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Abstract

Subdivision Rules, 3-Manifolds and Circle Packings

Brian Rushton

Department of Mathematics

Doctor of Philosophy

We study the relationship between subdivision rules, 3-dimensional manifolds, and circle
packings. We find explicit subdivision rules for closed right-angled hyperbolic manifolds,
a large family of hyperbolic manifolds with boundary, and all 3-manifolds of the E3,H2 ×
R,S2×R, S̃L2(R), and S3 geometries (up to finite covers). We define subdivision rules in all
dimensions and find explicit subdivision rules for the n-dimensional torus as an example in
each dimension. We define a graph and space at infinity for all subdivision rules, and use that
to show that all subdivision rules for non-hyperbolic manifolds have mesh not going to 0.
We provide an alternate proof of the Combinatorial Riemann Mapping Theorem using circle
packings (although this has been done before). We provide a new definition of conformal for
subdivision rules of unbounded valence, show that the subdivision rules for the Borromean
rings complement are conformal and show that barycentric subdivision is almost conformal.
Finally, we show that subdivision rules can be degenerate on a dense set, while still having
convergent circle packings.

Keywords: LaTeX, PDF, BYU, Math, Thesis, subdivision, rules, manifold, 3-manifold, circle,
packings, infinity, space, geometries, Perelman, torus, hyperbolic, unbounded, valence
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Introduction

A long-standing conjecture of Cannon is that every Gromov hyperbolic group with a 2-sphere

at infinity is a Kleinian group [8]. By this we mean that:

(i) the group acts on H3 by isometries,

(ii) the action is properly discontinuous, and

(iii) the action is cocompact.

All Gromov hyperbolic groups that are already known to be 3-manifold groups are

Kleinian groups by the Geometrization Conjecture, proved by Perelman [15]. However,

it is not at all obvious that hyperbolic groups with a 2-sphere at infinity correspond to any

manifold at all, and this is the reason the conjecture remains unsolved.

One approach, adopted by Cannon, Floyd, and Parry, among others, is to study subdi-

vision rules [6]. All Gromov hyperbolic groups with a 2-sphere at infinity have a subdivision

rule on the sphere [7]. A subdivision rule is a way of dividing the sphere into a tiling, or cell

structure, with a recursive formula for dividing each tile into smaller tiles. A more rigorous

definition of subdivision rule can be found in Section 3.1.

Some well-known examples of subdivision rules include barycentric subdivision and hexag-

onal refinement (where a triangle is chopped up into smaller triangles by connecting the

midpoints of each pair of edges). Cannon has shown that, if a subdivision rule for a group

is conformal (meaning that tiles don’t get too distorted in the long run), then the group

must be a hyperbolic 3-manifold group [8]. However, it has proven difficult to determine if

a subdivision rule is conformal or not. Cannon and Swenson have proven the converse, i.e.

that a hyperbolic 3-manifold groups have a conformal subdivision rule [7]. Conformality is

discussed in more detail in Part II.
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We will now give an outline of the dissertation. All work in this dissertation is original

work, outside of Chapter 5.

This dissertation is divided into two parts. In Part I, we find a large number of explicit

subdivision rules for manifolds. Previously, only a handful of explicit subdivision rules for

manifolds were known, e.g. the dodecahedral orbifold depicted in [6]. In [17], [18], we found

explicit subdivision rules for all non-split, prime alternating links and all torus links. Part I

of this dissertation expands our collection of subdivision rules for manifolds significantly.

In Chapter 1, we construct an explicit subdivision rule for all manifolds created by

gluing right-angled hyperbolic polyhedra, and for other hyperbolic manifolds created from

sufficiently large polyhedra. This includes a wide variety of hyperbolic manifolds with toral

boundary and hyperbolic surface boundary. This greatly expands the number of knowm

conformal subdivision rules.

In Chapter 2, we construct explicit subdivision rules for all manifolds (up to finite covers)

of five of the eight geometries (excluding H3, Nil, and Sol). We use some results from Chapter

1, but many of the manifolds require new methods.

In Chapter 3, we show that the idea of a subdivision rules can be extended in interesting

ways to manifolds of dimension 6= 3, and we construct an explicit family of examples: the

n-torus.

This part culminates in Chapter 4, where we define a space at infinity and a graph as-

sociated to a subdivision rule of any dimension. The graph is like a Cayley graph, and the

space, which is often non-Hausdorff, extends the idea of the space at infinity for hyperbolic

groups. We show that this graph is hyperbolic whenever the space is Hausdorff. An inter-

esting application shows that all subdivision rules for non-hyperbolic manifolds have mesh

not going to 0.

Part II approaches subdivision rules from a different direction, that of circle packings.

In Chapter 5, we first introduce the idea of modulus and conformality, and prove that circle

packings give an accurate picture of subdivision rules and their modulus. All results and

2



techniques in this previous chapter were previously known, though proved independently.

This proof fails for subdivision rules of unbounded valence.

In fact, many results seem to fail for subdivision rules of unbounded valence. In Chapter

6, we try an alternate way of assigning modulus to subdivision rules, and investigate a sub-

division rule with exponential growth (barycentric subdivision) and one with linear growth

(the Borromean rings) at each vertex. Through this, we show that the Borromean rings

have conformal subdivision rules, and conjecture that all hyperbolic, alternating links have

conformal subdivision rules.

Last of all, in Chapter 7, we show that subdivision rules can be degenerate in interesting

ways on dense sets, even while being ‘conformal’ (in some sense) on a dense complement.

3



Part I

Subdivision Rules and Manifolds
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Chapter 1. Creating Subdivision Rules From Polyhedra With

Identifications

1.1 Preliminaries

As stated in the Introduction to this thesis, subdivision rules were first defined in an attempt

to prove Cannon’s conjecture that all Gromov hyperbolic groups with a 2-sphere at infinity

are Kleinian groups. All that is necessary to prove Cannon’s conjecture is to show that the

subdivision rules coming from groups with a 2-sphere at infinity are conformal. This has

proven difficult.

One difficulty is the lack of examples. In [6], Cannon, Floyd, and Parry describe a

subdivision rule arising from a hyperbolic 3-orbifold with three tile types, a pentagon, a

triangle, and a quadrilateral. However, no other examples have been published. On the

other hand, explicit subdivision rules have been found for all non-split, prime alternating

links [18], most of which are finite-volume hyperbolic 3-manifold groups. However, none of

these are Gromov hyperbolic.

Our goal in constructing these subdivision rules is to shed light on Cannon’s definition of

conformality. Currently, the only ways of determining whether a subdivision rule is conformal

or not require us to check infinitely many tilings. It seems likely that there is a simple way

of telling if a subdivision rule is conformal or not, using only the combinatorial structure

of the tile types. By creating many examples, we can hope to explain why some tilings are

conformal and others are not.

In this chapter, we construct an explicit subdivision rule for a large class of 3-manifold

groups, the majority of which will be hyperbolic 3-manifold groups, some closed, some finite-

volume, and some of infinite volume. We start by constructing a replacement rule. A

replacement rule is different from a subdivision rule. Both give a recursive way of constructing
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one tiling from another, but a subdivision rule requires the new tiling to include the old one

as a subset, while a replacement rule does not. More specifically, a subdivision rule replaces

one tile with several, while a replacement rule replaces several tiles with several other tiles.

We then explain how to convert these replacement rules into subdivision rules in a large

number of cases. As an example of our method, the tilings in Figures 1.1 and 1.2 correspond

to the same manifold that Cannon, Floyd and Parry studied in [6]; the tiling in their paper

is different from the one we obtain, but strongly related.

To associate a subdivision rule to a manifold (even a non-hyperbolic one), we create a

spherical space at infinity, similar to that of word-hyperbolic groups. To do so, we approxi-

mate spheres in R3 by taking the boundary of polyhedra built up from fundamental domains.

More specifically, we let B(0) be a single fundamental domain, and let S(0) be its boundary

graph. The structure of S(0) gives us a tiling of S2. Now, let B(1) be formed from B(0) by

attaching polyhedra to all its exposed faces, and let S(1) be its boundary, and so on. This

defines a sequence of tilings of the sphere, which defines a combinatorial structure on the

space at infinity. Note that S(n) must be a topological sphere for all n.

We now define the various terms we use in this paper.

Definition. We will, for convenience, define a polyhedron as a topological ball with a cell

structure on the boundary, where all vertices have valence three or more, all faces have at

least three edges, and any two faces that intersect do so in a single edge or a vertex.

Definition. A fan is a chain a1, a2, ..., an of faces in a polyhedron surrounding a single vertex

v, where ai ∩ ai+1 contains an edge coming out of v for 1 ≤ i ≤ n + 1. If a1 ∩ an does not

contain an edge coming out of v, then a1 and an are called the ends of the fan. If a1 ∩ an

does contain such an edge, then the fan a1, ..., an is the star of the vertex. We consider a

single face to be a fan of size 1. See Figure 1.3 for examples of fans.

Lemma 1.1. A fan is a topological closed disk.
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Figure 1.1: The first three subdivisions of a tile type for a hyperbolic orbifold.
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Figure 1.2: The fourth subdivision of a tile type for the same hyperbolic orbifold.
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a) b)

c) d)

Figure 1.3: The shaded portions in a,b, and c are all examples of fans, while the shaded
portion in d is not.

Proof. Each face of a polyhedron is a topological closed disk. The union of two faces over a

single edge is a closed disk. Because of our definition of polyhedron, all fans of size two are

the union of two faces over a single edge.

Now, assume all fans of size k are closed disks. Given a fan B of size k + 1 with faces

a1, ..., ak+1, we can express it as the union of the face ak+1 and of the fan A consisting of

a1, ..., ak. By induction, the fan A is a closed disk, and we know ak+1 is a closed disk. Now,

ak+1 intersects every tile of A in the common vertex of A. So, by our definition of polyhedron,

the intersection of each face of A with ak+1 is the common vertex or an edge containing the

common vertex. If ak+1 is an end of the fan, it will intersect A in a single edge, and so B

will be a closed topological disk. If B is the star of the vertex, then ak+1 will intersect A in

two connected edges, and B will be a closed topological disk.

Definition. A polyhedron is spread out if, given any face A and any fan B not containing

A, A ∩B is a vertex, one edge, or two contiguous edges.

Among the platonic solids, the cube, dodecahedron, octahedron, and icosahedron are
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spread out. The tetrahedron is not; if we take our fan to be the star of a vertex, all three of

its edges intersect the remaining face.

A polyhedron that is spread out is analogous to a prime alternating link. Alternating

links have a well-known checkerboard polyhedral decomposition, where the boundary is an

alternating diagram for the link. All hyperbolic alternating links have an alternating diagram

that is reduced, non-split, and prime, and these properties are very similar to the spread-out

condition above.

Andreev’s theorem [1] (later extended by Rivin and others [12]) implies that all convex

hyperbolic polyhedra with dihedral angles equal to π
2

at every edge are spread out.

We will need restrictions on edge cycle lengths.

Definition. When polyhedra are glued together, each edge may be identified with many

other edges. Edges identified form an equivalence class called an edge cycle. For a given

edge e, the edge cycle length of e is the size of the equivalence class containing e.

In the universal cover of a manifold, the edge cycle length turns out to be the number

of distinct fundamental domains surrounding lifts of the edge. Thus, if a polyhedral funda-

mental domain for a hyperbolic 3-manifold has dihedral angle 2π
n

at an edge e, the edge cycle

length of e is n. We are now ready to state the theorem.

1.2 Existence of replacement rules

Here we make a more formal definition of replacement rule. A replacement rule is a locally

defined recursive rule that has finitely many replacement types. A replacement type is a

labeled, connected groups of faces that is to be replaced by a different collection of faces.

Theorem 1. Let M be a manifold (possibly with boundary) that can be decomposed into

polyhedra P1, P2, ..., Pn. If each polyhedron is spread out, and all edge cycles have even length

≥ 4, there exists a replacement rule for M . In this replacement rule, each new polyhedron

is placed on exactly one fan in the previous stage of the replacement rule.
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Proof. Let S(n) represent the tiling given by gluing n layers of polyhedra to a base polyhe-

dron. Note that in S(0), all exposed faces are fans consisting of single faces. Also, all edges

border fans of size 1.

As we glue on more and more polyhedra, each edge will be buried. This happens when

we glue a number of polyhedra adjacent to it equal to its cycle length. All edges in S(0) are

adjacent to only one polyhedron; we say that these are unburdened edges. As we place

polyhedra on the faces to either side, we get closer to closing up the cycle of polyhedra around

the edge; we say this edge is now a burdened edge. More precisely, a burdened edge is any

edge adjacent to more than one polyhedron. Because the edge cycle has even length and all

edges start out adjacent to a single polyhedron, when we glue a polyhedron on either side

of the edge at each stage, it will eventually only have one polyhedron remaining to glue on.

If we continued to glue polyhedra on either side, we would exceed the cycle length; thus, we

glue a single polyhedron onto both faces neighboring this edge. Because this gluing behavior

is different from that of previous stages, we say the edge is a loaded edge. That is, a loaded

edge needs only one polyhedron to complete its cycle, and we focus on this type of edge in

our proof. All edges start out as unburdened, become burdened, become loaded, and then

disappear as we glue a polyhedron over them. Every loaded edge is burdened (because it

has more than one adjacent polyhedron).

Our goal is to show that, at every stage, every polyhedron is glued onto a single face

or a larger fan. Because there are finitely many combinatorial types of fans, this will show

that there is a recursive combinatorial way of constructing S(n+ 1) from S(n). Now, when

a polyhedron is glued onto a face in S(n), if that face has any loaded edges, the polyhedron

will be glued onto those loaded edges and onto all faces on the other side of those loaded

edges; and if those faces have loaded edges, the polyhedron is glued onto those as well, and

so on. To show that all polyhedra are glued onto fans and only fans, we have to show that

faces with loaded edges meet up as fans.

What do fans look like? Locally, at the vertex, they look like pizzas with some number
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a
b

c
d

e

Figure 1.4: If the shaded portion is a loaded fan, then faces b,c, and d will be examples of
loaded wedges, while faces a and e will be examples of half-loaded wedges. Dashed edges are
loaded, and others are not.

of neighboring pieces missing (so that what remains is the sector of a circle). Each piece of

pizza touches exactly two neighboring pieces, except for the ends of the pizza, which touch

exactly one other piece of the fan.

Therefore, if a face has exactly two loaded edges that share a vertex, we call it a loaded

wedge. Loaded wedges may group together into fans, where the ends of the fan (if there

are any) have only one loaded edge. In this case, the ends are called half-loaded wedges

and the entire fan is a loaded fan. Our goal, then, is to show that all loaded faces can be

grouped into loaded fans, and the first step in proving that is to prove that all loaded faces

are loaded and half-loaded wedges. See Figure 1.4 for an example.

As for the second step, note that we said loaded wedges may group together into fans.

Loaded wedges are, again, like pizza slices. If we rotate a pizza slice 180o before putting it

down, we get an unusual parallelogram of pizza instead of a sector of a circle. This shows

that it is not sufficient to prove that all loaded faces are loaded or half-loaded wedges; we

must also prove that they meet up in the correct way. An edge is skew if there are two

loaded edges that intersect it, one at each vertex, and these loaded edges do not border the

same face. See Figure 1.5 for an example of a skew edge. Note that a skew edge can be

unburdened, burdened, or loaded.

Skew edges represent the rotated pizza slices that meet up in the wrong way. The rest of

this proof will be devoted to showing that all loaded faces are loaded or half-loaded wedges,
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e

f1

f2

Figure 1.5: A skew edge e. Here f1 and f2 are loaded, intersect e in distinct vertices, but
border different faces.

and that there are no skew edges. This will show that all loaded faces group together into

fans; thus, every polyhedron that is glued on to S(n) is glued on to a loaded fan, and since

there are only finitely many fans on each polyhedron, this implies that there are only finitely

many combinatorial types of gluings.

We proceed by induction. In S(0), all edges are unloaded, and so there are no skew edges

or loaded faces. Assume that S(n) has no skew edges and that all faces with loaded edges

are loaded or half-loaded wedges; this implies that all faces are grouped into fans. Then we

form S(n + 1) by placing polyhedra onto fans. A fan A in S(n) will be replaced by several

subtiles in S(n+ 1) corresponding to unglued faces of the polyhedron. Those unglued faces

in the interior (meaning those which do not intersect the boundary) correspond to faces on

the polyhedron that don’t touch the fan A, and are formed of unburdened edges. Those

touching a former edge of A correspond to faces on the polyhedron that share an edge with

the fan A (where we are now considering A as a subset of the polyhedron). Because our

polyhedra are spread out (recall Definition 1.1), these subtiles share either one edge or two

contiguous edges with the fan. These edges are the only edges that are burdened, because

they are the only edges of the polyhedron we are gluing on that will be adjacent to more

than one polyhedron.

So, all faces in S(n+ 1) have zero, one, or two contiguous burdened edges. This implies

that if these faces have any loaded edges (which are a kind of burdened edge), the faces must

be either loaded or half-loaded wedges. Thus, we have completed half of our induction.
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e e

Figure 1.6: Burdened skew edges must come from other skew edges.

Now, we must show that there are no skew edges. We will first show that there are no

burdened skew edges.

If there is a burdened skew edge e in S(n + 1), then by definition of skew edge (recall

Figure 1.5), the faces to either side each have two contiguous burdened edges. As we discussed

earlier, faces with burdened edges in S(n+ 1) correspond to faces in the new polyhedra that

are adjacent to the fan we are gluing on to. Thus, if a face has two burdened edges, it must

have been adjacent to a fan in two edges. Now, if a fan consists of a single face, then no

other face can intersect it in two edges, by our definition of polyhedron (see Definition 1.1).

Thus, if a face in S(n) has two burdened edges, it comes from a polyhedron glued onto

a loaded fan in S(n − 1). Also, the two burdened edges in S(n) must have touched two

different faces of the loaded fan in S(n − 1), again by Definition 1.1. Moreover, the vertex

they share must also have been the center vertex of the loaded fan in S(n− 1).

So, a burdened skew edge e in S(n) must come from an edge in S(n− 1) that is adjacent

to two loaded fans, and the loaded edges of those loaded fans intersect e in distinct edges.

So e must have been a skew edge (burdened or unburdened) in S(n− 1), which is impossible

by our induction hypothesis. See Figure 1.6.

We now show (by considering a possible counterexample) that there are no unburdened

skew edges in S(n + 1), which completes the proof. Assume that there is an unburdened

skew edge e. Because e is unburdened, it must be in the interior of some polyhedron that

was glued on to a fan A in S(n+1). See Figure 1.7. Thus, the faces on either side (call them
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A

B

C

e

Figure 1.7: An unburdened skew edge must look something like this.

B and C) must also be part of the same polyhedron, and both border the fan A (considered

now as a subset of the polyhedron being glued on). But then B intersects A in an edge

contiguous with e and in both vertices of the interior edge e. Because the intersection of A

and B is connected and is one or two edges, B must be a bigon (which can’t happen) or a

triangle. The same applies for C. Thus, our polyhedra consists of a fan (namely, A) and

two triangles sharing an edge (namely, B and C). There can be at most four faces in the

fan, as each must intersect something not in the fan (because at most two edges of each face

in a fan touch other faces in the fan, and each face is a triangle or larger), and there are

only four edges of B ∪ C intersecting the fan. If the fan is not the star of a vertex, we can

add B or C to it, and this larger fan intersects the remaining triangle in all of its edges, a

contradiction. So the fan must be the star of a vertex of valence 3 or 4. If it is of valence

3, then the star of a vertex of e contains 4 tiles, and the remaining tile must intersect this

star in more than 2 edges, which cannot occur. If it is of valence 4, then we can pick one

vertex of e and consider the fan around it consisting of B, C, and one tile of A. Then one of

the tiles of A touching the other vertex of e has disconnected intersection with this fan (see

Figure 1.8). This is a contradiction. Thus, there are no skew edges in S(n+ 1).

Because there are no skew edges, all faces group together in fans. Since there are finitely

many types of fans, we get a finite recursive algorithm for constructing the universal cover,

i.e. a replacement rule.
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e

B

C

Top Bottom

D

Figure 1.8: Note that the fan consisting of the shaded gray region has disconnected inter-
section with the face D.

Figure 1.9: The replacement rule for an unloaded face.

1.3 Forming subdivision rules from replacement rules

Note that Theorem 1 does not provide a way for creating a subdivision rule. However, in

many cases, a subdivision rule can be created by adding extra lines. To illustrate, consider

a non-hyperbolic example, the 3-dimensional torus. It has a decomposition into a single

polyhedron, a cube with edge cycle lengths all equal to 4, and so has a replacement rule as

described by the theorem. The three replacement types are shown in Figures 1.9, 1.10, and

1.11. They correspond to an unloaded face, a loaded pair of faces (i.e. a fan of two faces,

sharing a common loaded edge), and a loaded star (i.e. a maximal loaded fan, containing

the entire star of a vertex). By symmetry, these are the only types.

Notice that this is only a replacement rule; edges are created, disappear, reappear,etc.

Figure 1.10: The replacement rule for a loaded pair.
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Figure 1.11: The replacement rule for a loaded fan.

Figure 1.12: We can add lines to the two ‘loaded’ tile types to get a self-consistent subdivision
rule.

This can be turned into a subdivision rule by a method that turns out to be very useful:

adding new edges at every stage. For instance, in Figure 1.10, the center line between two

squares disappears when we glue on the new cube. However, if we add a line to the new cell

structure (as shown in the top half of Figure 1.12), then the new cell structure contains the

old cell structure as a subset. Thus, we have a subdivision rule.

However, this divides the top and bottom squares into two triangles each; each of these

are part of a loaded star, so we have to change the replacement rule for a loaded star;

however, notice that adding the lines in to the loaded star on the left of Figure 1.11 gives us

a hexagon divided into six ‘pie slices’. If we add similar lines bisecting the loaded star (as

seen in Figure 1.12), we again get a hexagon divided into six triangles; thus, the subdivision

on each triangle in that hexagon is just the identity.

We summarize this in Figure 1.13. Several stages of subdivision are shown in Figure

1.31 on page 35. This is a combinatorial subdivision only; the circle packed pictures are
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Figure 1.13: The replacement rule for the 3-dimensional torus.

not subsets of each other, because this subdivision rule is not conformal. The connection

between circle packings and conformality is explained in [11].

In general, we can get a subdivision rule if we can add finitely many lines to each re-

placement type in a way that is self-consistent. However, self-consistency can be difficult to

achieve; notice that adding lines in the loaded pair forced us to add lines in the loaded star.

In more complicated subdivision rules, adding lines in one tile type can cascade and force us

to add more and more lines until we have infinitely many tile types.

There are large classes of polyhedra that do have subdivision rules, however. In the

discussion that follows, we will mention the edge cycle lengths of polyhedra many times.

Edge cycle length in a hyperbolic manifold can correspond to dihedral angles of polyhedral

decompositions. If every dihedral angle is 2π
n

, then all edge cycles have length n. Polyhedral

decompositions with varying dihedral angles do not follow this pattern.

It will be useful to define n-cycles, following [12]. An n-cycle is a set of n faces

A1, A2, ..., An in a polyhedron such that Ai ∩ Ai+1 (subscripts taken mod n) is a single

edge for each i, and all such edges are pairwise disjoint.

The following two theorems give two large classes of polyhedral gluings that can be made

into subdivision rules. The first always gives closed 3-manifolds; the second always gives
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3-manifolds with boundary.

In the proof that follows, a loaded vertex will be the center vertex of a loaded star.

Theorem 2. Assume a manifold M is formed by gluing together convex, hyperbolic poly-

hedra P1, .., Pn, all of whose dihedral angles are π
2
. Then the replacement rules in Theorem

1 can be made into subdivision rules by adding finitely many lines to replacement tile types.

Note that all such polyhedra satisfy [12]:

(i) each polyhedron Pi is spread out, and

(ii) each vertex of each polyhedron has valence three,

(iii) every edge (after gluing) has edge-cycle length four, and

(iv) there are no three-cycles or four-cycles.

The above is almost exactly the statement of Andreev’s theorem in its original form [1].

Proof. We need only show that we can make each replacement of a tile a subdivision of a

tile, while retaining finitely many tile types. Because every vertex has valence three, any

edges that share a vertex also share an edge, which simplifies the combinatorics significantly

(see Figure 1.14). Throughout the following proof, we will refer to the replacement rule for

the three torus as an example. In Figure 1.15, we give an example of a more complicated

replacement rule, that of the right-angled dodecahedral orbifold mentioned earlier. We will

use this replacement rule as an example as well. We proceed by cases.

Case I: Replacing a single unloaded tile in S(n).

The replacement rule for an unloaded tile is already a subdivision, as no edges disappear.

In S(n+ 1), the only tile types created by this replacement are more unloaded tiles from the

interior (which are also case I) and loaded pairs from the boundary (which are case II).

Case II: Replacing a loaded pair in S(n).

Recall that, in creating S(n+1), we glue one polyhedron onto the entire loaded pair, which

consists of two faces A and B sharing a common loaded edge E that travels between vertices
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Empty

Figure 1.14: Each new vertex starts with three unburdened lines. In the next stage of
replacement, three unburdened lines are added, and the old edges become loaded. The
vertex is surrounded by three loaded pairs. In the next stage, there are only three edges,
and the vertex is now loaded. In the next stage, the vertex and its star are entirely covered
up by a new polyhedron.

Figure 1.15: The three replacement types for the right-angled dodecahedral orbifold. They
are fans of size one, two, and three.
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E

v

w

A B

Figure 1.16: A loaded pair.

Figure 1.17: We replace the edge E from figure 1.16 with the path in bold. Note that the
initial and terminal segments were not originally in P ∗.

v and w (see Figure 1.16). The cell structure of the unglued faces of the polyhedron (which

we call P ∗) replaces the cell structure of A∪B. To make this replacement a subdivision rule,

we find or create a path from v to w in P ∗ that will take the place of E (as in Figures 1.12

and 1.17). Each of these two vertices is contained in a unique tile of P ∗ ⊂ S(n + 1) (recall

Figure 1.14). We can add an edge from each vertex to an interior vertex of this tile. If the

two new edges meet in the same point, we can stop, and identify these two edges with the

original, loaded edge E.

If they meet in different points, then we connect those points by a path consisting entirely

of interior edges. If no such path exists, then the set of interior edges is disconnected, which

implies that there must be a tile that separates the two points (i.e. the complement of the

separating tile is disconnected, with each component of the complement containing interior

edges of the separating tile). Because valence is three, that tile must intersect the loaded

pair A ∪B in disjoint edges. However, this is impossible by the spread out condition, recall

Definition 1.1.
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Figure 1.18: All loaded stars have three loaded lines and three added lines from the previous
stage.

Thus, we can find a path α in P ∗ ⊂ S(n + 1) that we can identify with the loaded edge

E ⊂ A ∪ B ⊂ S(n). This makes the replacement rule for a loaded pair into a subdivision

rule for each half of the loaded pair, just as in Figure 1.12 and Figure 1.17.

Note that, in finding a replacement for E in P ∗, we only changed the cell structure near

v and w, by adding one extra line to the tiles containing them; everywhere else, we used the

existing cell structure of P ∗ ⊂ S(n+ 1). Each tile containing v or w in S(n+ 1) is part of a

loaded star that will be replaced by a single polyhedron in S(n+2) (recall Figure 1.14). Since

we treated each loaded pair the same way, we see that every loaded star in S(n+ 1) consists

of three tiles around a vertex, each tile sharing a loaded edge with each neighbor and each

tile having an added line from the center vertex to an outside, unburdened vertex (as shown

in Figure 1.13 and Figure 1.18). This is case III. Note that all other tiles in P ∗ ⊂ S(n + 1)

correspond to case I or case II.

Case III: Replacing a loaded star in S(n) with three added radial lines ending

at boundary vertices.

To find a subdivision rule for these loaded stars, we must find or introduce all six of these

edges in the new cell structure (which we again call P ∗ ⊂ S(n + 1)). The method we will

use is complicated, but works for all right-angled hyperbolic 3-manifolds (it won’t work for

the three torus example we did earlier). Call the three loaded edges E1, E2 and E3, and call
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the added edges A1, A2, and A3. Call the center vertex V .

We start by finding lines in P ∗ that represent the three loaded lines E1, E2, and E3. Each

of these lines ends at a vertex v1, v2 and v3 on the boundary of the star in S(n). As we glue

a new polyhedron on to form S(n + 1), none of these vertices will have new interior edges

coming off of them (they are loaded vertices; see Figure 1.14). So, we will add edges to P ∗

to make a path α in S(n + 1) that connects v1 and v2. We begin such a path by adding

edges α1, α2 from v1 and v2 to the midpoints of interior edges e1, e2 (we abuse terminology

by referring to an arbitrary interior point of an edge as the ‘midpoint’ of an edge, to avoid

the overuse of the word interior). We then connect the endpoints of α1, α2 by a series of

added edges α3, ..., αn, each of which goes from the midpoint of one interior edge ei in P ∗ to

the midpoint of another, interior edge ej in P ∗. We define the path α to be ∪αi.

Note that we can assume that the ei are disjoint, because if they are not disjoint, we

can shorten the path α (see Figure 1.19). Similarly, we can assume that no tile contains

more than one αi. Finally, we can assume that α does not intersect any boundary tiles

(including their interior edges) except for the two tiles containing α1 and α2. We can do

this because we claim that the complement of the boundary tiles in P ∗ is connected. To

prove this claim, note that the only way the complement could be disconnected would be

for two boundary tiles to intersect in an interior edge. However, this would imply that our

polyhedron contains a three cycle or a four cycle (four faces which intersect cyclically in four

disjoint edges), which is impossible by Andreev’s theorem [1]. See Figure 1.20. This is where

the proof fails for non-hyperbolic manifolds such as the 3-torus.

Thus, as said above, we can connect v1 to v2 by a path α which is formed from new

edges, each joining two disjoint edges in a tile, except for the initial and terminal segments,

with no tile containing two new added edges. Now, we form another path β with the same

properties, but now connecting v3 to α. Again, we start the path by adding an edge from v3

to an interior edge, and then continue the path by adding line segments containing disjoint

edges until we reach an edge e of an interior tile T containing α. The terminal segment
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Figure 1.19: A path that goes through non-disjoint edges can be shortened.

Figure 1.20: If the complement of the boundary tiles is disconnected, there must be a four
cycle.

connects e to the midpoint of the segment of α contained in T . See Figure 1.21.

Thus, we can add α ∪ β to P ∗ and identify α ∪ β ⊆ S(n+ 1) with E1 ∪E2 ∪E3 ⊂ S(n).

We identify α∩β with the vertex V = E1∩E2∩E3. We have now replaced all loaded edges.

Now, we replace A1, A2, and A3, which, as we recall, represent the lines added in Case

II. They intersect the boundary of our star in S(n) in vertices w1, w2, and w3, respectively.

Each vertex wi lies in a distinct component Ci of P ∗ \ {α∪ β ∪ T o}, where T o is the interior

of the tile containing α ∩ β. We claim that the set of interior edges of each Ci is connected.

To see this, note that any gap in the interior edges (i.e. having more than one connected

component of edges) would be caused by a single tile of P ∗ being crossed by α ∪ β in two

or more disjoint segments. However, by construction, this never occurs, except in T . Thus,

the set of interior edges in each Ci is connected.

Also, each component Ci must contain a vertex of Ti, since β does not enter T by the

same edge as α. Thus, we can find a path γi from each wi to a vertex ti of T . Extend each γi

by an edge from ti to V in T . See Figure 1.22. We now identify each γi with the appropriate
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Figure 1.21: We find paths α and β to replace the loaded edges of the loaded star.
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Figure 1.22: We find paths γ1, γ2, and γ3 to replace the three added lines of the loaded star.

Ai. Thus, by adding α, β, γ1, γ2, and γ3 to P ∗, we can embed the cell structure of the loaded

star in S(n) into the cell structure of the replacement in S(n+ 1).

However, this creates three new tile types: unloaded tiles with a line added connecting

midpoints of disjoint edges, loaded stars with three added radial lines that may now end

at midpoints of edges instead of vertices, and an unloaded tile with six added edges (three

intersecting the boundary in vertices, three intersecting in midpoints of edges, the two types

alternating around the boundary). These are cases IV , V , and V I, respectively.

Case IV: Replacing a single unloaded tile with an added line connecting mid-

points of edges in S(n).

Call the added line A ⊆ S(n). Let e1 and e2 be the two boundary edges connected by
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A

e1

e2

Figure 1.23: Replacing a single unloaded tile with an added line from midpoint to midpoint.

A. Then in S(n+ 1), we can add an edge going from the midpoint of each ei to an interior

vertex. We can then connect these two new edges by a path of interior edges. This creates a

new case, Case VII, which consists of a loaded pair with one or two added lines going from

a boundary vertex to the midpoint of the loaded edge of the loaded pair. See Figure 1.23.

Case V: Replacing a loaded star in S(n) with three added radial lines, possibly

terminating at midpoints of edges.

Loaded stars of this type will be replaced almost exactly as other loaded stars were earlier;

in particular, there are still three loaded edges and three added edges. We still find paths

α and β to replace all added edges. However, these paths cannot consist entirely of interior

edges of P ∗, as the midpoints of boundary edges are not connected to interior edges. Thus,

we begin α and β by adding lines from each of these boundary midpoints to an interior

vertex. We then extend α and β as needed by interior edges, and the proof goes through in

exactly the same way. This creates no new tile types. See Figure 1.24.

Case VI: Replacing a single unloaded tile with six added radial lines (every

other one going to a boundary vertex, the rest to midpoints of edges) in S(n).

In this case, we are basically doing Case III for a single tile instead of a loaded star.

The complement of the boundary in (S(n + 1) is still connected, because we would have

three-cycle if it were not. So let A1, A2 and A3 be the added lines ending at vertices v1, v2

and v3, and let E1, E2 and E3 be the added lines ending at edges e1, e2, and e3.

As a modification of Case III, we can connect the midpoints of e1 and e2 with a path
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Figure 1.24: Replacing a loaded star with added edges going to midpoints instead of bound-
ary vertices.

Figure 1.25: Replacing a single unloaded tile with six added lines.

α of added edges connecting disjoint edges of non-boundary tiles (except for the initial and

terminal segment). We can similarly construct β connecting the midpoint of e3 and α. After

this, we can construct γ1, γ2 and γ3 in exactly the same way as Case III and get a subdivision.

This creates more tiles of Case IV, VI, and VII.

Case VII: Replacing a loaded pair with two edges coming from the boundary

to the midpoint of the loaded edge of the loaded pair. S(n).

First, assume that the two added edges A1, A2 meeting in the midpoint of the loaded

edge E have their other endpoints at two boundary vertices w1 and w2. Call the loaded edge

E.

Instead of replacing E as in case II, we replace it by a path α as in Case III that travels

from the endpoints of E and only goes through midpoints of interior edges. This creates
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Figure 1.26: Replacing a loaded pair with added lines starting at the boundary and meeting
in the midpoint of the loaded edge.

more tiles of Case V and Case IV . Then connect w1 and w2 by a path γ of interior edges.

This creates no new cases, and α ∪ γ replaces E and A1, A2.

The case when A1 and/or A2 have their other endpoints at midpoints of boundary edges is

similar; however, we begin and end γ with segments attaching the midpoints of the boundary

edge to an arbitrary interior vertex; the rest of gamma consists of interior edges. This creates

no new cases.

End of cases

So note that each of our seven cases of tile types generates more tiles, but only within

those seven cases. However, each tile type is a slight modification of a loaded fan, of which

there are finitely many. There are also only finitely many ways to modify each of these

finitely many fans (by adding lines). Thus, there are finitely many tile types.

Thus, by adding finitely many lines to the replacement tile types, we can turn the re-

placement rule of Theorem 1 for such a manifold into a subdivision rule with finitely many

tile types.

This theorem applies only to closed 3-manifolds (since the link of each vertex is a sphere).

If, in some spread out polyhedral gluing with even edge cycle lengths, the valence of each

polyhedron is uniformly greater than three or the edge cycle lengths are all six or larger,

we can also find a subdivision rule. However, these manifolds are never closed manifolds, as
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they have torus or hyperbolic surface boundary. The link of each vertex in the manifold is

composed of polygons with a number of edges equal to the valence of the corresponding vertex

on the polyhedron; each vertex of these polygons corresponds to a an edge in the manifold,

and the valence of the vertex is the edge cycle length of edge. Under these circumstances,

(still assuming large valence or large edge cycle length), Chapter 9 of [17] ensures that only

loaded pairs and unloaded tiles occur in the replacement rules for the manifold. In particular,

we have the following:

Theorem 3. Let M be a 3-manifold created by gluing together polyhedra P1, ..., Pn such

that each edge cycle has even length > 2. If each Pi is spread out and:

(i) all vertices have valence greater than 3, or

(ii) all edges have cycle length greater than 4, then

the replacement rules in Theorem 1 can be made into subdivision rules by adding finitely

many lines to replacement tile types.

Proof. Recall that the only tile types in the replacement rule from Theorem 1 are loaded

fans.

The link of every vertex in our manifold is a Euclidean or hyperbolic surface, by an

Euler characteristic argument. As we construct the universal cover for our manifold, we also

construct, at each vertex, the universal cover for the link. Each vertex of the link corresponds

to an edge of the manifold, and each edge of the link corresponds to a face of the manifold.

These surfaces have replacement rules as well, with ‘loaded vertices’ corresponding to loaded

edges in the manifold. Such replacement rules were studied in Chapter 9 of [17]. According

to the proof of Theorem 12 of that chapter, all surfaces of sufficient size (including those

coming from manifolds satisfying the conditions of this theorem) have a replacement rule

in which only isolated loaded vertices occur (i.e. no two loaded vertices are ever adjacent).

Since loaded vertices in the surface correspond to loaded edges in the manifold, this shows
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that every loaded edge must be bordered by unloaded edges to either side. This shows that

only loaded pairs and unloaded tiles can occur.

Thus, if we can replace the loaded edge in every loaded pair, we will be done. However,

the proof of Theorem 12 of [17] also shows that every loaded vertex in the universal cover of

the surface is replaced by one or more unloaded vertices. This implies that, in the universal

cover of the manifold, the two vertices of each loaded edge in S(n) will both have new interior

edges coming from them in S(n+1). We can construct a path in S(n+1) between these two

vertices consisting entirely of interior edges, because the only obstacle to such a path would

be a tile that separates the loaded pair, which cannot occur by the spread out condition

(Definition 1.1). No new tile types are created by finding such a path, and so we have a

subdivision rule.

As you can see, it is actually easier to find a subdivision rule for 3-manifolds with bound-

ary. Subdivision rules for alternating links (which have valence four, edge cycle length four

polyhedral gluings) were found previously in [18]. Also, note that the full ‘spread out’ condi-

tion is not needed; we need only check that no tile has disconnected intersection with single

tiles or loaded pairs, or intersects in more than two edges.

The tilings in Figures 1.28 to 1.33, and Figures 1.1 and 1.2 were all created by the

methods detailed in Theorems 2 and 1.3. The pictures were created using Ken Stephenson’s

Circlepack [21] and software by Bill Floyd [10].

Figures 1.28 and 1.29 represent the Borromean rings, a manifold created from two octa-

hedra, each with edge cycle lengths of 4. It is a finite-volume hyperbolic manifold. Figure

1.30 is another finite-volume hyperbolic manifold: the figure-eight knot.

Figures 1.31-1.33 are all created from cubes. The first figure is the 3-dimensional torus,

with edge cycle lengths of 4. It is a Euclidean manifold. The last two figures are a cube with

edge cycle lengths of six. It has torus boundary.

Finally, Figures 1.1 and 1.2 show the tilings from a subdivision rule created from the

dodecahedral orbifold first studied by Cannon, Floyd and Parry by an adaptation of our
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Figure 1.27: A subdivision rule obtained from the replacement rule in Figure 1.15. We use
a slightly different method than the one outlined in Theorem 2 to reduce the number of tile
types.

method. This is a dodecahedron with edge cycle length four. It is interesting to compare

this to their original subdivision rule [6]. The tiles are shown in Figure 1.27.

Closed hyperbolic manifolds with even edge cycle length are easy to create: start with a

set of glued-together polyhedra with large valence at each vertex and even edge cycle length

greater than 2. These manifolds will usually have hyperbolic surfaces at the boundary. If we

expand each vertex into a face, we get a subdivision rule with valence three, and certain faces

that never subdivide (these represent the boundary at infinity). If we double the manifold

over its boundary, all edges of the blown-up vertices will have edge-cycle length four, and the

other edges retain their original edge cycle length. This gives a closed hyperbolic manifold

with even edge-cycle length, as desired.

As a final note, odd edge-cycle length polyhedra are more difficult to work with, especially

length 3, but many of the same principles apply. One open problem is to find a concise set of

conditions on odd edge-cycle length polyhedral gluings that ensures a subdivision rule exists.

This is interesting, because all 3-manifolds have a decomposition into valence 3, edge-cycle

length 3 polyhedra (by virtue of the Heegard splitting). It is unknown how many hyperbolic

3-manifolds have a decomposition into even edge-cycle length polyhedra.
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Figure 1.28: The first few subdivisions of the Borromean rings complement, which decom-
poses into two octahedra with edge cycle length 4.
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Figure 1.29: One more subdivision of the Borromean rings complement.
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Figure 1.30: The first few subdivisions of the figure eight knot, decomposed into two regular
ideal tetrahedra.
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Figure 1.31: Several subdivisions of the 3-dimensional torus, with fundamental domain a
Euclidean cube.

35



 

Figure 1.32: Several subdivisions for a cube with edge-cycle length 6.
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Figure 1.33: A further subdivision of the edge-cycle length 6 cube.
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Chapter 2. Subdivision Rules and the Eight Geometries

2.1 Background

This chapter assumes basic knowledge of algebraic topology (fundamental group, covering

spaces, etc.) and Thurston’s eight geometries [23]. Peter Scott’s exposition of the eight

geometries [19] is especially helpful.

2.2 Preliminaries

In this chapter, we find subdivision rules for almost all closed non-hyperbolic 3-manifolds, and

show that manifolds of different geometries have subdivision rules that give wildly different

combinatorial spaces at infinity. At the beginning of each section, we show a circle-packed

image of several stages of subdivision created with Ken Stephenson’s Circlepack [21].

In the sections that follow, we will examine each of Thurston’s eight geometries. We pick

a representative manifold, find a subdivision rule where possible, and display circle packings

of the subdivision rules using Ken Stephenson’s Circlepack [21]. For four of the geometries,

the representative manifold will be essentially the only manifold. In the E3, H2 × R, and

S2 × R geometries, every manifold is, up to a finite cover, a trivial circle bundle over a

Euclidean, hyperbolic, or spherical 2-manifold, respectively [19]. We cover these three types

of circle bundles in the following examples.

All S̃L2(R manifolds are, up to finite covers, unit tangent bundles over hyperbolic sur-

faces, which all cover the unit tangent bundle of the smallest hyperbolic surface. All S3

manifolds are finitely covered by S3 [19]. Thus, these two geometries can also each be rep-

resented by a single closed 3-manifold, which we examine. Similar statements hold for Nil

and Sol, but we will see that we have no subdivision rules for these geometries.

The reason we are only interested in manifolds up to finite covers is that, if one mani-
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fold finitely covers another, we can divide the manifolds into fundamental domains that are

combinatorially equivalent. For instance, the Klein bottle and the torus both have funda-

mental domains that are squares whose vertices are identified in groups of four. Thus, in

finding subdivision rules for specific manifolds in the following sections, we are really finding

subdivision rules for all 3-manifolds of that geometry (except, of course, H3).

2.3 E3 geometry: S1 × S1 × S1

This section duplicates some of the material in the last chapter, and can be omitted if you

are reading this dissertation in order. It is included here to make this chapter independent

from Chapter 1, to contrast with the other geometries, and to give an alternate description

of the process of creating subdivision rules from manifolds.

The first geometry we examine is Euclidean 3-space. We use S1×S1×S1 as a representative

manifold. This is the most familiar geometry, and it is perhaps the nicest geometry for

visualizing universal covers. Its subdivision rule is shown in Figure 1. A fundamental

domain for S1 × S1 × S1 is the cube, with opposite faces identified, as shown in Figure 2.2.

The universal cover of S1 × S1 × S1 is R3, and copies of the fundamental domain tile

three-space. In this tiling, four cubes come together at an edge. We describe this by saying

each edge has edge cycle length 4. In general, when edges of a fundamental domain are glued

together by a map, the number of edges in the equivalence class of an edge e is the edge

cycle length of e.

To find a subdivision rule, let’s begin by constructing S(n) for S1 × S1 × S1. S(1) is the

projection of the cube. See Figure 2.3.

Adding a cube to each face, we get S(2). See Figure 2.4. Dotted lines represent corners,

or edges common to three copies of the fundamental domain.

This gluing is symmetric, so every face in S(1) is replaced in the same way when creating

S(2). That is, each square face in S(1) has a new cube glued on; the five remaining unglued

faces of the cube form a new cell structure replacing the old square.
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Figure 2.1: Several stages of the subdivision rule for the 3-torus.
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Figure 2.2: The gluing map for S1 × S1 × S1.

Figure 2.3: S(1)

e e

Figure 2.4: S(2)
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v v

Figure 2.5: S(3)

Figure 2.6: The replacement rule for a single face.

S(3) is more complicated (see Figure 2.5).

Notice that, in creating S(3), every face in S(2) without dotted edges is replaced just as

the original faces of S(1) were. See Figure 2.6.

However, pairs of faces which share a dotted edge are replaced by a single polyhedron as

in Figure 2.7. We will call the dotted edges, which correspond to corners, loaded edges.

Notice the loaded edge disappears in S(3). This corresponds to a corner in S(2) being

covered up by a single polyhedron (see Figure 2.8). We glue a single polyhedron onto two

faces because, in the universal cover, every edge should touch four cubes or copies of the

fundamental domain. When an edge is loaded, it already touches three fundamental domains,

and so only one more can touch that edge. Thus, one cube most glue onto both faces.

A third situation occurs in going from S(3) to S(4), where three loaded lines converge at

42



Figure 2.7: The replacement rule for a pair of faces.

Figure 2.8: The 3D version of Figure 1.10.

a single vertex. We will call this a loaded vertex. In this case, a single polyhedron covers

up all three, as shown in Figure 2.9. Again, this happens to satisfy the edge cycle length

condition.

This corresponds to the situation in Figure 2.10.

Notice now that in S(3), there are no new combinations of tiles; unloaded faces, two faces

sharing a loaded edge and three faces sharing a loaded vertex are all that ever happen. Notice

that this is not a subdivision rule; edges are created, disappear, reappear, etc. However, we

have a replacement rule, as we know how to replace every combination of faces that appear

Figure 2.9: The replacement rule for three faces.
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Figure 2.10: The 3D version of Figure 1.11

Figure 2.11: We can add lines to the two ‘loaded’ tile types to get a self-consistent subdivision
rule.

at every stage. This can be turned into a subdivision rule by adding new edges at every

stage. For instance, in Figure 2.7, the center line between two squares disappears when we

glue on the new cube. However, if we add a line to the new cell structure (as shown in

the top half of Figure 2.11), then the new cell structure contains the old cell structure as a

subset. Thus, we have a subdivision rule.

However, this divides the top and bottom squares into two triangles each; each of these

surround a loaded vertex, so we have to change the replacement rule for three squares

surrounding a loaded vertex (call the three faces a loaded star); however, notice that

adding the three lines in to the loaded star on the left of Figure 2.9 gives us a hexagon
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Figure 2.12: The replacement rule for the 3-dimensional torus.

divided into six ‘pie slices’. If we add similar lines bisecting the loaded star (as seen in

Figure 2.11), we again get a hexagon divided into six triangles; thus, the subdivision on each

triangle in that hexagon is just the identity.

We summarize this in Figure 1.13. The circle packed pictures are shown on page 35.

These circle packed pictures only display the subdivision rule combinatorially; the circle

packed pictures are not subsets of each other, because this subdivision rule is not conformal.

The connection between circle packings and conformality is explained in [11]. Notice the

similarity of this subdivision rule to the subdivision rule for the Hopf link (a Euclidean

knot) from [18].

2.4 H2 × R geometry: N−1 × S1

In this section, we study the product geometry H2 × R, with example manifold N−1 × S1.

Here we are using N−1 to represent the non-orientable surface of Euler characteristic −1,

i.e. the connected sum of three projective planes. We chose this surface as our example

because every other hyperbolic surface can be pieced together from it. In this sense, it is the

smallest hyperbolic surface. We also chose this example because it introduces the notion of

‘fragile edges’, which come from manifolds with edges of odd cycle length. The circle packed
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Figure 2.13: Several stages of the subdivision rule for an H2 × R manifold.
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Figure 2.14: The gluings for our N−1 × S1 manifold.

picture of the subdivision rule we will get is shown in Figure 2.13.

The 3-manifold N−1 × S1 has a fundamental domain that is a dodecagonal prism (see

Figure 2.14).

Notice that each ai edge has edge cycle length 3, and each bi edge has edge cycle length

4. This particular gluing was chosen to give these cycle lengths. Some of the face-gluing

maps are orientation reversing, and others are orientation preserving. But, in creating S(n),

changing the orientation won’t change the combinatorial structure of the fundamental do-

mains. This is because the prism has symmetry group D12 × Z2 and preserves its shape

under reflection.

We again let B(1) be a single fundamental domain with S(1) its boundary. Now that

we are dealing with hyperbolic space, the balls B(n) and spheres S(n) are more difficult

to imagine. But we can describe how each face is replaced, as we did for S1 × S1 × S1,

earlier. Each face should be replaced by the specific projection of our fundamental domain

that sends our current face to infinity.

We call all dodecagonal faces type B, and all square faces type A. A face of type B is

replaced as in Figure 2.15.

Similarly, a type A face is replaced as in Figure 2.16.
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Figure 2.15: Type B face.

B
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Figure 2.16: Type A face.
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Figure 2.17: 1. The squiggly lines represent edges about to collapse. 2. After collapse. The
edges marked with f are now ‘fragile’ (see text for definition).

However, here we have a problem. The ai edges between A faces have edge cycle length

3. Thus, only three polyhedra can touch that edge in the universal cover. In B(2), three

polyhedra are already touching ai: the original polyhedron, and the two glued onto either

side of the edges. There are now two unglued faces on either side of the ai edge; if we glue

new polyhedra to either one, we’ll have too many polyhedra coming in at an edge. Thus,

since these two faces must be glued to something, and there is no other choice that will keep

our B(2) simply connected, we must glue them to each other, as shown in Figure 2.17.

The essential point here was that only two more polyhedra could touch the edge, causing

the faces bordering that edge to collapse. Any edge e with edge cycle length L that already

touches L− 2 polyhedra will be called fragile. Edges can be become fragile over time, just

as they can become loaded. Note that burdened edges are different from fragile edges.

In our replacement of the A tiles above, all of the edges that were brought together now

touch two polyhedra. Thus, edge cycle length 3 edges are loaded, and edge cycle length 4

49



f f

Figure 2.18: The replacement rule for an A/B pair.

f f
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Figure 2.19: The replacement rule for an A/A pair.

edges are fragile.

These replacements have created new types of faces to deal with. Specifically, we now

have: loaded pairs of B’s and A’s, where the B portion has two fragile edges, as well as

loaded pairs of A’s.

The A/B pairs are replaced as in Figure 2.18.

Notice that the leftmost and rightmost regions collapse along two fragile edges each. It

is possible that this would cause confusion, as each of those faces must be identified to both

faces that it borders over those two edges. However, looking carefully, we see that A/B pairs

border only other A/B pairs on either side, so that the collapsing is well-defined. Note that

this covers up an old vertex and adds a new one. For convenience, we’ve placed the new

vertex directly over the old.

Pairs of A’s behave as in Figure 2.19.

Together, both kinds of pairs create loaded triples consisting of two A’s and a B, where

the B has two fragile edges. These triples are subdivided as in Figure 2.20.

Again, the leftmost and rightmost regions collapse over two edges each. No new types of
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Figure 2.20: The replacement rule for an A/A/B triple.

faces have occurred, so we have found all of the replacement rules.

To convert this to a subdivision rule, we must add lines to make the new tiles a subset of

the replaced tiles. These lines are added as shown in Figure 2.21. This gives us a subdivision

rule. The circle packings of this subdivision rule are shown in Figure 2.13. This subdivision

rule is very similar to the subdivision rule for the trefoil knot (and other 2-braid knots besides

the Hopf link) as described in [18].

2.5 H3 geometry: Hyperbolic dodecahedral space

Subdivision rules were originally discovered for hyperbolic geometry. Cannon and Swenson’s

work [7] shows that all subdivision rules coming from hyperbolic 3-space are conformal.

In 1, we found replacement rules for infinitely many hyperbolic manifolds, many of which

can be refined into subdivision rules. We required our polyhedra to have even edge cy-

cle length for all edges. One example is shown in Figures 2.22 and 2.23. In general, the

subdivision rules have mesh going to 0, and are the type of finite subdivision rules studied

extensively by Cannon et. al., for instance in [6]. These subdivision rules are very similar in

character to the subdivision rules of the hyperbolic alternating links found in [18].

2.6 S2 × R geometry: S2 × S1

Subdivision rules for S2 × R manifolds are different than all others. For one things, the

universal cover has two boundaries, which can be thought of as an ‘inner’ and an ‘outer’
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Figure 2.21: The subdivision rule for M.
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Figure 2.22: Several stages of the subdivision rule for a hyperbolic 3-manifold.
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Figure 2.23: One further stage of the subdivision rule for a hyperbolic 3-manifold.
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Figure 2.24: The first three stages in constructing the universal cover of S2 × S1.

sphere at infinity.

Consider S2 × S1. This has as a fundamental domain S2 × I, a thickened sphere. Con-

structing the universal cover amounts to nesting these thickened spheres. See Figure 2.24.

The figures for S2×̃S1 and P 3 ⊕ P 3 are similar, as they also have a thickened sphere for

their fundamental domain. P 2 × S1 is only slightly more complicated. In all of these cases,

there are a fixed number of faces on each boundary sphere at each stage of subdivision,

giving us a sequence of tilings S(n) which is constant. The subdivision rule, then, is the

identity on both spheres.

2.7 ˜SL2(R) geometry: The unit tangent bundle of N−1

Let’s now consider the unit tangent bundle of N−1. We choose this particular example of an

˜SL2(R) manifold for the same reason we chose N−1 × S1 as an example for H2 × R earlier:

it is covered by all other unit tangent bundles of hyperbolic surfaces, and these are the best

known manifolds corresponding to this geometry. For convenience, we will refer to the unit

tangent bundle of N−1 as M throughout this section.

How can we find a polyhedral fundamental domain for M? We can project M onto N−1.

Slice N−1 as we did back in Figure 2.14 and slice M along the pre-images of these edges.

What remains is the unit tangent bundle of a closed disk. This is necessarily the trivial

bundle, and so we can slice it along a fixed, ‘horizontal’ surface to get the product of a

closed disk and the closed interval. But this is just a 3-ball, and so we have our polyhedron.

See Figure 2.25.
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Figure 2.25: The manifold M after slicing.
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Figure 2.26: The choice of vector field for our horizontal slice.

To get the manifold back, or to understand the combinatorics, we need to understand

how the edges and faces are glued. The top is glued to the bottom, but what about the

square faces?

Remember that we got a polyhedron by slicing the unit tangent bundle of the disk along

a horizontal surface. A horizontal surface corresponds to a fixed unit vector field α(x, y) on

the disk. Let’s make the choice of vector field explicit, as shown in Figure 2.26. Notice that

we have redrawn our dodecagon on as triangle.

Then we make a correspondence between the height of a point in the polyhedron and

the angle in the unit tangent bundle. See Figure 2.26. If the top is 0 and the bottom is 2π

(viewing the closed interval as [0, 2π]), then the angle at a point (x, y, z) is α(x, y) + z. This

enables us to define the gluing map.

Look at the faces B1 and B2. They are identified together because their projections in

N−1 are edges that are identified. Now look at the edge a1. Relative to the face B1, the unit

vector field comes in at an angle of π
3
, at the top of B1 (i.e. at the edge a1) , and at an angle
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B1
B2

a1 a2

a1 a2

Figure 2.27: The faces B1 and B2 and the edges a1 and a2.

Figure 2.28: The angles that the vector field makes with the edges a1 and a2 are π
3

and 2π
3

.

of 2π
3

at the top of B2 (i.e. the edge a2). See Figure 2.28. This means that a1 gets sent to a

line on B2 of depth π
3
. Similarly, a2 gets sent to a line on B1 with depth 5π

3
, so the faces B1

and B2 get mapped together as shown in Figure 2.29.

Faces C1 and C2 are slightly different, having opposite orientation. See Figure 2.30. The

edge d1 gets sent to a line of depth 4π
3

, while d2 gets sent to a line at depth 2π
3

. This is shown

in Figure 2.31.

Continuing all along, we get the gluing map shown in Figure 2.32. This can be simplified

a1 a2

a1 a2

a1a2

Figure 2.29: The depth in the z direction measures the change tangent direction from the
horizontal field at the top. Since the vector field at a1 comes in at an angle π

3
more than the

vector field at a2, it gets mapped to a line at depth π
3
. Similarly, the edge a2 gets mapped

to a depth of 5π
3

.
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C1
C2

d1
d2

d1
d2

Figure 2.30: The faces C1 and C2 and the edges d1 and d2.

Figure 2.31: The angles that the vector field makes with the edges d1 and d2 are 4π
3

and 2π
3

.

further by taking the resulting ‘cylinder’ and slicing horizontally, adding new lines. See

Figure 2.33. Each ‘vertical’ edge has edge cycle length 3, and each horizontal edge has edge

cycle length 4.

Note that the three resulting polyhedra are combinatorially identical to the polyhedron

we used for N−1 × S1 in Section 2.4. However, in N−1 × S1, each polyhedron corresponded

to a single group element, while in our manifold M, a group element corresponds to three

polyhedra. Also, in the universal cover of M, neighboring group elements in the ‘horizontal’

direction are not at the same height; the middle layer of one group of three polyhedra will

get glued alternately to the top and bottom layers of the neighboring groups of three.

Figure 2.32: The gluing map for M. The first two are just homotopies of each other, and the
last is a 3-d figure of the fundamental polyhedron.
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Figure 2.33: We slice the fundamental polyhedron into three smaller cylinders. This makes
each horizontal edge have valence four and each vertical edge have valence three.

The reason that manifolds from these two geometries can have the same subdivision rules

is that the two geometries are quasi-isometric.

2.8 The other geometries: Nil, Sol, and S3

There are no known subdivision rules for the last three geometries.

As all S3 manifolds have finite fundamental group, the boundary is eventually empty,

and there cannot be a subdivision rule. This is an example of how manifolds that finitely

cover each other have essentially the same subdivision rule. Each manifold in this geometry

is finitely covered by S3, so we can take this as our example manifold; this manifold has

empty boundary, and the subdivision rule is the identity on the empty set.

One can obtain polyhedral gluings for both Nil and Sol manifolds by taking a thickened

torus from a cube and identifying the inside and outside by a linear map (see Figures 2.34

and 2.35). However, Sol groups are not almost convex [9], and this seems to imply that

they cannot have subdivision rules. On the other hand, Nil groups are almost convex [20],

but finding a subdivision rule from the gluings we have seems to be quite difficult. The

polyhedral gluings in [14] may help.
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Figure 2.34: A fundamental domain for a nil manifold
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Figure 2.35: A fundamental domain for a solv manifold
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Chapter 3. Creating Subdivision Rules from the n-Dimensional

Torus

3.1 Preliminaries

In this chapter, we find subdivision rules for the n-dimensional torus. We define a subdivision

rule in higher dimensions in a way analogous to subdivision rules in dimension 2 (following

[6]). Thus, a subdivision rule of dimension n consists of:

(i) A finite n-dimensional CW complex which is the union of its closed n-cells, and which

has the property that each closed k-cell (k ≤ n) is the image under the characteristic

map of a closed k-disk with a cell structure including all sub-cells of the image, the

characteristic map restricting to a homeomorphism on each open cell. The complex is

called the subdivision complex SR.

(ii) A subdivision R(SR)) of S(R).

(iii) A subdivision map σR : R(SR)→ SR,which is a continuous cellular map that restricts

to a homeomorphism on each open cell.

The n-cells of the subdivision complex are called the tile types. Essentially, a subdivision

rule is just a way of refining a cell structure by a local rule that agrees on sub-cells of

neighboring, larger cells.

Although we will only find subdivision rules for the n-dimensional torus, our method may

possibly apply to other higher-dimensional manifolds. Our approach, as in Chapters 1 and

2 is based on the universal cover. The universal cover of any manifold can be constructed

recursively by taking a copy of the fundamental domain, gluing on fundamental domains to

every exposed face of the original, and repeating. More specifically, let B(0) be a single copy

of the fundamental domain of an n-manifold M . Let B(k) be the set of all fundamental
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Figure 3.1: S(1)

domains that are distance ≤ k from B(0) (in the word metric). Then for many groups and

choices of generating sets, S(k) = ∂B(k) will be a topological (n− 1)-sphere for all k or for

k sufficiently large. The cell structure from the fundamental domain gives a cell structure to

B(k) and thus to S(k). This cell structure is a tiling. Thus, we get a sequence of tilings in

which every tile or every group of tiles corresponds to an element of the fundamental group,

and the entire group is represented at some point. We have drawn S(1), S(2) and S(3) for

the 3-dimensional torus with the standard choice of generators in Figures 3.1 to 3.3, shown

in 3-space and also as a combinatorial tiling. We are again duplicating this material (as we

did in Section 2.3), as it provides the pattern for finding the subdivision rule in all other

dimensions.

However, this sequence of tilings for a manifold is not necessarily created by a subdivision

rule, because faces and edges are created and later covered up (it’s a replacement rule). To

get a recursive structure, similar to hyperbolic 3-manifolds, we need to find a way to represent

S(k) (or a slightly modified version of it) as a sub-tiling of S(k + 1) (or a modified version

of it).

3.2 The n-torus

We now show how to obtain a subdivision rule for the n-dimensional torus.

In the discussion that follows, let I = [0, 1], the unit interval. A q-cube is Iq, and a

p-simplex is the convex hull of p + 1 points in general position. Thus, a 1-cube is a line, a

2-cube is a square, and a 3-cube is a (standard) cube; a 1-simplex is a line, a 2-simplex is a
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Figure 3.2: S(2)

v v

Figure 3.3: S(3)
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triangle, and a 3-simplex is a tetrahedron, etc.

Theorem 4. The n-torus has a subdivision rule with n tile types. The tile types are p− 1-

simplices cross q-cubes, where 1 ≤ p ≤ n and q = n − p. Each such tile is subdivided into

one p− 1 simplex cross a q-cube and 2q p-simplices cross q − 1 cubes.

Before we begin the proof, look at Figures 3.4 and 3.10 to see the tile types for n = 1, 2, 3

and 4.

Proof. The fundamental domain of the n-torus Tn = (S1)n is a hypercube of dimension n. If

the generators of the fundamental group are y1, ..., yn, then every element of the fundamental

group can be written uniquely as ya11 y
a2
2 ...y

an
n .

Because our group is free abelian, the Cayley graph of the subgroup generated by any

subset of the generators is contained in the Cayley graph of the fundamental group. Thus

we can build the universal cover of these manifolds inductively from the universal covers of

manifolds corresponding to subgroups.

We now describe how to explicitly construct the subdivision rule. It may help to follow

along with the examples n = 1, 2, 3 and 4 starting on page 68.

To construct the universal cover, we start with a single n-cube (i.e. In) and begin gluing

on other cubes. Faces (or cells of codimension one) correspond to generators and inverses

of generators. Assume an element represented by a cube is being glued on in some stage of

creating the universal cover. Assume the element can be written as ya1k1y
a2
k2...y

ap
kp, where this

is a representation of minimal word length (so 1 ≤ k1 ≤ k2 ≤ ... ≤ kp ≤ n and ai 6= 0).

Then this element is contained in a subgroup of rank p. Let q = n− p. Then gluing on the

cube corresponding to this element is accomplished by identifying some of its boundary to

the previous stage of the universal cover. If we write the cube In as Ip × Iq, the boundary

will be ∂Ip × Iq ∪ Ip × ∂Iq.

Now, because the group element has p geodesic paths into it (for instance, if ai¿0, going

to ya1−1k1 ya2k2...y
ap
kp and then going through the yk1-face to our element), our cube is glued onto p

faces at once. Each of the p faces represents a generator, and if one generator is represented,
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its inverse is not, meaning that no pair of opposite faces is in the set. The structure of the

n-cube is such that every set of p faces containing no opposing pairs determines a unique

q-cell which is common to all of them (so, for instance, in a 3-cube, three non-opposing faces

intersect in a vertex, two in a line, and one in a square). If we project In ⊆ Rn down onto

the subspace orthogonal to this cell, we see that this set of faces projects to the star of a

vertex in ∂Ip. Call this star S. Note also that every vertex in the p-cube has an opposite

vertex, and the star of a vertex and its opposite have disjoint interiors and cover ∂Ip. Call

the star of the opposite vertex S∗.

Thus, in gluing on In via ∂In, we glue the boundary onto A = S × Iq. The faces of the

∂In that are not glued to anything can be written as B = B1 ∪ B2 = S∗ × Iq ∪ Ip × ∂Iq.

Recall that, to find a subdivision rule, we look at S(k) (i.e. all exposed faces at stage k of

constructing a universal cover), and S(k+1) (all exposed faces at stage k+1),and try to find

the first as a subset of the second. Therefore, our goal is to find a cell structure for A and B

such that B is a refinement or subdivision of A. We use a standard simplicial decomposition

of the p-cube (found, for instance, in [16], Exercise 10.18).

We now describe the decomposition. Ip is covered by the p! simplices {[0, eσ(1), eσ(1) +

eσ(2), eσ(1) + eσ(2) + ...+ eσ(p)]|σ ∈ Σp}, each of which has disjoint interior. Here, ei is the unit

vector in the i-th direction. The symbol [p0, p1, ..., pk] is defined to be τ(Qk), where τ is the

affine map τ(x1, ..., xk) = p0+Σxi(pi−p0), and Qk is the standard simplex {(x1, ..., xk)|0 ≤ xi

for all i, x1 + ... + xn ≤ 1}. Each of these simplices has sub-simplices defined by deleting

intermediate terms (so [0] ⊆ [0, e1] ⊆ [0, e1, e2], for instance).

Recall that switching two terms in the simplex (i.e. changing [p0, p1, p2] to [p2, p1, p0])

gives a different map from Qk with opposite orientation but the same image as the original

map. If τ1 and τ2 are the map corresponding to the original simplex and the ‘flipped’ simplex,

then τ−12 τ1 is an orientation-reversing simplicial map.

We use this to define an involution on our simplicial cube. Define this map by switching 0

and eσ(1)+eσ(2)+...+eσ(p) in every simplex. This is a simplicial map that is the identity on all
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subsimplices not containing 0 or eσ(1)+eσ(2)+ ...+eσ(p). Any subsimplex that contains one of

those points is sent to an opposing subsimplex that contains the other point. The existence

of this map shows, in particular, that the set of all closed simplices in ∂Ip containing 0 is

simplicially isomorphic to the set of all closed simplices in ∂Ip containing eσ(1) + eσ(2) + ...+

eσ(n). This means that if S and S∗ are given the simplicial structure they inherit from Ip,

they are isomorphic.

This means that A and B1 have the same cell structure. If q = 0, B1 = B and A and B

have the same cell structure, so our subdivision rule can be the identity.

If q 6= 0, it’s slightly more difficult. We still give A and B1 the simplicialized structure

explained above, and give B2 the structure of Ip × ∂Iq, where Ip is given the simplicial

structure of earlier. We show that B contains A as a subcomplex, with ∂A ⊆ ∂B. In the

discussion that follows, it will be helpful to follow along with Figures 3.6-3.8 for the case

p = 2, q = 1. Figure 3.10 gives more examples with less explanation.

So, pick a (p − 1)-simplex ∆p−1 in S ⊆ ∂Ip. If we consider the center vertex of S

as 0 and the center vertex of S∗ as eσ(1) + eσ(2) + ... + eσ(p), then there is a unique p-

simplex ∆p defined by adjoining eσ(1) + eσ(2) + ... + eσ(p) to ∆p−1. So, our goal is to show

that ∆p−1 × Iq ⊆ ∆p−1 × Iq ∪ ∆p × ∂Iq. Patching together these simplices will show that

A ⊆ B1 ∪B2 = B.

To do so, note that Iq is just the cone over the boundary of Iq (as a set, not as a complex).

Thus, we look at ∆p−1 × ∂Iq × I, which we will eventually collapse. Each face in ∂Iq is a

(q − 1)-cube. Given a specific face, we can embed the product ∆p−1 × Iq−1 × I in Rp+q−1 as

{(x1, ..., xp−1, y1, ..., yq−1, z)|0 ≤ xi for 1 ≤ i ≤ p − 1, 0 ≤ yj ≤ 1 for 1 ≤ j ≤ q − 1, 0 ≤ z ≤

1x1 + x2 + ...+ xp−1}. Call this set C.

Define a family of maps ft : C → C by

ft(x1, ..., xp−1, y1, ..., yq−1, z) = (x1, ..., xp−1, y1, ..., yq−1, z(1 + (x1 + ...+ xp−1 − 1)
t

2
)).

This defines an invertible homotopy (basically dragging down the corner of the top copy of

66



the simplex along the z-axis).

Note that

f1(C) = {(x1, ..., xp−1, y1, ..., yq−1, z)|z ≤
1

2
+
x1 + ...+ xp−1

2
}

and this is the same as

{(x1, ..., xp−1, y1, ..., yq−1, z)|x1 + ...+ xp−1 + (2− 2z) ≥ 1}.

The closure of its complement in C is Iq−1 cross a p-simplex defined by x1 + ... + xp−1 +

2(1 − z) ≤ 1, where 0 ≤ xi, z ≤ 1. Thus we can write C as the union of f1(C) ∼= C and

C \ f1(C) ∼= ∆p × Iq−1. The boundary of f1(C) ∪ (C \ f1(C)) is clearly the same as C, just

with a more complex cell structure, i.e. a subdivision. If we now collapse to get the cone

structure mentioned earlier, the simplex we just obtained is not affected, and we still have a

subdivision. Patching together all faces in ∂Iq shows that ∆p−1× Iq ⊆ ∆p−1× Iq ∪∆p×∂Iq,

as desired; since the homotopy fixed all y-coordinates, the subdivisions on each face of ∂Iq

match up. Finally, we glue together all the simplices to show that A ⊆ B1 ∪ B2. Note that

the center vertex of S was the corner of each simplex sent to the origin in our embedding

above, so when we glue our simplices together, all of those vertices are identified, and we

have a well-defined subdivision rule.

There is one problem that may have arisen. First of all we are assuming that A is formed

of (p − 1)-simplices crossed with q-cubes. We also have a structure for B; but in the next

stage of subdivision (or of constructing the universal cover), the new A’s are formed from

the old B’s. Do they have the right structure? Well, note that B1 was given the same

structure as A, and the subtiles of B1 correspond to those elements of Zn that stay in the

same subgroup of rank p. B2 represents those elements that land in a subgroup of order

p+ 1, and these are given the structure of n-cubes split into p-simplices cross (q− 1) cubes,

and the p-simplices are grouped about the correct vertex. So, the cell structure is consistent.
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Figure 3.4: 1. The subdivision rule for the 1-torus, i.e. the circle. 2. The subdivision rule
for the 2-torus, i.e. the standard torus. 3. The subdivision rule for the 3-torus.

We now find the subdivision rules explicitly for n = 1, 2, 3 and 4.

For n = 1, the universal cover is a line, B(n) is 2n + 1 line segments, and S(n) is two

points. The subdivision rule is shown in Figure 3.4.

Note that the only tile type is a point (i.e. 0-simplex cross a 0-cube), which is subdivided

into one 0-simplex cross a 0-cube.

For n = 2, the fundamental domain is a square, B(n+ 1) is a topological disk, and S(n)

is a topological circle. The subdivision rule is shown in Figure 3.4.

Type A is a line (i.e. a 0-simplex cross a 1-cube). It’s subdivided into one line( a 0-
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Figure 3.5: White tiles correspond to B(3), and grey tiles to B(2). Note that A tiles
correspond to elements furthest from the origin.

simplex cross a 1-cube) and 2 more lines (1-simplices cross a 0-cube), just as the formula

predicts.

Type B is a line(a 1-simplex cross a 0-cube), and represents half of a group element.

Two B tiles form the star of a vertex in the boundary of the 2-cube (a square), and the

subdivision rule for type B is the identity, just as the formula predicts.

As you can see in Figure 3.5, A tiles correspond to the four ‘ends’ of B(n), or, the group

elements contained in a subgroup generated by exactly one of the standard generators, while

B tiles correspond to elements that must be written using both generators. Notice how two

neighboring B tiles form a corner that is covered up by one square fundamental domain.

For n = 3, we have the 3-torus, whose universal cover is shown being constructed in

Figures 2.3 to 2.5. Notice in these figures that new cubes are glued onto a single face, two

neighboring faces, or three faces forming a corner. These correspond to elements whose
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Figure 3.6: The set S × ∂I1 × I, where S is the union of two 1-simplices.

minimal word-length representations use one, two, or three generators, respectively. Type A

(corresponding to a single face) is a square (or 0-simplex cross a 2-cube), and is subdivided

into one square (a 0-simplex cross a 2-cube) and 4 other squares (or 1-simplices cross 1-

cubes).

Type B is a square (thought of as a 1-simplex cross a 1-cube). It is subdivided into a

square (a 1-simplex cross a 1-cube), and 2 triangles (or 2-simplices cross a 0-cube). Two

type B tiles correspond to the star of a vertex in the boundary of the 2-cube, which is then

crossed by I.

Note that this tile shows us what happens with the homotopy portion of Theorem 4. We

start with S, the star of a vertex in the boundary of Ip = I1 with a simplicial structure

(namely, two edges of a square sharing a vertex, each edge considered as a 1-simplex). We

cross this with Iq=I1 to get two square sharing a face. This is A. Then, we write A as a

quotient of S × ∂I1 × I, so we get Figure 3.6.

On each component (one corresponding to S×0×I, one corresponding to S×1×I), we pull

down the center line by our homotopy to get Figure 3.7. Collapsing ∂I1×{0} = {0, 1}×{0}
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Figure 3.7: The same set as Figure 3.6, after the homotopy. The grey regions are the
complement of the image of the homotopy; note that they are 2-simplices.

to a point to get a cone, we have the image in Figure 3.8.

Type C is a triangle (a 2-simplex cross a 0-cube), which is subdivided by the identity.

This corresponds to a cube glued onto three adjoining faces. Each tile of type C represents

one sixth of a group element, and six together form the star of a vertex in ∂I3 when it is

given a simplicial structure.

Several subdivisions of an A tile are shown in Figure 3.9. This picture was created with

Ken Stephenson’s Circlepack [21]. The pictures are only combinatorial subdivisions of each

other; they can’t be overlaid with vertices matching up. This is because the subdivision rule

is not conformal. For more on the connection between conformality and circle packings, see

[11].

Finally, the tile types for the four-torus are shown in Figure 3.10.

Note the homotopies in each of these tiles. In the first tile type, the homotopy is shrinking

the cube in the center and dragging the cell structure with it. In the second, we only shrink

down a 2-dimensional face, again dragging everything along with it. In the third tile type,
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Figure 3.8: The same set as in Figure 3.7, after collapsing ∂I1 × 0. Note that the original
cell structure (2 squares) is contained in the new structure.

we shrink an edge, dragging along the cell structure with it. Finally, in the fourth tile type,

there is nothing to drag.
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Figure 3.9: Several subdivisions of a type A tile for the 3-torus.
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Figure 3.10: The tile types for the four-torus.
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Chapter 4. The Space at Infinity of a Subdivision Rule

4.1 Definitions

A subdivision rule has combinatorial mesh going to 0 if i) every edge is subdivided at

some point and ii) disjoint edges are separated by the subdivision, i.e. there is a stage of

subdivision where no tile intersects both edges.

A subdivision rule for a hyperbolic manifold generates a basis for the sphere at infinity.

In fact, any subdivision of the sphere with mesh going to 0 generates a basis for the sphere,

where closed tiles form the ”closed basis” (i.e. all closed sets are finite unions of arbitrary

intersections of closed tiles). More generally, a subdivision rule with combinatorial mesh

going to 0 can always be adjusted to have mesh going to 0 without changing the combinatorial

structure.

One question is, can we generalize this to subdivision where mesh doesn’t go to 0? This

type of subdivision rule arises frequently when studying non-hyperbolic manifolds, as we saw

in Chapter 2. In fact, I began studying non-hyperbolic manifolds to look for non-conformal

subdivision rules. But they all failed to be conformal in the simplest way, by having tiles that

didn’t subdivide in one direction or the other. As we will show in this chapter (Corollary

4.5), only hyperbolic manifolds can have mesh going to 0.

Having so many subdivision rules with mesh not going to 0, we define a space at infinity

for all subdivision rules. The topology will be generated by letting closed tiles of all stages

generate a closed basis. The points will be nested sequences of cells of the same dimension:

sequences of nested tiles, sequences of nested edges, and vertices. For subdivision rules of

other dimensions, the points are again sequences of cells of the same dimension.

However, this definition of space at infinity does not extend the one for hyperbolic man-

ifolds, as it is never Hausdorff or even T1 except in trivial cases. What happens is that tiles

of higher dimension can limit to tiles of lower dimension. In cases where mesh doesn’t go to
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0, we actually want non-Hausdorff spaces, but we want all of our spaces to be as Hausdorff

as possible. We can take a quotient space by identifying points that ‘converge’ to each other.

Two points will converge if the combinatorial mesh goes to 0 locally around them. More

specifically, a sequence of nested k-cells {tn} converges to a sequence of nested cells {en}

of lower dimension if, for all sequences {fn} of cells of dimension < k that are eventually

disjoint from {en}, tn contains en for every n but eventually does not contain fn. Two dis-

joint sequences cannot be identified to the same point, as sequences of cells only converge to

lower-dimension sequences that they contain.

Equivalently, we identify two points {fn} and {en} if {fn} converges as a sequence of sets

in the manifold to ∩en.

This definition makes more sense in lower dimensions. It means that a nested sequence

of edges will converge to a vertex if each edge in the sequence is subdivided infinitely often

and every edge intersects the given vertex. In dimension two, we can examine three ways of

dividing a square. See Figure 4.1. In the first, the tile never subdivides, so tn = t1 for all n,

and it does not converge to any sequence of edges, nor do the edges converge to any vertex;

in the space at infinity, there are nine points. It is a finite model of a Hausdorff square,

and has similar homotopy properties. It is contractible, and removing the center point (the

only ‘interior point’) leaves a space homotopy equivalent to a circle, just like the Hausdorff

square.

In the second example, the tile subdivides, but only in one direction. Thus, the sequence

of tiles that contains the right edge converges to that edge, but that edge does not converge

to either of its endpoints. In the limit, we get three Hausdorff lines glued together so that the

top and bottom lines are embedded as closed subsets, but every point in the middle contains

the corresponding points above and below in its closure. The resulting space, again, shares

the homotopy type of the square.

In the third example, we get a Hausdorff square, as shown below.

Theorem 5. Let S be a subdivision rule on a manifold F (possibly with boundary). Let X
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Figure 4.1: Three subdivision rules for the square.

1. 2. 3.

Figure 4.2: The space at infinity for each of the subdivision rules in Figure 4.1.
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be the space at infinity. Then X is homeomorphic to F if S has (topological) mesh going to

0, and if X is homeomorphic to F , then X has combinatorial mesh going to 0.

Proof. We begin with the second statement. If X does not have combinatorial mesh going

to 0, then there is a sequence of k-cells tn and two disjoint sequences of m1-cells en and

m2-cells fn (with mi ≤ k) such that tn contains en and fn for every n. But then tn is not

identified with en or fn, but contains both in its closure. In either case, X is not Hausdorff,

and cannot be homeomorphic to F .

To show the first statement in the theorem, define a map f : X → F by sending each

sequence of nested tiles {tn} to ∩tn ⊆ F . Because mesh goes to 0, there is exactly one point

in this intersection, making the map one-to-one, if it is well-defined. But, as stated above,

if two sequences of cells are identified with each other, their intersection must have been

non-empty at every stage of subdivision. Since mesh goes to 0, the two sequences get sent

to the same point, and the map is well defined. It is continuous, because closed tiles in F

are pulled back to closed basis elements in X.

The function f has an inverse defined by sending a point p in F to a sequence of tiles

tn (in any dimension) where every tile in the sequence contains p. This map is well-defined,

because any two sequences containing the same point will be identified with each other (since

combinatorial mesh goes to 0). It pulls closed basis elements back to closed tiles, and so is

continuous. Thus, f is a homeomorphism.

4.2 Low Dimensional Examples

In dimension 0, the only manifolds are collections of points, and these cannot subdivide.

Thus, the space at infinity is a discrete set of points.

In dimension 1, we can start with a single closed tile. Let our subdivision rule be 4.4.

Then the sequences of nested edges (before identification, and not including vertices) form

a Cantor set, while the vertices form a countable set with one vertex between each pair of

endpoints of the Cantor set. Identifying convergent sequences identifies the pairs of endpoints
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A

Figure 4.3: The initial tile.

A A A

Figure 4.4: A binary subdivision rule.

with the vertex and with each other, and we end up with a set homeomorphic to a closed

interval.

Now, consider the same tile with the rule shown in Figure 4.5. After several iterates, we

have the picture shown in Figure 4.6. In this case, a sequence of edges with any B in it stops

subdividing and does not converge to anything, and we have a countable topological space

composed of ”chains”, with the topology in Figure 4.7. Note that points coming from vertices

are closed, and points coming from B edges contain the two neighboring vertices in their

closure. Note also that the single point in the middle is the only point whose neighborhoods

all contain infinitely other many points. It corresponds to the unique sequence of nested A

tiles.

These two examples are the archetypes for dimension 1 subdivision rules. In particular,

consider a hyperbolic 2-manifold. As in Section 2.7, we can consider it as a covering of a

‘pair of pants’, which is made from dodecagons with vertices identified in groups of three.

A AB B

B B

Figure 4.5: A subdivision rule coming from the torus.
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AB BB BB BB B

Figure 4.6: A tile of type A after repeated subdivision.

Figure 4.7: The space at infinity associated to the subdivision rule in Figure 4.5.

The associated subdivision rule is show in Figure 4.8. The space at infinity is a Hausdorff

circle.

Now consider the torus. One subdivision rule for it is the one described earlier in Figure

4.5. The associated space is made up of four intervals as described above glued in cyclic

fashion, and the resulting space is a countable non-Hausdorff space with almost all the

properties of the circle. The group Z × Z acts faithfully on this space; however, there are

other subdivision rules for the torus where the group does not act faithfully, or does not act

at all.

An interesting variant on these surfaces is the punctured torus, which has a fundamental

domain of the form shown in Figure 4.9, where the vertices are missing. The subdivision

rule has a single tile, as shown in Figure 4.10. Because the vertices are deleted, we don’t

include them in the space at infinity. Thus, the space we get is a Cantor set, the same as

the Gromov space at infinity.

4.3 Examples from 3-manifolds

The situation is more complicated for 3-manifolds. Theorem 5 shows that subdivision rules

for hyperbolic manifolds (which have combinatorial mesh going to 0) have a 2-sphere at

infinity.
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A AB1 B2A A A A A A

B2A A AB1

A AB2
B1 A

Figure 4.8: A subdivision rule coming from a hyperbolic surface.

a

bb

a

Figure 4.9: A fundamental domain for the punctured torus.

A AA A

Figure 4.10: A subdivision rule coming from the punctured torus.
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Figure 4.11: The upper hemisphere for the space at infinity of an H2 ×R manifold.

For S2 × S1, each hollow sphere can be considered as a single ‘tile’, and the space at

infinity is two points, which is as it should be, since the group is Z, which is a hyperbolic

group with two points at infinity.

For an H2×S1 manifold or ˜SL2R manifold, the subdivision rule we obtained earlier gives

a space that is a non-Hausdorff suspension of a circle. Specifically, there is an embedded

Hausdorff circle at the equator, plus 2 countable sets, each homotopy equivalent to a 2-disk.

The points of each countable disk limit onto the equator, so that all neighborhoods of a

point on the equator contain infinitely many points of the disk. See Figure 4.11.

For the Euclidean manifold S1 × S1 × S1, we get a belt around the equator that is the

same as the space at infinity for S1×S1. The space for S1×S1×S1 is also a non-Hausdorff

suspension of the equator, which is what we generally get when crossing a group with Z. See

Figure 4.12.

We can also define a space at infinity for non-closed 3-manifolds. In [18], I found an

explicit subdivision rule for every alternating knot complement. As for the punctured torus,

we don’t consider the vertices as part of the space at infinity. For hyperbolic knots (like the
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Figure 4.12: The upper hemisphere of the space at infinity for the three-torus.

Borromean rings),we get a Sierpinski carpet. Because each vertex is missing, each tangent

vector at the vertex is a different, unidentified point, and we get a deleted open disk at

each vertex. For the trefoil knot, we get a non-Hausdorff suspension of the Cantor set.

For the Hopf link, we get the same space as the torus; if we look closely, we see that the

complement of the Hopf link is an interval cross the torus. Its fundamental group is Z× Z,

a two-dimensional group, and the space at infinity somehow detects that.

4.4 Higher Dimensional Spaces

The subdivision rules for the n-cubes that we found in Chapter 3 give us an example of a

subdivision rule in each dimension with mesh not going to 0 (except trivially when n = 1).

The space can be defined inductively by first finding the space for each subgroup generated

by (n − 1) of the standard generators, and then gluing them together along the subgroups

generated by (n−2) generators. Everything that is not an element of one of these subgroups

has the tile type of an (n − 1) simplex which never subdivides. Each such simplex will be,

at infinity, a collection of points, one for each subsimplex, with each point containing in its
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closure all subsimplices of the corresponding simplex. These leftover group elements form

a countable set that span the holes left by the (n − 1) generator subgroups, and together

form a space homotopy equivalent to an (n − 1)-sphere. Every neighborhood of a point in

the (n − 1)-generator subgroups contains infinitely many elements corresponding to these

(n−1)-simplices. This corresponds to the fact that every tile in the subdivision rule given by

Theorem 4 ‘sheds’ simplices of dimension one higher than themselves, until we get (n− 1)-

simplices, which do not subdivide.

For n = 1, we get two points. Note that this is a Gromov hyperbolic group (namely, Z),

and that its space at infinity in that setting is also two points.

For n = 2, our manifold is the torus, and our space is exactly the space described earlier,

formed of four copies of Figure 4.7. Note that the four ‘central’ points or A tiles correspond

to the subgroups generated by a single generator.

For n = 3, our manifold is the 3-torus, although obtained in a different way than the one

in Chapter 2. The figure, then, will be very similar to the picture in Figure 4.12, except the

equator will have four central points, instead of two, and there will be two more embedded

spaces homeomorphic to the torus space, one perpendicular to each coordinate axis. The

resulting picture looks like a polka-dot gyroscope.

The picture is similar in higher dimensions.

Note that we can glue this space at infinity onto the Cayley graph or onto En to give

a compactification or ‘quasicompactification’, where quasicompact means compact without

the Hausdorff condition. In this compactification, every isometry of the Cayley graph gives

a homeomorphism of the boundary, because the isometries are composed of reflections in

a coordinate hyperplane (which easily gives a homeomorphism of the space at infinity) or

translation by a generator, which also acts on the space at infinity by fixing the the points

corresponding to that generator, fixing the equator perpendicular to the axis between those

two points, and shifting everything else one spot closer to the generator and one spot away

from its inverse.
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For hyperbolic groups, the Combinatorial Riemann Mapping Theorem shows that a trans-

formation that takes the combinatorial structure to itself is a conformal map. In our situa-

tion, the mapping theorem does not apply, but all of our isometries of Zn extend to maps

on the space at infinity that preserve the combinatorial structure. Thus, we can say that all

isometries of Zn lift to a conformal map on the boundary at infinity.

Note, however, that their are ‘conformal’ maps on the boundary that do not correspond

to isometries of Zn. In particular, we can take any quadrant of the space at infinity of Z2

and shift it independently of the other three, and this does not correspond to an isometry

of Z2.

4.5 Hausdorff subsets are hyperbolic

Given any subdivision rule, we define a graph G in the following way:

Definition. The n-th layer Gn of the graph G consists of one vertex for each tile of S(n),

with one edge connecting vertices for each edge in S(n) separating the corresponding faces.

The edges of Gn are called horizontal edges.

Definition. The graph G also has vertical edges connecting each vertex in G(n) repre-

senting a tile in S(n) to each vertex in Gn+1 representing a tile in S(n+ 1).

Definition. If a is in Gn and m < n, let b in Gm correspond to the unique tile of S(m) con-

taining the tile of S(n) corresponding to b. Then we define functions transition functions

fm,n : Gn → Gm by fm,n(a) = b.

Lemma 4.1. If a subdivision rule is bounded valence with combinatorial mesh going to 0,

then there are integers k,M > 0 such that any arc α of length l(α) > M in Gn+k has image

arc fm,m+k(α) in Gm with length < l(α)− 2.

Proof. Because combinatorial mesh is going to 0, there is a k > 0 such that any path in S(n)

joining disjoint edges crosses at least two new edges in S(n+ k).
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Now, any arc of sufficient size in G(n) corresponds to a path in S(n) that joins disjoint

edges. To see this, note that if every edge that the path crosses intersects the first edge, then

they must share a vertex with the first edge, and there are no more than 2V such edges,

where V is the maximum valence of the subdivision rule. Thus, if fn,n+k(α) has length

> 2V , then its corresponding path in S(n) joins disjoint edges, and so the path in S(n+ k)

corresponding to α must cross at least two more edges.

Thus, if fn,n+k(α) has length > 2V , then fn,n+k(α) has length < l(α) − 2. Also, if

fn,n+k(α) has length ≤ 2V and α has length > 2V + 2 then fn,n+k(α) is also strictly shorter

then l(α) − 2. Combining these two statements, we see that if α has length greater than

M = 2V + 2, then fn,n+k(α) has length strictly less than l(α)− 2.

Now, we define a standard path.

Definition. A standard path in G from a point a to a point b is a geodesic that consists

of a vertical, upward path beginning at a, a purely horizontal path of size < M , followed by

a downward vertical path ending at b.

Lemma 4.2. For a finite, bounded-valence subdivision rule with combinatorial meshing going

to 0, every geodesic α is within ε of a standard path, where ε is a global constant.

Proof. Let x in Gm be the initial point of α, and let y in Gn be the terminal point. Then let

A = {all vertical, upward edges}, B = {all horizontal edges}, C = {all vertical, downward

edges}. Note that m+ |A| = n+ |C|; call this number k. Now let β be the path consisting of

|A| upward edges, a horizontal path of length ≤ |B| from fk,m(a) to fk,n(b), and a downward

path of |C| downward edges.

The horizontal path in the middle can be taken to be the image of all elements of B under

the appropriate transition functions. If this horizontal path has length > M , then β can

be shortened by adding one more vertical edge to the vertical path, following the image of

the horizontal path under fk−1,k, going down a vertical edge, and then following the original

downward path. Because α is a geodesic, β cannot be shortened, so the horizontal path has

length ≤M and β is a standard path.
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Now we show that α and β stay within some fixed constant ε of each other, depending

only on the subdivision rule. We begin by showing that all upward edges occur in α before

all downward edges. Assume the geodesic goes down one edge, follows a horizontal path

in Gp for some p, then goes up a vertical edge. The image of the horizontal segment is no

shorter in Gp−1, and so removing the vertical segments while keeping the horizontal path

(mapped into Gp−1) gives a strictly shorter path.

Thus, we have shown that α consists of a path where all vertical segments occur before

all downward segments, and all horizontal segments total no more than M in length.

Now, compare α and β. They both start at a in Gm, go upward to some points in Gk

(with α possibly taking horizontal detours of total length ≤ M), take a horizontal path of

length ≤ M to some other point in Gk, the go downward to b in Gn (again with possible

detours for α). Since distances in Gp are no longer than distances in Gq for p < q, the path β

stays within M of α on the upward segment. Then the endpoints of the last upward edges of

α and β lie in Gk and have distance < M . The horizontal paths in Gk have length < M , and

so the paths lie within 2M of each other at all times. By symmetry, the downward segments

of α and β remain within M of each other. Thus, if ε = 2M , all geodesics are within ε of a

geodesic with the same starting points that follows a standard path.

Using this last lemma, we can now show that G is Gromov hyperbolic by considering

triangles of geodesics that follow standard paths. Standard paths are useful, because they

allow us to focus on the upward and downward segments. Vertical geodesics connecting

equivalent points in different layers are unique; no horizontal moves are necessary, and each

vertex in a layer has a unique upward path coming from it. This uniqueness of vertical

geodesics gives our graph a tree-like structure.

Theorem 6. If a subdivision rule has bounded valence and combinatorial mesh going to 0,

the associated graph G is Gromov hyperbolic.

Proof. We will show that geodesic triangles are delta-thin. By Lemma 4.2, we can assume
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the geodesics in a triangle follow standard paths by changing distances a bounded amount.

Now, let x, y, and z be points lying in Gm, Gn, and Gk, respectively, with geodesics αxy, αxz,

and αyz connecting them. Because these are standard paths, they are vertical except for a

horizontal portion lying entirely in some layer of the graph. Let h(x, y), h(x, z) and h(y, z)

be the height of the horizontal portions of the corresponding geodesics (so, for instance, the

horizontal part of αxy lies in Gh(x,y).

Without loss of generality, assume H(x, y) ≤ H(x, z) ≤ H(y, z). We first show that αxy

remains close to the other two geodesics. It is the same path as αxz until they reach GH(x,y);

it then follows a path of length ≤ M (where M is, again, the constant from Lemma 4.1),

then follows a downward segment to z that is the same as that followed by αyz. Thus, αxy

is within M of the other paths at all times.

Now, the horizontal path of αxy actually connected the images of x and y under the

appropriate transition functions. So, in GH(x,y), the vertical segments of αxz and αyz are no

more than M apart, and they are no further apart in higher levels. Thus, they are within

M of each other until H(x, z).

Now, in H(x, z), the images of x and z are ≤ M apart, and so are those of y and x

(because H(x, y) ≤ H(x, z)). Thus, y and z are no more than 2M apart. Thus, the path of

αxz (which goes up, over and down from the image of x in this stage to the image of z in

this stage) must be less than 2M in length. Thus, it is never more than 3M away from αxz.

Finally, both end with the same downward segment from the image of z in GH(y, z) down

to z itself. Thus, all geodesics in the triangle are no more than 3M apart at any point. Our

assumption that our geodesics were standard paths shifted each geodesic by no more than ε

(the constant from Lemma 4.2. Thus, every edge in a geodesic triangle is within δ = 3M+2ε

of the union of the other edges, and our graph G is Gromov hyperbolic.

Corollary 1. No bounded valence subdivision rule associated to a non-hyperbolic 3-manifold

has combinatorial mesh going to 0.
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Part II

Circle packings and subdivision rules
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Chapter 5. A Circle Packing Proof of the Combinatorial

Riemann Mapping Theorem

5.1 The Theorem

The proof in this section is essentially the same as that of [11], although it was developed

independently.

We begin with the statement of our version of the Combinatorial Riemann Mapping

theorem, first proved in [2]. We first recall the definitions involved.

A tiling is a decomposition of a topological sphere into polygons that have disjoint

interiors and that meet in an edge or a vertex. They can be triangulated by putting a vertex

in each face and adding an edge from the new vertex to each of the old vertices.

A tiling T of a ring R (i.e., a closed annulus) gives two invariants, Msup(R, T ) and

minf (R, T ), called approximate moduli. These are similar to the classical modulus of a

ring. They are defined by the use of weight functions. A weight function ρ assigns a

non-negative number called a weight to each vertex of T . Every edge-path in R can be

given a length, defined to be the sum of the weights of all vertices in the path. We define

the height H(ρ) of R under ρ to be the infimum of the length of all possible edge-paths

connecting the inner boundary of R to the outer boundary. The circumference C(ρ) of

R under ρ is the infimum of the length of all possible edge-paths circling the ring (i.e. not

nullhomotopic in R). The area A(ρ) of R under ρ is defined to be the sum of the squares of

all weights in R. Then we define Msup(R, T ) = sup
ρ

H(ρ)2

A(ρ)
and minf (R, T ) = inf

ρ

A(ρ)
C(ρ)2

. Note

that they are invariant under scaling of the metric.

A sequence T1, T2, ... of tilings is conformal (K) if:

(i) mesh approaches 0 (note that this is independent of topological metric);

(ii) for each ring R, the approximate moduli Msup(R, Ti) and minf (R, Ti), for all i suffi-
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ciently large, lie in a single interval of the form [r,Kr]; and

(iii) given a point x in the surface, a neighborhood N of x, and an integer I, there is a

ring R in N \ {x} separating x from the complement of N , such that for all large i the

approximate moduli of R are all greater than I.

Triangulations are examples of tilings. The most familiar example of a sequence of

tilings is iterated barycentric subdivision of a triangulation. Barycentric subdivision is not

conformal [6] (see also Chapter 6.2), but many common sequences of tilings are. A simple

example of a conformal sequence is connecting the midpoints of all triangles in a triangulation

with new edges; this has been called hexagonal refinement [22]. In general, all sequences of

tilings with tiles that are uniformly ’almost round’ in some metric are conformal [2].

The original Combinatorial Riemann Mapping Theorem was proved in a more general

setting, where tiles are allowed to overlap. Also, there were no restrictions on the tilings

besides conformality. However, our use of circle packings limits us to sequences of tilings

of bounded size, which means that the number of edges of each face and the valence of

each edge are uniformly bounded above for the entire sequence. This is equivalent to the

triangulations of the tilings having uniformly bounded valence. The motivating problem for

the Combinatorial Riemann Mapping Theorem is showing that natural disk covers of the

sphere at infinity for certain Gromov-hyperbolic groups give the sphere an analytic structure

that is comparable to the combinatorial one. In this setting, the disk covers can be replaced

by tilings of bounded size, and we lose nothing by restricting to this case.

Theorem 7 (The Combinatorial Riemann Mapping Theorem for bounded-valence trian-

gulations). Let T1, T2, ... be a conformal sequence (K) of triangulations of the topological

2-sphere S, with the valence of all vertices bounded above by V . There exists a homeomor-

phism identifying S with the Riemann sphere P and a constant K ′ = K ′(K,V ) such that

classical and asymptotic moduli are K ′-comparable. That is, if R is any ring in S, then there

is an integer I and an interval of the form [r,K ′r] such that the classical analytic modulus

of R and the approximate moduli Msup(R, Ti) all lie in [r,K ′r] for each i ≥ I.
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Corollary 2 (The Combinatorial Riemann Mapping Theorem for bounded-size tilings). Let

T1, T2, ... be a bounded-size conformal sequence (K) of tilings of the topological 2-sphere S.

There exists a homeomorphism identifying S with the Riemann sphere P and a constant K ′

(depending only on K and the size of the tiling) such that classical and asymptotic moduli

are K ′-comparable. That is, if R is any ring formed of closed tiles in S, then there is an

integer I and an interval of the form [r,K ′r] such that the classical analytic modulus of T

and the approximate moduli Msup(R, Ti) all lie in [r,K ′r] for each i ≥ I.

Proof. This follows from Theorem 4.3.1 of [7], which states that two tilings with bounded

overlap have comparable moduli. Two tilings T, T ′ have bounded overlap if there is a constant

L such that each shingle in T intersects at most L shingles in T ′ and vice versa. A tiling

of bounded size has bounded overlap with its triangulation, so moduli in the tiling are

comparable to those in its triangulation, which are comparable to the analytic moduli.

Circle packings are analogous to quasiconformal maps. Instead of preserving the classi-

cal modulus of rings up to a fixed constant, circle packings push combinatorial rings with

no analytic structure into the Riemann sphere, giving them a classical modulus uniformly

comparable to the asymptotic moduli. Many of the classic quasiconformal theorems carry

over directly to this setting, as we will show.

What do we mean by a circle packing?. Given a triangulation T of the sphere, there is a

unique circle packing (up to Möbius transformation) of circles on the sphere whose adjacency

graph is combinatorially equivalent to T . By fixing the image of three points, we get a unique

circle packing. We then define a map from S to P by sending 0-,1-, and 2- cells to 0-, 1-

and 2- cells by arbitrary orientation-preserving homeomorphisms and call the result a circle

packing of T.
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5.2 An Important Lemma

A combinatorial annulus is a closed, triangulated annulus. We say that a combinatorial

annulus is induced by a triangulation T of S if every triangle in the annulus is a triangle

of T .

We use the following result (found in [22]) to show that circle packings respect moduli.

Lemma 5.1. Suppose R is a combinatorial annulus, and Q is a univalent spherical circle

packing for K, and that Ω = carr(Q) ⊂ P. Then Mod(Ω) (classical modulus), Msup(R), and

minf (R) are comparable by a constant c which depends only on maximum valence of R.

Now, we begin to draw analogies between quasiconformal maps and these maps that

respect moduli.

5.3 Analogues of Classical Theorems

Our first theorem also applies to all conformal tilings, whether bounded valence or not.

Theorem 8. Given a domain G with a conformal sequence T1, T2, ... of triangulations with

circle packings w1, w2, ..., if every wn omits 2 values p1, p2 whose spherical distance is greater

than some fixed t > 0, then {wn} is equicontinuous in G. Compare with Theorem II.4.1 of

[13]

Proof. Given z0 in G and ε, with 0 < ε < t, choose a ring R that separates z0 from p1, p2,

with minf (R, Tn) ≥ 32
ε2

for all n ≥ N for some N . Choose another annulus R′ so that R

is contained in the interior of R′ and R′ misses z0, p1 and p2. For all n ≥ N ′ for some

N ′ ≥ N , there is a combinatorial annulus Rn induced by Tn with R ⊂ Rn ⊂ R′. Fix a tiling

Tn and its packing wn, with n ≥ N ′. Give the tiling wn(Rn) the weighting ρ associated to

the circle packing, so that each vertex is assigned the radius of its associated circle. Then

by definition of the discrete modulus, C2(ρ)
A(ρ)

≤ 1
minf (Rn,Tn)

≤ 1
minf (R,Tn)

, so C(ρ) ≤
√

A(ρ)
minf (R)

.

But A(ρ) = Σ
C∈wn(Rn)

(radius(C))2 ≤ Σ
C∈wn(Rn)

2
π
area(C) ≤ 8, because the area of the sphere
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is 4π. Thus, C(ρ) ≤
√

8
minf (R,Tn)

< ε
2
. Pick a path in wn(Rn) with length 2C(ρ). Then this

path lies in a disk of radius ≤ ε, and one of the components of P \ wn(Rn) lies in this disk.

Because ε < t, it must be the component containing wn(z0). Thus, the component of S \Rn

containing z0 has image radius less than ε under every packing wn for n ≥ N ′. Thus, the

component of S \R′ containing z0 will also have image radius less than ε under every packing

wn for n ≥ N ′. This gives equicontinuity of the maps w1, w2, ..., and we are done.

If we normalize our packings so that three points z1, z2, and z3 have fixed, distinct images

in the sphere, then we have equicontinuity of the sequence by applying the above to S minus

each pair of points in turn. Because the images lie in P, a compact set, this is a normal

family and thus converges uniformly to a continuous function w on S, whose image contains

3 distinct points. We now use the following theorem to show the map is univalent, and thus

a homeomorphism.

Theorem 9. The limit function w of a sequence wn of circle packings (of a conformal

sequence (K) T1, T2, ... of bounded-valence triangulations) which converges uniformly in S

is either univalent or a constant map. Compare with Theorem II.5.3 in [13].

Proof. Assume there are a, b in G such that w(a) = w(b). Eventually, we will show that w is

a constant map. But first, we will show that every neighborhood of a contains a point z 6= a

such that w(z) = w(a).

Choose a closed disk neighborhood D of a omitting b and lying in G. Then wn(∂D)

separates wn(a) and wn(b) for every n. The infimum of d(wn(z), wn(a)) on ∂D is 0 =

d(w(a), w(b)), so our first assertion is proved.

Now we will show that every point z0 in G possesses a neighborhood U(z0) ⊂ (G) in

which w is either one-to-one or constant. In particular, w will be constant on U(a) (i.e.

w(z) = w(a)), since w is not one-to-one on any neighborhood of a by our first step.

Choose a disk neighborhood U(z0) ⊂ G of z0, having image diameter less than π
4

for all

wn. This is to keep the outer boundary of an annulus we will form from being to small.
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If U(z0) does not have our desired property, then there are z1, z2, and z3 in U(z0) with

w(z1) 6= w(z2) = w(z3) (because w is neither constant nor one-to-one).

Choose a closed annulus R ⊂ U(z0) that separates z1, z2 from z3, and another closed

annulus R′ contained in the interior of R. Then for all n ≥ N for some N , there is a

combinatorial annulus Rn induced by Tn with R′ ⊂ Rn ⊂ R. The image wn(Rn) lies

in the disk d(wn(z), wn(z0)) < π
4
. It separates wn(z1), wn(z2) from wn(z3) and the cir-

cle d(w,wn(z0)) = π
4
. Also, by Axiom 1, all moduli Msup(R

′, Tn) lie in a single interval

[r,Kr], r > 0.

Now we have lim
n→∞

d(wn(z2, z3)) = 0, lim
n→∞

d(wn(z1, z2)) > 0, and both boundary compo-

nents of wn(R) have diameters greater than d(wn(z1), wn(z2)) for all n. By Lemma I.6.2

of [13] we have lim
n→∞

Mod(wn(R)) = 0 (classical modulus in P). But, Mod(wn(R)) ≥

Mod(wn(Rn)) ≥ 1
c
Msup(wn(Rn), Tn) ≥ Msup(R′,Tn)

c
≥ r

c
, where c is the constant from Lemma

5.1. Thus, the moduli Mod(wn(R)) are bounded below, and we have a contradiction.

Thus, S is the disjoint union of two open sets: U , where w is locally constant, and V

where w is locally univalent. Because a is in U , U is all of S, and w is a constant map.

Because we normalized our packings, the image of w contains at least three points, so we

have a univalent, continuous map w of S into P which is thus a homeomorphism. All that

remains is to show that the approximate and classical moduli are comparable. We know

that it is the uniform limit of maps wn satisfying this property, so all that remains is our

last lemma.

A sequence of rings Rn is said to converge to R from the inside if Rn ⊂ R for every

n and if for every ε > 0 there is an nε such that for n ≥ nε, every point of the inner (resp.

outer) boundary of Rn has spherical distance < ε from the corresponding boundary of R.

Lemma 5.2. Let wn be a sequence of circle packings of a conformal sequence (K) of bounded-

valence triangulations T1, T2, ... of a topological sphere S. Let R be ring in S with asymptotic

moduli lying in [r,Kr]. If the packings converge uniformly to a map w on S, then the asymp-
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totic moduli Msup(R, Tn), Minf (R, Tn)) and Mod(w(R)) all lie in a K ′ interval [r′, K ′r′],

where K ′ depends only on K and the constant c from Lemma 5.1. Compare this to Theorem

I.5.2 of [13].

Proof. First we show that Mod(w(R)) ≤ cKr for any annulus R ⊂ S. Let Rn be a nested

sequence of combinatorial annuli whose union is the interior of R, where each Rn is induced

by Tn. For each Rn, there is a k such that wm(Rn) is contained in w(R) for m ≥ k. We

can get wn(Rn) ⊂ w(R) by replacing wn with a subsequence. The wn converge uniformly

in R to w, which is uniformly continuous, so the wn(Rn) converge to w(R) from the inside.

Then by lemma I.6.4 of [13], lim
n→∞

Mod(wn(Rn)) = Mod(w(R)). But for sufficiently large n,

Mod(wn(Rn)) ≤Mod(wn(R)) ≤ cKr, so in the limit, Mod(w(R)) ≤ cKr

By surroundingR with nested combinatorial annuli, we can similarly obtainMod(w(R)) ≥
r
c
. Thus, with r′ = r

c
, K ′ = Kc2, all of our moduli of both types are comparable.

Thus, our sequence of normalized circle packings converges to our desired homeomor-

phism, and Theorem 7 is proved.

5.4 Further Work

One obvious generalization would be to extend the theorem to a sequence of tilings where

the valence is unbounded. Our key lemma is missing, but there may be ways to work around

this, such as blowing up the vertices (replacing each vertex with a tile).

Also, normalized circle packings may converge for a sequence that is not conformal. The

easiest way to construct such sequences of tilings is by artificially forcing the mesh to not

be 0; but other techniques allow us to create convergent circle packings that don’t satisfy

axiom 1. For instance, we can take the binary square subdivision rule and add rings around

every vertex that follow the 2-3 subdivision rule. These rings are degenerate, and collapse

in the limit, and the binary subdivision rule dominates.
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The converse of our main theorem is clearly true; if the circle packings converge to a

homeomorphism, the classical moduli are comparable with the approximate moduli, and the

classical modulus can be made arbitrarily large in arbitrarily small neighborhoods of points.

But a stronger converse may be true, where we drop the condition that approximate moduli

and classical moduli are comparable, by using the properties of circle packings.
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Chapter 6. Modulus of Subdivision Rules of Unbounded

Valence

6.1 Introduction

As described in the introduction to this dissertation, a subdivision rule is a recursive way of

combinatorially dividing a tiling on a surface into a smaller, more refined tiling. Barycentric

subdivision is an example, as is hexagonal refinement, both of which we will explore later.

Subdivision rules have been studied extensively by Cannon, Floyd, and Parry in an attempt

to prove that all hyperbolic groups with a 2-sphere at infinity are hyperbolic 3-manifold

groups; as a corollary, this would give a simple proof of the hyperbolization conjecture, now

proved by Perelman.

While investigating these hyperbolic groups with a 2-sphere at infinity, they showed (in

[7]) that all such groups have an associated finite subdivision rule on the sphere. Cannon

showed in [2] that, if a subdivision rule associated to a group is conformal (meaning it satisfies

two simple axioms), then the group acts on the sphere by Möbius transformations and on

hyperbolic 3-space by isometries, cocompactly and properly discontinuously.

Cannon, Floyd and Parry have studied finite subdivision rules extensively under the hy-

pothesis of bounded valence at every vertex. They have showed that barycentric subdivision

did not satisfy either of the two axioms mentioned above. However, they noted (in [3], p.25)

that barycentric subdivision should have many of the same properties as conformal subdi-

vision rules, and called for an alternate definition of the axioms that would better handle

subdivision rules of unbounded valence. We will describe two ways of altering the axioms in

Section 6.2.

To state the axioms, we need to define combinatorial modulus. Combinatorial modulus is

a direct analog of the modulus of a topological annulus or quadrilateral in complex analysis.
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In that setting, every topological annulus or quadrilateral is conformally equivalent to a

standard annulus or quadrilateral, and the modulus is defined by how thick or thin the

resulting annulus or quadrilateral is.

A conformal map can be thought of as a change in metric; finding the classical modulus,

then, is finding an optimal metric in some sense. Combinatorial modulus is defined to mirror

this.

A tiling T of a ring R (i.e., a closed annulus) gives two invariants, Msup(R, T ) and

minf (R, T ), called approximate moduli. These are similar to the classical modulus of a

ring. They are defined by the use of weight functions. A weight function ρ assigns a

non-negative number called a weight to each tile of T . Every path in R can be given a

length, defined to be the sum of the weights of all tiles in the path. We define the height

H(ρ) of R under ρ to be the infimum of the length of all possible paths connecting the

inner boundary of R to the outer boundary. The circumference C(ρ) of R under ρ is the

infimum of the length of all possible paths circling the ring (i.e. not nullhomotopic in R).

The area A(ρ) of R under ρ is defined to be the sum of the squares of all weights in R. Then

we define Msup(R, T ) = sup
ρ

H(ρ)2

A(ρ)
and minf (R, T ) = inf

ρ

A(ρ)
C(ρ)2

. Note that they are invariant

under scaling of the metric.

A sequence T1, T2, ... of tilings is conformal (K) if mesh approaches 0 and:

(i) for each ring R, the approximate moduli Msup(R, Ti) and minf (R, Ti), for all i suffi-

ciently large, lie in a single interval of the form [r,Kr]; and

(ii) given a point x in the surface, a neighborhood N of x, and an integer I, there is a

ring R in N \ {x} separating x from the complement of N , such that for all large i the

approximate moduli of R are all greater than I.

Note that mesh approaching 0 is independent of topological metric.

These are the two axioms mentioned earlier. The first axiom is similar to equicontinuity

of maps, and the second shows that points do not blow up. In Section 6.2, we give an

example of a subdivision rule satisfying axiom 1 but not axiom 2.
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One way to achieve an intuitive understanding of these axioms is by circle packings.

Häıssinsky showed that, if a sequence of tilings is conformal, then some subsequence of its

circle packings will converge to a limit map (if we normalize the circle packings by fixing the

image of three points). Thus, throughout this paper, we will use circle packings as a way of

studying modulus.

6.2 Barycentric Subdivision

Cannon and Swenson have shown [7] that the subdivision rules arising from closed hyper-

bolic manifolds are conformal. Later, Cannon, Floyd and Parry [6] showed that barycentric

subdivision does not satisfy Axiom 1. We show that by altering the definition of weightings,

we can make barycentric subdivision satisfy Axiom 1 on a basis of annuli, but not Axiom 2.

We will use the Layer Theorem [6]. This theorem says that the modulus of an annulus

is greater than the sum of the moduli of any disjoint collection of essential sub-annuli. In

other words, if you stack several rings together, you get a ring at least as big as all of them

put together.

The modulus of a quadrilateral or annulus corresponds to an optimal weighting of the

shinglings of the quadrilateral. The reason that unbounded valence subdivision rules have

been difficult to study before is that the optimal weight vectors corresponding to a quadri-

lateral or annulus with tilings of large valence are asymmetrical. Specifically, Cannon, Floyd

and Parry showed [4] that optimizing a quadrilateral to measure its height in the traditional,

‘fat’ way (counting all shingles that intersect a path) measures its width in a ‘skinny’ way

(counting any one set of shingles that covers the path). See Figure 6.1. If many edges come

into a single vertex, the fat height paths have to go all the way around the vertex, while the

skinny width paths can sneak through the vertex. Thus, even rotationally symmetric tilings

with high valence will have degenerate moduli.

My idea is to show that barycentric subdivision satisfies Axiom 1 on a basis of annuli

if we change how we place weights. We either place weights at the vertices, or blow up
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α

β

Figure 6.1: Fat paths go around vertices, skinny paths go through them.

Figure 6.2: Blowing up a vertex.

the vertices by replacing each vertex with a closed disk (see Figure 6.2). Blowing up the

vertices gives a new tiling with all vertices have valence 3. Placing weights at the vertices

(and requiring paths to be edge paths) is equivalent to taking the dual tiling, where, again,

all vertices have valence 3 (because all tiles of barycentric subdivision are triangles). In

these settings, ‘skinny’ and ‘fat’ sets of shingles are the same, because any two tiles sharing

a vertex share an edge. Thus, the height and width are measured in a symmetrical way.

Because of this symmetry, Theorem 2.4.5.1 of [4] shows that minf = Msup for all rings at all

stages of subdivision. Thus, we can speak of ‘the’ combinatorial modulus.

Our future calculations will not depend on the method we choose, as long as fat and

skinny are the same. One motivation in putting weights on the vertices is circle packings; a

circle packing assigns a weight to each vertex (i.e the radius of the circle).

Now, we perform some calculations. Consider two adjacent triangular tiles an any stage

of barycentric subdivision. Together, they form a square. Notice in Figures 6.3, 6.4 that

reflection about the common edge preserves the tiling (i.e. cell structure) and swaps cuts
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Figure 6.3: A square in a triangulation.

Figure 6.4: The same square after one subdivision.

and flows; in the language of Cannon, Floyd, and Parry, there is a weak isomorphism taking

cuts to flows and vice versa [6]. So the optimal height and length of the square must be

equal, and either combinatorial modulus of the square must be exactly one.

Now, consider the star of any vertex. It consists of some number n of triangles arranged

about the vertex. When we subdivide, we can remove the new star about the vertex (consist-

ing of 2n tiles) to get an annulus. This annulus consists of 2n square of the type considered

above, arranged with alternating orientations.

Let α be a cut in the annulus (i.e. an arc connecting the ends of the annulus). Then pick

any square in the annulus, and notice that reflecting α every time it touches the boundary of

the square gives us an arc that remains entirely in the square, while having the exact same

Figure 6.5: The star of every vertex contains an annulus made of squares.
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α

α’

Figure 6.6: If we consider the annulus as four squares with edges identified, we can reflect
any cut of the annulus so that it lies in one given square.

length (see Figure 6.6). Thus, the height of the annulus is equal to the height of the square,

and the are is equal to n times the area of the square (after we multiply by an appropriate

constant). Thus, both moduli are 1
n
. This class of annuli, therefore, satisfy Axiom 1.

However, we cannot layer these annuli to get larger annuli which we know to be of

unbounded modulus. To see this, notice that the next smaller annulus has 2n squares and

has modulus 1
2n

, and, in general, the (k + 1)th annulus has modulus 1
2kn

, and layering all

of these together gives us a larger annulus which has
∞
Σ
k=0

1
2kn

= 2
n

as a lower bound for its

modulus. The exponential growth about the vertex makes the modulus shrink too quickly.

This contrasts strongly with the finite valence case, in which we have nested annuli with

identical moduli that sum to infinity. In the next section, we will consider subdivision rules

that have linear growth at each vertex, and which thus have annuli of unbounded size.

While we don’t have an upper bound for the size of the annuli, Ken Stephenson’s Cir-

clepack [21] suggests that such a limit exists. If a basis of annuli satisfy Axiom 1 and Axiom

103



2, the circle packings will converge to a limit function on the sphere [11]. However, the pack-

ings for barycentric subdivision seem to converge to a relation in which the set of vertices

is mapped to a dense set of disks. See the Figure 6.2. Note that all points that are not

vertices are contained in the double star of a new vertex at every stage of subdivision. The

star of each of these vertices contains an annulus surrounding the point of modulus 1
12

or 1
8

for all sufficiently refined stages of subdivision. Thus, we can layer to get unbounded moduli

in this case. This means that, under a sequence of circle packings, the complement of the

vertices is mapped homeomorphically (by Arzela-Ascoli and the fact that locally conformal

circle packings are locally equicontinuous [11]) to a subset of the sphere, i.e. the complement

of the disks, which is similar to a Julia set.

This is related to the work of Cannon, Floyd and Parry on subdivision rules and rational

maps [3], in which they showed that many subdivision rules can be realized as a rational

map on the sphere, where the subdivision rule is obtained by pulling back a cell structure

on the sphere. Conformal subdivision rules have a Julia set that is the entire sphere, but

the map associated to barycentric subdivision has a Sierpsinski carpet as its Julia set.

6.3 Borromean Rings

In contrast to barycentric subdivision, a subdivision rule associated with the Borromean

rings is conformal, although the valence at each vertex remains unbounded.

The tile types are shown in Figure 6.7. The dot indicates the orientation of the B tiles.

Let’s examine the star of a vertex. Each new vertex in the subdivision rule, after all tiles

around it have been subdivided once, has a star of the form shown in Figure 6.8.

After another subdivision, we have Figure 6.9. Note the marked annulus.

Notice that this annulus can be reflected twice in between neighboring B tiles to get a

quadrilateral of the form shown in Figure 6.10. Several B tiles have had their bottom halves

cut off.

But we can fold this up into itself as shown in Figure 6.11
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Figure 6.7: One subdivision rule for the Borromean rings. All polyhedra are octahedra.
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Figure 6.8: The star of a vertex in the Borromean rings’ subdivision rule.

Figure 6.9: We find an annulus in the subdivided star whose modulus is easy to calculate.

106



A A AA

A

B BB

B/2B/2

B/2 B/2

.

. ..

. .

.

Figure 6.10: One of the four quadrilaterals that make up the annulus in Figure 6.9. Note
that the two pairs of B\2 tiles don’t form two whole B tiles; their other halves are below
the picture.
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Figure 6.11: There is a weak cellular folding (for definition, see [6]) that takes the two outer
tiles into inner tiles, with tops and bottoms going to tops and bottoms.

107



A A

A

B

B/2 B/2

A

A/2 B/2

B/2

. .

.

.

.

Figure 6.12: The tile is folded along a line of symmetry.
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Figure 6.13: We first redraw our shape to show how it is to be unfolded, and then unfold it.
The shape on the right has modulus 1, by symmetry.

This tile, in turn, can be folded in on itself, as shown in Figure 6.12.

We almost have something whose modulus we can calculate. In one final step, we unfold

our shape to get something with modulus 1, as shown in Figure 6.13.

This final shape (call it Q) has modulus 1 in all stages of subdivision, as it has a symmetry

interchanging the top/bottom with the left/right. We can now estimate the modulus of the

original annulus by ”pulling back” the weighting given to this tile. We do this by undoing

each step.

Putting back the fold in Figure 6.13, we get something with the same height as Q, but
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with less area than that of Q. Thus, the modulus is at least 1. Undoing the steps in Figure

6.12 at most doubles the area, giving a quadrilateral with modulus at least 1
2
. Undoing

Figure 6.11 gives us modulus at least 1
6
, since area at most triples. Unfolding this into the

original annulus gives modulus at least 1
24

.

We can find similar annuli in the star of each vertex at any stage of subdivision, whose

modulus can be calculated in the same way; the annulus at each stage can be split into four

quadrilaterals which have more squares in them, as in Figure 6.14. By reflection, we can

fold in the extra tiles, and counting arguments show that the modulus is at least 1
2n

, where

n is the number of squares in the star. The annuli thus obtained are disjoint, and so we can

layer them to get annuli whose moduli are bounded below by the partial sums of a harmonic

series. Assuming that the actual modulus is not much greater than this, we have logarithmic

growth of modulus at each vertex. This is supported by circle packings, like Figures 6.3 and

6.3, where the stars of each vertex seem to shrink slowly.

6.4 Hexagonal refinement

Hexagonal refinement is a classic example of a conformal subdivision rule. The subdivision

rule takes triangles and subdivides them into four smaller triangles by connecting midpoints

of edges (see Figure 6.4). While it is easy to calculate the exact modulus of annuli in this

sequence of tilings, we give lower bounds for the modulus as in our other examples.

At every stage of subdivision, every vertex is surrounded by an annulus of 18 triangles,

as shown in Figure 6.15. By reflection, we can consider a single quadrilateral as shown in

Figure 6.16. Note that, by the reflection shown in that figure, we can assume that any cuts

remain in the right two triangles. These last triangles, by the reflection shown in Figure

6.17, have modulus 1. Working backwards, we see that the quadrilateral in Figure 6.16 has

modulus ≥ 1
2
. Thus, the entire annulus in Figure 6.15 has modulus ≥ 1

12
.

In contrast to barycentric subdivision and the Borromean rings, the annuli surrounding a

given vertex at each stage have a fixed, constant size C ≥ 1
12

. Thus, layering gives us annuli
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Figure 6.14: A figure similar to Figure 6.10, but for the star of a vertex at a later stage of
subdivision.

of modulus ≥ Cn at stage n, and so axioms 1 and 2 are satisfied at each vertex. This easy

layering for finite valence subdivision rules is a small part of why Cannon, Floyd, and Parry

were able to replace axioms 1 and 2 with a simpler axiom 0 for finite valence subdivision

rules [5]:

Axiom 0. Given x ∈ Y and a neighborhood N of x, there is a ring R in N surrounding

x such that the moduli m(R, Ti) are bounded away from 0.

Note that the estimate for every vertex in hexagonal refinement is the same at every

stage; this is reflected in its circle packing on page 113.

6.5 Generalizations

Notice that the key ideas in the estimates for our three subdivision rules were:

(i) Finding pieces of modulus 1, and

(ii) Showing that we need only consider cuts that remain in these pieces.

One powerful technique related to these ideas is the 1,2,3-tile criterion of Cannon, Floyd,

and Parry [6]. Essentially, a subdivision rule satisfies the criterion if every ‘test quadrilateral’

formed from one or two tiles in a row (or three if the middle one is a triangle) has modulus

uniformly bounded away from 0. This criterion allows us to argue as we did in the three

cases above to provide estimates.

There are three types of test quadrilaterals:
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Figure 6.15: Eventually, at every stage of subdivision, every vertex is surrounded by an
annulus of this form.

Figure 6.16: The annulus in Figure 6.15 is made of 6 quadrilaterals of this form. By reflection,
we can assume that all cuts stay in two neighboring triangles.

Figure 6.17: This square has modulus one, even after several stages of subdivision.
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Type I. The quadrilateral Q consists of one tile, and each of the ends of Q consists of one

edge.

Type II. The quadrilateral Q consists of two tiles whose intersection consists of one edge

f , and each of the ends of Q consists of one edge which meets f . We call f the interior

edge of Q.

Type III. The quadrilateral Q consists of three tiles t1, t2 and t3, where t2 is a triangle

with edges f1, f2, and f3. The intersection of t1 and t2 is f1, and the intersection of t2 and t3

is f3. The intersection of t1 and t3 is a vertex v. The top of Q consists of an edge containing

v, and the bottom of Q is f2. We call f1 and f3 the interior edges of Q.

Cannon, Floyd and Parry showed that a uniform lower bound on the modulus of all test

quadrilaterals (call it M) gives a lower bound for the modulus of a ring R in our surface,

depending on the size of the ring. Specifically, in the proof of Theorem 5.1 in [6], they take

the star of a simple closed curve α in some subdivision Ri of the ring, where α misses every

vertex, and show that any flow curve from the bottom of this star to the top must join the

ends of a test quadrilateral (i.e. its image in some test quadrilateral is a cut). They then give

the star of α a weight vector that is the sum of all optimal weightings of test quadrilaterals,

normalized to have area 1. The star of α, then, has modulus ≥ M
Ak

, where k is the number

of tiles in the star of α in Ri and A is the maximum area a single tile can have under the

weighted sum (which is seen to be bounded, as the number of test quadrilaterals a single tile

can lie in is uniformly bounded).

When the star of a vertex v in a subdivided surface S is a disk, we can take its boundary

and push it slightly outward to be such an α. The number of tiles in the star of α will

then be ≤ Bi(v)vali(v), where Bi(v) is the maximum valence of vertices surrounding v. In

a subdivision rule with combinatorial mesh going to 0, each vertex v has a uniform bound

on Bi(v), as each edge surrounding the vertex is subdivided periodically. Thus, we see that

any annulus containing the star of α must have modulus ≥ C
vali(v)

for some constant C.
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By nesting this sequence of annuli, we can construct an annulus of larger modulus. When

valence grows exponentially at each vertex, as in barycentric subdivision, we get a geometric

sequence of estimates of the size of annuli, and we cannot construct annuli whose modulus

estimates are unbounded. I conjecture that every subdivision rule with exponential growth

at each vertex which satisfies the 1,2,3-tile criterion will satisfy axiom 1 but not axiom 2,

just like barycentric subdivision. In this case, the limit of circle packings will be a continuous

relation instead of a continuous function onto the sphere, where points are blown up into

disks. In 1, there are subdivision rules for hyperbolic 3-manifolds with hyperbolic surface

boundary; I conjecture that all such subdivision rules satisfy the 1,2,3-tile criterion and

behave like barycentric subdivision at each vertex corresponding to a hyperbolic surface in

the boundary.

Nesting annuli in a subdivision rule of linear growth gives us a harmonic series for our

estimates, which shows that all such subdivision rules that satisfy the 1,2,3-tile criterion are

conformal. I conjecture that all the subdivision rules arising from alternating links in [18]

satisfy this criterion, and are conformal.

Finally, subdivision rules of bounded valence give a linear modulus estimate, and those

that satisfy the 1,2,3-tile criterion are conformal, which was why Cannon, Floyd and Parry

originally proved the criterion in [6].
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Chapter 7. Non-Conformal Subdivision Rules and Circle

Packings

We now construct an interesting class of subdivision rules. Consider the binary square

subdivision rule, shown in Figure 7.1. This subdivision rule is conformal. We can ‘inflate’

this subdivision rules by adding extra tiles about each vertex, in several different ways, as

shown in Figures 7.2 and 7.3.

These three variants behave differently. Each takes the vertices of the binary subdivision

rule and replace them with a series of nested rings, each ring of modulus going to 0, ∞, and

c > 0 for some c, respectively. We would expect widely varying behavior when we circle pack

them. However, when we construct the packings, we get almost identical pictures. See the

Figure 7.4.

What is going on? In the binary subdivision rule, each vertex was surrounded by annuli

of arbitrarily large modulus. Inflating these vertices did not decrease the size of these annuli.

Each B tile (or C tile) is surrounded by infinitely many disjoint annuli of modulus 1
4
, each

made up of four type A tiles. No matter what subdivision occurs within these annuli, the

circle packings will push it all to one point, by the equicontinuity lemma in Chapter 5.

This is an example of a sequence of tilings whose normalized circle packings converge,

A
A A
A A

Figure 7.1: The binary square subdivision rule.
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Figure 7.2: Tile types for the inflated binary subdivision rules. All three subdivision rules
share these types in common. Note that if all B,C,D, and E tiles are collapsed, we recover
the original binary subdivision rule.

but not to a homeomorphism. All three varieties are conformal on a dense set (i.e. all points

in the set have a family of annuli surrounding them satisfying axioms 1 and 2), and are not

conformal on the complement. In all three examples, each point in the ‘bad’ set has large

annuli around it with modulus going to infinity. In one example, each point in the interior of

the bad set has a neighborhood where all annuli in it satisfy axioms 1 and 2; in one example,

each point in the interior of the bad set has annuli with modulus going to 0; and in the other

example, each interior point has annuli with modulus going to 0 except for the exact center,

whose moduli all go to infinity. See Figure 7.5.

Clearly, other conformal subdivision rules can be blown up in this same way.
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Figure 7.3: The last two tile types for each of the inflated binary subdivision rules.
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Figure 7.4: The first and third stages of the octagonal tile type for the three variants of our
non-conformal subdivision rule in Chapter 7. Notice that the third stages are indistinguish-
able at this level of detail.
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Figure 7.5: The same subdivision rules as Figure 7.4, but now the first and fourth stages of
the square tile type (i.e. the blown-up vertices). The pink center of the top square is carried
to the pink centers in the other squares. In the 3x2 subdivision rule on the left, the pink
center will eventually grow to fill the whole interior of the square. In the 3x3 subdivision
rule on the right, its position is stable. In the 3x4 subdivision rule on the bottom (which
we have only shown the third stage of, as the fourth is much too large), the pink center
contracts down to a point.
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Part III

Future Work and References
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Chapter 8. Future Work

We would like to find a concise set of conditions on odd edge-cycle length polyhedral gluings

that ensures a subdivision rule exists.

We would still like to find subdivision rules for Nil and Sol geometries.

We would like to show that composites of alternating links have subdivision rules like

those in Chapter 7, with a non-Hausdorff 2-sphere at infinity that has n Hausdorff spheres

as quotients, one for each summand of the link (as experiments have suggested).

We would like to show that all subdivision rules we have found for hyperbolic manifolds

with boundary are conformal in the sense that the barycentric subdivision or the subdivision

rule for the Borromean rings are conformal.

We would like to prove that conformal unbounded valence subdivision rules are associated

to rational maps, and to extend other results of Cannon, Floyd and Parry.

We would like to find symmetries in subdivision rules of all hyperbolic groups with 2-

spheres at infinity to prove that they are conformal.
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