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A B S T R A C T   

The work presented hereafter deals with an important issue arising in frictional contact problems involving 
flexible bodies: the occurrence of more than one solution, with an emphasis on the quasi-static incremental 
problem in the presence of rectilinear obstacle and in two dimensions. The conditions for the existence of 
multiple solutions to the quasi-static incremental problem, with an intrinsic combinatorial character, are pre-
sented for several criteria. A simplified criterion is proposed that avoids the exponential character of the 
problem. An algorithm is proposed for the computation of all the solutions of the incremental problem and to 
verify the sharpness of the frictional coefficient estimates corresponding to the several criteria. The contributions 
may be summarized as follows: (i) new simplified (sufficient) criterion for uniqueness of solution based on the 
solution of an optimization problem, avoiding the exponential character of the (necessary and sufficient) com-
plete criterion of Alart or of the (sufficient) criterion due to Andersson; the proposed criterion assumes that the 
onset of multiplicity is associated with a mode involving sliding in the whole contact candidate region. (ii) The 
use of the suggested algorithm to compute all the solutions of the quasi-static incremental problem (for a given 
loading) in a finite element version of Klarbring’s two degree of freedom model. For some lumped mass ex-
amples, all the solutions were calculated and their dependencies on some parameters were discussed. The 
conditions under which a problem may have multiple solutions were also discussed for some lumped models.   

1. Introduction 

Existence and/or uniqueness of solution belong to the most basic 
aspects that a researcher ought to address in order to understand and to 
further develop his/her knowledge on any mechanical/mathematical 
problem posed to him/her. The mathematical notions of non-existence 
or non-uniqueness of solution are intimately related with the intuitive 
mechanical notions of bifurcation or instability. 

A case of non-convergence of an algorithm may have three causes: 
(1) absence of solution (for the set of data, the mathematical model is 
unable to produce a response for the system), (2) solution multiplicity (for 
the set of data, multiple solutions coexist competing for an algorithm’s 
convergence) or (3) inability of the algorithm to find a solution (the use of 
other algorithms should be considered). To be in the possession of a 
good estimation of the conditions (namely the value of the coefficient of 
friction) for which a frictional contact problem fails to exhibit a solution 
permits us (a) to discard scenario (3) when the conditions for solution 
existence are not met, or, (b) to avoid losses of time when the conditions 
for the existence of solution are met and the algorithm being used does 

not perform satisfactorily. Consequently, the development of sharp es-
timates for the conditions under which a problem may have no solution 
has a very useful practical application, as pointed out by Acary et al. 
(2011). Convergence difficulties (cycling) in the generalized Newton 
method applied to the solution of the quasi-static incremental problem 
were reported in (Alart and Curnier, 1987; Alart, 1997)in connection 
with the occurrence of multiple solutions. Agwa and Pinto da Costa 
(2009), Agwa (2011), Agwa et al. (2012), Andersson et al. (2016) 
investigated the conditions for which the quasi-static incremental 
problem may exhibit more than one solution. 

In spite of the truth that the right formulation for the frictional law of 
Coulomb’s should involve the change in tangential displacement with 
respect to time, its usual substitution using incremental ratio is benefi-
cial because it leads to a suitable formulation for the quasi-static incre-
mental problem, this formulation is appropriate for computational 
implementation. Despite the possibility that the solution obtained for 
each load step of the incremental problem does not depend on the loads 
evolution during this step, the progression of solutions for the quasi- 
static incremental problem after multiple steps leads to a good 
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approximation for the correct quasi-static evolution problem which 
depend on the method of load variation in the course of previous steps 
(Klarbring, 1988, 1990a,b). Alternatively stated, the progression of so-
lution for the incremental problem take into account the dis-
sipative/irreversible nature of Coulomb’s friction law, this implies that 
the configuration and the obstacle reactions at the end of load steps 
depend on the total history of loading and the prior frictional contact 
states. Furthermore, using smaller load step for the progression of the 
incremental problem yields better solutions closer to the quasi-static 
evolution problem. 

Alart and Curnier (1987) and Alart (1993) studied the multiple so-
lutions for the incremental problem, by taking into account its intrinsic 
non-associated (nonsymmetric) character. On the basis of conewise 
properties (for the case of two dimensional contact problems with fric-
tion) and raywise properties (for the case of three dimensional contact 
problems) nonsmooth operators, Alart (1993), Alart et al. (1995) gave 
the necessary and sufficient conditions for the uniqueness of solution 
and carried out numerical experiments with solids using finite element 
method. Klarbring and Pang (1998) addressed the quasi-static incre-
mental problem for finite dimensional spatial problems with positive 
semidefinite (semicoerciveness) stiffness matrices; the authors consid-
ered also piecewise linearizations for the friction cone. In (Andersson, 
1999; Andersson et al., 2014) a Theorem is proved guaranteeing (i) the 
existence of solution, independently of the coefficient of friction and (ii) 
the solution such that the friction coefficient remains less than or equal 
to a threshold calculated from the resolution of combinatorial optimi-
zation; these references present a new fundamental frictional parameter 
to deduce assessments of the friction coefficient for the existence and 
uniqueness for the quasi-static (incremental and rate) evolution prob-
lems. The computation of that frictional parameter using Andersson’s 
procedure is analogous to the resolution of a set of exponentially 
growing generalized eigenvalue problems (Holmgren, 1999) Hassani 
et al. (2003) also studied the quasi-static incremental problem and 
provided examples in which branches with infinite number of solutions 
involving the slip of all the contact candidate nodes are calculated 
analytically/numerically using eigenvalue analyzes. 

The aim of the current work is to study the occurrence of more than 
one solution for the two dimensional quasi-static incremental problem 
in the presence of unilateral frictional rectilinear obstacle. The condi-
tions for the existence of multiple solutions to the plane quasi-static 
incremental problem are presented for several criteria. A simplified 
criterion is proposed that avoids the exponential character of the 
problem. An algorithm is proposed for the computation of all the solu-
tions of the incremental problem and to verify the sharpness of the 
frictional coefficient estimates corresponding to the several criteria. For 
the two dimensional version of some lumped mass examples, all the 
solutions were calculated and their dependencies on some parameters 
were discussed. The conditions under which a problem may have mul-
tiple solutions were discussed for several two dimensional lumped 
models. 

2. Contact kinematics and Coulomb’s law 

In this study we generally consider elastic bodies subjected to static 
loads, possibly establishing frictional contact with a rigid surface. The 
body represented in Fig. 1 occupies a domain Ω ∈ R2 with a sufficiently 
regular boundary Γ. The boundary Γ is decomposed in three parts, ΓD, ΓF 
and ΓC, where ΓD is the part on which displacements are prescribed, ΓF is 
the part on which tractions are applied and ΓC is the part that may be in 
frictional contact with flat obstacle. This part of the boundary is sub-
jected to (i) a unilateral condition of non-penetration and (ii) the local 
version of Coulomb’s friction law (Agwa and Pinto da Costa, 2011, Pinto 
da Costa and Agwa, 2011, 2013; Agwa and da Costa, 2015; Agwa et al., 
2016; Domenico et al., 2017). 

We also consider finite element discretizations of linear elastic solids 
(Fig. 1) or lumped mass systems. For systems with a finite number of 

degrees of freedom the configuration at each time t ≥ 0 is defined by the 
displacements ui(t), 1 ≤ i ≤ N. These include the prescribed Displace-
ments uD, the displacements uF corresponding to the nF particles that are 
Free from kinematic constraints (their labels form set P F), and the 
displacements uC of the nC Contact candidate nodes (their labels form set 
P C) that are normal (un) and tangential (ut) to rigid obstacles. We assume 
the following decomposition of the vector of displacements at time t 

u(t)=

⎧
⎨

⎩

uD(t)
uF(t)
uC(t)

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

uD(t)
uF(t){
un(t)
ut(t)

}

⎫
⎪⎬

⎪⎭
∈ RN . (1) 

The vector of reactions is 

r(t)=

⎧
⎨

⎩

rD(t)
rF(t)
rC(t)

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

rD(t)
0{

rn(t)
rt(t)

}

⎫
⎪⎬

⎪⎭
, (2)  

where rD contains the external reactions acting at the kinematically 
constrained degrees of freedom, the null vector 0 denotes the reactions 
at the nodes which are kinematically unconstrained and rC contains the 
reactions from the (frictional) obstacles. A decomposition analogous to 
(1) and (2) holds for the vector v of the system’s velocities. 

For all practical purposes, we consider in the sequel that the number 
of degrees of freedom is twice the number of nodes or lumped masses 
that are free from any kinematical constraint or that are candidate to 
contact: N = 2(nF + nC). 

For any particle p ∈ P C of the system, the normal (n) and tangential 
(t) components of its displacement vector up(t) = {up

n(t) up
t (t)}

T, of its 
velocity vector u̇p(t) = {u̇p

n(t) u̇p
t (t)}

T and of its reaction vector rp(t) =

{rp
n(t) rp

t (t)}
T satisfy the (Signorini) unilateral contact conditions and the 

friction law of Coulomb. For flat obstacles the unilateral contact law may 
be written in the form 

up
n(t) − dp

n ≤ 0, rp
n(t)≤ 0,

(
up

n(t) − dp
n

)
rp

n(t)= 0, (3)  

where dn is the initial normal gap between particle p and the obstacle 
(Fig. 2(a)). Coulomb’s friction law (Fig. 2(b)) may alternatively be 
written as a conjunction of the following two nonsmooth conditions 

Fig. 1. A mechanical system with a finite number of degrees of freedom. Rigid 
body motions are prevented by a constant set of prescribed displacements. The 
generalized coordinates of the nodes that may establish frictional contact with 
flat obstacles are normal and tangent with respect to the obstacle’s surface. 
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⃒
⃒rp

t (t)
⃒
⃒+ μrp

n(t) ≤ 0,
⃒
⃒u̇p

t (t)
⃒
⃒rp

t (t) − μ
(
u̇p

t (t)
)
rp

n(t)= 0. (4) 

Factor μ denotes the (constant) coefficient of friction, (.) denotes 
derivation with respect to time. During smooth dynamic evolutions, the 
balance of momentum equation is satisfied together with the laws (3) 
and (4) and with the appropriate initial conditions on the configuration 
and on the velocity. 

Since the cardinal number of set P C is nC, and because each contact 
candidate particle has 2 qualitatively different contact statuses (in 
contact with non-vanishing reaction or out of contact with vanishing 
reaction), a discrete unilateral contact problem has 2nC potential 
different unilateral contact patterns; this fact puts in evidence the 
combinatorial character of the (discrete) problems to be dealt with in 
this work, a consequence of the complementarity condition (3)3. 

3. Admissible sets 

Since the position x of each particle at any time t may be defined in 
terms of its displacement u, an obstacle’s surface may, for the sake of 
simplicity, be defined by ϕ(u) = 0. It becomes clear from the previous 
section that the set of admissible displacements is defined by 

U ≐
{

u∈RN : ϕp(u)≤ 0, p∈P C
}
. (5) 

Another fundamental set to be defined is the set of admissible reactions 

R =
{

r ∈ ℝN : rp = 0, p ∈ P F ;

rp
n ≤ 0,

⃒
⃒rp

t

⃒
⃒+ μrp

n ≤ 0, p ∈ P C}
(6) 

For each u ∈ RN, we consider the following partition of the set P C of 
the nC contact candidate nodes 

P C =P f (u) ∪ P c(u), (7)  

where 

P f (u)≐{p∈P C : ϕp(u)< 0}

[
particles currently out of contact (f ree),#P f = nf

]

P c(u)≐{p∈P C : ϕp(u)≥ 0}

[particles currently in c ontact,#P c = nc].

A visualization of the admissible right rates of change of un, rn and rt 

is shown in Fig. 3. A particle in P s has 2 qualitatively different possi-
bilities of smooth evolution in the near future (see Fig. 3):  

- it may become stuck (sd), which is represented by an arrow into the 
interior of the friction cone;  

- it may remain in a state of impending slip (ss), which is represented 
by an arrow on the border of the friction cone. 

A particle in P z has 4 qualitatively different possibilities of smooth 
evolution in the near future (see Fig. 3):  

- it may become out of contact (zf), represented by the arrow pointing 
to the negative part of the un − dn axis;  

- it may become stuck (zd), represented by an arrow pointing to the 
interior of the friction cone;  

- it may remain become in forward sliding (zs+), represented by an 
arrow pointing to the border of the friction cone corresponding to 
negative tangential reactions (rt = μrn);  

- it may remain become in backward sliding (zs− ), represented by an 
arrow pointing to the border of the friction cone corresponding to 
positive tangential reactions (rt = − μrn). 

Consequently, in an equilibrium state, where nz particles are in P z 
and ns particles are in P s, the system has 4nz × 2ns potential different 
tangent behaviors, which is a manifestation of the combinatorial char-
acter of the frictional contact rate type problems. The enlarged versions, 
corresponding to an immovable obstacle, of the sets’ definitions in this 
section may be found in (Martins et al., 1999, Martins and Pinto da 
Costa, 2000; Agwa and Pinto da Costa, 2008; Pinto da Costa and Agwa, 
2009; Agwa, 2019). 

4. Formulations of the incremental problem 

The numerical computation of quasi-static evolutions is, in practice, 
accomplished by solving the quasi-static incremental problem, which is 

Fig. 2. Graphs of (a) the unilateral contact law and (b) the friction law of Coulomb. dn: normal gap between the node p and the obstacle.  

Fig. 3. Schematic representation of some admissible first order displacement 
rates and reaction rates. 
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obtained from the quasi-static evolution problem after substitution of 
the tangential velocity present in the friction law by an incremental ratio 
(quotient between an increment of tangential displacement and a time 
interval corresponding to the time discretization). The choice of the 
quasi-static incremental problem is due to its relevance in the determi-
nation of quasi-static evolutions or equilibrium states in problems with 
practical relevance and to its similarity with the incremental dynamic 
problem (Jourdan et al., 1998; Pang and Stewart, 1999). 

Given a sequence of external forces and prescribed displacements, 
the quasi-static incremental problem consists in the resolution of the 
system of algebraic equilibrium equations plus the unilateral contact 
conditions and a time discretized version of Coulomb’s law. The two 
dimensional incremental problem without viscous damping may be 
written in terms of a mixed complementarity - algebraic inclusion 
formulation: 

Given the force fk+1 applied at the current increment, the initial distances 
dp

n in the normal direction between the contact candidate particles and the 
obstacle, and the tangential displacements uk

t in the end of the previous 
increment, compute the current displacements uk+1 and reactions rk+1 such 
that 

Kuk+1 = fk+1 + rk+1, (8)  

0≥ up,k+1
n − dp

n⊥rp,k+1
n ≤ 0, (9)  

rp,k+1
t ∈ μSign

(
up,k+1

t − up,k
t

Δt

)

rp,k+1
n , (10)  

for all p ∈ P C. 
In the above formulation, uk+1 is the vector of absolute displace-

ments, up,k+1
n − dp

n is the non-positive distance between particle p and the 
obstacle at the current increment, up,k

t is the absolute tangential 
displacement of the particle evaluated in the end of the previous load 
increment, and Δt is the time increment. 

An elegant way to formulate and solve numerically non-associated 
frictional contact problems is the one presented in (De Saxće and 
Feng, 1991; Feng, 1995, De Saxće and Feng, 1998; Joli and Feng, 2008); 
the use of the so-called bi-potential concept enables one to formulate 
non-associated problems in terms of a minimization principle. Their 
approach corresponds to deal with unilateral contact and friction as a 
single variational inequality, which leads to shorter computer execution 
times. The bi-potential method applies equally well to dynamic 
problems. 

4.1. A mixed complementarity-inclusion formulation 

Assuming vanishing viscous damping, the system of equilibrium 
equations after the prescription of essential boundary conditions uD ≡

uD is 
⎡

⎣
I 0 0
0 KFF KFC
0 KCF KCC

⎤

⎦

⎧
⎨

⎩

uD
uF
uC

⎫
⎬

⎭
=

⎧
⎨

⎩

uD
fF − KFDuD
fC − KCDuD

⎫
⎬

⎭
+

⎧
⎨

⎩

0
0
rC

⎫
⎬

⎭
, (11)  

following the partition of the degrees of freedom indicated in Section 2. 
The stiffness matrix in (11) is nonsingular. After solving (11) with 
respect to the displacement vector and using the partition of the degrees 
of freedom of the contact candidate nodes in normal and tangent com-
ponents, the quasi-static incremental problem has the following mixed 
complementarity-inclusion formulation 

Find (un, ut) ∈R2nC  and (rn, rt) ∈ R2nC  such that  

{
un − dn
ut − ut

}

=

{
u*

n − dn

u*
t − ut

}

+

[
Fnn Fnt
Ftn Ftt

]{
rn
rt

}

(12)  

0≥un − dn⊥rn ≤ 0, (13)  

rp
t ∈ μrp

nSign
(
up

t − up
t

)
, ∀p ∈ P C. (14) 

Vector dn denotes initial distances to the obstacle, ut groups the 
displacements of the contact candidate nodes that are tangent to the 
obstacle, evaluated at the end of the previous load increment, Fnn,Fnt =

Ftn and Ftt denote square blocks of the flexibility matrix and u*
n and u*

t are 
the normal and tangent components of 

u*
C =FCF(fF − KFDuD) + FCC(fC − KCDuD). (15) 

In formulation (12)–(14), (un,ut) and (rn,rt) denote respectively the 
absolute displacements and the obstacles’ reactions at the current 
increment. 

4.2. A full complementarity formulation 

In a manner similar to what was done in (Pinto da Costa et al., 2004, 
Pinto da Costa and Agwa, 2006; Agwa and Pinto da Costa, 2006, 2007; 
Sitzmann et al., 2015) for directional instability problem, the 
quasi-static incremental problem may be written in a full complemen-
tarity way. For that purpose one uses a bijective single valued non-
smooth map g : RN→RN built from the local maps gp : R2→R2 

gp(vp) =

{
vp

n

vp
t

}

, p ∈ P F

gp(vp) =

⎧
⎨

⎩

vp
n − μ

⃒
⃒vp

t

⃒
⃒

vp
t

⎫
⎬

⎭
, p ∈ P C.

(16) 

For any vector v ∈ RN = R2(nF+nC), 

g(v)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1( v1)

.

.

.

gnF+nC (vnF+nC )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (17) 

In the case of a flat obstacle, the set U of admissible displacements 
(5) may be viewed as the cartesian product of the sets of admissible 
displacements for each node 

U
p =

{
R2, p ∈ P F
{

up ∈ R2 : up
n − dp

n ≤ 0
}

p ∈ P C.
(18)  

and the set of admissible reactions R (6) is equal to the cartesian 
product of the sets 

R
p =

{
{(0, 0)}, p ∈ P F
{

rp ∈ R2 : rp
n ≤ 0,

⃒
⃒rp

t

⃒
⃒+ μrp

n ≤ 0
}
, p ∈ P C.

(19) 

Sets U = U
1 × … × U

nF+nC and R = R
1 × … × R

nF+nC are closed 
convex cones since they are the cartesian product of closed convex cones 
(Hiriart-Urruty and Lemaréchal, 1996). 

The transformation of cone U p by map gp defined above is 

gp(U p)=

{
R2, p ∈ P F
{

gp ∈ R2 : gp
n + μ

⃒
⃒gp

t

⃒
⃒ ≤ 0

}
, p ∈ P C,

(20)  

which one recognizes to be the dual cone of R p (see Fig. 4) i.e., 
gp(U p) = (R p)

+. 
Since the dual of a cartesian product of closed convex cones is the 

cartesian product of the duals, one also has 

g(U )=R
+. (21) 

It is thus possible to rewrite the quasi-static incremental problem in 
terms of an Explicit Complementarity Problem (ECP) as 
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Find  (un, ut) ∈R2nC  and (rn, rt) ∈ R2nC  such that  

{
un − dn
ut − ut

}

=

{
u*

n − dn

u*
t − ut

}

+

[
Fnn Fnt
Ftn Ftt

]{
rn
rt

}

, (22)  

R ∋

{
rn
rt

}

⊥ g
({

un − dn
ut − ut

})

∈ g(U )=R
+. (23) 

The previous formulation involves a number of unknowns equal to 
4nC and a symmetric matrix. However it also involves admissible cones 
with a not so simple structure depending on the magnitude of the co-
efficient of friction. 

4.3. A linear complementarity formulation 

The introduction of the non-negative complementarity variables 

ξn = dn − un, (24)  

ξ+t =(ut − ut)+ =max{ut − ut, 0}, (25)  

ξ−t =(ut − ut)− =max{ − (ut − ut), 0)} (26)  

ψn = − rn, (27)  

ψ+
t = rt − μrn, (28)  

ψ −
t = − rt − μrn, (29)  

enables writing the quasi-static incremental problem in terms of the 
following Linear Complementarity Problem (LCP) 

Find 
(
ξn, ξ−t ,ψ+

t

)
∈R3nC  and

(
ψn,ψ −

t , ξ
+
t

)
∈ R3nC  such that  

⎧
⎪⎪⎨

⎪⎪⎩

ξn

ξ−t
ψ+

t

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

dn − u*
n

ut − u*
t

0

⎫
⎪⎪⎬

⎪⎪⎭

+

⎡

⎣
Fnn − FntU Fnt 0
Ftn − FttU Ftt I

2U − I 0

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

ψn

ψ −
t

ξ+t

⎫
⎪⎪⎬

⎪⎪⎭

, (30)  

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
≤

⎧
⎪⎪⎨

⎪⎪⎩

ξn

ξ−t
ψ+

t

⎫
⎪⎪⎬

⎪⎪⎭

⊥

⎧
⎪⎪⎨

⎪⎪⎩

ψn

ψ −
t

ξ+t

⎫
⎪⎪⎬

⎪⎪⎭

≥

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
, (31)  

where U = diag(μ, …, μ) ∈ RnC×nC . A linear complementarity problem 
involving 6nC unknowns and a nonsymmetric matrix due to the non- 
associated character of Coulomb’s law is now obtained. The structure 
of the cones is very simple: the self-dual first orthants, (R3nC )

+
≡ R3nC . 

For sufficiently small coefficients of friction the matrix in the previous 
LCP is copositive, a necessary condition for Lemke’s method to compute 
a solution in a finite number of steps (Cottle et al., 1992; Pfeiffer and 
Bremer, 2017). 

A linear complementarity formulation with a copositive coefficient 
matrix regardless of the magnitude of μ (but involving 8nC unknowns) 
was considered by Klarbring (1999), Brogliato (2016), Barber (2018), 
inspired by the works (Stewart and Trinkle, 1996) and (Anitescu and 
Potra, 1997) on the dynamic incremental problem. 

4.4. A generalized linear complementarity formulation 

In order to find all the solutions of the quasi-static frictional contact 
problem for a given load increment one may reformulate the above LCP 
as a Generalized Linear Complementarity Problem (GLCP) and use the 
algorithm of De Moor and Vandewalle (1987), De Moor (1988), De Moor 
et al. (1992) to solve it. The GLCP formulation of the LCP presented in 
equations 30 and 31 is 

Given dn,  ut,  u*
C = 

(
u*

n,u
*
t

)
,  find 

(
ξn, ξ−t ,ψ+

t ,ψn,ψ −
t , ξ

+
t

)

∈ R6nC  such that   

⎡

⎢
⎢
⎣

− I 0 0 Fnn − FntU Fnt 0 dn − u*
n

0 − I 0 Ftn − FttU Ftt I ut − u*
t

0 0 − I 2U − I 0 0

⎤

⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξn

ξ−t
ψ+

t

ψn

ψ −
t

ξ+t
ϱ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
, (32)  

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
≤

⎧
⎪⎪⎨

⎪⎪⎩

ξn

ξ−t
ψ+

t

⎫
⎪⎪⎬

⎪⎪⎭

⊥

⎧
⎪⎪⎨

⎪⎪⎩

ψn

ψ −
t

ξ+t

⎫
⎪⎪⎬

⎪⎪⎭

≥

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
, ϱ ≥ 0. (33) 

The algorithm of De Moor and Vandewalle (1987), De Moor (1988), 
De Moor et al. (1992) is geometrically inspired method, non-iterative, 
the algorithm does not involve inversion of matrices. It executes geo-
metric intersections among the objects that represent the solution sets. 
This algorithm is also eligible for the calculation of all solutions of a 
GLCP but the time of execution grows exponentially as the number of 
variables increase. The implementation of the De Moor’s algorithm to a 
discretized solid in the framework of finite elements is found in refer-
ence Pinto da Costa and Martins (2004). 

5. Existence of solution 

One easily recognizes that problem (22)-(23) is written in the ca-
nonical form of an ECP: 

Find  x  such that K ∋ x ⊥ f (x) ∈ K
+
, (34)  

where K is a closed convex cone. Formulation (22)–(23) of the quasi- 
static incremental problem is then appropriate to invoke corollary 
4.13 in (Hyers et al., 1997) which guarantees the existence of solution 
provided the vectorial function f(x) is completely continuous and 
satisfies 

lim
x∈K

‖x‖→+∞

x.f (x)
||x||

= + ∞. (35) 

Function g, presented in (23), is completely continuous because it is 
continuous and the problem is finite dimensional (Martins et al., 2002). 
The coercivity condition (35) leads to  

Fig. 4. Illustration of cones U p, g(U p) and R p, for p ∈ P C.  

M.A. Agwa                                                                                                                                                                                                                                       



European Journal of Mechanics / A Solids 85 (2021) 104062

6

lim
(rn ,rt)∈R

‖(rn ,rt)‖→+∞

{
rn
rt

}

.g
(

un − dn
ut − ut

)

‖(rn, rt)‖
= lim

(rn ,rt)∈R

‖(rn ,rt)‖→+∞

1
‖(rn, rt)‖

({
rn
rt

}

.

{
u*

n − dn

u*
t − ut

}

+

[
Fnn Fnt
Ftn Ftt

]{
rn
rt

}

.

{
rn
rt

}

−
∑

P C

μrn

⃒
⃒
⃒
⃒u

*
t − ut + [Ftn Ftt ]

{
rn
rt

}⃒
⃒
⃒
⃒

)

=

+ ∞
(36)  

because the flexibility matrix FCC is strictly copositive in the closed 
convex cone R . A matrix M is strictly copositive in a closed convex cone 
R if and only if x⋅Mx > 0, ∀x ∈ R , x ∕= 0. Note that since FCC is sym-
metric positive definite (SPD), it is also strictly copositive. The sum −
∑

P C

μrn

⃒
⃒
⃒
⃒u

*
t − ut + [Ftn Ftt ]

{
rn
rt

}⃒
⃒
⃒
⃒ is nonnegative because − rn ≥ 0. This 

is a Proof of solution existence for the quasi-static incremental problem, 
alternative to several others published previously, for example in (Alart, 
1993; Alart et al., 1995; Andersson, 1999; Klarbring, 1999). 

6. Criteria to estimate the onset of multiplicity 

The three methods used in this study to detect solution multiplicity of 
the quasi-static incremental problem and to compute approximations of 
the conditions at the onset of multiplicity are described in this section. 
The first two methods considered next involve the computation of the 
determinants of frictionally affected matrix families, while the third one 
involves the resolution of an optimization problem. 

6.1. Bijectiveness of a conewise linear (CL) operator 

Alart and Curnier (1987, 1991), Alart and Lebon (1995), Neto et al. 
(2016), Charroyer et al. (2018) describe unilateral contact and Cou-
lomb’s friction by the unconstrained nonsmooth equations 

rp
n = projR−

(
rp

n − α
(
up

n − dp
n

))
, (37)  

rp
t = proj

D p(μprojR− (rp
n − α(up

n − dp
n)))

(
rp

t − α
(
up

t − up
t

))
, (38)  

respectively, where p ∈ P C, α > 0 and, for y < 0, D p(y) = [y, − y]. By 
defining C as the cartesian product of the nC intervals ] − ∞,0] and D as 
the cartesian product of the nC intervals D p(μprojR−

(rp
n − α(up

n − dp
n)), 

the quasi-static incremental problem may be written as a system of 
unconstrained nonsmooth equations after a condensation on the degrees 
of freedom of the contact candidate nodes, 

H(u, r)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Knn Knt

Ktn Ktt

]{
un

ut

}

−

{
fn

ft

}

−

{
projC (rn − α(un − dn))

projD (rt − α(ut − ut))

}

−
1
α [rn − projC (rn − α(un − dn))]

−
1
α [rt − projD (rt − α(ut − ut))]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0.

(39) 

According to Alart and Curnier (1987), Alart (1993), Alart et al. 
(1995), the above system of nonsmooth equations is conewise linear 
(CL). Consequently, on the borders of the cones of linearity, the classical 
jacobian based on the Fréchet derivative is not defined. The tangent 
behavior of a nonsmooth vectorial function is then characterized by the 
generalized jacobian (Facchinei and Pang, 2003) which, on a border be-
tween cones of linearity is set valued, taking any value in the convex hull 
formed by the (classical) jacobians defined in the regions of linearity 
adjacent to that border. Moreover, the set of infinitely many jacobian 
matrices formed the generalized jacobian at a point of 
non-differentiability in the sense of Fréchet is completely defined by the 

finitely many jacobian matrices at the regions of linear behavior adja-
cent to that point. This minimum set of jacobian matrices able to char-
acterize the generalized jacobian is called the base of the generalized 
jacobian. Alart et al. (1995) proved that (39) has a unique solution if and 
only if the left hand side is a homeomorphic mapping. A mapping is 
called a homeomorphism when it is bijective (“one to one” and “onto”) 
and continuous with a continuous inverse (Seymour Lipschutz, 1965). 
The possible source of non-bijectivity in (39) is the projection operator 
necessary to characterize unilateral contact and friction. Kojima and 
Saigal (1979), Alart et al. (1995) showed that in 2D, the conewise linear 
function (39) is a homeomorphism if and only if all the determinants of the 
matrices forming the base of its generalized jacobian have the same sign (see 
Theorem 10 in (1993)). It suffices then to check the determinants of a 
finite number of jacobian matrices to verify if a conewise linear vector 
mapping is a homeomorphism. 

To illustrate, consider the one particle system shown in Fig. 5. Four 
states are possible for that mechanical system: out of contact (f), stick (d), 
forward slip (s+) and backward slip (s− ). Each one of those four states 
represents a region of linear behavior of H ∈ R4, in the interior of which 
H is differentiable in the sense of Fréchet, the jacobian being a matrix in 
R4×4. For the above mentioned two degree of freedom system, function 
(39), its four jacobians forming the base of the generalized jacobian and 
the corresponding determinants are listed next:  

• Out of contact (f) 

Hf (u, r)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
knn knt

ktn ktt

]{
un

ut

}

−

{
fn

ft

}

−
1
αrn

−
1
αrt

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (40)  

Jf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

knn knt 0 0

ktn ktt 0 0

0 0 −
1
α 0

0 0 0 −
1
α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, det
(
Jf
)
=

knnktt − k2
nt

α2 ; (41)   

Fig. 5. An elastically restrained particle in the presence of an obstacle with 
friction. The angle between the inclined spring and the vertical is θ∈ ]0, π

2[. 
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• Sticking (d) 

Hd(u, r)=

⎧
⎪⎨

⎪⎩

[
knn knt
ktn ktt

]{
un
ut

}

−

{
fn
ft

}

−

{
rn − α(un − dn)

rt − α(ut − dt)

}

− (un − dn)

− (ut − dt)

⎫
⎪⎬

⎪⎭
,

(42)  

Jd =

⎡

⎢
⎢
⎣

knn + α knt − 1 0
ktn ktt + α 0 − 1
− 1 0 0 0
0 − 1 0 0

⎤

⎥
⎥
⎦, det(Jd) = +1; (43)    

• Forward slip (s+) 

Hs+ (u, r)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
knn knt

ktn ktt

]{
un

ut

}

−

{
fn

ft

}

−

{
rn − α(un − dn)

μ(rn − α(un − dn))

}

− (un − dn)

−
1
α (rt − μrn) + μ(un − dn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(44)  

Js+ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

knn + α knt − 1 0

ktn + μα ktt − μ 0

− 1 0 0 0

− μ 0
μ
α −

1
α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, det(Js+ ) =
ktt − μknt

α ; (45)    

• Backward slip (s− ) 

Hs− (u, r)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
knn knt

ktn ktt

]{
un

ut

}

−

{
fn

ft

}

−

{
rn − α(un − dn)

− μ(rn − α(un − dn))

}

− (un − dn)

−
1
α (rt + μrn) + μ(un − dn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

(46)  

Js− =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

knn + α knt − 1 0

ktn − μα ktt μ 0

− 1 0 0 0

μ 0 −
μ
α −

1
α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, det(Js− ) =
ktt + μknt

α . (47) 

For the jacobians to have the same sign 

Sign
(
det
(
Jf
))

= Sign(det(Jd))= Sign(det(Js+ ))= Sign(det(Js− ))= + 1,
(48)  

and since α > 0, knnktt − k2
nt > 0, it is sufficient that μ < ktt

|knt |
, which, for 

the specific spring arrangement in Fig. 5, corresponds to μ < |tanθ|. One 
concludes that, for Klarbring’s example, the solution to the quasi-static 
incremental problem is unique if and only if the effective stiffnesses ktt∓

μknt = ki sinθ cosθ(tanθ ∓μ) are strictly positive. The geometrical inter-
pretation of these conditions corresponds to slope positivity in equilib-
rium trajectories. Note that the only possible sources of non-uniqueness 
are the contact states corresponding to forward or backward slip. The 
out of contact and sticking states have tangent stiffness that do not 
depend on μ, so that these two states can not by themselves be the cause 
of solution multiplicity of the quasi-static incremental problem. Since nC 
represents the number of candidate nodes, the verification of solution 
uniqueness by this method involves the evaluation of the determinants 
of 4nC matrices with dimensions 4nC × 4nC. As the computational effort 
grows exponentially with the number of the contact candidate particles 

nC, the full (necessary and sufficient) condition of computing the 4nC 

determinants can only be implemented up to nC = 9 or 10 (in this case, 
more than one million determinants of 40 × 40 matrices ought to be 
computed). 

Alart et al. (1995) applied their method to finite element discretized 
elastic bodies, mainly squares with the top side fixed and the bottom side 
candidate to contact. These authors detected a constant pattern of fric-
tional contact states at the onset of solution multiplicity of the 
quasi-static incremental problem for several coarse and moderately 
refined meshes. They also concluded that the frictional contact pattern 
leading to the minimum value of μ for solution multiplicity involves the 
impending slip of all the contact candidate nodes. Numerical experi-
ments conducted for more refined meshes (up to nC = 17) and 
restricting the possible states of all the contact candidate nodes to 
impending slip (s+ or s− ), revealed that the critical values of μ at the 
onset of multiplicity converged with mesh refinement (Alart et al., 
1995). This is an indication that, at least for certain geometries, the 
frictional contact pattern corresponding to the onset of solution multi-
plicity of the quasi-static incremental problem is associated to impend-
ing slip of all the contact candidate regions. In fact, this conclusion, 
taken for square shaped solids, is not so surprising since the jacobian 
matrices include more friction affected elements as the number of nodes 
assumed to be in impending slip increases. Consequently, by assuming 
just 2 possible frictional states out of 4, one has to compute a total of 2nC 

determinants (instead of 4nC ), which enables the consideration of more 
refined meshes. The objective of achieving good quality estimates of μ at 
the onset of multiplicity with the limitation of the number of possible 
frictional contact states to {s+, s− } is further explored in this work in the 
context of an optimization based method. 

6.2. P property of matrices 

The sufficient condition guaranteeing solution uniqueness presented 
in this section has its roots in (Lötstedt, 1981; Trinkle et al., 1995), 
where dynamic problems were addressed. The criterion for solution 
uniqueness derived next is based on a classical argument: two solutions 
are assumed to exist and the conditions for them to be equal are derived. 

Suppose that the quasi-static incremental problem has two solutions 
(uA

n ,uA
t ,rA

n ,rA
t ) and (uB

n ,uB
t ,rB

n ,rB
t ) corresponding to the same data set dn, ut, 

u*
nand u*

t . From the equilibrium equation (12) and after noticing that 
rA

t − rB
t ∈ μI(rA

n − rB
n ) + μ(SA − SB)rB

n where I = diag([ − 1,1]) is a nC × nC 

diagonal interval matrix, SA = diag(Sign(uAp
t − uAp

t ), p ∈ P C) and SB =

diag(Sign(uBp
t − uBp

t ), p ∈ P C) one concludes that the difference be-
tween the two solutions satisfies the algebraic inclusion 
{

uA
n − uB

n

uA
t − uB

t

}

∈

[
Fnn Fnt
Ftn Ftt

][
I 0

μI I

]{ rA
n − rB

n

μ
(
SA − SB)rB

n

}

. (49) 

The coefficient matrix in the previous inclusion is non-symmetric, 
again a manifestation of the dependence of the tangential reactions on 
the normal reactions (non-associated law). 

In the previous inclusions the usual set-valued algebraic operations 
hold, namely μ[ − 1,+1] = [ − μ, μ] for any μ ≥ 0 (Moore, 1979; Neu-
maier, 1990). The following property holds between the vectors in both 
sides of inclusion (49). 

Property (Trinkle et al., 1997) 
({

rA
n − rB

n

μ
(
SA − SB)rB

n

})

i

({(
uA

n − dn
)
−
(
uB

n − dn
)

(
uA

t − ut
)
−
(
uB

t − ut
)

})

i

≤ 0, ∀i

∈ {1,…, 2nC}. (50) 

Proof: 
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(1) For the first set of nC pairs of homologous components    

(2) Let sA
i and sB

i be the i-th elements of the main diagonals of 
matrices SA and SB. Then 

(
μ
(
SA − SB)rB

n

)

i

[(
uA

t − ut
)
−
(
uB

t − ut
)]

i =

μ
(
rB

n

)

i

(
sA

i − sB
i

)[(
uA

t − ut
)

i −
(
uB

t − ut
)

i

]
=

μ
(
rB

n

)

i

[
sA

i

(
uA

t − ut
)

i − sA
i

(
uB

t − ut
)

i − sB
i

(
uA

t − ut
)

i + sB
i

(
uB

t − ut
)

i

]
=

μ
(
rB

n

)

i

[
sA

i

(
uA

t − ut
)

i + sB
i

(
uB

t − ut
)

i − sB
i

(
uA

t − ut
)

i − sA
i

(
uB

t − ut
)

i

]
=

μ
(
rB

n

)

i

[⃒
⃒
(
uA

t − ut
)

i

⃒
⃒+
⃒
⃒
(
uB

t − ut
)

i

⃒
⃒ − sB

i

(
uA

t − ut
)

i − sA
i

(
uB

t − ut
)

i

]
≤ 0,

(52)   

This means that the products of homologous components of the 
above mentioned vectors can not be strictly positive. It is now conve-
nient to introduce the following classical 

Theorem. (Cottle et al., 1992) Let M ∈ Rn×n. The following statements 
are equivalent: 

(a) Matrix M is of class P. 
(b) Matrix M does not change the sign of any non-vanishing vector, i. 
e., 

[zi(Mz)i ≤ 0, ∀i∈{1,…, n}]⇒[z= 0] (53)   

(c) All the real eigenvalues of M and of all its principal submatrices 
are strictly positive. 

When the interval matrix in (49) is of class P, properties (50) and 
(53) together enable one to state the following sufficient condition. 

Proposition. The quasi-static frictional contact problem has only one 
solution if the interval matrix 

[
Fnn Fnt
Ftn Ftt

][
I 0

μI I

]

∈ P. (54) 

The condition above respects the non-symmetry, contrary to what 
happens with criteria based on eigenvalues which consider just the 
symmetric part of the matrices (Doudoumis et al., 1995). In spite of 
being a sufficient condition, method (54) seems then able to compute 
sharp estimates of μ at the onset of solution multiplicity. Although 
condition (54) involves an infinite number of point matrices, in its nu-
merical implementation only a finite number of point matrices are 
needed to be considered due to a result by (Rohn and Rex, 1996), as 
explained next. 

Let an interval matrix A be represented by a set of matrices defined 
in the form 

A= [A,A] = {A : A≤A≤A}, (55)  

where A and A are n × n matrices satisfying A ≤ A (componentwise). 
Matrix A is said to be a P-matrix if each point matrix A ∈ A is a P-matrix. 
In (Rohn and Rex, 1996) it was shown that the number of test matrices 
may be reduced to 2n− 1. To show this, they introduced an auxiliary set 

Z =
{

z∈Rn : zj ∈{− 1, 1} for j= 1,…, n
}
, (56)  

i.e., the set of all ±1-vectors. The cardinality of Z is obviously 2n. For an 
interval matrix, matrices Az, z ∈ Z are defined by 

(Az)ij =
1
2
(
(A)ij +(A)ij

)
−

1
2
(
(A)ij − (A)ij

)
zizj (57) 

(i, j = 1, …, n). Clearly, (Az)ij = (A)ij if zizj = 1 and (Az)ij = (A)ij if 
zizj = − 1. Hence Az ∈ A for each z ∈ Z, and the number of mutually 
different matrices Az is at most 2n− 1 (since A− z = Az for each z ∈ Z) and 
equal to 2n− 1 if A < A. According to Theorem 2.3 in (68) matrix A is a P- 
matrix if and only if each of the finitely many matrices Az, z ∈ Z, is a P- 
matrix. 

The verification of property P for the interval matrix (54) is equiv-
alent to the verification of the property P for at most 2nC of the extreme 
point matrices of dimension 2nC × 2nC obtained from the original in-
terval matrix by substitution of each interval component by its 
maximum or by its minimum. In addition, the verification of property P 
for a point matrix of dimension 2nC × 2nC requires the verification of the 
signs of 22nC − 1 principal minors (Horn and Johnson, 1985; Lancaster 
and Tismenetsky, 1985). Consequently, the task of verifying the prop-
erty P of an interval matrix grows exponentially with the dimension of 
the problem. Such task becomes impossible for an interval matrix 
originated from a finite element model with a number of contact nodes 
corresponding to a satisfactorily refined mesh. 

6.3. A simplified condition based on optimization techniques 

Andersson (1999) defined a new fundamental parameter to compute 
estimates of the coefficient of friction for solution existence and 
uniqueness for the quasi-static evolution, incremental and rate prob-
lems. In terms of the notation used in this work Andersson’s parameter 
may be defined as 

c= inf
r∈R2nC

‖r‖=1

max
rp ∕= 0

p:

(FCC r)p
t ∕= 0

rp
t (FCCr)p

t

‖rp‖
⃒
⃒|(FCCr)p

t |
⃒
⃒
, (58)  

where ||r|| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

p∈P C

‖rp‖
2

√
= 1 and FCC is the already mentioned restric-

tion of the flexibility matrix to the candidate contact nodes (FCC ∈ SPD), 
so that 

Theorem. (Andersson, 1999) When μ < c̅̅̅̅̅̅̅̅
1− c2

√ , the solution of the 
quasi-static incremental problem is unique. 

The resolution of problem (58) corresponds to the resolution of a 
number of optimization problems that grows exponentially with nC. It 
may also be shown (Andersson, 2010; Holmgren, 1999) that (58) is 
equivalent to a set of 4nC − 2nC

2 classical generalized eigenvalue problems. 
This exponential growing of the effort to compute sharp estimates is due 
to the necessity of considering all the combinations of frictional contact 
states among the set P C. 

Although it is wished to program the full combinatorial optimization 
problem (58) in the future, the will to circumvent the exponential 
character intrinsic to this type of estimations in the context of comple-
mentarity problems motivated the construction of a simplified method, 
based on Andersson’s optimization criterion. It is hoped that this 

(
rA

n − rB
n

)

i

[(
uA

n − dn
)
−
(
uB

n − dn
)]

i =
(
rA

n

)

i

(
uA

n − dn
)

i −
(
rA

n

)

i

(
uB

n − dn
)

i −
(
rB

n

)

i

(
uA

n − dn
)

i +
(
rB

n

)

i

(
uB

n − dn
)

i ≤ 0 (51)   
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simplified method will lead to acceptable estimates for the value of μ at 
the onset of solution multiplicity in a much more economical way. The 
argument already invoked in Section 6.1 associates the frictional contact 
patterns involving active contact with impending slip at all nodes in P C 
with (possibly) sharp estimates of μ at the onset of solution multiplicity. 
Based on this argument a simplified estimation of the critical value of c 
consists in choosing, from the many optimization problems that are 
implicit in (58), the one that assumes impending slip at all the contact 
candidate nodes. The simplified approach corresponds then to the single 
minmax problem 

c= inf
r∈R2nC

‖r‖=1

max
rp ∕= 0

p : (FCCr)p
n = 0

(FCCr)p
t ∕= 0

rp
t (FCCr)p

t

‖rp‖
⃦
⃦(FCCr)p

t

⃦
⃦
, (59)  

where the constraints (FCCr)pn = 0 and (FCCr)pt ∕= 0 have the mechanical 
meaning of a vanishing normal displacement and of a non-vanishing 
tangential displacement, respectively. 

Problem (59) will be solved numerically in the next section by three 
different methods. The first method (denoted by Opt-SQP in several 
tables) consists in using the FORTRAN program FFSQP (Zhou et al., 
1997; Agwa and Megahed, 2019) based on the Sequential Quadratic 
Programming algorithm. FFSQP includes a set of subroutines for sake of 
minimization/maximization of an objective functions subject to some 
constraints. If the initial solution for the problem is infeasible for any of 
the equality/inequality constraints, FFSQP creates a feasible solution for 
constraints and thereafter the consecutive iterations generated by the 
FFSQP satisfy the equality/inequality constraints. 

Another method (denoted by Opt-Math) involves the built-in func-
tion FindMinMax of software MATHEMATICA (2008). Finally, problem 
(59) is also solved by varying the orientation of the reaction vector at 
each contact candidate node by small increments (usually degree by 
degree) such that 

‖r‖=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

p∈P C

‖rp‖
2

√

= 1 (60)  

and computing the nC objective functions for all the combinations of the 
reactions’ orientations; this method is denoted by Opt-Def and could 
only be applied to check the results of the other two methods for small 
size problems involving one or two contact candidate nodes. 

7. Onset of multiplicity: simple examples 

The three methods represented earlier in order to reveal the solution 
multiplicity of the plane quasi-static incremental problem in the pres-
ence of rectilinear obstacle and to compute approximations of the con-
ditions at the onset of solution multiplicity are tested in this section. 
Numerical experiments for the calculation of the critical value μI of the 
coefficient of friction at the onset of multiple solutions for small sized 
models with up to three contact candidate particles are used for sake of 
comparisons among all methods and to indicate the dependence of the 
critical values of the coefficient of friction on the structure geometry. 

7.1. Klarbring’s model 

We begin by the simplest case – Klarbring’s model – already 
described in Fig. 5. Table 1 shows that the three methods (based on 
bijectiveness, P property and optimization) yield the exact critical value 
(μcr = tanθ) for any orientation θ of the inclined spring. The very small, 
may be neglected, differences in numerical values (Table 1) may be due 
to various round-off errors which propagate relying on the arithmetic 
computations. 

7.2. Alart’s model 

The four degree of freedom model (two contact candidate particles) 
represented in Fig. 6(a) was first analyzed by Alart and Curnier (1987), 
Alart (1993, 1997). As shown in Table 2, all methods yielded the same 
values of μcr regardless of the model’s geometry. It is interesting to 
observe that the values of μcr in Klarbring’s and Alart’s models coincide 
(μcr = tanθ). In fact, Alart’s model is nothing else than two (weakly) 
coupled models of Klarbring. The introduction of the horizontal spring 
in Alart’s model does not affect the stiffness coupling between the di-
rections that are normal and tangential to the obstacles. It is this stiffness 
coupling, solely provided by the inclined springs, that is responsible for 
a finite value of μ above which multiplicity of solutions may occur. For a 
same angle θ in both models, the inclined springs produce exactly the 
same normal-tangent stiffness coupling. Fig. 6(b) illustrates the varia-
tion of the critical value of μ at the onset of solution non-uniqueness of 
the quasi-static incremental problem as a function of the orientation of 
the inclined springs. 

From the graph in Fig. 6(b) we see that the value of μcr vanishes for 
θ = 0 because, for that geometry, the model has no elastic stiffness in the 
direction tangent to the obstacle. Consequently, for θ = 0 and arbitrary 
small values of μ, the effective (friction affected) tangent stiffness may 
be negative. Recall that also in Klarbring’s model, for θ = 0, ktt = 0 
leading to ktt − μknt = − μknt < 0 for arbitrary small values of μ. 

A final note is due on the structure of the interval matrix for the 
criterion based on the P property. If one labels the left and right particles 
respectively 1 and 2, and chooses the displacement vector u = (u1

n ,u1
t ,u2

n ,

u2
t ), condition (54) is 

FCC⋅

⎡

⎢
⎢
⎣

1 0 0 0
[ − μ, μ] 1 0 0

0 0 1 0
0 0 [ − μ, μ] 1

⎤

⎥
⎥
⎦ ∈ P, (61)  

where FCC ∈SPD is a 4 by 4 point matrix. 

7.3. Extended model of Alart 

We consider now the system in Fig. 7(a) with three contact candidate 
particles restrained by a set of linear elastic springs with the same 
stiffness. As shown in Table 3, the two tested criteria (P property and 
optimization based technique) match for a wide range of values of the 
geometric parameter θ. The symbolic resolution with MAPLE (52) of the 
sufficient condition based on P property yielded the following condition 

μ <
2 + sin2θ
1 + sin2θ

tanθ, (62)  

for the interval matrix (condition (54)) to be of class P. Fig. 7(b) illus-
trates the estimations of μcr given by the right hand side of (62). Simi-
larly to what happens with the two previous lumped models, the critical 
value of μ vanishes for θ = 0 due to the possibility of a horizontal rigid 
body motion; in fact, for μ = 0 and θ = 0 the horizontal position of the 
three masses is indeterminate as the system has zero stiffness in the 
horizontal direction. 

It is also interesting to note that, if the estimations of (62) for this 
modified version of Alart’s model correspond to the exact value of μcr , 

Table 1 
Model of Klarbring (ki = kv = 1). Critical value of the friction coefficient at the 
onset of solution non-uniqueness of the quasi-static incremental frictional con-
tact problem.  

θ Bijectiveness, P property, Opt-Math and Opt-Def Opt-SQP 

10 0.17632698 0.17632719 
20 0.36397023 0.36397023 
30 0.57735026 0.57735026 
50 1.19175359 1.19175358 
80 5.67128182 5.67128182  
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they do not coincide with their homologous for the simple Alart’s model 
and Klarbring’s model. And they do not have to coincide! By inspection 
of the stiffness matrix of the extended Alart’s model it can be observed 
that the normal-tangent stiffness coupling at the intermediate contact 
node does not exist due to the mutual canceling effects of the two in-
clined springs attached to that node. We have then a model where, from 
the three contact candidate nodes, only two have normal-tangent 
coupling, which explains the higher values for the estimations of μcr in 
the extended model of Alart with respect to the simple model of Alart 
and the example of Klarbring. 

7.4. A lumped model with periodicity conditions 

In this subsection, a model with three particles having periodicity 
conditions imposed on the first and third particles is studied, so that it 
represents an alignment of an infinite number of particles (Fig. 8(a)). 

Each contact candidate particle is restrained from the exterior by 
mutually orthogonal springs of stiffness K1 and K2 with an orientation 

angle θ, and is connected with the two adjacent particles by springs of 
stiffness K3. The symbolic treatment of the P property criterion for so-
lution uniqueness leads to 

μ <
sin2θ + k1

k2
cos2θ

(
k1
k2

− 1
)

sinθcosθ
, (63)  

where the non-dimensional parameters k1 = K1
K3 

and k2 = K2
K3 

were used. 
Fig. 8(b) represents the right hand side of (63) and puts in evidence that, 
according to the criterion based on P property, there is no occurrence of 
multiple incremental solutions when the external springs are orthogonal 
and parallel to the obstacle or when those springs have the same stiff-
ness, regardless of their orientation. Moreover, the minimum values of 
the estimations of μcr decrease with the difference between K1 and K2. It 
is also interesting to conclude that the horizontal springs of stiffness K3 
linking adjacent particles have no influence on the threshold for mul-
tiplicity. In fact, we have seen on the simple examples studied so far that 
the onset of solution multiplicity is due to stiffness couplings between 
the directions normal and tangent to the obstacle (recall the example of 
Klarbring in which ktt − μknt can only be negative provided knt is a non- 

Fig. 6. Model of Alart. (a) Two particles restrained by a system of elastic springs, in the presence of unilateral frictional obstacles. (b) Coefficient of friction at the 
onset of solution non-uniqueness of the quasi-static incremental problem as a function of the orientation θ. 

Table 2 
Model of Alart. Critical value of the friction 
coefficient at the onset of solution non- 
uniqueness of the quasi-static incremental 
frictional contact problem using all methods 
(Bijectiveness, P property, Opt-SQP,Opt- 
Math, Opt-Def).  

θ All methods 

10 0.1763269 
40 0.8390996 
50 1.1917535 
60 1.7320508  

Fig. 7. Extended model of Alart. (a) Three particles of mass m each restrained by a system of elastic springs, in the presence of unilateral frictional obstacles. (b) 
Coefficient of friction at the onset of solution non-uniqueness of the quasi-static incremental problem as a function of the orientation of inclined springs. 

Table 3 
Extended model of Alart. Critical value of the friction coefficient at the onset 
of solution non-uniqueness of the quasi-static incremental frictional contact 
problem.  

θ P property Opt-SQP 

10 0.34749 0.34749 
40 1.43286 1.43286 
50 1.9427 1.9427 
60 2.7218 2.7218  
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vanishing positive number). In the system represented in Fig. 8(a), the 
horizontal springs of stiffness K3 have no contribution to the elements of 
the stiffness matrix coupling the displacements in each of the groups {u1,

u2}, {u3, u4} and {u5,u6}. 

8. Computing all the solutions of simple examples 

The following subsections are devoted to determine all the solutions 
of the previously described lumped examples. 

8.1. The one particle model 

We consider the two degrees of freedom system represented in Fig. 5. 
Fig. 9 shows the atlas of the solution types in the (fn, ft) space when the 
equilibrium state, at which the incremental problem is solved, is grazing 
contact (z). It is clear that, provided μ > tanθ, the region for multiple 
solutions corresponds to a cone defined by tanθ <

ft
fn < μ where three 

solutions coexist: stick (d), forward slip (s+) and out of contact (f). For 
this one particle example, μcr = tanθ. 

Table 4 shows the solutions of the quasi-static incremental problem 
at a grazing contact state and the corresponding conditions on the data. 
In that table, s = sinθand c = cosθ. For θ = 30o,45o,60o, the values of 
the coefficient of friction at the onset of multiplicity are, respectively, 
μcr =

̅̅
3

√

3 (≃ 0.5774),1,
̅̅̅
3

√
≃ 1.7321. 

We may also visualize the occurrence of solution multiplicity in the 
space (μ, tanα) where α is the angle between the applied force and the 
positive normal direction. Now, both springs have the same stiffness 
constant K. We adopt the notation f = (fcα, fsα)with sα = sinαand cα =

cosα(see Fig. 10). Table 5 shows the solution of the quasi-static incre-
mental problem and the corresponding conditions on the data. Fig. 11 

shows region by region the types of solutions of the incremental prob-
lem: in (a) when the force points downwards (cα > 0) and in (b) when 
the force points upward (cα < 0). Solution multiplicity (the three solu-
tions d,f ,s+) can only occur for cα > 0(downward force) and (μ,tanα) in 
the shadowed cone. When cα < 0(force pointing upward) only two types 
of solutions may be observed, f or s− , and no multiplicity occurs, as 
illustrated in Fig. 11(b). 

By choosing conditions (μ,tanα) near the corners and edges in each of 
the regions defined by the charts in Fig. 11, the algorithm of De Moor 
(1988) computed correctly the set of all solutions to the quasi-static 
incremental problem (formulated as a GLCP) in each case. The algo-
rithm of Bart de Moor computes all the solutions of a generalized linear 
complementarity problem, even if there are infinitely many. It requires, 
however, a CPU execution time that grows exponentially with the num-
ber of complementarity variables. 

Fig. 8. Lumped model with periodicity conditions (u5 = u1, u6 = u2). (a) Geometry and the orientation of the restraining springs. (b) Coefficient of friction at the 
onset of solution multiplicity as a function of the inclined springs orientation for several values of k1

k2
. 

Fig. 9. Example of Klarbring. Atlas of the solution types of the quasi-static 
incremental problem in the (fn, ft) space when particle is in a state of graz-
ing contact. 

Table 4 
Solutions of the quasi-static incremental problem formulated at a grazing con-
tact state and conditions on the data for the one particle model represented in 
Fig. 5. Notation: d ≡stick, s+≡forward slip, s− ≡backward slip, f ≡out of contact.  

Contact state Conditions on the data Solution 

d fn > 0 and 
⃒
⃒ft
⃒
⃒ < μfn  un = ut = 0, 

rn = − fn and rt = − ft  
s+ ft −

s
c
fn < 0 and μ <

s
c  un = 0, ut =

ft − μfn
s(s − μc)

, 

rn =
cft − sfn
s − μc 

and rt = μrn  
ft −

s
c
fn > 0 and μ >

s
c  

s− ft + μfn < 0 and ft −
s
c
fn < 0  un = 0, ut =

ft + μfn
s(s + μc)

, 

rn =
cft − sfn
s + μc 

and rt = − μrn  

f ft >
s
c
fn  un = fn −

c
s
ft , ut = −

c
s
fn +

1 + c2

s2 ft , 

rn = rt = 0   

Fig. 10. The one particle model with a concentrated applied force.  
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8.2. Alart’s model (with a particular loading) 

The model presented in this subsection consists of two particles A 
and B, connected by a horizontal spring and restrained by vertical and 
inclined springs in a symmetric way (see Fig. 12). All the springs have 
the same stiffness constant K. The inclined springs make an angle θ with 
the vertical. We assume that both particles are in a state of grazing 
contact when the pair of forces fAand fBare applied symmetrically (both 
make an angle α with the vertical). The system has four degrees of 
freedom and the generalized displacements u = (uA

n ,uA
t ,uB

n ,uB
t )are used. 

With respect to u, the stiffness matrix is 

K=K

⎡

⎢
⎢
⎣

1 + c2 − sc 0 0
− sc 1 + s2 0 − 1

0 0 1 + c2 sc
0 − 1 sc 1 + s2

⎤

⎥
⎥
⎦, (64)  

where s = sinθand c = cosθ; the force vector is f = (fcα, fsα, fcα, − fsα), 

with f =

⃦
⃦
⃦fA
⃦
⃦
⃦ =

⃦
⃦fB⃦⃦, sα = sinαand cα = cosα. For this four-degree of 

freedom system, the quasi-static incremental problem is governed by the 
following system of equations 

K

⎡

⎢
⎢
⎣

1 + c2 − sc 0 0
− sc 1 + s2 0 − 1

0 0 1 + c2 sc
0 − 1 sc 1 + s2

⎤

⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uA
n

uA
t

uB
n

uB
t

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

f cα
f sα
f cα
− f sα

⎫
⎪⎪⎬

⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rA
n

rA
t

rB
n

rB
t

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (65)  

together with the unilateral contact conditions up
n ≤ 0, rp

n ≤ 0, up
nrp

n = 0, 
and the incremental form of Coulomb’s friction law rp

t ∈ μrp
nSign(up

t )(u
p
t 

is assumed to be zero for both particles) (Agwa and Pinto da Costa, 2011, 
Pinto da Costa and Agwa, 2011, 2013; Agwa and da Costa, 2015). 

Table 6 shows the solutions of the quasi-static incremental problem 
of the above described system and the corresponding conditions on the 
data. All the types of solutions of this model problem were also calcu-
lated by the algorithm of De Moor and Vandewalle (1987), De Moor 
(1988), De Moor et al. (1992). In order to provide a graphical insight of 
the dependence of the solution set on the two independent parameters 
controlling the data, μ and α, we show in Fig. 13, region by region of the 
space (μ, tanα) the types of solutions of the incremental problem: in (a) 
when the forces point downwards (cα > 0) and in (b) when the forces 
point upwards (cα < 0). Fig. 13(a) is to be observed in parallel with 
Table 7. We observe that, for μ < s

cand cα > 0, regardless of the value of 
tanα, the solution is unique, as in Klarbring’s example. Moreover, so-
lution multiplicity can only occur for tanα < − s

cand cα > 0, i.e., for 

Table 5 
Solutions of the quasi-static incremental problem and conditions on the data for 
the structure with one contact candidate particle represented in Fig. 10.  

Contact 
state 

Conditions on the data Solution 

d α∈ ] −
π
2
,
π
2
[ and |tanα| < μ  un = ut = 0, 

rn = − cα and rt = − sα  

s+ α∈ ] −
π
2
,
π
2
[, μ < tanα <

s
c 

and 

μ <
s
c  

un = 0, ut =
sα − μcα
s(s − μc)

,  

α∈ ] −
π
2
,
π
2
[, 

s
c
< tanα < μ and 

μ >
s
c  

rn =
csα − scα

s − μc 
and rt = μrn  

s− α∈ ] −
π
2
,
π
2
[ and tanα < − μ  un = 0, ut =

sα + μcα
s(s + μc)

,  

α∈ ]
π
2
,
3π
2
[ and tanα >

s
c  

rn =
csα − scα

s + μc 
and rt = − μrn  

f α∈ ] −
π
2
,
π
2
[ and tanα >

s
c  

un =
scα − csα

s
, ut =

sα(1 + c2) − cscα
s2 ,  

α∈ ]
π
2
,
3π
2
[ and tanα <

s
c  

rn = 0 and rt = 0   

Fig. 11. The one particle model. Atlas of the solution types in the space (μ,tanα). The grey regions indicate multiplicity of solution. Notation: d ≡ stick, s+ ≡ forward 
slip, s− ≡backward slip, f ≡out of contact. 

Fig. 12. Model of Alart with a symmetric force loading.  
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applied forces fAand fBsufficiently inclined with respect to the vertical 
and pointing outwards and downwards; recall that in the example of 
Klarbring multiple solutions can only occur when the applied force 
points to the side opposite to the inclined spring and with a sufficiently 
large inclination. We observe from Fig. 13(a) that, like in the example of 
Klarbring in which the region for multiple solutions corresponds to a 
cone with a limited range of angles for the orientation of the applied 
loads, in the model of Alart (with symmetric loading) a similar situation 
occurs. 

From the observation of Fig. 13(a) and Table 7 it can be seen that in 
regions H, I and J, corresponding to larger values of μ, the solution set 
has larger cardinalities. Fig. 13(a) presents a peculiarity. For any 
tanα∈ ] − s

c, −
1+s2

sc [, as μ increases from 0, the cardinality of the solution 
set does not increase monotonically with μ; in fact, as regions C, E and B 
are crossed in the direction of growing μ, the number of solutions is, 

respectively, 1, 3 and 1. In this range of variation of tanα, the number of 
solutions of the incremental problem does not increase monotonically as 
the intuition would suggest and as it happens in other ranges of tanα. 

When cα < 0(force pointing upwards) only two types of solution may 
be observed, (f , f) or (s+, s− ), and no solution multiplicity occurs, as 
shown in Fig. 13(b). Moreover, when tanα < − 2+c2

sc (for directions suf-
ficiently near the horizontal) the solution is (s+,s− ), while when tanα >

− 2+c2

sc (always with cα < 0) the solution is (f , f). 
Finally we note that, for the particular type of loading considered, 

the threshold for solution multiplicity occurs for μcr = tanθ, as predicted 
by the three methods used in subsection 7.2 for any loading. 

9. Conclusions 

The present paper (Part I) is not intended to have conclusions as it 

Table 6 
Solutions of the quasi-static incremental problem and conditions on the data for the structure with two contact candidate particles represented in Fig. 12.  

Contact state Conditions on the data Solution 

(d,d)  α∈ ] −
π
2
,
π
2
[and |tanα| < μ  uA

n = uA
t = uB

n = uB
t = 0,  

rA
n = rB

n = − cαand rA
t = − rB

t = sα  

(s+, s− )  α∈ ] −
π
2
,
π
2
[and tanα > μ  uA

n = 0, uA
t =

− μcα + sα
s(s + μc) + 2

, uB
n = 0, uB

t = − uA
t ,  

α∈ ]
π
2
,
3π
2
[, tanα < −

2 + s2

sc  
rA
n =

− (scsα + cα(2 + s2))

s(s + μc) + 2
, rA

t = μrA
n , rB

n = rA
n and rB

t = − μrB
n  

(s− , s+)  
α∈ ] −

π
2
,
π
2
[, −

2 + s2

sc
< tanα < − μand μ <

2 + s2

sc  
uA

n = uB
n = 0, uA

t = − uB
t =

μcα + sα
s(s − μc) + 2

,  

α∈ ] −
π
2
,
π
2
[, − μ < tanα < −

2 + s2

sc
and μ >

2 + s2

sc  
rA
n = rB

n = −
scsα + cα(2 + s2)

s(s − μc) + 2
, rA

t = − μrA
n and rB

t = μrB
n  

(f, f)  
α∈ ] −

π
2
,
π
2
[and tanα < −

2 + s2

sc  
uA

n = uB
n =

cα(2 + s2) + scsα
3 + c2 , uA

t = − uB
t =

sα(1 + c2) + sccα
3 + c2 and  

α∈ ]
π
2
,
3π
2
[and tanα > −

2 + s2

sc  
rA
n = rA

t = rB
n = rB

t = 0  

(d, s+)  
α∈ ] −

π
2
,
π
2
[, μ∈ ]

s
c
,
1 + s2

sc
[and tanα∈ ] −

1 + s2

sc
, − μ[ uA

n = uA
t = uB

n = 0, uB
t = −

sα + μcα
s(s − μc) + 1

,  

α∈ ] −
π
2
,
π
2
[, tanα∈ ] − μ, − 1 + s2

sc
[and μ >

1 + s2

sc  
rA
n = − cα, rA

t =
μcα − sαs(s − μc)

s(s − μc) + 1
, rB

n = −
scsα + cα(1 + s2)

s(s − μc) + 1
and rB

t = μrB
n  

(s− ,d)  
α∈ ] −

π
2
,
π
2
[, μ∈ ]

s
c
,
1 + s2

sc
[and tanα∈ ] −

1 + s2

sc
, − μ[ uA

n = uB
n = uB

t = 0, uA
t =

sα + μcα
s(s − μc) + 1

,  

α∈ ] −
π
2
,
π
2
[, tanα∈ ] − μ, − 1 + s2

sc
[and μ >

1 + s2

sc  
rA
n = −

scsα + cα(1 + s2)

s(s − μc) + 1
, rA

t = − μrA
n , rB

n = − cαand rB
t = −

μcα − sαs(s − μc)
s(s − μc) + 1  

(f,d)  
α∈ ] −

π
2
,
π
2
[, 

sc − 2μ
s2 < tanα < −

1 + s2

sc
and μ >

s
c  

uA
n =

cα(1 + s2) + scsα
2

, uA
t =

sα(1 + c2) + sccα
2

, uB
n = uB

t = 0,   

rA
n = rA

t = 0, rB
n = − cαand rB

t =
s(ssα − ccα)

2  

(d, f)  
α∈ ] −

π
2
,
π
2
[, 

sc − 2μ
s2 < tanα < −

1 + s2

sc
and μ >

s
c  

uA
n = uA

t = 0, uB
n =

cα(1 + s2) + scsα
2

, uB
t = −

sα(1 + c2) + sccα
2

,   

rA
n = − cα, rA

t = −
s(ssα − ccα)

2
and rB

n = rB
t = 0,  

(f, s+)  
α∈ ] −

π
2
,
π
2
[, tanα∈ ] −

2 + s2

sc
,
sc − 2μ

s2 [and μ∈ ]
s
c
,
3
2

s
c
[ uA

n =
(μc − s)(cα(2 + s2) + sαsc)

2μc − 3s
,  

uA
t =

(cμ − s)(ssα(1 + c2) + cαc(1 + s2)) + cαμ
s(2μc − 3s)

,  

α∈ ] −
π
2
,
π
2
[, tanα∈ ]

sc − 2μ
s2 , −

2 + s2

sc
[and μ∈ ]

3
2

s
c
, + ∞[ uB

n = 0, uB
t =

2μcα + s(ssα + ccα)

s(2μc − 3s)
,  

rA
n = rA

t = 0, rB
n =

s(sαsc + cα(2 + s2))

2μc − 3s
and rB

t = μrB
n  

(s− , f)  
α∈ ] −

π
2
,
π
2
[, tanα∈ ] −

2 + s2

sc
,
sc − 2μ

s2 [and μ∈ ]
s
c
,
3
2

s
c
[ uA

n = 0, uA
t =

2μcα + s(ssα + ccα)

s(3s − 2μc)
,  

uB
n =

(μc − s)(cα(2 + s2) + sαsc)
2μc − 3s

,  

α∈ ] −
π
2
,
π
2
[, tanα∈ ]

sc − 2μ
s2 , −

2 + s2

sc
[and μ∈ ]

3
2

s
c
, + ∞[ uB

t =
(cμ − s)(ssα(1 + c2) + cαc(1 + s2)) + cαμ

s(3s − 2μc)
,  

rA
n =

s(sαsc + cα(2 + s2))

2μc − 3s
, rA

t = − μrA
n and rB

n = rB
t = 0  

(s+, f), (f , s− )  – No solution 

(s+,d), (d, s− )  – No solution 

(s+, s+), (s− , s− )  – No solution  
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mainly prepares the way by laying down the notations and the defini-
tions used in this work and by giving the formulations of the main 
problem used in the present study. We began with the definitions of the 
unilateral contact law and Coulomb friction law in 2D, and then the 
notation associated with the partition of the degrees of freedom was 
presented. The definitions of the sets of admissible displacements and 
admissible reactions, relevant for solving incremental problem were 
given. Also the definitions of the sets of admissible displacement rates 
and admissible reaction rates were also established. 

The work presented here deals with an important issue arising in 
frictional contact problems involving flexible bodies: the occurrence of 
more than one solution, with an emphasis on the quasi-static incre-
mental problem. The present research was exclusively dedicated to the 
theoretical modeling of the quasi-static problem and to the comparison 
between several techniques used in the determination of the conditions 
for which the quasi-static incremental problem may exhibit more than 
one solution. The two ingredients necessary for solution multiplicity are 
stiffness and friction; the above mentioned conditions are directly 
related with a sufficiently large friction coefficient and a sufficiently 
large stiffness coupling between the directions that are normal and 
tangent to the obstacle. 

The conditions for existence of multiple solutions to the quasi-static 

incremental problem, with an intrinsic combinatorial character, are 
presented for several criteria. Three different criteria to assess the onset 
of solution multiplicity of the quasi-static incremental problem were 
proposed: (i) the necessary and sufficient condition based on bijective-
ness, (ii) the sufficient condition based on P property and (iii) the 
simplified condition based on optimization. The study concerning so-
lution existence/multiplicity of the quasi-static incremental problem led 
to the proposal of a simplified criterion based on an optimization 
problem for estimating the friction coefficient at the onset of multi-
plicity. This criterion avoids the combinatorial character of the neces-
sary and sufficient condition based on the properties of a conewise linear 
(nonsmooth) operator. The conditions for the occurrence of multiple 
solutions were discussed. An algorithm was introduced for the compu-
tation of all the solutions of the incremental problem and to verify the 
sharpness of the frictional coefficient estimates corresponding to the 
several criteria. 

All the solutions were calculated for some lumped mass examples 
and their dependencies on some parameters were also discussed. The 
conditions under which a problem may have multiple solutions were 
discussed for several lumped models. The theoretical analysis presented 
in this paper provides the basic formulations of the quasi-static incre-
mental problem upon which following analytical and numerical solu-
tions, for two dimensional finite element examples, ought to be 
introduced in the second part (Part II) of this series. 
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Fig. 13. Model of Alart. Atlas of the solution types in the space (μ, tanα) corresponding to the particular loading indicated in Fig. 12. The grey regions indicate 
solution multiplicity. 

Table 7 
Model of Alart with symmetric force loading. Types of solutions existing in each 
of the regions A to J of Fig. 13.  

Region in Fig. 13 ♯solutions  Types of solutions 

A 1 {(s+, s− )}
B 1 {(d,d)}
C 1 {(s− , s+)}
D 1 {(f , f)}
E 3 {(d, s+), (s− ,d), (s− , s+)}
F 3 {(f , s+), (s− , f), (s− , s+)}
G 3 {(d, f), (f,d), (s− , s+)}
H 5 {(f , s+), (s− , f), (d, f), (f,d), (f, f)}
I 5 {(d, s+), (s− , f), (d, f), (f,d), (d,d)}
J 9 {(f , s+), (s− , f), (d, s+), (s− ,d),

(s− , s+), (d, f), (f ,d), (f , f), (d,d)}
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.euromechsol.2020.104062. 

References 
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