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A B S T R A C T

A multi-stable nonlinear energy sink (MNES) with piecewise linear stiffness and magnet negative stiffness
is developed to suppress the vibration of unbalanced rotor system. The specific structure of the MNES is
developed, and the working principles of the piecewise linear stiffness and negative stiffness are introduced.
Then, the dynamic equations of the rotor-MNES system are established. Based on these, the transient and
steady state responses of the rotor-MNES system are numerically studied. In addition, the vibration suppression
ability of the MNES is analysed and compared with that of bi-stable nonlinear energy sink (BNES). Finally,
experiments are carried out to verify the effectiveness of the MNES. The numerical and experimental results
show that the designed MNES has a strong vibration suppress ability and can withstand a wide range of energy.

1. Introduction

Vibration absorption is an important way of vibration suppression
for rotor system. By adding an absorber, which is usually a small mass,
the vibration of rotor system can be ‘absorbed’ by resonance of the
absorber. Rotor absorbers can be divided into passive type [1] and
semi-active (or active) type [2]. Although the passive and semi-active
(or active) type rotor absorbers are efficient in vibration suppression,
both types have shortcomings: passive absorbers can only work within
a narrow frequency band near the anti-resonance point, while the
semi-active (or active) absorber are all complicated in structure.

Nonlinear energy sink (NES) [3–5], unlike traditional absorbers, can
suppress vibration in a wide frequency range and has the potential to be
the next generation of passive vibration suppression approach for rotor
systems. At present, NESs can be divided into two types: ungrounded
NESs and grounded NESs. The ungrounded NESs are nonlinearly cou-
pled with the main system through the small mass, while the grounded
NESs are linearly coupled to the main system and nonlinear coupled to
the ground. With NES, vibration energy of the main system is transmit-
ted to the small mass by targeted energy transfer (TET) mechanism [6–
8], in which courses the transmitted energy is directly consumed by the
NES damping and no longer returns to the main system. The NES has
the characteristics of small mass, high reliability and wide suppression
frequency band. Therefore, various types of NESs have been applied
in aerospace [9], rotating machinery [10], architecture [11] and other
fields.

In terms of rotor systems or rotating machines, the study of vi-
bration suppression by NES has been studied for a long time. For
example, Gourc et al. examined the effect of a NES on reducing chatter
vibration in turning processes [12]. Bab et al., meanwhile, studied
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the vibration suppression ability of NES for a rotating beam [13].
Bergeot et al. analysed the steady-state response of helicopter blades
with NES [14,15]. Yao et al. designed a new NES with permanent
magnetic springs and coil springs for unbalanced rotor system [16].
The above researches have fully illustrated the effectiveness of the NES
for vibration suppression of rotor system. However, although better
than absorber, the traditional NES still has a narrow energy threshold
corresponding to a strong nonlinear response, thereby limiting its wide
range of engineering applications.

In order to further expand the engineering applications and solve
the limitation of the narrow threshold, bi-stable nonlinear energy sink
(BNES) [17,18] is developed. Under usual conditions, the BNES is
composed of negative stiffness [19] and linear stiffness and have two
equilibrium points. Many BNESs have been applied to vibration sup-
pression [17,20] and energy harvest processes [21]. For example,
Romeo et al. used numerical simulations to prove that the BNES has
great damping effect on the transient response of the main system with
different initial energies [17]; Habib et al. developed an adjustable
BNES and applied it to suppress vibration of a two-degree-of-freedom
main system [20]; Wang et al. designed a two-degree-of-freedom bi-
stable piezoelectric energy harvester to verify that it can absorb the
two-order resonance energy of the main system [21].

The BNES breaks through the narrow limitation of the energy
threshold, and multi-stable nonlinear energy sinks (MNES) [22] ex-
pands the threshold limitation further. Compared with the BNES, the
MNES has more equilibrium positions and stronger energy absorption
capacity [22]. Many applications of the MNES are focused on energy
harvesters, such as Tri-stable energy harvesters [23–25], Quad-stable
energy harvesters [26,27].

https://doi.org/10.1016/j.ijnonlinmec.2019.103273
Received 27 January 2019; Received in revised form 6 September 2019; Accepted 6 September 2019
Available online 12 September 2019
0020-7462/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijnonlinmec.2019.103273
http://www.elsevier.com/locate/nlm
http://www.elsevier.com/locate/nlm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2019.103273&domain=pdf
mailto:hlyao@mail.neu.edu.cn
https://doi.org/10.1016/j.ijnonlinmec.2019.103273
http://creativecommons.org/licenses/by/4.0/


H. Yao, Y. Wang, Y. Cao et al. International Journal of Non-Linear Mechanics 118 (2020) 103273

Fig. 1. Whole physical structure of the rotor-MNES system and its component structures.

At present, there is no MNES applied to the rotor vibration sup-
pression. Therefore, in this paper a MNES for rotor system is pro-
posed, and its structural characteristics, stiffness variation, vibration
characteristics and vibration suppression effects are studied.

2. Structure and dynamic model of the rotor-MNES

2.1. Structure of the rotor-MNES system

As shown in Fig. 1(a), the MNES is mounted on the single-span-
single-disc rotor system. The MNES is made up of three parts: MNES
mass part, piecewise stiffness part and negative stiffness part. During
working, the MNES is fixed on the test rig and does not contact with
the rotor shaft, so the MNES will not rotate with the rotor.

The MNES mass part contains a circular ring and a mass sup-
porting, as shown in Fig. 1(b). The circular ring has 12 rectangular
through-holes uniformly distributed. The mass supporting consists of a
supporting and four weakly stiffness springs. The springs are designed
to prevent the MNES mass from rotating.

As shown in Fig. 1(c), the piecewise stiffness part contains four
preload beams and eight linear beams. The preload beams are square
section and the linear beams are rectangular section. One end of the
preload beams and linear beams is fixed to the beam supporting. The
other end of preload beams is compressed into rectangular through
holes and has a certain preload. At the same time, the other end of
linear beams is placed at the centre of the MNES mass rectangular
through holes.

The negative stiffness part contains two magnet supporting parts
and four magnets, as shown in Fig. 1(d). The magnets are fixed on the
inner sides of the magnet supporting parts and on both sides of the
circular ring.

2.2. Multi-stable stiffness of the MNES

The multi-stable piecewise linear force of the MNES is composed
of two parts: positive force and negative force. The relationship be-
tween the multi-stable piecewise linear force of the MNES and its

displacement can be expressed as

𝐹𝑑 (𝑒) = 𝐹𝑧(𝑒) + 𝐹𝑓 (𝑒) (1)

where, 𝐹𝑑 is the multi-stable piecewise linear force of the MNES. 𝐹𝑧
is the piecewise linear positive force and 𝐹𝑓 is the magnetic spring
negative force. 𝑒 is the MNES displacement in the horizontal or vertical
direction.

The piecewise linear positive force 𝐹𝑧 is provided by the combina-
tion of four preload beams, eight linear beams and four soft springs.
The stiffness of soft spring 𝑘𝑐 is very small, so its stiffness is neglected.

As shown in Fig. 2, 𝐹𝑟, 𝐹𝑥 and 𝐹𝑦 represent the forces generated
by the rotor system, the horizontal stiffness beams and the vertical
stiffness beams, respectively. Without considering friction, the hori-
zontal stiffness beams and vertical stiffness beams do not interfere
with each other, and they all only provide a unidirectional force. The
force generated by the rotor system is decomposed into vertical and
horizontal directions, so the MNES’s horizontal and vertical beams can
balance them in the horizontal and vertical directions, respectively.

In terms of the vertical or horizontal vibration of the rotor system,
when the vibration is small (Fig. 2(a)), two preload beams provide the
positive stiffness of the MNES. When the vibration is middle (Fig. 2(b)),
the preload of a preload beam is completely released, and it is separated
from the contact of the MNES. At this time, only one preload beam
provides the positive stiffness. When the vibration is large (Fig. 2(c)),
the linear beams are in contact with the MNES. Under this condition,
four linear beams and a preload beam provide the positive stiffness
together.

So, the positive stiffness in horizontal and vertical directions can be
expressed as

𝑘𝑧(𝑒) =

⎧

⎪

⎨

⎪

⎩

2𝑘𝑎
(

|𝑒| ≤ 𝑒𝑎
)

𝑘𝑎
(

𝑒𝑎 ≤ |𝑒| ≤ 𝑒𝑏
)

𝑘𝑎 + 4𝑘𝑏
(

|𝑒| > 𝑒𝑏
)

(2)

where, 𝑘𝑧, 𝑘𝑎 and 𝑘𝑏 represent the positive stiffness, the stiffness of
preload beams and the stiffness of linear beams, respectively. 𝑒𝑎 and
𝑒𝑏 represent the preload compression value and the clearance distance
between the linear beam and the MNES mass, respectively.
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Fig. 2. Piecewise linear positive stiffness schematic diagram under different rotor vibrations.

Table 1
Positive stiffness parameters.

Parameter Value Parameter Value

𝑘𝑎 5000 N∕m 𝑒𝑎 0.2 mm
𝑘𝑏 6250 N∕m 𝑒𝑏 0.9 mm
𝑘𝑐 40 N∕m

According to the positive stiffness of each segment, the resultant
force applied to the MNES can be expressed as

𝐹𝑧(𝑒) =

⎧

⎪

⎨

⎪

⎩

2𝑘𝑎 |𝑒| sgn(𝑒)
(

|𝑒| ≤ 𝑒𝑎
)

2𝑘𝑎 ||𝑒𝑎|| sgn(𝑒) + 𝑘𝑎(|𝑒| − 𝑒𝑎)sgn(𝑒)
(

𝑒𝑎 ≤ |𝑒| ≤ 𝑒𝑏
)

2𝑘𝑎 ||𝑒𝑎|| sgn(𝑒) + 𝑘𝑎(|𝑒| − 𝑒𝑎)sgn(𝑒)+4𝑘𝑏(|𝑒| − 𝑒𝑏)sgn(𝑒)
(

|𝑒| > 𝑒𝑏
)

(3)

Using the parameter of the positive stiffness in Table 1, the relationship
between the MNES displacement and the piecewise linear force can be
obtained and shown in Fig. 3.

The negative force 𝐹𝑓 provided by the magnetic spring can be calcu-
lated by using equivalent magnetic charge method [28]. The negative
force 𝐹𝑓 is provided by the magnetic spring. The magnetic spring is
made up of ring type magnets, which are divided into outer magnets
and central magnets, as shown in Fig. 4(a). The outer diameter, inner
diameter and thickness of the outer magnets are 𝑅𝐷1, 𝑅𝑑1 and 𝑏1, and
those of the central magnets are 𝑅𝐷2, 𝑅𝑑2 and 𝑏2, respectively. The
distance between the outer magnet and the central magnet is h. The
width of the connecting part is 𝐵.

The magnetic spring axial diagram of the plane 2 and plane 3 is
shown in Fig. 4(b). The radius of the point charges on plane 2 and plane
3 are 𝑟2 and 𝑟3, respectively. The relation vector of the plane 2 point

Fig. 3. Relationship between the MNES displacement and piecewise linear force.

charge and plane 3 point charge is 𝒓23. The angles of the point charges
on plane 2 and plane 3 are 𝛼 and 𝛽, respectively. The radial distance
between central magnets and outer magnets is e. The magnetic force
of magnetic plane 3 on magnetic plane 2 is 𝐹23. The magnetic force of
magnetic plane 2 on magnetic plane 3 is 𝐹32.

When the central magnets are in non-centre position, they will be
subjected to a radial repulsive force. As shown in Fig. 4(b), according to
the equivalent magnetic charge method, the point charge 𝑞2 of a point
(

𝑟2,𝛼
)

in plane 2 is

𝑞2 = 𝐵𝑟𝑟2d𝑟2d𝛼 (4)

where, 𝐵𝑟 represents the residual flux density.
The point charge 𝑞3 of a point

(

𝑟3,𝛽
)

in plane 3 is

𝑞3 = 𝐵𝑟𝑟3d𝑟3d𝛽 (5)
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Fig. 4. Schematic diagram of the negative stiffness.

The electrostatic force of interaction d⃖⃖⃖⃖⃖⃖⃗𝑭 23 between the two points
is

d⃖⃖⃖⃖⃖⃖⃗𝑭 23 =
𝐵2
𝑟

4𝜋𝜇0

𝑟2𝑟3𝑑𝑟2𝑑𝛼𝑑𝑟3𝑑𝛽
𝑟223

⃖⃖⃖⃖⃗𝒓23 (6)

where, 𝜇0 represents the relative permeability of the permanent mag-
nets.

According to the derivation result in [28], when the central magnets
move a distance e along the radial direction of the magnets, the
interaction force of magnetic plane 3 on magnetic plane 2 is 𝐹23 in
the same direction of e. The interaction force 𝐹23 is

𝐹23 =
𝐵2
𝑟

4𝜋𝜇0 ∫

2𝜋

0 ∫

2𝜋

0 ∫

𝑅𝐷1

𝑅𝑑1
∫

𝑅𝐷2

𝑅𝑑2

𝐴23
(

𝐵23 + 𝐶23 +𝐷23
)3∕2

d𝑟2d𝑟3d𝛼d𝛽 (7)

where, 𝐴23 = 𝑟2𝑟3(𝑟3 cos 𝛽 − 𝑟2 cos 𝛼 − 𝑒), 𝐵23 = (𝑟3 cos 𝛽 − 𝑟2 cos 𝛼 − 𝑒)2,
𝐶23 = (𝑟3 sin 𝛽 − 𝑟2 sin 𝛼)2 and 𝐷23 = ℎ2.

Similarly, the interaction forces of magnetic plane i (𝑖 = 4 − 8) on
magnetic plane 2 is 𝐹2𝑖 in the same direction of e. The interaction force
𝐹2𝑖 is

𝐹2𝑖 = (−1)𝑖+1
𝐵2
𝑟

4𝜋𝜇0 ∫

2𝜋

0 ∫

2𝜋

0 ∫

𝑅𝐷1

𝑅𝑑1
∫

𝑅𝐷2

𝑅𝑑2

𝐴2𝑖
(

𝐵2𝑖 + 𝐶2𝑖 +𝐷2𝑖
)3∕2

× d𝑟2d𝑟𝑖d𝛼d𝛽 (𝑖 = 4,… , 8) (8)

where, ℎ23 = ℎ, ℎ24 = ℎ + 𝑏2, ℎ25 = ℎ + 𝑏2 + 𝐵, ℎ26 = 2ℎ + 𝑏2 + 𝐵,
𝐴2𝑖 = 𝑟2𝑟𝑖(𝑟𝑖 cos 𝛽 − 𝑟2 cos 𝛼 − 𝑒), 𝐵2𝑖 = (𝑟𝑖 cos 𝛽 − 𝑟2 cos 𝛼 − 𝑒)2, 𝐶2𝑖 =
(𝑟𝑖 sin 𝛽 − 𝑟2 sin 𝛼)2 and 𝐷2𝑖 = ℎ22𝑖.

Also, the interaction forces of magnetic plane i (𝑖 = 3 − 8) on mag-
netic plane 1 is 𝐹1𝑖 in the same direction of e. The interaction force 𝐹1𝑖
can be calculated similar as Eq. (7).

𝐹1𝑖 = (−1)𝑖
𝐵2
𝑟

4𝜋𝜇0 ∫

2𝜋

0 ∫

2𝜋

0 ∫

𝑅𝐷1

𝑅𝑑1
∫

𝑅𝐷2

𝑅𝑑2

𝐴1𝑖
(

𝐵1𝑖 + 𝐶1𝑖 +𝐷1𝑖
)3∕2

× d𝑟1d𝑟𝑖d𝛼d𝛽 (𝑖 = 3,… , 8) (9)

where, 𝐴1𝑖 = 𝑟1𝑟𝑖(𝑟𝑖 cos 𝛽 − 𝑟1 cos 𝛼 − 𝑒), 𝐵1𝑖 = (𝑟𝑖 cos 𝛽 − 𝑟1 cos 𝛼 − 𝑒)2,
𝐶1𝑖 = (𝑟𝑖 sin 𝛽 − 𝑟1 sin 𝛼)2 and 𝐷1𝑖 =

(

𝑏 + ℎ2𝑖
)2.

Moreover, the magnetic spring structure described above is a bilat-
erally symmetrical structure, so the repulsive forces on the left and right
sides of the central magnets are equal. The total reaction force of the
outer magnets to the central magnets is

𝐹𝑓 (𝑒) = 2
8
∑

𝑖=3

(

𝐹1𝑖 + 𝐹2𝑖
)

(10)

Using the parameter in Table 2, the negative force 𝐹𝑓 applied to the
MNES can be expressed as

𝐹𝑓 (𝑒) = −7022𝑒 − 4.1 × 10−10𝑒2 + 8.16 × 106𝑒3 (11)

Table 2
Negative stiffness parameters.

Parameter Value Parameter Value

𝐵𝑟 1.34 T 𝐵 5 mm
𝑅𝐷1 25 mm 𝑏1 12 mm
𝑅𝑑1 12.5 mm 𝑏2 6 mm
𝑅𝐷2 25 mm 𝜇0 4𝜋 × 10−7 N∕A2

𝑅𝑑2 12.5 mm ℎ 12.8 mm

Fig. 5. Comparison of the linear negative force and the accurate values.

When e is very small, the linear part of the negative force is much
larger than the nonlinear parts, so only the linear part is considered
and the negative force can be expressed as

𝐹𝑓 (𝑒) = −7022𝑒 (12)

So, the negative stiffness can be expressed as

𝑘𝑓 =
d𝐹𝑓 (𝑒)
d𝑒

= −7022 (13)

The negative force accurate values are calculated by Eq. (11), and
the simplified linear negative force is calculated by Eq. (12). Comparing
the linear force generated by negative stiffness with the accurate values,
the resulting relationship is shown in Fig. 5.

The multi-stable piecewise linear force 𝐹𝑑 can be calculated by
Eqs. (1), (3) and (12). As shown in Fig. 6, the MNES have five points
(A, B, C, D, E) with zero force, which means MNES are five equilibrium
positions. Among them, A, C and E are stable equilibrium positions, B
and D are unstable equilibrium positions.

2.3. The rotor-MNES system dynamic model

Using the lumped mass method, the dynamic model of rotor system
with the MNES is shown in Fig. 7, and the axial diagram of rotor-MNES

4
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Fig. 6. Relationship between the MNES displacement and multi-stable piecewise linear
force.

Fig. 7. Simplified model of the rotor-MNES system.

Fig. 8. Axial diagram of the rotor-MNES system model.

system model is shown in Fig. 8. According to the result in Appendix,
the dynamic differential equations are written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚1�̈�1 + (𝑐1𝑥 + 𝑐2𝑥)�̇�1 − 𝑐2𝑥�̇�2 + 𝑘𝑟𝑓 𝜃𝑦 + (𝑘1𝑥 + 𝑘𝑓 )𝑥1 − 𝑘𝑓𝑥2
= 𝑚𝑝𝜀𝜔2 cos(𝜔𝑡)

𝑚1�̈�1 + (𝑐1𝑦 + 𝑐2𝑦)�̇�1 − 𝑐2𝑦�̇�2 − 𝑘𝑟𝑓 𝜃𝑥 + (𝑘1𝑦 + 𝑘𝑓 )𝑦1 − 𝑘𝑓 𝑦2
= 𝑚𝑝𝜀𝜔2 sin(𝜔𝑡)

𝐽𝑑 �̈�𝑥 + 𝜔𝐽𝑝�̇�𝑦 − 𝑘𝑓𝑟𝑦 + 𝑘𝑓𝑓 𝜃𝑥 = 0

𝐽𝑑 �̈�𝑦 − 𝜔𝐽𝑝�̇�𝑥 + 𝑘𝑓𝑟𝑥 + 𝑘𝑓𝑓 𝜃𝑦 = 0

𝑚2�̈�2 − 𝑐2𝑥(�̇�1 − �̇�2) − 𝑘𝑓𝑥1 + 𝐹𝑑 (𝑥2) = 0

𝑚2�̈�2 − 𝑐2𝑥(�̇�1 − �̇�2) − 𝑘𝑓 𝑦1 + 𝐹𝑑 (𝑦2) = 0

(14)

where, ‘‘⋅’’ denotes d/dt. 𝑥1 and 𝑦1 are displacements of the disc
in the horizontal and vertical directions, respectively. 𝑥2 and 𝑦2 are
displacements the MNES mass in the horizontal and vertical directions,
respectively. 𝜃𝑥, 𝜃𝑦 are the angle of the disc in the horizontal and
vertical directions, respectively. 𝑚1 and 𝑚2 are the masses of the rotor
system and the MNES, respectively. 𝐽𝑑 , 𝐽𝑝 are radial moment of inertia,
polar moment of inertia of the disc, respectively. 𝑐1𝑥 and 𝑐1𝑦 are the
damping of the rotor system in the horizontal and vertical directions,
respectively. 𝑐2𝑥 and 𝑐2𝑦 are the damping of the ring magnets in the
horizontal and vertical directions, respectively. 𝑘1x, 𝑘1𝑦, 𝑘𝑟𝑓 , 𝑘𝑓𝑟, 𝑘𝑓𝑓
are stiffness of bending and torsional of the rotor, respectively. 𝑚𝑝, 𝜔

Table 3
Dimensional parameters of the Bently Nevada RK4 test rig.

Parameter Value Parameter Value

𝑑 0.01 m 𝐿 0.38 m
𝐷𝑑𝑖𝑠𝑐 0.08 m 𝐻𝑑𝑖𝑠𝑐 0.02 m
𝐿1 0.19 m 𝜌 7.9 × 103 kg∕m3

𝜀 0.04 m

Table 4
Dynamic parameters of the Bently Nevada RK4 test rig.

Parameter Value Parameter Value

𝑚1 1 kg 𝐽𝑝 8 × 10−4 kg m2

𝐽𝑑 4 × 10−4 kg m2 𝑘1𝑥 8.9 × 104 N∕m
𝑘1𝑦 8.9 × 104 N∕m 𝑘𝑟𝑓 0 N∕m
𝑘𝑓𝑟 0 N∕m 𝑘𝑓𝑓 3250 N∕m
𝑐1𝑥 3 N s∕m 𝑐1𝑦 3 N s∕m

and 𝜀 are the eccentric quality, the rotor speed and the eccentricity,
respectively.

3. Numerical simulation and analysis

3.1. Parameter definition

(1) Parameters of the rotor system
The rotor system dimensional parameters are taken from the Bently

RK4 test rig. In Table 3, 𝑑 and 𝐿 are the length and diameter of the
rotor shaft, respectively. 𝜌, 𝐷𝑑𝑖𝑠𝑐 and 𝐻𝑑𝑖𝑠𝑐 are the density, diameter
and thickness of the disc, respectively. 𝐿1 is the distance from the disc
to the bearing.

In Table 4, the bending stiffness and torsional stiffness of the rotor
are calculated by the equations in Appendix. The damping coefficients
are identified by the modal test of the rotor system.

(2) Parameters of the MNES
The MNES mass is selected as 𝑚2 = 0.1 kg. The damping of the ring

magnets is 𝑐2𝑥 = 𝑐2𝑦 = 2 N s/m. The other parameters are shown in
Tables 1 and 2.

3.2. Transient vibration suppression analysis of the rotor-MNES system

In this section, the numerical simulations of the rotor-MNES system
adopt parameters in Section 3.1 and the initial conditions are zero
for each variable except for variables 𝑥1 or 𝑦1 (see below). In the
transient analysis, 𝑚𝑝 should be equal to zero to prevent the harmonic,
and different transient energies will be applied to the rotor-MNES
system. At the same time, the responses of the rotor system with and
without the MNES will be compared to confirm the vibration absorption
capacity of the MNES.

(1) A 98 N pulse force
Assuming the rotor is given a 98 N pulse force in the horizontal

or vertical direction, the rotor system will produce a 1.2 mm initial
amplitude, that is, 𝑥1 = 1.2 mm or 𝑦1 = 1.2 mm at 0 s. The transient
responses of the rotor system with and without the MNES are obtained
by using the numerical calculation method.

As shown in Fig. 9, the vibration amplitude of the rotor system
without NES performs a free-attenuation motion, and the initial input
energy is dissipated by its own damping. The vibration amplitude
attenuation speed is slow, and it takes about 0.92 s to decay to 0.3 mm.

When NES is added, it can be seen that the MNES has a strong
inhibitory effect on the rotor system, as shown in Fig. 10(a) and (b).
The vibration amplitude takes about 0.28 s to decay to 0.3 mm. The
attenuation speed is 3.28 times as fast as that of the rotor system
without the NES.

Initially, the rotor system and the MNES traverse multiple equi-
librium positions (three sinks) and rapidly attenuate the energy to

5
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Fig. 9. Transient response of the rotor system under a 98 N pulse force.

complete the fully snap-through motion (0 s∼0.15 s). During this
period, only the snap-through motion [26,29,30] exists in the rotor
system. Snap-through motion is a kind of energy transfer motion, which
means the MNES quickly traverse the multiple equilibrium positions
and jump among them. During snap-through motion, the MNES can
bring about a large-amplitude vibration and shows a good performance
in vibration absorption.

Then, energy of the rotor-MNES system is consumed between two
adjacent stable equilibrium positions (0.15 s∼0.67 s). This performance
is a kind of sink-to-sink motion, and the MNES’s motion contains two
states. When the energy is large enough, the MNES will trigger the
snap-through motion and consume energy; When the energy is small,
the MNES vibrates at a single stable equilibrium point and consumes
energy slowly.

Finally, the rotor-MNES system residual energy is dissipated at a
single stable equilibrium point (0.67 s∼1.0 s). This performance is a
kind of in-sink motion, which cannot make the BNES trigger the snap-
through motion. The MNES eventually stays at the stable equilibrium
point C.

So, under the impact force, the energy consumption process of the
MNES is divided into fully snap-through motion, sink-to-sink motion
and in-sink motion, respectively.

(2) A 125 N pulse force
In order to verify that the MNES can absorb different impact energy,

assuming the rotor is given a 125 N pulse force in the horizontal
or vertical direction, the rotor system will produce a 1.5 mm initial
amplitude, that is, 𝑥1 = 1.5 mm or 𝑦1 = 1.5 mm at 0 s. The transient
responses of the rotor system with and without the MNES are as follows.

The vibration amplitude of the rotor system without the NES in
Fig. 11 continues to be slow, and it takes about 1.02 s to decay to
0.3 mm.

As shown in Fig. 12(a) and (b), the MNES still has an obvious
vibration absorption effect. After adding the MNES, the vibration am-
plitude of the rotor system experiences 0.28 s to decay to 0.3 mm.

Fig. 11. Transient response of the rotor system under a 125 N pulse force.

The speed is 3.64 times as fast as that of the rotor system without
the NES. Comparing with the small impact energy, the attenuation
speed is obviously improved. At the same time, under this force, the
MNES (Fig. 12(b)) has a larger vibration amplitude and more time to
traverse multiple equilibrium positions, indicating that more energy is
transferred to the MNES and consumed in the vibration. The MNES
eventually stays at the stable equilibrium position A. This phenomenon
is due to the fact that there are multiple stable equilibrium positions
in the rotor-MNES system, and the MNES will eventually stay at one of
stable equilibrium positions based on the energy intake.

(3) A 142 N pulse force
In order to explore the effect of the MNES’s final residence positions

to absorb the impact energy, assuming the rotor is given a 142 N pulse
force in the horizontal or vertical direction, it will produce a 1.8 mm
initial amplitude, that is, 𝑥1 = 1.8 mm or 𝑦1 = 1.8 mm at 0 s. The
transient responses of the rotor system with and without the MNES are
as follows.

As shown in Fig. 13, the vibration amplitude of the rotor system
without NES experiences 1.20 s to decay to 0.3 mm.

As shown in Fig. 14(a) and (b), the MNES has further enhanced
the vibration absorption effect under this impact energy, and the rotor
system with MNES experiences 0.32 s to reduce to 0.3 mm. The atten-
uation speed is 3.75 times as fast as that of the rotor system without
the NES. The MNES eventually stays at the stable equilibrium position
E. Comparing with Figs. 10(b), 12(b) and 14(b), the rotor system
and the MNES eventually stay at three different sets of equilibrium
positions. Under the same MNES and different impact energies, the
MNES has a strong inhibitory effect on rotor system, regardless of which
equilibrium position it eventually stops.

In summary, the MNES has a strong vibration suppression effect on
the rotor system with different initial energies. After adding the MNES,
the rotor system has a very fast amplitude attenuation, which is more
than three times that of the rotor system without the MNES. Under

Fig. 10. Transient responses of the rotor-MNES system under a 98 N pulse force.

6



H. Yao, Y. Wang, Y. Cao et al. International Journal of Non-Linear Mechanics 118 (2020) 103273

Fig. 12. Transient responses of the rotor-MNES system under a 125 N pulse force.

Fig. 13. Transient response of the rotor system under a 142 N pulse force.

the certain initial energy, the MNES absorbs the vibration generated by
the rotor system, moves back and forth between different equilibrium
positions, consumes energy through the MNES connection damping,
and finally stays at a stable equilibrium position. Different initial
energies will create different final stable equilibrium positions. But the
final stable equilibrium positions do not affect the vibration suppression
effect of the MNES on the rotor system.

3.3. Steady-state vibration suppression analysis of a rotor-MNES system

In this section, the numerical simulations of the rotor-MNES system
adopt parameters in Section 3.1 and the initial conditions are zero for
each variable except for variable 𝑚𝑝 (see below). In the steady-state
analysis, different 𝑚𝑝 will be used to produce different periodic force.

At the same time, the responses of the rotor system with and without
MNES will be compared in frequency domain.

(1) 𝑚𝑝 = 3.5 × 10−4 kg

Assuming the rotor system is isotropic. When the eccentric mass is
𝑚𝑝 = 3.5 × 10−4 kg, the rotor system will generate a same periodic
force in the vertical and horizontal directions. As far as the single
direction is concerned, the rotor system without the MNES in Fig. 15(a)
has a natural frequency around 47.5 Hz and a maximum amplitude of
1.33 mm.

As shown in Fig. 15(b), after adding the MNES, the overall suppres-
sion effect of the rotor system is obvious, and the maximum amplitude
is 0.58 mm, so its vibration suppression rate is more than 56%. At the
same time, the maximum amplitude of the MNES is 1.70 mm, which
is much larger than that of the rotor system in the resonance region,
indicating that the vibration energy of the rotor system is transferred
to the MNES.

The rotor system and MNES in Fig. 15(b) have SMR [31] region
in the frequency range of 46.3 Hz∼49.0 Hz. Meanwhile, the time re-
sponses at 47.5 Hz are shown in Fig. 16(a) and (b). When the energy is
small, the MNES will vibrate around a stable equilibrium position (such
as 24.07∼24.18 s). When the energy is large enough, the MNES will
vibrate through multiple equilibrium positions (such as 24.67∼24.77
s).

(2) 𝑚𝑝 = 4.0 × 10−4 kg

In order to analyse the influence of the exciting force on the vibra-
tion suppression effect and SMR region, the eccentric mass is increased.
When the eccentric mass is 𝑚𝑝 = 4.0 × 10−4 kg, the rotor-MNES system
is subjected to a stronger exciting force. The natural frequency of the

Fig. 14. Transient responses of the rotor-MNES system under a 142 N pulse force.
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Fig. 15. Frequency responses of the rotor and rotor-MNES systems under a small stable periodic exciting force.

Fig. 16. Time responses of the rotor-MNES system under a small stable periodic variation force.

rotor system without MNES (Fig. 17(a)) is still around 47.5 Hz, and the
maximum amplitude is 1.52 mm.

After adding the MNES, the maximum amplitude of the rotor system
in Fig. 17(b) is 0.63 mm. Compared with the rotor system without the
MNES, it is reduced by 58.6%, and it has stronger vibration suppression
ability than small energy. At the same time, the MNES amplitude
maximum is also increased to 1.89 mm, and the amplitude in resonance
region is bigger than the MNES amplitude in Fig. 15(b). It can be
seen that more energy is transferred to the MNES with the increase
of excitation force.

As is shown in Fig. 17(b), there are SMR region between the rotor
system and the MNES in the range of 46.2 Hz ∼ 49.2 Hz, and a slightly
wider suppression band than that of Fig. 15(b). Specifically, the time
responses of 47.5 Hz are shown in Fig. 18(a) and (b).

(3) 𝑚𝑝 = 4.75 × 10−4 kg

To further investigate the influence of the exciting force on the
vibration suppression effect and SMR region, the eccentric mass is
continuously increased. As shown in Fig. 19(a), when the eccentric
mass is 𝑚𝑝 = 4.75×10−4 kg, the maximum amplitude of the rotor system
without the MNES is 1.81 mm.

After adding the MNES, the maximum amplitude of the rotor system
in Fig. 19(b) is 0.70 mm, which is 61.3% lower than the rotor system
without the MNES. It can be seen that the MNES still has a great
vibration suppression effect on the large vibration energy, and the
vibration suppression rate is still improved.

As shown in Fig. 19(b), the rotor system and the MNES have a
SMR region in the frequency range of 45.4 Hz∼50.0 Hz, and the time
responses of 47.5 Hz are shown in Fig. 20(a) and (b).

In summary, the MNES has obvious suppression effect on the entire
frequency domain range, especially in the resonance region, and the
vibration suppression rate is above 56%. In a certain range of exciting
force, as the excitation force increases, the vibration absorption effect of
the MNES will increase, and the vibration suppression frequency band
will also become wider.

3.4. Comparison between MNES and BNES

In this section, the numerical simulation parameters of 𝑥2, 𝑦2, 𝑘𝑓
and 𝐹𝑑 in Eq. (14) should be replaced by 𝑥𝑏𝑛𝑒𝑠, 𝑦𝑏𝑛𝑒𝑠, 𝑘𝑓𝑏𝑛𝑒𝑠 and 𝐹𝑑𝑏𝑛𝑒𝑠,
respectively. At the same time, the same transient energies as the rotor
with the MNES will be applied to the rotor-BNES system, and the
numerical simulation results of the rotor system with the MNES and the
BNES will be compared to confirm the vibration absorption advantages
of the MNES. The initial conditions are zero for each variable except
for rotor initial amplitude (see below).

Comparing with the MNES, the magnetic BNES needs to use the
nonlinear part stiffness of magnet, so the distance between the outer
magnet and the central magnet must be very small. In such a case, the
magnetic BNES can hardly stay at the centre and it needs an external
force to balance at a stable equilibrium position.

In general, the magnetic BNES (Fig. 21) consists of a permanent
magnet negative stiffness structure and a linear spring. When the BNES
at stable equilibrium position C (Fig. 21(a)), the spring is in a stretch
state. When the BNES is at stable equilibrium position E (Fig. 21(b)),
the spring is in a compressed state.

In order to ensure the comparability of the MNES and BNES, the
BNES is selected with same parameters as the MNES except the multi-
stable force. So, the mass and damping of BNES are selected as 𝑚𝑏𝑛𝑒𝑠 =
0.1 kg and 𝑐𝑏𝑛𝑒𝑠 = 2 N s/m, respectively.
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Fig. 17. Frequency responses of the rotor and rotor-MNES systems under a middle stable periodic variation force.

Fig. 18. Time responses of the rotor-MNES system under a middle stable periodic variation force.

Fig. 19. Frequency responses of the rotor and rotor-MNES systems under a large stable periodic variation force.

The BNES curve in Fig. 22 is fitted from MNES’s multi-stable piece-
wise linear force data and reduces the number of equilibrium positions,
ensuring the same stiffness between the equilibrium positions of the
bi-stable and multi-stable. The specific form is expressed as Eq. (15).

𝐹𝑑𝑏𝑛𝑒𝑠(𝑒) = 1.5 × 1010𝑒3−2.07 × 107𝑒2 + 6348𝑒 (15)

The bi-stable force in Eq. (15) is composed of magnet force and
linear spring force. The specific magnet stiffness and linear spring
stiffness are shown as Eq. (16) and Eq. (17), respectively.

𝑘𝑓𝑏𝑛𝑒𝑠(𝑒) = 4.5 × 1010𝑒2−4.14 × 107𝑒 (16)

𝑘𝑧𝑏𝑛𝑒𝑠(𝑒) = 6348 (17)

The responses of the rotor system with the BNES can be calculated
by using Eqs. (9), (15), (16) and (17). Assuming the rotor is given a
98N, 125N or 142 N pulse force in the horizontal or vertical direction,
it will produce a 1.2 mm, 1.5 mm or 1.8 mm initial amplitude in x
or y direction at 0 s. After adding BNES, the rotor system vibration
amplitude in Fig. 23(a), (b) and (c) experience about 0.30 s, 0.43 s and
0.51 s to decrease to 0.3 mm, and the attenuation speed are 3.06 times,
2.37 times and 2.35 times as fast as that of the rotor system without
the NES, respectively.

Comparing with BNES, the MNES has a more obvious suppression
effect. The rotor system with the MNES in Figs. 10(b), 12(b) and 14(b)
experience about 0.28 s, 0.28 s and 0.32 s to 0.3 mm, respectively. The
attenuation speed are 1.07 times, 1.54 times and 1.63 times as fast as
that of the rotor system with the BNES, respectively.

9
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Fig. 20. Time responses of the rotor-MNES system under a large stable periodic variation force.

Fig. 21. Schematic model of the rotor-BNES system.

Fig. 22. Force of the bi-stable stiffness and multi-stable piecewise linear force.

As the impact energy increases, the MNES vibration suppression
effect gradually increases, and the BNES vibration suppression effect
gradually weakens. So, in a certain energy range, the MNES has better
vibration suppression effect and can withstand a stronger impact en-
ergy than the BNES with the same stiffness between the equilibrium
positions.

But the present structure is more complicated than BNES type, and
also, the present structure is too large in the axial direction of the rotor
system, which affects the actual application in rotor system, so these
are the shortcomings of the present structure.

4. Experiments

4.1. Experiment setup

The vibration suppression effect experiment of the MNES is com-
pleted on the Bently rotor test rig. In this experiment, the MNES is
mounted on the single-disc rotor system, as shown in Fig. 24(a). The
experimental devices consist of a single disc rotor system, a MNES,
two eddy current sensors, a photoelectric encoder, and a set of NI
acquisition devices.

The MNES (Fig. 24(b)) is designed according to the parameters in
Tables 1 and 2. In order to reduce the interference of the friction on the
experiment, the lubricating oil is added to the place where MNES is in
contact with the beams. At the same time, the photoelectric system,
the eddy current sensor and the NI acquisition card are used to test the
vibration frequency, test vibration displacement of the rotor system and
complete the data acquisition, respectively.

4.2. Experimental results

4.2.1. Transient verification experiment
In this section, the initial experiment conditions are the same as

Section 3.2. Different pulse forces are applied to the rotor system in the
horizontal direction by the force hammer, and the obtained transient
attenuation curves are compared with the simulation results.

The eddy current sensors can only measure the relative displace-
ment, so the final equilibrium amplitude of the experiment is zero. The
Fig. 25 characterizes the relationship between experimental rotor vi-
bration amplitude and time under different pulse forces. The measured
experimental transient responses have the same trends as simulated
transient responses. They all traverse multiple steady-state points for

10
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Fig. 23. Transient responses of the rotor system with the BNES under different pulse forces.

Fig. 24. Experimental devices.

rapid energy decay, then consume energy between adjacent two stable
equilibrium points, and finally deplete the remaining energy at a stable
equilibrium position.

The experimental and simulated attenuation rates are compared as
follows: as shown in Fig. 25(a), (b) and (c), under the experimental
conditions of three different energies, the rotor system amplitudes
experienced 0.77 s, 0.73 s and 0.83 s decays to zero, respectively. As
shown in Figs. 10(a), 12(a) and 14(a), under the simulated conditions of
three different energies, the rotor system amplitudes experienced 0.71
s, 0.71 s and 0.91 s to decay to zero, respectively.

Therefore, the attenuation rates of the rotor system are almost the
same under experimental and simulated conditions.

4.2.2. Steady-state verification experiment
In this section, the initial experiment conditions are the same as

Section 3.3. The eccentric disc with eccentric mass 𝑚𝑝 = 4.75 × 10−4 kg
is used to generate a stable periodic force, and the vibration suppression
effects of the MNES in the vertical and horizontal directions of the rotor
system are explored.

The Bently rotor system is isotropic, so the rotor system without the
MNES has the same responses in the horizontal and vertical directions.

11
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Fig. 25. Transient experimental responses of the rotor system with the MNES under different pulse forces.

Fig. 26. Experimental frequency response of the rotor system without the MNES under
a large stable periodic variation force in the horizontal and vertical directions.

As shown in Fig. 26, the rotor system without the MNES generates a
maximum amplitude of 1.73 mm at the resonance region of 47.5 Hz.

Adding the MNES, the horizontal and vertical experimental results
of the rotor system in Fig. 27(a) and (b) have the same trends as
the simulation curves. The maximum vibration amplitudes of the two
directions are 0.783 mm and 0.802 mm, respectively, so the vibration
suppression rates reach 54.7% and 53.6%, respectively.

The rotor system with the MNES causes SMR regions in the range
of 45.7 Hz∼51 Hz and 45 Hz∼50 Hz, respectively. Their specific time
domain responses of 47.5 Hz are shown in Fig. 28(a) and (b).

So, the steady-state experiments demonstrate that the MNES has
a strong vibration suppression effect and realizes the rotor system
vibration suppression in a wide frequency domain.

5. Conclusion

In this paper, a grounded multi-stable nonlinear energy sink applied
to the rotor system is proposed. The principles and fundamental charac-
teristics of the MNES are studied numerically and experimentally. The
mainly results are as follows:

(1) The designed MNES has a strong vibration suppression effect on
the small amplitude’s rotor system and can withstand a wide range of
energy.

(2) In a certain range of exciting force, as the excitation force increases,
the vibration absorption effect of the MNES will increase, and the
vibration suppression frequency band will also become wider.

(3) In a certain energy range, the MNES has better vibration suppres-
sion effect and can withstand a stronger impact energy than the BNES
with the same stiffness between the equilibrium positions.

(4) The final stable equilibrium position of the MNES does not affect
the vibration suppression effect of the MNES on the rotor system.
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Fig. 27. Experiment and simulation frequency responses of the rotor system with the MNES under a large stable periodic variation force in the horizontal and vertical directions.

Fig. 28. Experimental time responses of the rotor system with the MNES under a large stable periodic variation force in the horizontal and vertical directions.

Appendix

Axial vibration has little effect on the rotor, so the rotor system only
needs to consider the following four degrees of freedom.
[

𝑥1, 𝑦1, 𝜃𝑥, 𝜃𝑦
]

(A.1)

MNES does not rotate and has no axial vibration in the working
process, so the degrees of freedom are as follows:
[

𝑥2, 𝑦2
]

(A.2)

The Lagrange equation of the rotor-MNES system is

𝑑
𝑑𝑡

(

𝜕𝑇
𝜕�̇�𝑖

)

− 𝜕𝑇
𝜕𝑞𝑖

= 𝑄𝑖 𝑖 = 1, 2,…n (A.3)

where, the generalized coordinates are 𝑞1 = 𝑥1, 𝑞2 = 𝑥2, 𝑞3 = 𝑦1, 𝑞4 = 𝑦2,
𝑞5 = 𝜃𝑥 and 𝑞6 = 𝜃𝑦.

Total kinetic energy of rotor-MNES system is

𝑇 = 𝑇1 + 𝑇2 (A.4)

Kinetic energy of rotor system is

𝑇1 =
1
2
𝑚1

(

�̇�21 + �̇�21
)

+ 1
2

[

𝐽𝑑
(

�̇�2𝑥 + �̇�2𝑦
)

+ 𝐽𝑝𝜔
2 − 2𝐽𝑝𝜔�̇�𝑦𝜃𝑥

]

(A.5)

where, 𝐽𝑝 =
1
2𝑚1𝑅2, and 𝐽𝑑 = 1

2𝐽𝑝.
Kinetic energy of MNES system is

𝑇2 =
1
2
𝑚2

(

�̇�22 + �̇�22
)

(A.6)

According to the definition of generalized force, generalized force
can be obtained.

𝑄1 = 𝑚𝑝𝜀𝜔
2 cos(𝜔𝑡)−(𝑐1𝑥+𝑐2𝑥)�̇�1+𝑐2𝑥�̇�2−𝑘𝑟𝑓 𝜃𝑦−(𝑘1𝑥+𝑘𝑓 )𝑥1+𝑘𝑓𝑥2 (A.7)

𝑄2 = 𝑚𝑝𝜀𝜔
2 sin(𝜔𝑡)−(𝑐1𝑦+𝑐2𝑦)�̇�1+𝑐2𝑦�̇�2+𝑘𝑟𝑓 𝜃𝑥−(𝑘1𝑦+𝑘𝑓 )𝑦1+𝑘𝑓 𝑦2 (A.8)

𝑄3 = 𝑐2𝑥(�̇�1 − �̇�2) + 𝑘𝑓𝑥1 − (𝑘𝑓 + 𝑘𝑧)𝑥2 (A.9)

𝑄4 = 𝑐2𝑥(�̇�1 − �̇�2) + 𝑘𝑓 𝑦1 − (𝑘𝑓 + 𝑘𝑧)𝑦2 (A.10)

𝑄5 = 𝑘𝑓𝑟𝑦 − 𝑘𝑓𝑓 𝜃𝑥 (A.11)

𝑄6 = −𝑘𝑓𝑟𝑥 − 𝑘𝑓𝑓 𝜃𝑦 (A.12)

where, stiffness coefficient 𝑘𝑟𝑟, 𝑘𝑟𝑓 , 𝑘𝑓𝑟 and 𝑘𝑓𝑓 are obtained by flexi-
bility method.

According to the bending deformation formula of the beam, when
the force P acts on the point O of the rotor, the deflection and the
section corner of point O are respectively:

𝑤1 = −
𝑃 (𝐿 − 𝐿1)𝐿1

6𝐿𝐸𝐼
[

𝐿2 − (𝐿 − 𝐿1)2 − 𝐿2
1
]

(A.13)

𝜑1 = −
𝑃 (𝐿 − 𝐿1)
2𝐿𝐸𝐼

[ 1
3
𝐿2 − 1

3
(𝐿 − 𝐿1)2 − 𝐿2

1

]

(A.14)

where, 𝐼 = 1
64𝜋𝑑

4, and 𝐸 = 206 GPa.
When the moment M acts on the point O of the rotor, the deflection

and the section corner of point O are respectively:

𝑤2 =
𝑀𝐿1
6𝐿𝐸𝐼

[

𝐿2 − 𝐿2
1 − 3(𝐿 − 𝐿1)2

]

(A.15)

𝜑2 =
𝑀

6𝐿𝐸𝐼
[

𝐿2 − 3(𝐿 − 𝐿1)2 − 3𝐿2
1
]

(A.16)

Therefore, the deflection or section corner at point O caused by unit
force or moment, that is, the flexibility coefficients are:

𝛼𝑟𝑟 = −
(𝐿 − 𝐿1)𝐿1

6𝐿𝐸𝐼
[

𝐿2 − (𝐿 − 𝐿1)2 − 𝐿2
1
]

(A.17)
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𝛼𝑟𝜑 = −
(𝐿 − 𝐿1)
2𝐿𝐸𝐼

[1
3
𝐿2 − 1

3
(𝐿 − 𝐿1)2 − 𝐿2

1

]

(A.18)

𝛼𝜑𝑟 =
𝐿1

6𝐿𝐸𝐼
[

𝐿2 − 𝐿2
1 − 3(𝐿 − 𝐿1)2

]

(A.19)

𝛼𝜑𝜑 = 1
6𝐿𝐸𝐼

[

𝐿2 − 3(𝐿 − 𝐿1)2 − 3𝐿2
1
]

(A.20)

The stiffness matrix is the inverse of the flexibility matrix. The
stiffness matrix is:
[

𝑘𝑟𝑟 𝑘𝑟𝑓
𝑘𝑓𝑟 𝑘𝑓𝑓

]

=
[

𝛼𝑟𝑟 𝛼𝑟𝜑
𝛼𝜑𝑟 𝛼𝜑𝜑

]−1

(A.21)

By substituting kinetic energy and generalized force into (A.3), the
dynamic model of rotor-MNES can be obtained.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑚1�̈�1 + (𝑐1𝑥 + 𝑐2𝑥)�̇�1 − 𝑐2𝑥�̇�2 + 𝑘𝑟𝑓 𝜃𝑦 + (𝑘1𝑥 + 𝑘𝑓 )𝑥1 − 𝑘𝑓𝑥2
= 𝑚𝑝𝜀𝜔2 cos(𝜔𝑡)

𝑚1�̈�1 + (𝑐1𝑦 + 𝑐2𝑦)�̇�1 − 𝑐2𝑦�̇�2 − 𝑘𝑟𝑓 𝜃𝑥 + (𝑘1𝑦 + 𝑘𝑓 )𝑦1 − 𝑘𝑓 𝑦2
= 𝑚𝑝𝜀𝜔2 sin(𝜔𝑡)

𝐽𝑑 �̈�𝑥 + 𝜔𝐽𝑝�̇�𝑦 − 𝑘𝑓𝑟𝑦1 + 𝑘𝑓𝑓 𝜃𝑥 = 0

𝐽𝑑 �̈�𝑦 − 𝜔𝐽𝑝�̇�𝑥 + 𝑘𝑓𝑟𝑥1 + 𝑘𝑓𝑓 𝜃𝑦 = 0

𝑚2�̈�2 − 𝑐2𝑥(�̇�1 − �̇�2) − 𝑘𝑓𝑥1 + 𝐹𝑑 (𝑥2) = 0

𝑚2�̈�2 − 𝑐2𝑥(�̇�1 − �̇�2) − 𝑘𝑓 𝑦1 + 𝐹𝑑 (𝑦2) = 0

(A.22)

where, 𝑘1𝑥 = 𝑘1𝑦 = 𝑘𝑟𝑟, 𝐹𝑑 (𝑥2) = (𝑘𝑓 + 𝑘𝑧)𝑥2, and 𝐹𝑑 (𝑦2) = (𝑘𝑓 + 𝑘𝑧)𝑦2.
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