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Mechanics of variable-mass systems—Part 1: Balance
of mass and linear momentum

Hans Irschik and Helmut J Holl
Institute of Mechanics and Machine Design, Johannes Kepler University of Linz,
Altenbergerstr 69, A-4040 Linz-Auhof, Austria; hans.irschik@jku.at and helmut.holl@jku.at

The equations of balance of momentum and energy usually are formulated under the assump-
tion of conservation of mass. However, mass is not conserved when sources of mass are
present or when the equations of balance are applied to a non-material volume. Mass then is
said to be variable for the system under consideration. It is the scope of the present contribu-
tion to review the mechanical equations of balance for variable-mass systems. Our review re-
mains within the framework of the classical, non-relativistic continuum mechanics of solids
and fluids. We present general formulations and refer to various fields of applications, such as
astronomy, machine dynamics, biomechanics, rocketry, or fluid dynamics. Also discussed are
the equations for a single constituent of a multiphase mixture. The present review thus might
be of interest to workers in the field of heterogeneous media as well. We first summarize the
general balance law and review the Reynolds transport theorem for a non-material volume.
Then the latter general formulations are used to derive and to review the equations of balance
of mass and linear momentum in the presence of sources of mass in the interior of a material
volume. We also discuss the appropriate modeling of such sources of mass. Subsequently, we
treat the equations of balance of mass and linear momentum when mass is flowing through
the surface of a non-material volume in the absence of sources of mass in the interior, and we
point out some analogies to the previously presented relations. A strong emphasis is given in
this article to the historical evolution of the balance equations and the physical situations to
which they have been applied. The equations of balance of angular momentum and energy for
variable-mass systems will be treated separately, in a second part of the review, to be pub-
lished later. This review article cites 96 references.@DOI: 10.1115/1.1687409#

1 INTRODUCTION

When the total of some entity, its quantity, is known to be
invariant for a given volume, it is said to be conserved within
the volume. When it is not conserved, then it is said to be
balanced by sources of that quantity.

Only in exceptional cases, a physical meaning can be at-
tached to the sources balancing a specific quantity. A consid-
erable part of the history of mechanics may be understood as
a gigantic struggle for the proper kinematical quantities to be
balanced by physically meaningful sources of the motion of
material bodies. Nowadays, the laws of balance of mass, of
linear and angular momentum, and of energy are considered
as the proper set of balance equations of mechanics. These
balance equations are considered as fundamental, since they
hold for all material bodies, be the latter modeled as a system
of single mass-points, be the mass continuously distributed
in solid or fluid form, or be it mixed from various constitu-
ents.

The concept of mass asserts that mass is conserved within

a material volume of a body in the absence of sources
mass. A material volume possesses a closed surface th
moving with the material particles located on this surfa
The fundamental equations of classical mechanics w
originally formulated for the case of an invariant mass co
tained in a material volume.~In the Einstein special theory o
relativity, which is outside the topic of the present review
velocity-dependent relativistic mass may be introduced
formulating the equations of motion of a particle. Howev
the rest mass is usually assumed to be constant, see
Sections 29 and 63 of Pauli@1#.!

Mass is generally not conserved when sources of mass
present, or when it is not appropriate to consider a mate
volume at all. Mass then is said to be variable for the syst
under consideration. Mechanical systems with variable m
follow as the result of a problem-oriented modeling. In t
mechanics of solids and mass-points, numerous app
problems can be found in which material is expelled from
reservoir, or in which material is captured and afterwa
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transported by some mechanism. Frequently, it turns ou
be impossible~or it is not appropriate! to model the motion
of the material which is situated inside the reservoir,
which is located within some distance of the mechanism.
then necessary to enclose the interesting portions of the
spective material body by means of a non-material volum

A non-material volume possesses a closed surface th
moving at a velocity different from the velocity of the mat
rial particles instantaneously located on this surface. T
mass, which is contained in a non-material volume, there
needs not to be conserved. Such a non-material volum
called a control volume in the terminology of fluid mecha
ics. A flux of mass per unit area and time appears to t
place across the control surface enclosing the control
ume.

The use of the control volume concept is quite natura
fluid mechanics and has become standard in this field. In
literature on fluid mechanics, the special case of a n
material volume at rest is sometimes denoted ascontrol vol-
ume, the case of a rigid control volume moving relatively
the material is referred to asnon-inertial control volume, and
the material contained in a material volume is called
system, see Section 4.7 of the book on the mechanics
fluids by Shames@2#. See also, eg, Section 1.2.4 of the han
book article on fluid dynamics by White@3#. In order to
avoid ambiguities, we prefer to use the notion of anon-
material volumewhen we discuss a volume enclosed by
control surface moving at a velocity different from the v
locity of the material particles. Subsequently, we do not
strict ourselves to the case of a rigid control surface.
furthermore refer to aspatial volumein the special case of a
volume enclosed by a rigid control surface at rest. When
write about asystem, we mean the mechanical model co
sisting of material particles, control surfaces, and source
mass.

Frequently, in solid as well as in fluid mechanics, it
appropriate to model the exchange of mass between the
ume under consideration and the outside world by mean
interior sources~or sinks! of mass. For instance, in the con
tinuum theory of reactive mixtures, in the so-called theory
heterogeneous media, mass is assumed to be exchange
tween the various constituents such that it appears to be
conserved for a single constituent within a volume be
material for the total mixture. When writing the equations
balance for a single constituent of a reactive mixture, dist
uted sources of mass thus must be considered, see Se
158 of Truesdell and Toupin@4#.

It is the scope of the present contribution to review so
extensions of the fundamental equations of mechanics
were presented in the literature with respect to proble
without conservation of mass. To a certain extent, we tried
follow the notations used in the celebrated Handbuchart
of Truesdell and Toupin@4# on the classical field theorie
published in 1960, such that the reader may consult t
widely distributed text if a further clarification is needed. T
majority of the subsequently presented relations concern
the equations of balance of mass and of linear momentum
variable-mass systems were not worked out by Truesdell
t to
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Toupin @4#. Our review thus contains a large number of a
ditional important contributions belonging to both the pe
ods after and before the year 1960. The Handbuchartike
Truesdell and Toupin@4#, however, represents an importa
land-mark also with respect to the development of the to
under consideration.

The material of the present review is organized as f
lows: In Section 2, we summarize the presentation of
general balance law given in Section 157 of Truesdell a
Toupin@4#, and we review a general formulation of the tran
port theorem dating back to Reynolds@5#. In Section 3 of our
review, we use the general formulations of Section 2 to
rive and to review the equations of balance of mass
linear momentum when mass is supplied by sources in
interior of a material volume, and we discuss the appropr
modeling of sources of mass in some detail. In Section 4,
treat the equations of balance of mass and linear momen
when mass is flowing through the surface of a non-mate
volume in the absence of interior sources of mass, and
point out some analogies to the equations presented in
tion 3. The equations of balance of angular momentum
energy for variable-mass systems will be treated separa
in a second part of the review.

Throughout the paper, we use the spatial description
continuum mechanics. A transition from our continuum fo
mulation to systems of mass-points can be performed
interpreting the integrals occurring in the equations of b
ance in the sense of Stieltjes-integrals, see, eg, Sectio
and 26 of Hamel@6#. For the sake of brevity, the transition t
systems of mass-points will be left to the reader. We furt
restrict our formulations to homogeneous media, or to
single constituents of a mixture.

In writing the present review, we intended to classify r
sults to be found here and there in the literature, not only
older expositions, but also in more recent contributions.
especially wished to bring some possibly forgotten work
the attention of the reader. However, we cannot claim t
our review is complete. The literature on the topic turned
to be sparsely distributed over a wide range of different
eas. Please understand that we have limited our expositio
some of the more fundamental contributions that came to
knowledge, and to some of the respective areas only.

2 GENERAL LAWS OF BALANCE AND THE
GENERALIZED TRANSPORT THEOREM

We start our derivations from the generalized form of t
balance law, as it was presented in Section 157 of Trues
and Toupin@4# with reference to Prigogine@7# and Grad@8#:

d

dt EV
Crdv5E

V
s@C#rdv2E

S
da• i @C# (2.1)

In this relation,V represents a material volume with a clos
surfaceS, and r denotes the density of the not necessar
invariant mass included withinV. Time is denoted byt. The
trident C stands for a scalar, a vector, or a tensor of a
order. The influx ofC throughS is denoted byi @C#, and
s@C# is the supply ofC within V. The dot product operation
appearing in the surface integral at the right hand side of
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~2.1! is defined and explained in Section 3 of Ericksen@9#.
The oriented area elementda of S is a vector pointing out-
wards ofV, see Ericksen@9#, Section 25. Consequently, du
to the minus sign, the last term in Eq.~2.1! models the total
influx of C into S. In the following, we restrictC to scalars
and vectors. The general balance law, Eq.~2.1!, defines how
the rate of change of the total ofCr included in the materia
volumeV should be balanced by an appropriate combinat
of influx i @C# and supplys@C#.

For the subsequent applications of the general bala
law, it is noted that we refer our formulations to an inert
frame throughout the paper. When we speak about the ra
change of an entity or a quantity, we thus mean the abso
entity or quantity and the absolute rate of change, meas
with respect to that inertial frame. Particularly, when we ta
about a relative velocity, we mean a portion of the absol
velocity, the rate of change of the relative velocity bei
observed in the inertial frame. For the sake of brevity, we
not explicitly utilize the representation of absolute quantit
by their counterparts measured in a non-inertial frame,
do we write down explicitly the partitioning of quantitie
into their local and convective portions.

The Gauss-Green-Ostrogradsky divergence theorem
serts that

E
S
da• i @C#5E

V
divi @C#dv (2.2)

The divergence operator is denoted bydiv. For the continu-
ity requirements necessary for Eq.~2.2! to hold, see Ericksen
@9#, Section 26. As was remarked in Section 157 of Trues
and Toupin @4#, the divergence theorem demonstrates
equivalence of surface and volume sources appearing in
~2.1!: In order to secure balance, it is sufficient to replace a
continuous influx by a supplys52r21divi , or any supply
~satisfying a Ho¨lder condition! by an influx such that divi
52rs. Any solenoidal ~divergence-free! field may be
added, such that there are infinitely manyi satisfying the
latter requirement. Not only is there this indeterminism in t
right hand side of Eq.~2.1!, it may be further said that al
quantitiesC may be balanced, by definition, since an app
priate combination of sourcesi ands for C may always be
defined. Truesdell and Toupin@4# however remarked that
‘‘despite the tautologism of the general balance law, it
useful because in many cases we have a priori knowledg
i or s, or we can derive special forms for these quantit
from an information aboutC.’’ This is particularly the case
when it is known that the right hand side of Eq.~2.1! must
vanish from physical reasons. The total ofCr then is said to
be conserved inV.

We note that it is indeed the physical meaning of t
sources balancing a specific kinematical quantity, wh
makes the respective equation of balance applicable in p
tice. For instance, Laplace in 1799 contemplated the bala
of a kinematical quantity given by the product of mass a
an arbitrary function of velocity, see Chapter 1 of Part IV
the book on the history of mechanics by Dugas@10#. To
Laplace, the momentum of a mass-point was not necess
proportional to its velocity, but the mass was considered
e
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constant. It has been pointed out by Dugas@10#, however,
that the momentum of Laplace may be rewritten as the lin
momentum of a velocity dependent mass. Notwithstand
its lack of physically meaningful sources, the generaliz
mechanics of Laplace thus represents an important prede
sor of the mechanics of systems with a variable mass.

The general balance law, Eq.~2.1!, is written for a mate-
rial volumeV whose boundaryS is in motion at the velocity
of the material particles located on this boundary. When
want to consider a non-material volumev(t) bounded by a
control surfaces(t) which is moving at a prescribed velocit
u different from the particle velocity, and whens(t) is in-
stantaneously coinciding with the material surface,s(t)5S,
we may utilize the Reynolds transport theorem in the follo
ing general form:

du

dt Ev~ t !
rCdv5

d

dt EV
rCdv2E

s~ t !
da•~v2u!rC

(2.3a)

The velocity of a material particle isv5 ṗ, the position vec-
tor of the particle from a fixed origin being denoted asp. The
superimposed dot denotes the rate of change. The ope
du /dt in Eq. ~2.3a! indicates that the surfaces(t) of the
non-material volume is moving at the velocityu. The term
on the left hand side of Eq.~2.3a! represents the rate o
change of the total ofCr contained inv(t).

The general form of the transport theorem, Eq.~2.3a!,
rests upon an axiom given in the memoir entitledThe Sub-
Mechanics of the Universeby Reynolds@5#. In Article 9 of
this memoir, Reynolds formulated: ‘‘AXIOM I: Any change
whatsoever in the quantity of any entity within a closed s
face can only be affected in one or other of two distin
ways:~1! it may be affected by the production or destructi
of the entity within the surface, or~2! by the passage of the
entity across the surface.’’ In Article 14 of the memoir, Re
nolds formulated this axiom for scalar entities in three ma
ematical versions.

First, Reynolds@5# treated a control surface moving at
velocity different from the velocity of the particles locate
on the surface, and in his equation~13! he obtained a formu-
lation which, by the divergence theorem, can be identified
being equivalent to Eq.~2.3a!.

We note that the above general formulation of Reyno
for an arbitrarily moving nonmaterial volume, Eq.~2.3a!,
was not cited or utilized in the literature for a long tim
Only recently did it appear in the literature in this latter form
see Section 1.12 of the book on fluid dynamics by Wa
@11#, first published in 1993. See also equation~1.31! of the
handbook article on fluid dynamics by White@3#. Some spe-
cial formulations of Eq.~2.3a! for balance of mass and mo
mentum appeared earlier and will be addressed in Sectio
of the present review. From these special formulations,
argumentation given in Chapter 7 of the book on mechan
of solids and fluids by F Ziegler@12#, first published in Ger-
man in 1985, follows closely the lines of Axiom I by Rey
nolds @5#. With respect to the balance of momentum for
control volume, Ziegler@12# wrote: ‘‘1! the mass element
within the control volume are accelerated by external forc
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2! Mass flows trough the control surface, which results in
transport of momentum.’’ Ziegler then formulated the equ
tion of balance of linear momentum for a non-material v
ume in his equations~7.13,7.14!, see also Fig. 7.3 of Ziegle
@12#, showing a sketch of the control surface fixed in spa
or moving in a prescribed motion.

We now return to the memoir of Reynolds@5#. In equation
~14! of Article 14, Reynolds applied his equation~13! to the
case of a fixed surface including a spatial volume. Equi
lently, putting u50 and rearranging terms, it follows from
Eq. ~2.3a! that

d

dt EV
rCdv5

du50

dt E
v
rCdv1E

s
da• ṗrC (2.3b)

wherev denotes the spatial volume with a surfaces instan-
taneously coinciding with the material surfaceS. This form
of the transport theorem was attributed to Reynolds@5# in
Section 81 of the Handbuchartikel by Truesdell and Tou
@4#, with a further reference to Jaumann@13# and Spielrein
@14#. In their presentation, Truesdell and Toupin@4# further
remarked that ‘‘to consider a volumev(t) bounded by a
surfaces(t) at a different velocityu, we need only imagine
fictitious particles whose velocity isu.’’ The operator on the
left hand side of Eq.~2.3a! in the latter sense indicates th
the time derivative of the integral is taken over the volum
v(t) that is assumed to be material with respect to the fielu.
Applying this strategy of fictitious particles to Eq.~2.3b!, the
following result is obtained:

du

dt Ev~ t !
rCdv5

du50

dt E
v
rCdv1E

s
da•urC (2.3c)

where we have taken into account the instantaneous co
dence of the surfaces under consideration, see also equ
~81.4! of Truesdell and Toupin@4#. Reynolds himself in@5#
obtained an equivalent expression by eliminating the prod
tion terms from his equations~13,14! for the non-material
and the spatial volume, respectively, and he presented
result in equations~15,16! of his memoir.

Note that the differentiation and the integration can
interchanged in the integral over the spatial volume on
right hand side of Eq.~2.3c!, since the rate of change of a
elementary spatial volume vanishes. Using the common
tation du50 /dt5]/]t, we thus may write:

du

dt Ev~ t !
rCdv5E

v

]

]t
~rC!dv1E

s
da•urC (2.3d)

In 1972, this formulation was stated in Chapter 1.3 of
book on compressible-fluid dynamics by Thompson@15# in
the form of an elegant axiom. When translated into our
tation, the axiom by Thompson can be formulated as: ‘‘T
contributions of the rate of change are recognized:~1! the
value ofCr may be changing with time within the volume
giving a rate of change](rC)/]t in each volume elemen
dv; ~2! the moving surface envelops new regions of sp
with time, giving a rate of changeda•urC at each surface
element.’’ Thompson@15# thus obtained an expressio
equivalent to Eq.~2.3d!, and he attributed his axiom to Rey
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nolds @5#. In order to return from Eq.~2.3d! back to Eq.
~2.3a!, we remark that the term](rC)/]t represents the lo-
cal portion of the total rate of change,d(rC)/dt. Introduc-
ing the partitioning of the latter rate into its local and co
vective portions, using the divergence theorem of Eq.~2.2!,
and interchanging time differentiation and integration ov
the material volume instantaneously coinciding with the s
tial volume, we indeed arrive at Eq.~2.3a!. In order to com-
plete this proof, a result presented subsequently, in
~2.4a!, is needed.

For more than half of a century, until 1960, the work
Reynolds@5# on the transport theorem remained buried in
memoir that was devoted to show ‘‘that there is one, a
only one, conceivable purely mechanical system capabl
accounting for all the physical evidence, as we know it,
the Universe.’’ It was the merit of Truesdell and Toupin@4# to
connect the transport theorem with the name of Reyno
and to introduce the idea of fictitious particles moving a
velocity different from the material particles.

We note that it is the idea of fictitious particles, whic
enables a formal mathematical proof of the various versi
of the Reynolds transport theorem stated in Eqs.~2.3a–d!.
The reader may perform this proof by starting from Eule
expansion formula for the change of an infinitesimal volum
dv carried by a material particle:

d

dt
~dv !5dv divṗ (2.4a)

We add the following equivalent expression for a later us

J̇5Jdivṗ (2.4b)

where J denotes the Jacobian of the deformation gradi
tensor. In the sense of the method of fictitious particles,
operationdu(dv)/dt in Eqs. ~2.3a! and ~2.3c! now can be
performed by substituting the fictitious particle velocityu in
Eq. ~2.4a!, instead ofṗ. Similarly, the ratesdu(rC)/dt and
d(rC)/dt can be expressed by their local and convect
portions, where both the material and the fictitious parti
velocities are to be used for the convective parts. Taking i
account thatdu50(rC)/dt5](rC)/]t represents the loca
portion in the case of both rates, the proof can be comple
by using the divergence theorem of Eq.~2.2!. For the case of
Eq. ~2.3b!, this type of proof was sketched in Section 81
Truesdell and Toupin@4#. See also the discussion of E
~2.3d! given above.

Putting Eq.~2.3a! into ~2.1! and rearranging terms, w
arrive at the general equation of balance for a non-mate
volume, which we write as:

du

dt Ev~ t !
rCdv5E

V
rs@C#dv2E

S
da•~ i @C#1 i u@C#!

(2.5a)

with the influx attributed to the fictitious particles

i u@C#52~u2 ṗ!rC (2.5b)

These relations assert how the rate of change of the tota
rC contained in the nonmaterial volumev(t) is to be bal-
anced by an appropriate combination of influxi @C# and sup-



.

l

e

n
i

a

l

u

d
l

e

a
c

g

t

t

ity

tion
nd
flux
the
face

in

the
at
mp
of

sur-
the
e

me,

out
of
eral
ect
cs,

en-
city
ars
ial
a
ar-

c-
se
sis-
ss.

hed
ar-
on

a
an

f the

on-
ally
tary
led
s of
ched
tabil-
ely
esis

Appl Mech Rev vol 57, no 2, March 2004 Irschik and Holl : Mechanics of variable-mass systems—Part 1 149

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/57/2/B12/5440527/145_1.pdf by guest on 26 August 2020
ply s@C#, taking into account the velocityu of the control
surfaces(t) instantaneously coinciding with the material su
faceS. The motion ofs(t) relative toS is considered in Eqs
~2.5a,b! by means of the fictitious influxi u@C# acrossS.
Hence, when we add the fictitious influxi u@C# to the origi-
nal influx i @C# on the right hand side of the general balan
law, Eq.~2.1!, then on the left hand side we obtain the rate
change of the total ofrC contained in the non-material vo
umev(t), instead of the rate of change of this quantity co
tained in the material volumeV. Furthermore, assuming th
velocity field u to be continuous withinV, the above prin-
ciple of equivalence between surface and volume sources
be extended by introducing a fictitious supplysu5

2r21divi u . An interpretation complementary to the one i
dicated in Eq.~2.5! was presented in the book on mechan
of solids and fluids by F Ziegler@12#, who did not use the
idea of fictitious particles, but talked about the influx tran
ported by the material particles through the control surf
s(t), see also Ziegler@16#.

It is to be emphasized that the validity of the Reyno
transport theorem, Eqs.~2.3!, requires that no singular sur
face is present in the volume under consideration. A sing
surface is a surface at which the entityrC exhibits different
values when approaching from the two sides of that surfa
A review on the theory of singular surfaces was presente
Sections 173–176 and 180–194 of the Handbuchartike
Truesdell and Toupin@4#. The extension of Eqs.~2.3! to vol-
umes containing singular surfaces can be derived follow
the lines presented in Section 192 of Truesdell and Tou
@4# where reference was made to Thomas@17#. In short, a
material volume containing a singular surface can be trea
by subdividing the volume into two non-material volum
separated by the singular surface, applying Eqs.~2.3! to the
latter two volumes, and adding the results. See also the c
prehensive presentation given in Appendix A.II of the bo
on continuum mechanics of electromagnetic solids by M
gin @18#. The cited strategy for including a singular surfa
in the Reynolds transport theorem eventually leads to
following extension of Eq.~2.3b!:

d

dt EV
rCdv5

du50

dt E
v
rCdv1E

s
da• ṗrC

2E
S
da•uvrC b (2.6)

where the termvrCb represents the jump ofrC across the
singular surfaceS. Usually it is supposed that the gener
equation of balance for a material volume, Eq.~2.1!, remains
valid whether or not there is a singular surface within
Letting the volume under consideration shrink towardsS,
jump conditions are obtained, see Section 193 of Trues
and Toupin@4#. The resulting local jump conditions across
singular surface for the special cases of balance of m
momentum, and energy were discussed in some detail, e
Bednarczyk@19,20#, and by Kluwick@21#.

In the theory of multiphase mixtures, singular surfac
come into the play in case interfaces between the cons
ents have to be considered. Surface production terms refl
ing the interaction of constituents at an interface were in
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duced by Kelly @22# and by Eringen and Ingram@23#.
Momentum production at an interface in a two-phase grav
flow was considered by Hutter, Jo¨hnk, and Svendsen@24#. A
comprehensive presentation on general interface produc
terms in multiphase mixtures was given by Morland a
Sellers@25#, who also discussed the interface cross mass
to a constituent from the other constituents. Note that
presence of interface production terms at the singular sur
leads to additional source terms not explicitly expressed
the above formulation of the general balance law, Eq.~2.1!.
In a forthcoming paper, Irschik@26#, it is shown that surface
growth terms moreover are needed in order to assure
consistency of the various forms of the equations of jump
a singular surface, eg, concerning the relation between ju
conditions for balance of linear momentum and balance
kinetic energy. These surface growth terms may include
face production terms as well as the rate of change of
quantity associated with the material in the vicinity of th
singular surface.

3 SOURCES OF MASS IN THE INTERIOR OF A
MATERIAL VOLUME

The general equations of balance for a non-material volu
Eqs.~2.5! and ~2.6!, will serve as the basis of the following
considerations on problems of applied mechanics with
conservation of mass. Basically two physical models
sources of mass appear to be compatible with the gen
formulations of Section 2 above. These two models refl
the two fundamental formulations of continuum mechani
the material and the spatial description.

The material formulation represents a continuum ext
sion of the mechanics of masspoints, where the velo
emerges as a function of time for a given particle. It appe
to be quite natural in this formulation to attach mater
sources~or sinks! of mass to the particles contained in
material volume, without changing the numbers of these p
ticles ~the degree-of-freedom of the system!. As a practically
important point from the modeling aspect, the impact velo
ity of continually adhering masses, or similarly the relea
velocity of continually separating masses, can be con
tently introduced into this material model of sources of ma
In Section 197 of the book on dynamics by Tait@27#, pub-
lished in 1895, the idea of a material source of mass attac
to a mass-point was introduced by assuming that ‘‘those p
ticles the mass meets will adhere to it.’’ In a recent study
the mechanics of a growing tumor, Ambrosi and Mollica@28#
formulated: ‘‘Here we model the growing material as
single phase continuum, in which growth is not seen as
increase in the number of particles, but as an increase o
mass of the already existing particles.’’

As an example for such a material source of mass, c
sider a planet, the reference mass of which is gradu
changed by the steady impact of meteorites. If the plane
system is not destroyed by the impacts, it may be mode
by a fixed number of mass-points, and the change of mas
the planets may be characterized by sources of mass atta
to these mass-points. Due to some concerns about the s
ity of the planetary system, this problem was extensiv
discussed at the beginning of the 20th century, see the th
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of Meshchersky defended in the year 1897, reprinted in
collection of Meshchersky’s papers on the mechanics of b
ies with a variable mass, Meshchersky@29#. See also Article
299 of the elementary part of the treatise on the dynamic
a system of rigid bodies by Routh@30#, first published in
1905. A further reference to this problem was given in S
tion 27 of the Handbuchartikel on rigid body mechanics
Poeschl@31#. In celestial mechanics, the study of bodies w
variable mass represents an ongoing field of research. Fo
extensive review, see Hadjidemetriou@32#. See also, eg
Plastino and Muzzio@33#.

As a further example for the application of the mater
model of sources of mass, consider a solid carrier struct
which is deformed due to some loose mass that is fal
down from a reservoir to the structure at a given velocity
impact, and that remains attached to the structure. The
responding rate of change of the mass transported by
structure may be modeled by attaching some sources of m
to the particles of the carrier structure, without changing
degrees of freedom of the system. Various mechanisms
can be modeled by such sources were discussed in Chap
of the book on the dynamics of machines with variable m
by Cveticanin@34#. This book contains numerous solution
of problems of this type, together with an extensive list
references.

The notion of continually impacting masses adhering t
material particle does not find a physical basis in the m
chanics of fluids. That is why, in the theory of fluid mecha
ics, another type of source~or sink! of mass is introduced
usually in the framework of the spatial formulation. In th
spatial formulation, the velocity emerges as a function
time for a given place in space. It is thus quite natural
model a single source of mass by removing an infinitesim
volume at a given place from the fluid volume under cons
eration, or to let the removed infinitesimal volume mo
along a known path at a given velocity. A flow of materi
particles is then assumed to take place across the surfa
this infinitesimal volume without introducing a velocity o
impact~or release!. Hence, the notion of a source of mass
fluid mechanics is emerging from the concept of a no
material volume. In Article 56 of his treatise on hydrod
namics, first edition published in 1879, Lamb@35# defined a
corresponding simple source as ‘‘a point from which fluid
imagined to flow out uniformly in all directions.’’ As was
remarked in Section 49 of the Handbuchartikel on the ph
cal foundations of fluid mechanics by Oswatitsch@36#, it
may be necessary to exclude some regions from the m
ematical solution for simple sources in order to obtain res
that are physically meaningful. The simple source mode
fluid mechanics nevertheless turns out to be extremely
ful. If the equations to be considered are linear, the princ
of superposition allows one to construct sources that are
tributed within a region of space, or that are located in li
see Section 52 of the Handbuchartikel of Oswatitsch@36#.

In the following, the spatial formulation of the mechani
of continua is used. Since it is possible to rewrite any ma
rial description into a spatial formulation, at least in pri
ciple, it is usually not necessary to make a formal distinct
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in the notation between the above two physical models
sources of mass. It has to be noted, however, that the in
sity of a source present at a given place in space at a g
time can not be considered as an a priori known entity wh
the material model of sources attached to moving particle
utilized in the spatial formulation. The reason is that o
does not follow the path of a specific particle in the spa
formulation. Moreover, as was explained above, no veloc
of impacting masses is introduced in the fluid mechan
model of sources of mass.

In the remainder of the present Section 3, we discuss
case of mass supplied by sources in the interior of a mate
volume. The case of a non-material volume with a cont
surface moving at an arbitrary velocity is treated in Sect
4, without considering sources of mass in the interior. It i
main goal of the present view to show that some analog
results have been obtained in the literature for the proble
treated in Sections 3 and 4.

We start our considerations on a material volume with
supply of mass in the interior by studying the balance of
total mass contained in a material volumeV,

M5E
V
rdv (3.1)

When we substituteC51 in Eq. ~2.1!, and when we put the
corresponding influx to zero,i @C#50, we arrive at the equa
tion of balance of mass for a material volume in which ma
is supplied at a rates@C#5e in the interior:

d

dt EV
rdv5E

V
redv5Q (3.2)

With Eq. ~3.1!, this may be written as

Ṁ5Q (3.3)

whereQ denotes the resultant strength of the sources of m
contained in the material volume.

In a heterogeneous medium, the mass of an individ
constituent is not necessarily conserved, since mass ma
exchanged among the constituents. Describing the balanc
mass of a single constituent of a reacting continuum,
~3.2! was stated in 1964 by Kelly@22#, wherere represents
the volume supply of mass of a constituent due to chem
reactions. Note that we have suppressed the indices that
ally are introduced in the literature in order to character
specific constituents. Moreover, the ratee is to be defined
with respect to the total density of the mixture, see also S
tion 159 of Truesdell and Toupin@4# and the fundamenta
contribution by Truesdell@37#.

Using Eq.~2.3a!, or Eqs.~2.5! with u50, Eq. ~3.2! may
be transformed to a form valid for a spatial volumev that
instantaneously coincides with the material volumeV:

du50

dt E
v
rdv5Q2E

S
da• ṗr (3.4)

A discussion of this expression is given in Section 3 of t
Handbuchartikel of Oswatitsch@36# on the physical founda-
tions of fluid mechanics.
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Considering Eq.~2.4a!, the left hand side of Eq.~3.2! can
be written as

d

dt EV
rdv5E

V
~ ṙ1rdivṗ!dv (3.5)

Inserting this result into Eq.~3.2!, and using a standard a
gument, we obtain the local form of the equation of balan
of mass appropriate when mass is supplied in the interio

ṙ1rdivṗ5re (3.6a)

Without an explicit reference to earlier contributions, E
~3.6a! was discussed in Section 4 of the Handbuchartikel
ideal fluids by Lagally @38# in 1927. Independently, Eq
~3.6a! was stated in a fundamental paper by Arrighi@39#,
published in 1933.

For the application of Eq.~3.6a! to a single constituent o
a heterogeneous medium in which mass is transferred f
other species by chemical reactions, see Section 159
Truesdell and Toupin@4# and Kelly @22#.

For recent discussions of Eq.~3.6a! in the framework of
the growth of biomaterials, see Ambrosi and Mollica@28#
and Lubarda and Hoger@40#.

Arrighi @39# also expressed Eq.~3.6a! in terms of a refer-
ence state. For that sake, Eq.~3.6a! can be rewritten by
means of Eq.~2.4b! in the form

ṙ

r
1

J̇

J
5e (3.6b)

Formulated in the spatial description, Eq.~3.6b! refers to the
actual position of a specific particle to who mass is supp
at a ratee at the actual timet. The rate at which mass i
supplied to this same particle at timet is denoted byE,
wheret0<t<t, andE(t)5e. If we use the configuration o
the body at timet0 as the reference placement, Eq.~3.6b!
may be integrated along the path of a specific material p
ticle betweent0 and the actual timet. SettingJ51 at the
beginning of the path, the result becomes

r5r0J21 expE
t0

t

Edt (3.6c)

wherer0 is the mass density of the particle in the referen
configuration. The distinction betweenE and e has to be
understood in the derivation of Arrighi@39#. For a recent
discussion on the use of the material description of c
tinuum mechanics in the present context, see the expos
on the mechanics of solids with a growing mass by Luba
and Hoger@40#. For the case of a volume preserving defo
mation and growth,J51 in the course of the motion, th
latter authors obtained the simple result

r5r01E
t0

t

r g
0dt (3.6d)

where, however,r g
0 is defined as the product ofE and the

mass density at timet of the particle under consideration
Hence, Eq.~3.6d! represents an integral equation for t
mass densityr, the solution of which is given by Eq.~3.6c!
-
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with J51. On the other hand, should the time evolution ofr g
0

be given instead ofre in Eq. ~3.6a!, then Eq.~3.6d! can be
used directly.

We now turn to the equation of balance of linear mome
tum. The linear momentum contained in the material volu
is

P5E
V
ṗrdv (3.7)

When we setC5 ṗ, s@C#5b1s1d, i @C#52t in Eq.
~2.1!, the equation of balance of linear momentum follows
a form appropriate when mass is supplied in the interior:

d

dt EV
ṗrdv5E

V
~b1s1d!rdv1E

S
da•t (3.8)

The Cauchy stress tensor is denoted byt, and b is the as-
signed body force per unit mass. The additional moment
supply per unit mass due to the supply of mass in the inte
is a vector denoted bys. The vectord has been introduced in
order to consider the supply of momentum due to diffus
of mass in the single constituent of a multiphase mixture

In the material model of sources produced by impact
masses, mass is gained or lost in a particle at a velocityu that
in general differs from the particle velocityṗ. The additional
momentum supplys due to the supply of mass in the interio
occurring at a ratee may thus be modeled as:

s5eu (3.9)

Putting Eqs.~3.7! and ~3.8! into Eq. ~3.9!, we obtain the
extension of Euler’s law of balance of linear momentum a
propriate when mass is supplied in the interior:

Ṗ5F1E
V
r~eu1d!dv (3.10)

The resultant of the surface forces and the assigned b
forces is

F5E
V
rbdv1E

S
da•t (3.11)

The surface integral in Eq.~3.11! transforms to the resultan
of the surface forces due to Cauchy’s fundamental str
theorem.

Using the divergence theorem, Eq.~2.2!, from Eqs.~3.8!
and~3.9! we obtain the local form of the equation of balan
of linear momentum in the presence of a supply of mass
the interior as

r p̈5div t1r~b1d!1re~u2 ṗ! (3.12)

where we have considered Eqs.~2.4a! and ~3.6a!.
We could not find the term stemming from mass supply

Eq. ~3.12!, re(u2 ṗ), to be introduced in the literature o
the continuum theory of homogeneous media.

In the theory of multiphase mixtures, Eq.~3.12! is applied
to a single constituent in which a supply of mass occurs
the interior. Recall that in our notation the usual indices ch
acterizing specific constituents of heterogeneous media
suppressed. The termre(u2 ṗ) is absent in the exposition



i
n

e

o

n
i
s

s

c

n

s

n

h
i

i

s

of

he

t.

to

es,

c-

ory

par-
a
ions

f

ass
vi-
ass

rm

ass

o
of

tise
ji-
a
ce-
re-
law

152 Irschik and Holl : Mechanics of variable-mass systems—Part 1 Appl Mech Rev vol 57, no 2, March 2004

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanicsreview
s/article-pdf/57/2/B12/5440527/145_1.pdf by guest on 26 August 2020
on multiphase mixtures given in Sections 215 and 295
Truesdell and Toupin@4#. In this latter contribution, however
a theory of mass diffusion was developed in extension of
work of Stefan@41#, published in 1871. Remarkably, in th
theory of diffusion the termrd emerges as a linear functio
of the difference of the velocity of the constituent under co
sideration and the velocities of the other species. This in
cates an analogy between the supply of momentum du
diffusion, rd, and the termre(u2 ṗ) in Eq. ~3.12!. In equa-
tion ~5.4.15! of the comprehensive book on the historic
development and the current state of the theory of por
media by de Boer@42#, a special case of Eq.~3.12! with u
50 was presented, whererd was introduced as interactio
forces which belong to the volume forces, see also Sect
4.1 and 4.2 of the review article on contemporary progres
porous media theory by de Boer@43#. A formulation similar
to the full version of Eq.~3.12! with uÞ0 may be identified
in equation~4.13! of the comprehensive study on multipha
mixtures by Morland and Sellers@25#. The termreu thereby
has to be replaced by a weighted sum of the velocities of
other species transferring mass to the constituent under
sideration. See also the exposition of Morland@44# on the
flow of viscous fluid through a porous matrix.

In the continuum mechanics literature on the growth
biomaterials, where the biomaterial is understood as a si
constituent of a multi-component body, the supply of m
mentum given in Eq.~3.9! is applied under the special a
sumptionu5 ṗ, such that the termre(u2 ṗ) in Eq. ~3.12! is
absent, see the expositions by Ambrosi and Mollica@28# and
by Lubarda and Hoger@40#.

In the following, we setd50 and return to the extensio
of Euler’s law of balance of linear momentum given in E
~3.10!. In the context of this expression, we introduce t
center of mass of the material volume under considerat
The instantaneous position of the center of mass is given
a vectorc defined through the relation

cM5E
V
prdv (3.13)

Differentiating with respect to time and considering Eq
~2.4a! and ~3.6! gives

Mċ1Ṁc5
d

dt EV
prdv5E

V
ṗrdv1E

V
predv (3.14)

This suggests introducing a second characteristic pos
vector ĉ by means of

ĉṀ5E
V
predv (3.15)

Note thatĉ5c when the ratee at which mass is supplied i
constant throughout the body, see Eqs.~3.1!, ~3.2!, and
~3.13!. The expression for the linear momentum, Eq.~3.7!,
appears at the right hand side of Eq.~3.14!. The linear mo-
mentum therefore may be expressed as

P5Mċ1Ṁ ~c2 ĉ! (3.16)
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see Eq.~3.15!. We furthermore introduce a mean velocity
the impacting massesw by formulating

wṀ5E
V
uredv (3.17)

The mean velocityw reflects the velocityu at which mass is
gained or lost in a single particle of the continuum. T
equation of balance of linear momentum, Eq.~3.10!, then
can be rewritten as

Mc̈5F1Ṁ S w22ċ1
d

dt
ĉD2M̈ ~c2 ĉ! (3.18)

If ĉ5c, Eq. ~3.18! reduces to the more simple form

Mc̈5F1Ṁ ~w2 ċ! (3.19)

In reviewing Eq.~3.18!, we start with a single mass-poin
For this problem, the simplified form of Eq.~3.19! does ap-
ply, wherec denotes the position vector of the mass-point
which mass is gradually added with the impact velocityw.
Note thatṀ,0, when mass is gradually lost.

Without considering the velocity of the impacting mass
w50, Eq. ~3.19! was introduced in 1890 by Painleve´ in his
lectures given in Lille for the case of a particle with a velo
ity dependent mass, see Dugas@10#, Part V, Chapter 1, first
published 1955. Painleve´ used the projections of Eq.~3.19!
on the tangent and on the principal normal of the traject
of the particle. Following Dugas, Painleve´ thus, as early as
1890, suggested a generalization of the dynamics of a
ticle which included the dynamics of special relativity in
given system of reference, and which suggested the not
of transverse and longitudinal mass.

In the literature, Eq.~3.19! with the special assumption o
w50 is often attributed to Levi-Civita@45,46#, published in
1928. Levi-Civita referred to the case of a planet whose m
is gradually changed due to the fall of meteorites. Le
Civita pointed out that in the presence of a variable m
with a vanishing impact velocity,w50, one must use the
formulation of Eq.~3.19!, which may be written as

d

dt
~Mċ!5Mc̈1Ṁ ċ5F (3.20)

instead of inserting the variable mass into the classical fo
of Newton’s law,

M ~ t !c̈5F (3.21)

Levi-Civita, however, remarked that Eq.~3.21! must be used
when the velocity of the impacting mass relative to the m
of the planet vanishes,w5 ċ, see again Eq.~3.19!.

In 1884, the formulation of Eq.~3.21! was considered by
Gylden @47# in a study on the motion of a system of tw
mass-points with a variable mass subject to Newton’s law
gravitation. The paper of Gylden@47# gave rise to various
contributions in the literature, see Section 299 of the trea
of Routh @30#. See also the comprehensive review of Had
demetriou@32# on problems of celestial mechanics with
variable mass. The problem of an isotropic mass loss in
lestial mechanics has been critically reviewed in a more
cent exposition on the use and abuse of Newton’s second
for variable mass problems by Plastino and Muzzio@33#. In
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the case of an isotropic mass loss, a body is assumed to l
mass with an ejection velocity ofw5 ċ. The problem there-
fore must be described by Eq.~3.21!, instead of Eq.~3.20!.
Plastino and Muzzio@33# pointed out that Eq.~3.20! some-
times had been used erroneously in the literature for the
of an isotropic mass loss, and that the relativity princip
under Galileian transformations would be violated by t
latter formulations.

The formulation of Eq.~3.19!, with wÞ0, was derived in
1890 by Seeliger@48#, who studied steadily occurring im
pacts and separations of planetary masses. Seeliger did
mention any predecessors of this formulation. He conside
motions of planets in 3D space where he formulated
components of vectors in an inertial Cartesian frame. He
not talk about the approximation of a mass-point, but
discussed the motion of the center of mass of the pla
which he denoted as the center of gravity. First, he discus
the motion of the center of gravity of a mass suddenly i
pacting with a second mass, and he formulated the equ
lence of the linear momentum of the system of the t
masses before and after the impact. Seeliger thereby
lowed the classical theory of impact as it has been es
lished by Euler, see Kapitel V of the book on the history
the principles of mechanics by Szabo@49#. Having assumed
the two bodies to be united after the impact, Seeliger@48#
eventually proceeded to the new case of a stream of ma
continuously impacting the planet under consideration
being united with this mass after having impacted. From
continuation argument, and tacitly assuming thatĉ5c ~or
that the planet could be described as a single mass-po!,
Seeliger obtained Eq.~3.19!. He thus extended the classic
theory of dynamics with respect to the case of a body w
variable mass when mass is added or separated at a
velocity w different from the velocity of the center of mas
ċ. We therefore consider Seeliger as an important founde
the theory of systems with a variable mass.

The formulation of Seeliger@48# was reviewed, studied
and applied to various problems with a variable mass
Meshchersky in his master thesis of 1897. Meshchersky
voted a main part of his scientific work to problems with
variable mass, see the collection of Meshchersky’s pap
@29#, published in 1949 with an introduction by Kosmo
emyansky. The termṀw in Eq. ~3.19! is referred to as the
Meshchersky reactive force in the literature, see, eg, Cha
2 of the book of Cveticanin@34#. The case of a reactive forc
being colinear with the velocity of the center of mass,

~w2 ċ!Ṁ5a ċṀ (3.22)

frequently occurs in practice. The solutions of various line
and nonlinear problems witha5const were reviewed in the
book of Cveticanin@34#. Recently, the Duffing oscillato
with an exponentially and a sinusoidal varying mass w
studied by Holl, Belyaev, and Irschik@50#.

Independently from the work of Seeliger and Meshch
sky, some problems with a variable mass had been treate
Great Britain in the 19th century. The special problem o
mass, under no forces, which moves through a uniform cl
of little particles, which are at rest, was solved in Section 1
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of the book on dynamics by Tait@27#, published in 1895. In
Section 198 of this treatise, the motion of a rocket fired v
tically was studied, where the motive power of the rock
was attributed to the fact that a portion of mass is detac
with a considerable relative velocity. In a slight linguist
ambiguity, Tait noted that ‘‘the increase of the momentum
the rocket due to this cause is equal to the relative mom
tum with which the products of combustion escape.’’ Ho
ever, the acceleration of the rocket was derived correctly
Tait, in accordance with Eq.~3.19!. Tait eventually obtained
an expression for the greatest speed acquired during
flight. In the literature, the latter result is usually attributed
the Russian grammar school professor Ziolkowsky, who
countered it around the end of the 19th century, see Cha
2 of the book on spacecraft systems by Messerschmid
Fasoulas@51#. The latter book contains an appendix wi
historical data about spacecraft and rockets, ranging fr
3000 BC to the present time. Routh@52#, in Article 149 of
his treatise on the dynamics of a particle, first published
1898, studied the equation of motion of a mass-point wit
variable mass in a rectilinear motion, and he obtained the
version of Eq.~3.19!. See also Article 300 of the treatise o
the dynamics of a system of rigid bodies by Routh@30#, first
published in 1905.

British and French scholars of the 19th century attemp
to apply the ideas expressed by Eq.~3.19! to various prob-
lems of the rectilinear motion of strings and chains which
coiled up at rest and which are continually set into motio
The study of chains set into motion started in 1857 with
fundamental study by Cayley@53#, who wrote: ‘‘There are a
class of dynamical problems which, so far as I am awa
have not been considered in a general manner. The prob
referred to~which might be designated as continuous-imp
problems! are those in which the system is continually taki
into connexion with itself particles of infinitesimal mass . . . ,
so as not itself to undergo any abrupt change of velocity,
to subject to abrupt changes of velocity the particles so ta
into connexion. For instance, a problem of the sort ari
when a portion of a heavy chain hangs over the edge of
table, the remainder of the chain being coiled or heaped
close to the edge of the table, the part hanging over con
tutes the moving system, and in each element of time
system takes into connexion with itself, and sets into mot
with a finite velocity an infinitesimal length of the chain.
Without a further proof, Cayley then stated a variational f
mulation, which might be derived from the Seeliger form
lation of Eq.~3.19! for the single mass-point with a variabl
mass by performing a limit to infinitesimal masses and
applying scalar multiplication with a virtual change of pos
tion. Afterwards, a summation over the particles under c
sideration has to be performed in order to obtain Cayle
statement. Cayley thus, as early as 1857, presented a v
tional formulation, which also should be valid for a fixe
number of mass points with attached sources of mass.
then solved the above problem of a hanging chain by ap
ing a single-degree-of-freedom version of his variational f
mulation. This procedure leads to a correct result in the c
under consideration. However, the distinction between
concept of material type of sources of mass and the con
of a non-material volume comes into the play in t
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continuous-impact problems introduced by Cayley in@53#.
Cayley noted an abrupt change of velocity of the particles
into motion. In modern terminology, a singular surface th
subdivides the portion of the chain at rest from the hang
part. Of course, the concept of a singular surface was no
at the disposal of Cayley. A continuum mechanics based
cussion of the variational statement by Cayley has been
dertaken and will be reported elsewhere, Irschik@54#.

In 1898, a history on solutions concerning the rectiline
motion of strings and chains was presented in Articles 1
and 150 of the treatise on the dynamics of a particle
Routh@52#, see also Article 300 of the treatise on the dyna
ics of a system of rigid bodies by Routh@30#, first published
in 1905. Routh did not mention the variational formulatio
by Cayley@53#, but the solutions presented by Routh res
directly upon the application of Eq.~3.19!.

In 1905, a further review on the rectilinear motion
strings and chains was presented by Wittenbauer@55#, who
criticized some of the older solutions by noting that a loss
energy would occur due to impacts taking place wh
masses of a coiled chain are set into motion. In the sec
part of his paper, Wittenbauer also introduced the notion o
virtual variability of mass, an idea that turned out to be ve
useful in machine dynamics.

A contemporary attempt to apply Eq.~3.19! to the Cayley
problem of a hanging chain was presented in Chapter 1.
the book on classical dynamics by Jose and Saletan@56#. We
return to the problem of the rectilinear motion of chains a
strings gradually set into motion in Section 4 of our revie

When written separately for each mass-point, Eq.~3.19!
was frequently used in the literature as the starting point
reformulating the equations of motion of a material syst
consisting of a fixed number of mass-points according
D’Alembert’s principle. For D’Alembert’s principle applied
to a system of mass-points with an invariant mass, see
tion 45 of the Handbuchartikel by Synge@57#. The applica-
tion of D’Alembert’s principle applied to a system of mas
points with variable masses was demonstrated by Agostin
@58#, who derived the equations of Lagrange and the eq
tion of conservation of energy according to the Levi-Civ
formulation of Eq.~3.20!. See also Chapter XI of the treatis
on analytical dynamics by Pars@59#. Equation~3.19! with
wÞ0 was applied by Ge@60# to the single members of
nonlinear nonholonomic variable mass system in order
derive an extended form of the Lagrange equations. Star
from Eq.~3.19! and using D’Alembert’s principle, Luo Shao
kai and Mei Feng-xiang@61# discussed the principles of lea
action of variable mass nonholonomic nonconservative s
tems in a noninertial reference frame. Kane’s equations
variable mass nonholonomic mechanical systems were
rived by Ge and Cheng@62#, and by Zhang Yueliang and
Qiao Yongfeng@63#. D’Alembert’s principle was applied to
Eq. ~3.19! in order to discuss energy change laws for syste
with variable mass by Musicki@64#.

For a system of mass-points withĉÞc, the full version of
Eq. ~3.18! was derived in a fundamental contribution by Fe
erhofer@65#, published in 1922. In order to derive the co
tinuum mechanics formulations of Eqs.~3.13–3.18!, it is
only necessary to repeat the proof presented by Federhof
set
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the context of a system of mass-points. The paper of Fe
hofer contained not only a derivation of Eq.~3.18!, but it
also presented the equations of conservation of angular
mentum and of the kinetic energy for systems of mass-po
and for rigid bodies with variable mass. These latter con
butions will be discussed in the second part of our revie
Unfortunately, Federhofer’s paper@65# appeared in a journa
of little international relevance, shortly after World War
and the citation of this paper in Section 27 of the Handb
chartikel by Poeschl@31# were incomplete. Shortly after hi
publication on variable masses@65#, Federhofer moved from
Brno to Graz, where he took over the chair of his teach
Wittenbauer. In Graz, Federhofer turned his interest to ot
problems of mechanics. Instead of receiving the attentio
would deserve, the contribution of Federhofer@65# on the
dynamics of systems with a variable mass became forgot

Independently, various special cases of the relations
rived in the paper of Federhofer@65# were published in the
literature at a later time—eg, the variation of the center
mass relative to a rigid body with variable mass was
glected in the formulations given in Chapter 2 of the book
the dynamics of machines with variable mass by Cvetica
@34#. The motion of the rigid body then is approximated b
an expression equivalent to Eq.~3.19!, instead of the more
general expression stated in Eq.~3.18!. As a practically im-
portant result, Eq.~3.19! was formulated in a non-inertia
frame moving with the rigid body in Chapter 2 of the boo
by Cveticanin@34#.

4 VARIABLE MASS CONTAINED IN A NON-
MATERIAL VOLUME

In the present Section, we discuss problems in which a v
able mass appears due to the use of a non-material vol
v(t) in the modeling of the problem at hand. The total ma
contained inv(t) is denoted by

Mu5E
v~ t !

rdv (4.1)

Recall that the control surfaces(t) enclosing the volume
v(t) moves at a velocityu, which generally differs from the
velocity of the material particles instantaneously located
this surface. In the present section, we do not take into
count sources of mass withinv(t), since such sources hav
been discussed in Section 3 of the present review.

When we putC51 in Eq. ~2.5!, and when we set the
corresponding influx and supply terms to zero, we arrive
the equation of balance of mass for a non-material volum

du

dt Ev~ t !
rdv5E

S
da•~u2 ṗ!r (4.2)

where we have assumed that the surfaces(t) of the non-
material volume instantaneously coincides with the surfacS
of the material volume introduced in Eq.~2.5!, S5s(t). With
Eq. ~4.1!, the equation of balance of mass, Eq.~4.2!, then
may be written as

Ṁu5Qu5E
S
da•~u2 ṗ!r (4.3)
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Note that the rate of changeQu of the total of the mass
included in the non-material volumev(t) generally differs
from the rate of change of the totalM of the mass included in
the material volumeV, even though these volumes are a
sumed to coincide instantaneously,v(t)5V. For the material
volume, there isṀ5Q50 in the absence of sources
mass, see Eq.~3.2!. Hence, the superimposed dot in Eq.~4.3!
is to be understood together with the index indicating
velocity of a non-material surface. An analogous rem
holds for the subsequently treated linear momentum.

For the case of a spatial volume,u50, the integral form
of the equation of balance of mass, Eq.~4.2!, was discussed
in Section 3 of the Handbuchartikel of Oswatitsch@36# on
the physical foundations of fluid mechanics, and in Sectio
of the Handbuchartikel of Serrin@66# on the mathematica
principles of classical fluid mechanics.

Based on the extended form of the Reynolds transp
theorem, Eq.~2.3d!, the full version of Eq.~4.2! for a non-
material volume with a surfaces(t) moving at an arbitrary
velocity u was derived in Section 1.6 of the book o
compressible-fluid dynamics by Thompson@15#, published
in 1972. For more recent expositions, see Section 1.6 of
book of Ziegler@12# on the mechanics of solids and fluid
first published in German in 1985, and Section 2.3 of
book on fluid dynamics by Warsi@11#, first published in
1993.

We now turn to the equation of balance of linear mome
tum for a non-material volume. The linear momentum
cluded in the non-material volume is

Pu5E
v~ t !

r ṗdv (4.4)

When we putC5 ṗ, i @C#52t, s@C#5b in Eq. ~2.5!, we
obtain the equation of balance of linear momentum appro
ate for a non-material volume in the absence of a supply
mass in the interior:

du

dt Ev~ t !
ṗrdv5E

V
brdv1E

S
da•t1E

S
da•~u2 ṗ!r ṗ

(4.5)

Again, the surface integral in Eq.~4.5! transforms to the
resultant of the surface forces due to Cauchy’s fundame
stress theorem. Hence, see Eq.~3.11!, there is

du

dt Ev~ t !
ṗrdv5F1E

S
da•~u2 ṗ!r ṗ (4.6)

whereF denotes the resultant of the surface forces and
assigned body forces acting upon the material volume ins
taneously coinciding with the non-material volume. Putti
Eq. ~4.4! into Eq. ~4.6!, we obtain the extension of Euler’
law of balance of linear momentum appropriate for a no
material volume:

Ṗu5F1E
S
da•~u2 ṗ!r ṗ (4.7)

Particularly, the balance of linear momentum contained
a spatial volumev reads
s-
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Ṗu505
du50

dt E
v
ṗrdv5F2E

S
da•r ṗṗ (4.8)

see Eqs.~4.6! and~4.7! with u50. The tensorr ṗṗ is called
the momentum transfer. The rate of momentum included
the spatial volumeṖu50 is sometimes referred to as the loc
or apparent rate of momentum. For a stationary motion w
a steady density, the linear momentum is conserved wi
the spatial volume,Ṗu5050, and the resultant force become

F5E
S
da•r ṗṗ (4.9)

When no additional material enters or leaves the spatial
ume,da• ṗ50, the momentum transfer in Eq.~4.9! also van-
ishes, and the static relationF50 is obtained. Hence, the
stationary motion of a material filling up a closed spat
vessel has no reaction upon the vessel.

We now return to the full version of the equation of ba
ance of linear momentum for a non-material volume, E
~4.6! and ~4.7!. Let the velocity of the control surface b
decomposed into the velocity of a fictitious body instan
neously coinciding with the non-material volumev(t), and
let û be the velocity of that fictitious body. Then

u5û1d̄ (4.10)

in Eq. ~4.7!, whered̄ denotes the velocity of deformation o
the control surface relative to the fictitious body. Anal
gously, we decompose the velocity of the material partic
in the form

ṗ5û1 v̄ (4.11)

where the velocity of the material particles relative to t
fictitious body here is denoted byv̄. Substituting this decom-
position into Eq.~4.6!, and puttingC5û in the extended
form of the Reynolds transport theorem, Eq.~2.3a!, we ar-
rive at the relation

du

dt Ev~ t !
v̄rdv5F2

d

dt EV
ûrdv2E

S
da•~ v̄2d̄!r v̄

(4.12)

In reviewing the above formulations for the balance
linear momentum in a non-material volume, Eqs.~4.6!–
~4.12!, we start with the special case of a spatial volume, E
~4.8!. For an elegant explanation of this relation, we refer
Section 14 of the Handbuchartikel on ideal fluids by Laga
@38#, published in 1927. The application to the case o
stationary motion of an inviscid fluid flowing through re
gions with fixed rigid walls was discussed in detail in Cha
ter XIV of Volume 1 of the book on hydro- and aeromecha
ics by Prandtl and Tietjens@67#, first published in 1929. The
latter reference dealt with the computation of the forces
erted by the fluid upon the rigid walls, and gave an extens
to motions, which are stationary in the mean. For a furt
discussion of Eq.~4.8!, we refer to Chapter IV of the book
on gas dynamics by Oswatitsch@68#, see also Oswatitsch
@69#, and Section 4 of the Handbuchartikel of Oswatits
@36# on the physical foundations of fluid mechanics.
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Oswatitsch@36#, Section 45 made reference to a formu
tion of the type of Eq.~4.8! when discussing the problem o
the rectilinear flight of a rocket at a constant speed, with
considering an internal flow. Oswatitsch assumed that flui
detached with a constant relative velocityv̄ from the rocket,
and he replaced the momentum transfer by the relative
mentum transfer through the exit plane of the rocket in or
to obtain the force acting upon a non-material volume fly
with the rocket. This formulation holds, since the speed
the rocket was assumed to be constant. Then a rocket-fi
inertial system may be used, with respect to which the
hand side of Eq.~4.8! disappears. We note that the cite
result of Oswatitsch@36# follows also from Eq.~4.12! for a
rigid control surface enclosing the rocket,d̄50, when we
assume the internal flow as well as the acceleration of
rocket to vanish, such that the contribution of the volum
integrals in Eq.~4.12! disappear.

Referring to the work of Cisotti@70#, some important con-
sequences of the equation of balance of linear momentum
a spatial volume, Eq.~4.8!, were presented in Sections 17
and 220 of the Handbuchartikel by Truesdell and Toupin@4#.
Particularly, Truesdell and Toupin transmitted the result
Eq. ~4.9! on a steady motion with a steady density, and
specialization for a closed vessel.

The developments towards the formulation of Eq.~4.12!
for a non-material volume in an arbitrary motion started
1908, with an ingenious study on the dynamics of wa
flowing along a moving rigid wall by von Mises, see Absch
III, Section 9 of the treatise on the theory of water wheels
von Mises@71#. In order to obtain a relation for the forc
exerted by the fluid upon the moving wall, von Mises s
lected a closed rigid control surface, which consisted of
rigid wall and some parts with a flux of mass per unit ar
and time across the surface. He then applied the equatio
balance of linear momentum to the material volume inst
taneously coinciding with the non-material volume thus c
ated. Having introduced the notion of a relative stream tu
von Mises succeeded to convert a part of the rate of cha
of the linear momentum contained in the material volu
into a surface integral, ending with a practically appeal
formulation. The study given in Abschn. III, Section 9 of vo
Mises @71#, however, turned out to be far beyond the co
mon frontiers of science at that time.

The strategy of converting parts of the volume integ
appearing in the equation of balance of linear momentum
a material volume instantaneously coinciding with a no
material rigid volume was further substantiated in 1933
Müller @72#, who explicitly introduced the formulas of rigid
body kinematics for the fictitious velocityû, and who also
presented a connection to the Kutta-Joukowski lift formu

The strategy of a moving non-material volume howev
disseminated only slowly into the scientific communi
Sources of further development were the studies on
rocket motion presented to the public after the end of Wo
War II. In Section 1 of their treatise on the mathematic
theory of rocket flight, published in 1947, Rosser, Newto
and Gross@73# stated as their Principle II that ‘‘the vecto
sum of all the exterior forces acting on~a system of particles!
S is equal to the time rate of change of the total momen
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of S plus the rate at which momentum is being transpor
out of S by the particles that are leavingS.’’ The latter prin-
ciple was applied by Rosser, Newton, and Gross to derive
equation for the acceleration of a rocket without intern
flow, ie, for an accelerated rigid non-material volume, fro
which a stream of particles is ejected through the exit pla
In a shining example of scientific honesty, Rosser, Newt
and Gross@73# noted: ‘‘We have not been able to find th
principle stated elsewhere, but we hesitate to call it new
cause no great originality was involved in its discovery.
fact it is very closely related to the momentum theorem
hydrodynamics.’’ Rosser, Newton, and Gross then ci
Chapter XIV of the book of Prandtl and Tietjens@67# on
hydro- and aeromechanics. For a discussion of the acc
ated flight of a rocket without internal flow, see also Secti
V.10 of the book on gas dynamics by Oswatitsch@68# from
1952.

As a further fundamental study on rocket motion, we c
the treatise of Rankin@74# on the mathematical theory of th
motion of rotated and unrotated rockets with internal flo
published in 1948. In the case of an internal flow, the relat
velocity v̄ must not be neglected in Eq.~4.12!. The compre-
hensive treatise of Rankin@74# contains a chapter on th
equations of motion for a body of variable mass density a
invariant shape, which is loosing mass from a certain pla
portion of its surface. Independently, similar consideratio
were already presented by Gantmakher and Levin in 19
see the book on the flight of uncontrolled rockets by Ga
makher and Levin@75#, published in English in 1964.

A large amount of papers has appeared on rockets wi
variable mass since the 1940s. Due to the restriction
space, we only mention the contribution of Meirowitch@76#,
who was the first to achieve a formulation for flexible roc
ets with variable mass and internal flow, see also Chapte
of the book on methods of analytical dynamics by Meiro
itch @77#. An interesting numerical algorithm for the simula
tion of variable mass systems was recently presented
Djerassi @78#. This algorithm allows treating continuous
particle-ejecting systems such as rockets, as well as to s
discrete-particle-ejecting systems. Djerassi showed that
results of his numerical algorithm do satisfy the equations
balance of momentum.

An influential formulation for a rigid control surface mov
ing relatively to the motion of the material flow was pr
sented in Chapter 5.6 of the book on the mechanics of flu
by Shames@2#, first published in 1962. This latter contribu
tion was the first textbook to include the idea of a rig
non-material volume performing a translatory and rotato
motion relative to the fluid. Shames noted that the cor
sponding formidable formulation might ‘‘intimidate all bu
the hardiest students.’’ The equation of balance of linear m
mentum, Eq.~4.6!, was also derived for a non-material rigi
volume in the paper by Grubin@79#, published in 1963, and
in Chapter 4.3 of Volume 1 of the book on dynamics
Halfman @80#, already published in 1962. The latter boo
contains various informative problems concerning bodies
variable mass.

The formulation for a rigid non-material volume b
Shames@2# was further extended by Eke and Wang@81#, who
in 1994 presented several versions of the equations of mo
of two-phase variable mass systems comprising a main s
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frame and a fluid phase. The control surface including
moving two-phase system was assumed to maintain a
stant shape, where mass was allowed to be continuousl
moved or added to the solid phase inside the rigid con
surface. Thereby it was tacitly assumed that no additio
contributions due to the presence of a singular surface n
to be considered within the non-material volume.

As mentioned in Section 2 of our review, the Reynol
transport theorem for a non-rigid volume with a control s
face moving at an arbitrary velocityu different from the
velocity of the material particles located on that surface,
~2.3c!, was brought to the attention of a wider audience
Section 81 of the Handbuchartikel by Truesdell and Tou
@4# in 1960. The implications of the latter general formul
tion upon the equations of balance of linear momentum fo
non-material volume however were not worked out
Truesdell and Toupin@4#.

Without giving any explicit reference to other literatur
the formulation of Eq.~4.6! for a non-rigid control surface
moving at a velocity different from the velocity of the mat
rial particles was presented by Thorpe@82# in 1962. Thorpe
noted that ‘‘the derivations of the theorem of linear mome
tum, which are found in most textbooks, are unnecessa
restrictive in that the results are limited either to systems
constant mass or to control systems fixed in space. Furt
more, these derivations often result in a misconception of
law of momentum for a system of variable mass.’’ Certain
with legitimacy, Thorpe@82# attributed his equation~1!, a
relation equivalent to Eq.~2.3d!, to the Leibniz theorem for
differentiating an integral. From this theorem, he derived
relation equivalent to Eq.~4.2!, his equation~8!, and an
equivalent of Eq.~4.6!, his equation~16!. Since Thorpe@82#
did not introduce different notations for the various quan
ties and volumes to be considered, however, he was le
the conclusion that Eq.~2.3b! would be ‘‘valid regardless of
the motion of the control volume, since the velocity of t
control surface has been eliminated without making any
sumptions about the motion of the control volume itsel
The representation of Thorpe@82#, as fundamental as it ap
pears, thus cannot be considered to be free of misconcep
itself.

With reference to Reynolds@5#, the equation of balance o
linear momentum for a non-rigid control surface moving a
velocity different from the velocity of the material particle
Eq. ~4.6!, was derived in Chapter 1.6 of the book o
compressible-fluid dynamics by Thompson@15# published in
1972, see the discussion given in Section 2 above. The t
sition from the formulation for a spatial volume, Eq.~4.8!, to
the case of the extension of Euler’s law of balance of lin
momentum appropriate for a non-material volume, Eq.~4.7!,
was discussed in some detail in Chapter 7.1 of the book
mechanics of solids and fluids by Ziegler@12#, first published
in 1985, see also Section 2 above. Ziegler transmitted im
tant didactic aspects of this topic in@16#.

The versatile formulation of Eq.~4.12! was derived in
Section 2.7 of the book on fluid dynamics by Warsi@11#, first
the
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published in 1993. The latter book represents a valuable c
temporary source on conservation laws and the kinetics
flow.

In an analogy to Eq.~3.13!, we now introduce the cente
of mass of the non-material volume under consideration. T
instantaneous position of the center of mass is given b
vectorcu defined through the relation

cuMu5E
v~ t !

prdv (4.13)

Differentiating with respect to time gives

Muċu1Ṁucu5
du

dt Ev~ t !
prdv (4.14)

The extended transport theorem, Eq.~2.3a!, proves that

du

dt Ev~ t !
prdv5

d

dt EV
prdv1E

S
da•~u2 ṗ!rp (4.15)

But, for a material volume in the absence of sources of m
in the interior, we may write

d

dt EV
prdv5E

V
ṗrdv5E

v~ t !
ṗrdv5Pu (4.16)

see Eq.~2.4a!, and Eq.~3.6! with e50. In an analogy to Eq.
~3.15!, we furthermore introduce the characteristic positi
ĉu by

ĉuṀ u5E
S
da•~u2 ṗ!rp (4.17)

Putting Eqs.~4.15!–~4.17! into Eq. ~4.14!, we arrive at the
following relation for the linear momentum contained in th
non-material volume:

Pu5Muċu1Ṁu~cu2 ĉu! (4.18)

We furthermore introduce a mean velocitywu of the rate of
mass contained in the non-material volume by

wuṀu5E
S
da•~u2 ṗ!r ṗ (4.19)

The equation of balance of linear momentum for the no
material volume, Eq.~4.7!, then can be rewritten as

Muc̈u5F1ṀuS wu22ċu1
d

dt
ĉuD2M̈u~cu2 ĉu! (4.20)

In the present context of a non-material volume, we th
have arrived at a relation for the motion of the center of m
in complete analogy to the result of Federhofer@65# for a
material volume with sources of mass in the interior, E
~3.18!.

For the case of a rocket motion with internal flow, E
~4.20! was derived in the expositions of Rankin@74#, and
independently by Leitmann@83#. In 1966, it was proved by
Thomson @84# that the various derivations presented
Rankin@74#, Leitmann@83#, Thorpe@82#, Halfman@80#, and
others on this topic indeed are equivalent. In 1972, Belkn
@85# transmitted a short note on his work on a general tra
port rule for variable mass dynamics. In his equation~8!,
Belknap @85# presented a formulation related to Eq.~4.20!,
where he remarked that the origin and the significance of
M̈ucu and 2Ṁuċu terms would be often questioned. Indepe
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dently, Eq.~4.20! was derived by Kapoulitsas@86# for a vari-
able system of particles, for which the mass variation is
tended continuously on a part of the surface.

It has to be emphasized that the equations derived in
present section prove to be suitable not only in fluid mech
ics, but also in the mechanics of solids and structures.
application of the equation of balance of linear moment
for a system with a variable mass was discussed in 196
the framework of the mechanics of solids in Chapter IV.7
the 2nd edition of the book on the mechanics of solids
Parkus@87#, first edition published in 1960. Parkus intro
duced an alternative form of Eq.~4.20!. We arrive at the
latter formulation by setting

Pu5Muċs (4.21)

in Eq. ~4.7!. Substituting further Eq.~4.19! in Eq. ~4.7! leads
to the somewhat simpler expression

Muc̈s5F1Ṁu~wu2 ċs! (4.22)

which appears to be directly analogous to the Seeliger r
tion, Eq. ~3.19!. It must be noted, however, that the chara
teristic velocityċs introduced by Parkus in general does n
coincide with the velocityċu of the center of mass, the po
sition of which has been defined in Eq.~4.13!.

The use of a non-material volume in the mechanics
solids was further substantiated in the book on technical c
tinuum mechanics by Riemer@88#. Using the example of a
deformable and rotating rod with an axially moving th
rigid disc, Riemer clearly demonstrated the possibility of t
occurrence of singular surfaces due to non-material c
straints in structures. As mentioned already above, a sing
surface subdivides a material volume into two separated n
material volumes. When writing the equations of balance
a material volume including a singular surface, a jump te
thus has to be considered, which follows from adding
equations of balance for the two non-material sub-volum
see Eq.~2.6! and the discussion presented in Section
above. Accordingly, Riemer@88# developed the equations o
balance of mass, linear and angular momentum, and of
ergy for the non-material volumes separated by a sing
surface, eg, by the singular surface enforced in the rota
rod by the axial movement of the thin disc. These 3D form
lations were preceded by formulations given by Wauer@89#,
who studied the transversal vibrations of uniaxial continua
variable length. Wauer@89# emphasized the important role o
non-material boundary and transition conditions in structu
problems, and he presented various valuable solutions,
also Riemer and Wauer@90#.

Prior to the work of Wauer@89# and Riemer@88#, the
consequences that may result from the presence of sing
surfaces and non-material boundary conditions were usu
not taken into account in the literature on solids and str
tures. As an example, consider the problem of a whip form
by an inextensible string with a sharp reversed fold. The f
subdivides the string into two straight parts moving in par
lel at different velocities. Each of these parts must be
closed by a non-material volume, since the fold moves a
velocity different from the velocities of the two parts. Hen
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the fold represents a singular surface. This fact was not ta
into account in the solution of a related problem presente
Section 123 of the book on theoretical mechanics by Ha
@91#, published in 1949, nor was it considered in the solut
developed in U¨ bung 16 of Chapter IV of the introduction t
mechanics by Szabo@92#, first published in 1954, or in the
alternative solution presented in Chapter II.D of the book
the history of the principles of mechanics by Szabo@49#, first
published in 1977.

Recently, the related problem of a folded falling inexte
sible string or chain fixed at one end was rediscovered in
literature. The equations of motion of this system were
rived from balance equations by Steiner and Troger@93#,
where the discontinuity of velocity between the two parts
the string was taken into account by assuming Carnot
forces to occur due to plastic impacts at the location of
fold. Recall the similar argument by Wittenbauer@55#, re-
ported in Section 3 above. The problem of a folded falli
inextensible string was treated as an application of a m
general formulation for bodies deploying along cables
Crellin, Janssens, Poelaert, Steiner, and Troger@94#, who ex-
tended the equations of Lagrange by means of the Ca
loss forces, and obtained the result of Steiner and Tro
@93#. The Lagrange equations were recently extended to
count for a non-material volume by Irschik and Holl@95#,
where the problem of a falling folded string was recons
ered. We plan to return to the Lagrange equations in
second part of our review, when dealing with the balance
kinetic energy.

We end this part of our review by noting that the existen
of singular surfaces in the form of shock fronts was reco
nized in fluid mechanics already in the 19th century. As w
reported in an exposition on the historical developments
on recent contributions to the theory of shock waves by K
wick @96#, the possibility of a state of motion in which th
fluid is divided into two parts by a surface of discontinuit
however, was sometimes doubted in the literature of the
half of the 20th century.
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