑎𝑛𝑛)
+ 𝑢2𝑖 𝑐𝑖𝑗 (0,1) + 𝜒𝑢2𝑜𝑐𝑖𝑗 (0,𝑟𝑎𝑛𝑛),

(37)

where 𝜆𝑗 is the 𝑗th eigenvalue of the dimensionless cantilevered beam
characteristic equation, and the constants 𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗 and 𝑑𝑖𝑗 are defined
as follows [34]:

𝑎𝑖𝑗 (𝑎,𝑏) = ∫

𝑏

𝑎
𝜙𝑖𝜙𝑗 d𝜉, 𝑏𝑖𝑗 (𝑎,𝑏) = ∫

𝑏

𝑎
𝜙𝑖𝜙

′
𝑗 d𝜉,

𝑐𝑖𝑗 (𝑎,𝑏) = ∫

𝑏

𝑎
𝜙𝑖𝜙

′′
𝑗 d𝜉, 𝑑𝑖𝑗 (𝑎,𝑏) = ∫

𝑏

𝑎
𝜉𝜙𝑖𝜙

′′
𝑗 d𝜉. (38)

For convenience, the rather long expressions of the nonlinear coef-
ficients, 𝑟𝑖𝑗𝑘, 𝑠̄𝑖𝑗𝑘, 𝑠̃𝑖𝑗𝑘, 𝑡𝑖𝑗𝑘, 𝛼𝑖𝑗𝑘𝑙, 𝛽𝑖𝑗𝑘𝑙, 𝛾𝑖𝑗𝑘𝑙, 𝜂𝑖𝑗𝑘𝑙 and 𝜇𝑖𝑗𝑘𝑙 are given
in Appendix.

3. Results of the theoretical model

In this section, the discretized ODEs obtained in Section 2 are
solved for two different flexible pipes, the dimensions and material
characteristics of which are listed in Table 1. Also, the internal diameter
of the rigid tube forming the annulus surrounding the pipes is taken to
be 𝐷𝑐ℎ = 31.5 mm; its length can have one of the following three values:
109 mm, 206.5 mm, 304.5 mm. The corresponding dimensionless
parameters of the two systems under study are listed in Table 2. In
addition, the confinement length parameter, 𝑟𝑎𝑛𝑛 = 𝐿′∕𝐿, correspond-
ing to the different lengths of the annular region, is 𝑟𝑎𝑛𝑛 = 0.253,
0.478, 0.705 for Pipe 1, and 𝑟𝑎𝑛𝑛 = 0.246, 0.467, 0.688 for Pipe 2. The
value of the form-drag coefficient due to the external flow inside the
annular region is taken as 𝐶𝐷𝑝 = 1.1, as in [29]. Also, the normal and
tangential friction coefficients are assumed to be 𝐶𝑁 = 𝐶𝑇 = 0.0125,
as in [5,12]. In addition, the viscous damping coefficient, 𝜅𝑢, is given
a constant value for each mode 𝑗. This value is determined based on
the average frequency of oscillations for each mode2 over a specific
range of interest of the internal flow velocity, 𝑢𝑖. Thus, the values of 𝜅𝑢
for six modes, i.e. 𝑁 = 6, are 𝜅𝑢𝑗 = {0.36, 0.81, 1.43, 2.02, 2.60, 3.18}
for Pipe 1 and 𝜅𝑢𝑗 = {0.43, 0.99, 1.83, 2.61, 3.39, 4.16} for Pipe 2.3
The ODEs are solved by employing the pseudo-arclength continuation

2 The frequency of oscillation for each mode is obtained via a linear
analysis of the problem at hand, solving the eigenvalue problem, and taking
an average value, over a specific range of flow velocities, of the real part of
the dimensionless eigenfrequency for each mode, (𝜔𝑖), where 𝑖 = 1 ∶ 𝑁 .

3 These values for 𝜅𝑢 were calculated for an annular region of 109 mm
length; they were recalculated for the other lengths of the annulus.
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Fig. 4. Bifurcation diagrams for Pipe 1 with different lengths of the annular region showing the first generalized coordinate, 𝑞1, as a function of the dimensionless internal flow
velocity, 𝑢𝑖.

Table 1
Properties of the flexible pipes.

Pipe Material 𝐷𝑖 (mm) 𝐷𝑜 (mm) 𝐿 (mm) 𝐸𝐼 (N m2) 𝑚 (kg m−1)

1 Silicone-rubber 6.35 16 431 7.37 × 10−3 0.194
2 Thermoplastic-rubber 6.35 9.53 443 9.33 × 10−3 4.07 × 10−2

Table 2
Dimensionless parameters of the two systems under study.

System 𝛼 𝛼𝑐ℎ 𝛽𝑖 𝛽𝑜 𝛾 𝜀 ℎ

Pipe 1 0.397 1.97 7.41 × 10−2 0.470 2.69 26.9 1.03
Pipe 2 0.666 3.31 0.22 0.496 0.104 46.5 0.434

method using AUTO [35], which is adapted to conduct bifurcation
analysis for differential equations, and also via the MATLAB ODE solver
(Mathworks, Inc.) for direct time-integration purposes.

3.1. Results for Pipe 1

Fig. 4 shows bifurcation diagrams obtained via AUTO using a six-
mode Galerkin approximation4; the first generalized coordinate, 𝑞1,
which is considered to be representative of the behaviour of the system,
is plotted versus the dimensionless internal flow velocity, 𝑢𝑖. The figure
shows the dynamical behaviour of Pipe 1 for different lengths of the
annular region. For 𝑟𝑎𝑛𝑛 = 0.253, the pipe remains stable around the
original equilibrium state for all 𝑢𝑖 < 6.69. At 𝑢𝑖 ≈ 6.69, a Hopf
bifurcation is predicted that leads to stable periodic oscillations around
the origin, corresponding to flutter in the second mode of the pipe.
The maximum value of 𝑞1 is plotted in Fig. 4, and it increases with
increasing flow velocity 𝑢𝑖. At 𝑢𝑖 > 7.19, the model fails to converge to
any stable solution, perhaps because the large amplitude of oscillation
involved requires a finer model than one correct only to third-order
accuracy. However, at a value of 𝑢𝑖 less than that, 𝑢𝑖 ≈ 6.77, the pipe is
predicted to start hitting the annulus-forming tube, as shown in Fig. 5a,
and this eventuality is not accounted for in the model. Increasing the
length of the annular region destabilizes the system; i.e., it causes
the flutter to occur at lower flow velocities, as shown in Fig. 4, and
decreases the amplitude of oscillation at higher flow velocities, beyond
the onset of flutter. It is clear from Fig. 5 that the flutter predicted for
this system is in the second mode of the pipe.

The nonlinear dynamics of the pipe with different lengths of the
annular region are examined right before the pipe starts hitting the

4 The number of modes was increased till convergence was achieved;
the convergence criterion for the onset of instability and the amplitude of
oscillations was set at 5%.

outer rigid tube. Samples of time histories obtained using the MATLAB
ODE solver are shown in Figs. 6–8 for 𝑟𝑎𝑛𝑛 = 0.253, 𝑟𝑎𝑛𝑛 = 0.478 and
𝑟𝑎𝑛𝑛 = 0.705, respectively; these time histories are calculated at a point
very close to the free end of the pipe; i.e. at 𝜉 = 0.97. In addition, phase-
plane, and power-spectral-density (PSD) plots calculated by direct fast
Fourier transform (FFT) are shown in the same figures. All of these
plots indicate regular periodic motions with one dominant frequency
of oscillation; the other strong peaks that appear in the PSD plots, in
Figs. 6c and 7c, correspond to the third and fifth harmonics of the main
frequency.

The frequency of oscillation, 𝑓 , is plotted against the dimensional
internal flow velocity 𝑈𝑖 in Fig. 9; it is seen that increasing the length
of the annular region decreases the frequency of oscillation, as a result
of the increase in the added mass. On the other hand, increasing the
flow velocity increases the frequency of oscillation slightly.

3.2. Results for Pipe 2

The dynamical behaviour for Pipe 2 with increasing flow velocity is
similar to that obtained for Pipe 1. In general, the pipe loses stability
via flutter in the second mode with increasing internal flow velocity 𝑢𝑖.
Bifurcation diagrams for the pipe with different values of 𝑟𝑎𝑛𝑛 are shown
in Fig. 10. As concluded for Pipe 1, increasing the level of confinement
by increasing the length of the annular region destabilizes the system
and significantly decreases the amplitude of oscillation at high flow
velocities. Furthermore, from Fig. 10, one can see that the amplitude of
oscillation increases with increasing flow velocity, and the pipe starts to
hit the external tube at high enough flow velocities, as shown in Fig. 11.
The nonlinear dynamic characteristics of the system at these flow veloc-
ities are illustrated in Figs. 12–14 for a point located at 𝜉 = 0.98; again,
simple periodic motions are predicted with one dominant frequency of
oscillation. This frequency is plotted versus 𝑈𝑖 in Fig. 15. Interestingly,
for this pipe, the level of confinement and the flow velocity do not
significantly affect the frequency of oscillation; increasing the former,
slightly decreases the frequency, while increasing the latter slightly
increases it, for flow velocities higher than the onset of instability.

4. Comparison between the results of the present model and other
studies from the literature

4.1. Critical flow velocities, frequencies and amplitudes of flutter

The two sets of parameters used to solve the equation of motion
were purposely chosen to allow comparison between the results ob-
tained by this nonlinear model and experimental observations, as well
as the theoretical predictions by Moditis et al. [12] for the bench-top-
size system. It was observed experimentally and determined by a linear
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Fig. 5. Shapes of the oscillating Pipe 1 just before impacting the annulus-forming tube for: (a) 𝑟𝑎𝑛𝑛 = 0.253 at 𝑢𝑖 = 6.77, (b) 𝑟𝑎𝑛𝑛 = 0.478 at 𝑢𝑖 = 6.57, and (c) 𝑟𝑎𝑛𝑛 = 0.705 at 𝑢𝑖 = 6.51.

Fig. 6. (a) Time history plot, (b) phase-plane plot, and (c) power spectral density plot of Pipe 1 at 𝑢𝑖 = 6.77 for 𝑟𝑎𝑛𝑛 = 0.253.

Fig. 7. (a) Time history plot, (b) phase-plane plot, and (c) power spectral density plot of Pipe 1 at 𝑢𝑖 = 6.57 for 𝑟𝑎𝑛𝑛 = 0.478.

9
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Fig. 8. (a) Time history plot, (b) phase-plane plot, and (c) power spectral density plot of Pipe 1 at 𝑢𝑖 = 6.51 for 𝑟𝑎𝑛𝑛 = 0.705.

Fig. 9. Frequency of oscillations, 𝑓 , in Hz, for Pipe 1 as a function of the dimensional internal flow velocity, 𝑈𝑖 in m/s.

Fig. 10. Bifurcation diagrams for Pipe 2 with different lengths of the annular region showing the first generalized coordinate, 𝑞1, as a function of the dimensionless internal flow
velocity, 𝑢𝑖.

theoretical model [12] that both pipes lose stability at sufficiently
high flow velocity via flutter in the second mode. The amplitude
of oscillation recorded experimentally increases with increasing flow
velocity, and eventually the pipes start hitting the rigid tube. These
observations are in excellent qualitative agreement with the results of
the present model.

The critical flow velocities for instability predicted by this model
are summarized in Table 3, and they are compared to those reported
in [12]. For Pipe 1, linear and nonlinear model predictions are quite

similar.5 Both models overestimate the values of 𝑢𝑖𝑓 with respect to the
experimental values. In contrast, for Pipe 2, both linear and nonlinear
theories predict the onset of instability with 3% maximum difference
with respect to the experimental data.

5 It should be noted that the present model is identical to that in [12] in the
linear limit, except that in the present study the viscous damping coefficient
is given a constant value for each mode. This most likely is the reason for the
small discrepancies.
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Fig. 11. Shapes of the oscillating Pipe 2 just before impacting the annulus-forming tube for: (a) 𝑟𝑎𝑛𝑛 = 0.246 at 𝑢𝑖 = 6.80, (b) 𝑟𝑎𝑛𝑛 = 0.467 at 𝑢𝑖 = 6.71, and (c) 𝑟𝑎𝑛𝑛 = 0.688 at
𝑢𝑖 = 6.74.

Fig. 12. (a) Time history plot, (b) phase-plane plot, and (c) power spectral density plot of Pipe 2 at 𝑢𝑖 = 6.80 for 𝑟𝑎𝑛𝑛 = 0.246.

Fig. 13. (a) Time history plot, (b) phase-plane plot, and (c) power spectral density plot of Pipe 2 at 𝑢𝑖 = 6.71 for 𝑟𝑎𝑛𝑛 = 0.467.
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Fig. 14. (a) Time history plot, (b) phase-plane plot, and (c) power spectral density plot of Pipe 2 at 𝑢𝑖 = 6.74 for 𝑟𝑎𝑛𝑛 = 0.688.

Fig. 15. Frequency of oscillations, 𝑓 , in Hz, for Pipe 2 as a function of the dimensional internal flow velocity, 𝑈𝑖 in m/s.

Fig. 16. Rms amplitude of oscillation, 𝑦𝑟𝑚𝑠, for Pipe 1, 11 mm above the free end, as a function of the dimensional internal flow velocity, 𝑈𝑖.

The nonlinear theory can also predict additional quantitative facets
of the dynamical behaviour of the system as compared to the linear
one, such as limit-cycle amplitudes and frequencies. Figs. 16 and 17
show a comparison between the root-mean-square of the amplitudes of
oscillation with increasing flow velocity for Pipes 1 and 2, respectively,
obtained by the present model and those recorded experimentally by
Moditis [36], for the experiments reported in [12]. All the results
presented hereafter are calculated for a point very close to the free
end of the pipe (11 mm above the free end), at the same location as
the experimental data. It can be seen in Fig. 16 that the model can

predict the amplitude of oscillation for Pipe 1 within a small range
of flow velocities beyond the onset of instability — see Fig. 18 as
well — considering the fact that the model overestimates that onset.
However, the model also overestimates the amplitude of oscillations
right before the pipe starts hitting the outer rigid tube, which is the
maximum limit set in the figure. This may be partly due to the third-
order approximation of the model. The uncertainty in the values given
to the friction and form-drag coefficients, as well as the approxima-
tion made for the damping model, could also have contributed to
the discrepancy. Almost the same comments apply to Fig. 17 (Pipe
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Fig. 17. Rms amplitude of oscillation, 𝑦𝑟𝑚𝑠, for Pipe 2, 11 mm above the free end, as a function of the dimensional internal flow velocity, 𝑈𝑖.

Fig. 18. Phase-plane plots for Pipe 1 with 𝑟𝑎𝑛𝑛 = 0.253, 11 mm above the free end, obtained by (a) the present nonlinear model at 𝑈𝑖 = 7.49 m∕s, and (b) experiments in [36] at
𝑈𝑖 = 6.00 m∕s.

Fig. 19. Phase-plane plots for Pipe 2 with 𝑟𝑎𝑛𝑛 = 0.246, 11 mm above the free end, obtained by (a) the present nonlinear model at 𝑈𝑖 = 7.97 m∕s, and (b) experiments in [36] at
𝑈𝑖 = 7.89 m∕s.

2); however, interestingly, the discrepancy between the amplitude of
oscillation predicted theoretically and that recorded experimentally for
the larger lengths of the annulus, in the case of Pipe 2, is significantly
smaller.

Phase-plane plots obtained at flow velocities very close to the
critical ones are compared to those acquired experimentally and re-
ported in [36] for the two pipes in Figs. 18 and 19; the figures show
almost identical displacement amplitudes and velocities. However, it
is worth mentioning that the experimental time history [36] for Pipe

2 with 𝑟𝑎𝑛𝑛 = 0.246 displays an intermittent motion, which results
in a more densely populated phase-plane plot in Fig. 19b than in
Fig. 18b, making it more difficult to determine the limit cycle. The
experiments in [36] were conducted using two cameras at 90◦ to each
other. Almost identical phase-plane plots were reported for the front-
and side-camera experimental time histories, which suggests a planar
motion with slowly rotating plane, as discussed in [12,36]. This justifies

13



A.R. Abdelbaki, M.P. Païdoussis and A.K. Misra International Journal of Non-Linear Mechanics 118 (2020) 103290

Table 3
Comparison between the critical flow velocities for instability, 𝑢𝑖𝑓 , for Pipes 1 and 2
with various lengths of the annular region obtained by different studies.

Pipe 𝑟𝑎𝑛𝑛 Linear theory [12] Nonlinear theory Experiments [12]

0.253 6.69 6.69 5.12
1 0.478 6.47 6.44 5.29

0.705 6.44 6.42 5.05

0.246 6.44 6.49 6.29
2 0.467 6.27 6.27 6.16

0.688 6.15 6.11 6.03

Table 4
Comparison between the frequency of oscillations in Hz at the onset of flutter for Pipe
1 with various lengths of the annular region obtained by different studies.

Pipe 𝑟𝑎𝑛𝑛 Linear theory [12] Nonlinear theory Experiments [12]

0.253 1.60 1.58 1.57
1 0.478 1.51 1.46 1.45

0.705 1.22 1.17 1.13

0.246 2.78 2.63 2.63
2 0.467 2.70 2.49 2.47

0.688 2.58 2.02 2.03

the basic assumption made in the present model that motions are two-
dimensional; nevertheless, it is recognized that to fully capture the
motion a three-dimensional model is required.

The frequencies of oscillation obtained right after the initiation of
limit-cycle oscillation are presented in Table 4 for the two pipes. The
frequencies obtained by the present model are in excellent agreement
with those observed experimentally, better than predictions by the
linear theory, for both pipes and for the different lengths of the annular
region.

4.2. Discussion on the effect of annulus length

We first consider the results obtained by both linear and nonlinear
theory for Pipe 1 in Table 3, together with the modal shapes in Fig. 5. It
is noticed that the three values of 𝑟𝑎𝑛𝑛 are roughly 0.25, 0.50 and 0.70,
thus they are almost linearly related. The values of 𝑢𝑖𝑓 in Table 3, on the
other hand, decrease nonlinearly, with the increase from 𝑟𝑎𝑛𝑛 ≃ 0.25 to
𝑟𝑎𝑛𝑛 ≃ 0.50 being much larger percentage-wise than that for 𝑟𝑎𝑛𝑛 ≃ 0.50
to 𝑟𝑎𝑛𝑛 ≃ 0.70.6 Referring now to Fig. 5 it is noticed that the modal
antinode for 𝑟𝑎𝑛𝑛 ≃ 0.25 is outside the annulus, while for 𝑟𝑎𝑛𝑛 ≃ 0.50 it
is just inside the annulus, and more definitely inside for 𝑟𝑎𝑛𝑛 ≃ 0.70.7
Since the antinode is associated with the maximum disturbance to the
flow if it is in the confined space of the annulus, rather than outside,
this may well result in the nonlinear effect for 𝑢𝑖𝑓 discussed above.

The same applies to Pipe 2 (refer to Table 3 and Fig. 11), although
the nonlinearity in this case is weaker. In this connection, however, it
must be remembered that 𝐷𝑜 for this pipe is smaller that for Pipe 1,
and hence the annulus is relatively wider.

In any case, the effect of increasing the length of the annulus
involves the balance of two opposing trends: (i) there is annular flow
over a larger portion of the pipe, which is destabilizing, and (ii) there
is increased added mass, which is stabilizing.

5. Influence of varying the tightness of the outer rigid tube

In this section the influence of varying the tightness of the annular
region surrounding the pipe is investigated theoretically; there are no
experimental data to compare with. The inner diameter of the outer

6 Calculations for 𝑟𝑎𝑛𝑛 = 0 to 𝑟𝑎𝑛𝑛 = 1 confirm this nonlinear effect.
7 It should be recalled that the modal shapes involve a travelling wave

component, which makes these statements less than absolutely definite; the
antinode travels along the pipe, as seen in Figs. 5 and 11 (cf. Figs. 3.48 and
3.51 in [37] and Fig. 2.22 in [28]).

Table 5
The onset of instability, 𝑢𝑖𝑓 , for Pipes 1 and 2 for different 𝛼𝑐ℎ = 𝐷𝑐ℎ∕𝐷𝑜 and different
lengths of the annular region, 𝑟𝑎𝑛𝑛 = 𝐿′∕𝐿.

Pipe 𝛼𝑐ℎ 𝑟𝑎𝑛𝑛 ≈ 0.25 𝑟𝑎𝑛𝑛 ≈ 0.47 𝑟𝑎𝑛𝑛 ≈ 0.70

1.50 6.37 5.68 5.06a

1 1.97 6.65 6.47 6.46
2.50 6.71 6.61 6.64

1.50 5.30 3.78 3.27a

2 3.31 6.53 6.35 6.24
5.00 6.58 6.49 6.45

aDenotes that the predicted flutter is in the first mode of the pipe.

rigid tube, 𝐷𝑐ℎ, is varied resulting in different values of 𝛼𝑐ℎ, and also 𝜒
and ℎ. The other parameters of the system are kept constant to isolate
the effect of the parameter of interest. The critical flow velocities, 𝑢𝑖𝑓 ,
for each pipe with different 𝑟𝑎𝑛𝑛 and 𝛼𝑐ℎ are listed in Table 5.8 It
may be concluded that increasing 𝛼𝑐ℎ has a stabilizing effect on the
system, leading to higher values of 𝑢𝑖𝑓 ; this is due to the decrease in
the external flow velocity with increasing 𝐷𝑐ℎ. Interestingly, decreasing
𝛼𝑐ℎ not only decreases 𝑢𝑖𝑓 , but it causes both pipes to undergo flutter
in the first mode instead of the second, for 𝑟𝑎𝑛𝑛 ≈ 0.70. The same mode
of instability was predicted in [5,7] for a pipe discharging fluid with
an external flow that is confined over the whole length of the pipe.

Figs. 20 and 21 show samples of the bifurcation diagrams obtained
by the nonlinear model9 for Pipes 1 and 2, respectively, with 𝑟𝑎𝑛𝑛 ≈ 0.47
and using different values of 𝛼𝑐ℎ. Increasing 𝛼𝑐ℎ to higher values than
the original ones (i.e. 𝛼𝑐ℎ = 1.97 for Pipe 1 and 3.31 for Pipe 2) does
not affect the stability of the system as dramatically as compared to
decreasing 𝛼𝑐ℎ, especially for Pipe 2, for which the original value of 𝛼𝑐ℎ
is relatively higher. This effect is not unexpected, as the flow velocity
in the annulus scales inversely as the square of the annular flow area.

It is also noted that the effect of 𝑟𝑎𝑛𝑛 on the stability is strongest
in the case of 𝛼𝑐ℎ = 1.50 when the modal antinode of the pipe is well
within the annulus (not shown here for brevity).

6. Conclusion

In this paper, a nonlinear equation of motion has been derived for
a cantilevered pipe simultaneously subjected to internal and partially-
confined external annular flows. The equation of motion is exact to
third-order of magnitude, assuming the lateral and axial displacements
to be of first- and second-order of magnitude, respectively. The ex-
tended Hamilton’s principle was used to obtain the equation of motion
with a separate derivation of the fluid-related forces associated with
the external flow, as well as the non-conservative forces due to the
discharging fluid at the free end of the pipe. This equation is probably
not the definitive nonlinear equation of motion for this system, since it
was not obtained by a unified treatment of the fluid mechanics.

Two long flexible pipes of different dimensions and materials were
considered in this study. The stability of these systems has been in-
vestigated with increasing internal flow velocity, which also results in
increasing the external flow velocity in the annulus, as they are related
to each other by continuity. The proposed nonlinear model predicts that
the pipes lose stability via flutter in the second mode at sufficiently
high flow velocity. The amplitude of the oscillations increases with

8 The results shown in Table 5 are obtained using a linearized form
of the model derived in the present study, utilizing a ten-mode Galerkin
approximation. Hence, slight differences with respect to the predictions of the
nonlinear model are seen in the table for the original systems, i.e. 𝛼𝑐ℎ = 1.97
for Pipe 1 and 3.31 for Pipe 2; however, the maximum difference is less than
3%.

9 In terms of the critical flow velocities for the two pipes with 𝑟𝑎𝑛𝑛 ≈ 0.47
and different 𝛼𝑐ℎ, the maximum difference between the predictions of the
nonlinear model and the linearized one shown in Table 5 was again less than
3%.
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Fig. 20. Bifurcation diagrams for Pipe 1 with 𝑟𝑎𝑛𝑛 = 0.478 obtained for different values of 𝛼𝑐ℎ.

Fig. 21. Bifurcation diagrams for Pipe 2 with 𝑟𝑎𝑛𝑛 = 0.467 obtained for different values of 𝛼𝑐ℎ.

increasing flow velocity and the pipes eventually impact the rigid tube
forming the annulus. Quantitatively, the model overestimates the onset
of instability for Pipe 1 with respect to experimental data available in
the literature. However, excellent agreement with the experiments was
found for Pipe 2, which is more slender and of smaller wall-thickness
as compared to Pipe 1. In addition, other aspects of the predicted
dynamical behaviour were compared to the experimental observations;
generally, the model can predict the amplitude and frequency of oscilla-
tions right after the onset of instability accurately, but it overestimates
the amplitude of the oscillations at higher flow velocities.

The influence of varying the length and tightness of the annular
region was also investigated theoretically in this paper. It was shown
that increasing the length of the annulus decreases the critical flow
velocity of instability for both pipes, and it decreases the predicted am-
plitude and frequency of oscillation at high flow velocities. Increasing
the tightness of the annular region by decreasing the inner diameter
of the outer rigid tube also has a destabilizing effect and it can result
in a first-mode rather than second-mode instability for sufficiently long
annular regions.

Furthermore, it can be concluded that the performance of the
present model is significantly better for higher lengths of the annular
region. Excellent agreement between the amplitude of oscillations ob-
tained by this model and recorded experimentally was found for Pipe 2,
when the external flow is confined over 70% of the length of the pipe.
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Appendix

The nonlinear coefficients of the discretized equation of motion,
i.e. Eq. (36), are given here, as follows:

𝑟𝑖𝑗𝑘 =1
2
𝑢2𝑜𝜀𝑐𝑑 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗 |𝜙

′
𝑘|d𝜉, 𝑠̄𝑖𝑗𝑘 = 1

2
𝑢𝑜
√

𝛽𝑜𝜀𝑐𝑑 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖|𝜙

′
𝑗 |𝜙𝑘 d𝜉,

𝑠̃𝑖𝑗𝑘 =1
2
𝑢𝑜
√

𝛽𝑜𝜀𝑐𝑑 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗 |𝜙𝑘|d𝜉, 𝑡𝑖𝑗𝑘 = 1

2
𝛽𝑜𝜀𝑐𝑑 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙𝑗 |𝜙𝑘|d𝜉,

𝛼𝑖𝑗𝑘𝑙 =2𝜒𝑢2𝑜 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′′
𝑗 𝜙

′
𝑘𝜙

′
𝑙 d𝜉 + 1

4
𝑢2𝑜𝜀(−𝑐𝑁 − 𝑐𝑇 ℎ)∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′
𝑙 d𝜉

+ 1
2
𝛾 ∫

1

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′
𝑙 d𝜉

+ 3
4
𝑢2𝑜𝜀𝑐𝑇 (1 + ℎ)∫

𝑟𝑎𝑛𝑛

0
(𝑟𝑎𝑛𝑛 − 𝜉)𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′′
𝑙 d𝜉 − 3

2
𝛾

× ∫

1

0
(1 − 𝜉)𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′′
𝑙 d𝜉

+ 4∫

1

0
𝜙𝑖𝜙

′
𝑗𝜙

′′
𝑘𝜙

′′′
𝑙 d𝜉 + ∫

1

0
𝜙𝑖𝜙

′′
𝑗 𝜙

′′
𝑘𝜙

′′
𝑙 d𝜉 + ∫

1

0
𝜙𝑖𝜙

′′′′
𝑗 𝜙′

𝑘𝜙
′
𝑙 d𝜉
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− 𝜒𝑢2𝑜 ∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

𝑟𝑎𝑛𝑛

𝜉
𝜙′
𝑘𝜙

′′
𝑙 d𝜉

)

d𝜉 − (1 − 𝜒)𝑢2𝑜

× ∫

1

𝑟𝑎𝑛𝑛
𝜙𝑖𝜙

′′
𝑗

(

∫

𝑟𝑎𝑛𝑛

𝜉
𝜙′
𝑘𝜙

′′
𝑙 d𝜉

)

d𝜉

− 𝛱𝑜𝐿 ∫

1

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′′
𝑙 d𝜉 +𝛱𝑜𝐿 ∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙′
𝑘𝜙

′′
𝑙 d𝜉

)

d𝜉

− 1
2
𝑢2𝑜𝜀(𝑐𝑇 − 𝑐𝑁 )∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉

+ 𝑢2𝑖 ∫

1

0
𝜙𝑖𝜙

′′
𝑗 𝜙

′
𝑘𝜙

′
𝑙 d𝜉 − 3

2
(𝛤 −𝛱𝑖𝐿)∫

1

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′′
𝑙 d𝜉

+ 1
2
(𝛤 −𝛱𝑖𝐿)∫

1

0
𝜙𝑖𝜙

′
𝑗 (1)𝜙

′
𝑘(1)𝜙

′′
𝑙 d𝜉 − 𝑢2𝑖 ∫

1

0
𝜙𝑖𝜙

′′
𝑗

×
(

∫

1

𝜉
𝜙′
𝑘𝜙

′′
𝑙 d𝜉

)

d𝜉

− 1
4
𝑢2𝑜𝜀𝑐𝑇 ℎ∫

1

0
𝜙𝑖𝜙

′′
𝑗

{

∫

1

𝜉
𝜙′
𝑘𝜙

′
𝑙[(𝑟𝑎𝑛𝑛 − 𝜉)𝛿𝐷(𝜉 − 𝑟𝑎𝑛𝑛)

− H(𝜉 − 𝑟𝑎𝑛𝑛)]d𝜉
}

d𝜉

− 1
2
𝑢2𝑜(1 +𝐾1)∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙′
𝑘𝜙

′′
𝑙 d𝜉

)

d𝜉 + 1
4
𝑢2𝑜𝐾1

× ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′′
𝑙 d𝜉,

𝛽𝑖𝑗𝑘𝑙 =𝜒𝑢𝑜
√

𝛽𝑜

{

1
2 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′
𝑙 d𝜉 + 3

2 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′′
𝑗 𝜙

′
𝑘𝜙𝑙 d𝜉

+ 2∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

𝑟𝑎𝑛𝑛

𝜉
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉
}

+ 2(1 − 𝜒)𝑢𝑜
√

𝛽𝑜 ∫

1

𝑟𝑎𝑛𝑛
𝜙𝑖𝜙

′′
𝑗

(

∫

𝑟𝑎𝑛𝑛

𝜉
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉

− 2𝜒𝑢𝑜
√

𝛽𝑜 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′′
𝑗

(

∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉

− 1
4
𝑢𝑜
√

𝛽𝑜𝜀𝑐𝑁 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙𝑙 d𝜉 + 1

2
𝑢𝑜
√

𝛽𝑜𝜀(𝑐𝑇 − 𝑐𝑁 )

× ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′′
𝑗

(

∫

𝑟𝑎𝑛𝑛

𝜉
𝜙′
𝑘𝜙𝑙 d𝜉

)

d𝜉

− 3𝜒𝑢𝑜
√

𝛽𝑜 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗

(

∫

𝜉

0
𝜙′
𝑘𝜙

′′
𝑙 d𝜉

)

d𝜉 − 3𝜒𝑢𝑜
√

𝛽𝑜 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗

×
(

∫

𝜉

0
𝜙′′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉

+ 2𝑢𝑖
√

𝛽𝑖 ∫

1

0
𝜙𝑖𝜙

′
𝑗𝜙

′
𝑘𝜙

′
𝑙 d𝜉 − 2𝑢𝑖

√

𝛽𝑖 ∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉,

𝛾𝑖𝑗𝑘𝑙 = − 3
2
𝜒𝛽𝑜 ∫

1

0
𝜙𝑖𝜙

′
𝑗𝜙𝑘𝜙

′
𝑙 d𝜉 − 3

2
(1 − 𝜒)𝛽𝑜 ∫

1

𝑟𝑎𝑛𝑛
𝜙𝑖𝜙

′
𝑗𝜙𝑘𝜙

′
𝑙 d𝜉 + 2𝜒𝛽𝑜

× ∫

1

0
𝜙𝑖𝜙

′
𝑘

(

∫

𝜉

0
𝜙′
𝑗𝜙

′
𝑙

)

d𝜉

+ 2(1 − 𝜒)𝛽𝑜 ∫

1

𝑟𝑎𝑛𝑛
𝜙𝑖𝜙

′
𝑘

(

∫

𝜉

0
𝜙′
𝑗𝜙

′
𝑙 d𝜉

)

d𝜉 − (1 − 𝛽𝑜)∫

1

0
𝜙𝑖𝜙

′′
𝑗

×
(

∫

1

𝜉 ∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉 d𝜉

)

d𝜉

+ ∫

1

0
𝜙𝑖𝜙

′
𝑗

(

∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉 + (𝜒 − 1)𝛽𝑜 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗

×
(

∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉

+ 1
2
𝛽𝑜𝜀𝑐𝑁 ∫

1

0
𝜙𝑖𝜙𝑘

(

∫

𝜉

0
𝜙′
𝑗𝜙

′
𝑙 d𝜉

)

d𝜉 + 1
4
𝛽𝑜𝜀𝑐𝑁

× ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗𝜙𝑘𝜙𝑙 d𝜉

− 1
4
𝛽𝑜𝜀𝑐𝑇 ∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙𝑘𝜙𝑙 d𝜉

)

d𝜉,

𝜂𝑖𝑗𝑘𝑙 = − 1
4
𝛽3∕2𝑜 𝜀𝑐𝑁

𝑢𝑜 ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙𝑗𝜙𝑘𝜙𝑙 d𝜉,

𝜇𝑖𝑗𝑘𝑙 = − (1 − 𝛽𝑜)∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉 ∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉 d𝜉

)

d𝜉 − 𝜒𝛽𝑜

× ∫

1

0
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙′
𝑘𝜙𝑙 d𝜉

)

d𝜉

− (1 − 𝜒)𝛽𝑜 ∫

1

𝑟𝑎𝑛𝑛
𝜙𝑖𝜙

′′
𝑗

(

∫

1

𝜉
𝜙′
𝑘𝜙𝑙 d𝜉

)

d𝜉 + 𝛽𝑜(𝜒 − 1)

× ∫

𝑟𝑎𝑛𝑛

0
𝜙𝑖𝜙

′
𝑗

(

∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉

+ ∫

1

0
𝜙𝑖𝜙

′
𝑗

(

∫

𝜉

0
𝜙′
𝑘𝜙

′
𝑙 d𝜉

)

d𝜉.
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