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In this study, by applying Giannakopoulos and Pallot’s stress and displacement equations, and using 
the Goryacheva’s friction model, the stress and displacement equations are obtained. Finally, by 
applying analytical method, these equations are solved. By assuming that the roller is rigid and the 
substrate is almost homogeneous with constant Poisson ratio and constant elastic modulus, the 
results of frictional effect on stress and displacement fields are achieved and are shown in figures. 
Using different amounts of friction coefficient, the effect of friction coefficient on stress and 
displacement inside the contact region in the figures is observed. The new results achieved by the 
analytical method used in this study for obtaining tangential stress and displacement inside the contact 
region is compared with the results that were already achieved for obtaining tangential stress and 
displacement inside the contact region in another study. The comparison between the two analytical 
methods showed similarity in the results that are achieved by both methods. These results may be very 
advantageous in the design of suitable substrate and cylinder that are in contact, especially in the 
model that the substrate is almost homogeneous and the cylinder is rigid. 
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INTRODUCTION 
 
The present study examines the frictional effect on stress 
and displacement fields in the contact region. It appears 
that friction is an undeniable phenomenon in contact with 
two or more materials. For calculating the amount of 
friction, many approaches are employed. One of the 
important contacts investigated in the presence of friction 
is the contact of roller with half space. Wheel with rail, as 
well as tire with road, contacts are examples of roller 
contact with half space. The contact region is the region 

where two or more materials are in contact and can be 
divided into three zones, viz; slip zone, partial slip zone, 
and stick zone. In a contact region, there is a possibility 
of the existence of one or more stick or slip zones. 

It appears that friction can be very effective on stress 
and displacement fields and can cause increase and 
decrease in the stress and displacement amounts in 
contact region. Thus, the aim of this study is to 
investigate the frictional effect on stress and
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displacement fields because the numerical values of 
stress and displacement are required for selecting the 
contacting materials, since each contacting materials 
have specific friction coefficient. As a result, by selecting 
a material with suitable friction coefficient, the stress and 
displacement amounts may be controlled. 

The method of complex variables developed by 
Muskhelishvili (1949), Galin (1953) and Kalandiya (1975) 
is mainly used to determine the stress distribution for the 
2-D contact problems in the presence of friction. The 
linear form of the friction law is normally used in the 
problem formulations (Goryacheva, 1998). 

Initial studies on the contact between two bodies took 
place near the end of the nineteenth century by German 
researcher, Heinrich Hertz (Hertz, 1882). An English 
researcher Carter, in the late nineteen-twenties was the 
first to evaluate the tangential forces between two rolling 
bodies (Carter, 1926). He aimed to evaluate locomotive 
railroad wheels in contact with the rail, considering only 
the longitudinal creep, and found the tangential forces in 
that direction. He was also the first to propose a model 
that considers the creep in the longitudinal direction. In 
addition, Johnson generalized Carter’s results to circular 
contacts as well as longitudinal and lateral creep 
(Johnson, 1958). Vermeulen and Johnson (4691) 
generalized this theory to elliptical contact areas. All of 
this work is Hertzian-based, giving contact solutions for a 
class of geometrical objects satisfying the half-space 
restriction (Vermeulen and Johnson, 4691). 

Also, in 1949, M’Ewen evaluated the contact between 
two cylinders and calculated the stress field, taking into 
account the tangential load due to the friction on the 
contact area. His study was the first to include friction 
force on the model (M’Ewen, 1949). In the early nineteen-
sixties, Haines and Ollerton (1963) came up with an 
approximated solution for shear stress distribution in an 
elliptic contact area. They also compared their results 
with photo elasticity experiments and found good 
agreement (Haines and Ollerton, 1963). Furthermore, in 
the late nineteen-sixties, Kalker (1967) presented his 
Ph.D. thesis in which he proposed a new revolutionary 
theory for contact between rolling bodies. He calculated 
all tangential forces and creep coefficients and also found 
the rigidity parameters involved in the analysis. His work, 
also based on the Hertz Theory, was used to develop 
several simplified algorithms (Fastism) and complete 
programs (Contact) to calculate the forces in the contact. 
His research provided an outstanding contribution to 
railroad research, because his theory explained and 
enabled the calculation of several parameters used in the 
wheel-rail modeling, like creep, yaw angle, spin and 
others (Kalker, 1967). 

Sackfield and Hills (1983) put together the existing 
theories for circular and rectangular contact areas. They 
considered both the longitudinal and tangential loads and 
proposed a model to obtain the stress field for both 
cases, with each one  identified  using  the  axle  ratio,  k.  
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The results obtained were similar to the ones calculated 
by other researchers before them (Sackfield and Hills, 
1983). In addition, the theories: Linear theory, Simplified 
theory, Empirical theory, Strip theory and Exact three-
dimensional rolling contact theory assume that the 
contact between the two bodies is non-conformal. Li and 
Kalker (1998) introduced an approach for numerical 
solution of the conformal contact between the wheel and 
the rail. Moreover, in 2000, Giannakopoulos and Pallot 
examined two-dimensional contact of a rigid cylinder on 
an elastic graded substrate. The normal, sliding and 
rolling types of contact along with effect of adhesion in 
frictionless contact are addressed and examined in this 
paper. The elastically graded substrate is modeled to be 
locally isotropic with constant Poisson ratio and elastic 
modulus that varies with depth, y, according to a power 
law, E = E0y

k
; 0 ≤ k < 1, y ≥ 0. Such variation covers a 

fairly broad class of graded materials. Exact results are 
derived within the context of small deformation linear 
elasticity. The results show that the power law elastic 
gradation can be very advantageous in the design of 
strong and wear resistance sliding surfaces 
(Giannakopoulos and Pallot, 2000). Furthermore, Santos 
et al. (2004) evaluated the stress field inside elastic 
rolling bodies with an ellipse area of contact. This kind of 
model can be applied to wheel-rail contact phenomena. 

Also, Ke and Wang (2010) investigated the partial slip 
contact problem of two functionally graded material 
(FGM) coating/substrate systems by employing the 
Goodman approximation. The stress analysis showed 
that the FGM coating reduces the interface stress 
concentration that arises due to the elastic constant 
mismatch (Ke and Wang, 2010). In addition, in 2011, 
Ruderman and Bertram presented Modified Maxwell-slip 
model of pre-sliding friction (Ruderman and Bertram, 
2011). An enhanced friction modeling for steady-state 
rolling tires is proposed by Rene van der Steen. In his 
modeling he proposed a friction coefficient model as a 
function of sliding velocity in a contact of cylinder with half 
space (Steen, 2010). 

The tractive rolling contact problem between a rigid 
cylinder and a graded coating is investigated by Guler et 
al. (2011). The main objective of this study is to 
investigate the effect of the stiffness ratio, the coefficient 
of friction and the coating thickness on the surface 
contact tractions, the surface in-plane stress, the stick 
zone length and the creep ratio parameter that may have 
a bearing on the fatigue life of the component. Assuming 
that the shear modulus varies exponentially through the 
thickness of the coating, the governing integral equations 
associated with the rolling contact problem is 
constructed. Furthermore, it is supposed that the contact 
patch is controlled by a central stick zone accompanied 
by two slip zones. The conventional Goodman 
approximation is employed in order to decouple the 
governing singular integral equations. Finally, the 
numerical solution of the integral equations is obtained by  
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Figure 1. Coordinates system that is assumed in contact of roller with half space. 

 
 
 
applying the Gauss-Chebyshev integration method (Guler 
et al., 2011). 

Furthermore, in the area of obtaining analytical 
evaluation methods for determining mechanical 
properties of different materials, a few works are 
submitted by Anvari (2014, 2016a, 2016b, 2017, 2017a, 
2017b, 2017c,). Moreover, in the area of contact 
mechanics, a few publications are presented by Areias et 
al. (2014, 2015) and Timon and Huilong (2017). 

As it appears, many efforts have been made in the field 
of contact mechanics to develop the equations for 
obtaining stress and displacement amounts inside the 
contact region, but the exact consideration of the relation 
between the friction and stress fields, and the relation 
between the friction and displacement fields in different 
contact zones like, slip and stick zones in contact of roller 
with a half space, is still required. 

In the present research, the frictional effect on stress 
and displacement fields for contact of roller with half 
space is investigated. As mentioned in the study, the 
results shown in the figures, indicate the relation between 
the stress and friction coefficient and the relation between 
the displacement and friction coefficient inside the 
contact region. Since the amounts of stress and 
displacement are required in many of the proper designs, 
these results may be used in designing process of solid 
mechanics. 
 
 
PROBLEM FORMULATION 
 
Friction model 
 
In order to describe the friction model and associated stress in the 
contact region, some assumptions are required to be considered. 
These assumptions are defined by Goryacheva (1998) and 
Giannakopoulos and Pallot (2000). Definition of this method may 
contribute to the explanation of the equations in friction model that 
determine the relation between normal and tangential load, etc. 

“For a contact of roller with half space, if a tangential force Q 

applied to the body satisfies the inequality Q < µP, where P is the 
normal force and µ is the friction coefficient, then partial slip occurs; 
this is characterized by the friction. If Q = µP, there is limiting 
friction, and the condition of full slip occurs in the contact region. 
This case is also called sliding friction. The case Q = 0 corresponds 
to pure rolling” (Goryacheva, 1998). In Figures 1 and 2 the contact 
between rigid roller with half space under the normal load P is 
shown. In Figure 1, Q is the tangential load, a is the half of the 
contact length, R is the cylinder radius, and v is the velocity in x 
direction. 

“For cylinder in rolling contact under normal load with torque 
transmission, slipping may take place over part of the contact where 
the limiting value of traction is reached, while over the rest of the 
contact area (where the tangential traction is less than the limiting 
value), the contacting surfaces are locked and no slipping takes 
place” (Giannakopoulos and Pallot, 2000). In Figure 3, tangential 
and normal stress in contact of roller with half space is illustrated. 
 
 
Muskhelishvili method 
 
One of the attempts that is performed in order to obtain stress 
inside the contact region is mechanics of elastic contacts (Hills et 
al., 1993). In this method, the Muskhelishvili potential function is 
applied to obtain stress inside the contact region. Whereas 
Equation 1 is the Muskhelishvili potential function, Equation 2 is the 
Muskhelishvili potential function by taking the conjugate of both 
sides. Equations 3, 4, and 5 are the equations to obtain stress 
inside the contact region. In the following equations, z is a complex 
variable, f is friction coefficient, and P(x) is the function of normal 
load in contact region. In Figure 4, p0 is the normal load in unit of 
length and q is the tangential load in unit of length inside the 
contact region. 
 

                            (1) 

      

                                                                   (2) 

                                                                              

   (3)
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Figure 2. The contact of rigid cylinder with substrate. 

 
 
 

 
 

Figure 3. Tangential and normal stress in contact of roller with half space. 

 
 
 

 
 

Figure 4. Tangential stress inside the contact region. 
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Table 1. Numerical values of parameters and unknown quantities used to obtain stress and displacement inside the contact region of rol ler 
with half space. 
 

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 

ν E0 (kg/m
2
) Ik Jk β k h (m) a (m) Ґ R (m) 

0.3 4797911 0.3489 0.3255 1.0261 0.1 0.0053 0.0178 1 0.3 

 
 
 

      (4) 
 

                                                         (5) 
 
By substituting the Muskhelishvili potential function (Equation 1) in 
Equation 5, Equation 6 is obtained. 
 

                      (6) 

 
Also, by following the solution method, there is:   
 

                   (7) 
 

         (8)                                                                                                                                                                                                                                                                                                                  
 

                                               (9) 
 

          (10) 
 
Finally, by solving Equation 10, Equation 11 for the tangential 
stress inside the contact region is obtained. 
 

                                       (11) 
 
In Muskhelishvili’s closed-form expression (Hills et al., 1993), the 
tangential stress in unit of length inside the partial slip contact 
region is indicated. Muskhelishvili’s closed-form expression involves 
the tangential stress in contact region in unit of length of cylinder 
with substrate (Hills et al., 1993). In this expression, the points 1 to 
12 will be used to compare the results of this study (Figure 7) and 
the results of the book (Hills et al., 1993). 
 
 
Giannakopoulos and Pallot’s method 
 
Here, the parameters and variables that are used in 
Giannakopoulos and Pallot’s method to obtain stress and 
displacement inside the contact region are introduced. Furthermore, 
the method to solve the Giannakopoulos and Pallot’s stress 

equations are explained. 
In Equation 12, Ґ is a function that defines the substrate stiffness 

ratio (Guler et al., 2011). The substrate is assumed almost 
homogeneous and its stiffness is constant, therefore Γ = 1. In 
Equation 13, ν is the Poisson ratio and in the following equations β, 
Ik, k, and Jk are the parameters reflecting the material properties of 
the substrate. In the homogeneous limit, k→0, and in the elastic 
limit, k→1 (Giannakopoulos and Pallot, 2000). As mentioned in the 
previous paragraph, because the substrate is almost 
homogeneous, k = 0.1. 
 

                             (12) 

 

                                      (13) 

 

                                                                          (14) 

 

In Equation 15, R is the radius of cylinder, P is the normal load, and 
E0 is the substrate elastic modulus. In Equation 16, h is the 
indentation of cylinder into the substrate, whereas a is the half of 
the contact length in contact of cylinder with substrate 
(Giannakopoulos and Pallot, 2000). 

          (15) 
 

                                                                                    (16) 
 

In this study, the numerical values indicated in Table 1 are used for 
different parameters and unknown quantities. All the numerical 
values in order to obtain the stress are available in Table 1. Only by 
having the stress equations and substituting the above numerical 
values in the stress equations can they be obtained. It is noticeable 
that the aim is to obtain the frictional effect on stress fields. So by 
changing the µ in stress equations, the frictional effect on stress 
fields can be achieved. Equation 17 illustrates a stress equation 
that is dependent on friction coefficient. 
 

 

                                                                                                     (17) 
 

From Equation 17, by using the partial integral solution method,  the  



 
 
 
 
numerical values mentioned in Table 1, assuming h = y = 0.0053 m, 
and substituting the numerical values of x between the range 
0.0178 m to 0.0178 m (-a, a) may be solved. 
 
 

Stress equation solution method 
 

The assumption of Goryacheva Q = µP, means that in stress 
equations, µP instead of Q can be substituted. Thus, stress 
equation that is dependent on friction coefficient may be obtained. 
In this method, by changing the numerical value of µ in the range, 0 
˂ µ ˂ 1, in stress equations, the effect of friction coefficient on 
stress inside the contact region of roller with half space can be 
achieved. In order to explain the solution method, the following 
procedure is explained. The following equation is the stress 
equation in x direction. 
 

           (18)         
 

By substituting µP instead of Q in Equation 18, Equation 19 is 
obtained.  
 

           (19) 
 

It can be observed that Equation 19 is dependent on µ, and with 

changing µ, xxs changes, which is the aim of this study; the effect 
of friction on stress field. By substituting µP instead of Q in stress 

equations 
yys

and 
xys

, the exact same thing occurred. It is 
noticeable that in this solution for stress equations, only the first two 
partial integrals terms are used. Using more than two partial 
integrals terms in the solution of the stress integral equations is not 
necessary.  
 

               (20) 
 

By substituting µP instead of Q in stress equation, and by applying 
the partial integral solution method, the tangential stress integral 
equation is solved and is shown in Equation 21. 
 

                    (21) 
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                     (22) 

 
By substituting µP instead of Q in stress equation, and by applying  
the partial integral solution method, the normal stress integral 
equation is solved and is shown in Equation 23. 
 

                                                                                                     (23) 
 

            (24) 

 
By substituting µP instead of Q in stress equation, and by 
applying the partial integral solution method, the shear stress 
integral equation is solved and is also shown in Equation 
25. 
 

                                                           
                                                                                                     (25) 
 

Figure 7 is used to prove that the method is used in this study 
seems correct, because Figure 7 has results similar to 
Muskhelishvili’s closed-form expression. 
 
 

Displacement equation solution method 
 

Since all stress equations are solved and the results are observable 
in Figures 5 to 8, the displacement equations that are dependent on 
stress can be solved. In this part of study, the method that is used 
to solve the displacement equations is explained, and finally the 
results that are obtained by using the numerical values of Table 1 
are shown in Figures 9 and 10. Finally, the displacement results 
that are obtained in this study are compared with the results that 
are already obtained by another analytical method. The equation for 
substrate tangential displacement is: 
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Figure 5. Normal stress inside the contact region. 

 
 
 

 
 

Figure 6. Shear stress inside the contact region. 

 
 
 

   (26)    
                  
Furthermore, equation for normal displacement of substrate is: 

                     (27) 
 

By substituting the amounts of xxs  and 
yys

in the Equation 26 
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Figure 7. Tangential stress inside the partial slip contact region. 

 
 
 

 
 

Figure 8. The tangential displacement in contact region. 
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Figure 9. The normal displacement in contact region. 

 
 
 

 
 

Figure 10. Tangential displacement inside the contact region. 
Source: Giannakopoulos and Pallot (2000). 

 
 
 
and applying partial integral solution method to solve the tangential 
displacement integral equation, Equation 28 is obtained. 
 

(28)                                            

     In addition, Equation 28 is equal to 
 

(29) 
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Figure 11. The comparison of the tangential displacement between the Giannakopoulos and Pallot’s method 
and the method that is used in this study. 

 
 
 

By substituting the amounts of xxs  and yys in the Equation 
27 and applying partial integral solution method to solve the 
normal displacement integral equation, Equation 30 is 
obtained. 
 

     (30)       

 
Moreover, Equation 30 is equal to 
 

     (31) 

 
By applying the following equation, the tangential displacement 
inside the slip region of contact zone can be obtained. However, 
Equation 32 is not dependent on stress, but the method that is used 
in this study to obtain displacement is dependent on normal and 
tangential stress. By using the following equation, the results of the 
method that is used in this research is compared with the results 
obtained by Equation 32 (Giannakopoulos and Pallot, 2000). In 

Figure 11, the comparison of the tangential displacement between 
the Giannakopoulos and Pallot’s method and the method that is  
used in this study is illustrated. 
 

                   (32) 
 
Figure 10 illustrates the tangential displacement inside the contact 
region of rigid cylinder with substrate (Giannakopoulos and Pallot 
2000).  
 
 
RESULTS AND DISCUSSION 
 
Table 2 indicates the comparison of numerical values of 
points 1 to 12 between Muskhelishvili’s closed-form 
expression (Hills et al., 1993) and Figure 7 (The 
analytical method that is used in this study). These 
figures show the tangential stress in unit of length in 
partial slip contact region. A comparison of the results of 
Figures 4 and 8 indicated in Table 2 obviously revealed 
that the results in most of the coordinates are similar 
whereas in some coordinates are identical. Therefore, by 
considering a proper safety factor, the results of this 
study can be used to obtain stress inside the contact 
region and to design contacting materials in many 
mechanical processes.  

Obviously, according to Table 3, the numerical results 
obtained from this study have lower numerical amounts in 
comparison with results obtained from Giannakopoulos 
and Pallot’s method. It can be concluded that the
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Table 2. Coordinates of points 1 to 12 in Muskhelishvili’s closed-form expression and Figure 7. 
 

Model Coordinates (x, y) Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 Point 10 Point 11 Point 12 
Muskhelishvili’s  

closed-form expression 

X -1 -0.85 -0.68 -0.5 0 0.5 0.68 0.85 1 0 0 0 

Y 0 0.47 0.7 0.86 1 0.875 0.71 0.49 0 0.13 0.3 0.5 

              

Figure 7 
X -1 -0.875 -0.72 -0.5 0 0.5 0.72 0.875 1 0 0 0 

Y 0 0.41 0.72 0.93 1 0.93 0.72 0.41 0 0.25 0.5 0.75 

 
 
 

Table 3. The comparison of the tangential displacement numerical values inside the contact region between the Giannakopoulos and Pallo t’s 
method and the method that is used in this study. 
 

                  Analytical methods 

Contact region (m) 

Numerical values of the tangential displacement inside the contact region at µ = 1 (m) 

Giannakopoulos and Pallot’s method The method that is used in this study 

X = - 0.0178 0.0055 0.00225 

X = - 0.0100 0.0059 0.00220 

X =   0.0000 0.0061 0.00190 

X =   0.0100 0.0059 0.00170 

X =   0.0178 0.0055 0.00140 

 
 
 
difference between the results is due to the fact 
that in this study, only the first two terms of partial 
integrals solution is considered, but in 
Giannakopoulos and Pallot’s method, the whole 
integral equation is used to obtain the results. 
 
 
Conclusions 
 
One of the important results achieved in this 
research is that, in slip region, it seems that with 
increasing friction coefficient, tangential stress 
and shear stress are increased, but normal stress 
in almost all of contact zone is constant. The 
figure of tangential stress (Figure 7) inside the 
contact region is symmetrical because the 
numerical values of tangential stress in both 

posterior and anterior halves of the contact region 
are equal. In addition, the figure of shear stress 
(Figure 6) and especially the normal stress 
(Figure 5) are asymmetrical because in posterior 
half of the contact region numerical values are 
greater than in the anterior half of the contact 
region. It appears that by increasing the friction 
coefficient, the tangential and normal 
displacements are increased. The figure of 
tangential displacement (Figure 8) inside the 
contact region is asymmetrical because the 
numerical values of tangential displacement in 
posterior half of the contact region are greater 
than anterior half of the contact region. The figure 
of normal displacement (Figure 9) inside the 
contact region is symmetrical because the 
numerical values of normal  displacement  in  both 

posterior and anterior halves of the contact region 
are equal. 

Applications of the present research are broad 
in the field of contact mechanics; the contact of 
tire with road and the contact of wheel with rail, 
and so on. By identifying the effect of friction on 
stress and displacement fields inside the contact 
region, the design can be done by an appropriate 
safety factor. In circumstances that a high friction 
can make the stress or displacement to pass the 
valid numerical value of design, decreasing the 
friction coefficient by selecting the materials with 
proper numerical values of friction coefficient in 
order to decrease the numerical values of the 
stress and displacement is possible. For the future 
work, the investigation of friction coefficient as a 
function  of  time   inside   the   contact   region   is 



 
 
 
 
proposed. 
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