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Abstract

The Constrained Isoperimetric Problem

Minh Nhat Vo Do

Department of Mathematics

Master of Science

Let X be a space and let S ⊂ X with a measure of set size |S| and boundary size |∂S|.
Fix a set C ⊂ X called the constraining set. The constrained isoperimetric problem asks
when we can find a subset S of C that maximizes the Følner ratio FR(S) = |S|/|∂S|. We
consider different measures for subsets of R2,R3,Z2,Z3 and describe the properties that must
be satisfied for sets S that maximize the Følner ratio. We give explicit examples.
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Chapter 1. Introduction

The Banach-Tarski paradox [7] is a consequence of nonamenability in group theory and

motivates the study of amenability. The constrained isoperimetric problem [1] arose from

the study of amenability [4].

A group G with finite generating set C = C−1 has a geometric realization called its

Cayley graph X = X(G,C). The graph X has G as its vertex set. Two vertices a, b are

connected by an edge e from a to b if b = ac for some c ∈ C. Given a finite subset S of X,

we take |S| to be the number of vertices in X of S and |∂S| to be the number of edges of

X with exactly one vertex in S. The Følner ratio of S is FR(S) = |S|/|∂S| [3]. The group

G is amenable if there are subsets S1 ⊂ S2 ⊂ · · · ⊂ X exhausting X, with FR(Si)→∞ as

i→∞. In general there are no finite subsets S ⊂ X with maximum Følner ratio, however,

given a fixed finite set C ⊂ X, a constraining set, we can find a subset S ⊂ C with maximum

Følner ratio in C. This is the constrained isoperimetric problem [1].

Wherever there is a space X, a constraining subset C ⊂ X, and a way to appropriately

measure the size and boundary, there exist analogous problems. We will characterize sets

with maximum Følner ratios where X = R2,Z2,R3,Z3 and give examples of each.

Chapter 2. Technical Settings

The constrained isoperimetric problem involves a space X, a constraining set C ⊂ X, and a

way to measure a set and its boundary. We will focus on the following settings:

2.1 Graphs

As a space X, we consider the case where X is the Cayley graph of the free Abelian group

Z2 or Z3. We take |S| to be the number of vertices in S and |∂S| to be the number of edges
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of X each having exactly one vertex in S.

2.2 Euclidean Space

We also consider the case when X is either R2 or R3 with |S| equal to the classical area, or

volume measure, respectively. For |∂S|, when X = R2 we consider two different measures

L1 and L2 of lengths; when X = R3 we use L2 measure for volume and L1 measure for area.

These are defined in Chapter 3.

The reason for employing the L1 measure for the boundary length is that the problem

becomes the continuous limit analogue of the group theoretic one for Z2.

Chapter 3. Measure

For measuring we use the following modified definitions of Hausdorff measure. For the

standard definition we cite [2].

3.1 Diameter

Let A ⊂ Rn and πi : Rn → R, with i = 1, . . . , n, be projection maps. Let Axi = πi(A). We

define:

xi-diam(A) = sup{|x− y| : x, y ∈ Axi},

and

l1-diam(A) =
n∑
i=1

xi-diam(A),

while

l2-diam(A) = sup{|x− y| : x, y ∈ A}.

In the case n = 2, we have πx : R2 → R and πy : R2 → R, the projections onto the x-axis

2



and y-axis, respectively. In this case we have

x-diam(A) = sup{|x1 − x2| : x1, x2 ∈ Ax},

y-diam(A) = sup{|y1 − y2| : y1, y2 ∈ Ay},

and

l1-diam(A) = x-diam(A) + y-diam(A).

Depending on the context we will use the symbol diam(A) to denote either the l1 or l2

diameter of A.

3.2 Hausdorff Measure

Definition 3.1. A special rectangle in Rn is a subset of the form [a1, b1]×[a2, b2]×· · ·×[an, bn]

for ai < bi.

Let S ⊂ Rn be a compact set. Let δ > 0. We cover S with a δ cover U =
⋃
Ui such that

the Ui are special rectangles with diameter of Ui ≤ δ. Diameter here can be taken to be

either l1 or l2. We define the m-dimensional Hausdorff measure of S with respect to δ to be

Hm(S, δ) = inf

{∑
i

diam(Ui)
m :
⋃
i

Ui ⊃ S, diam(Ui) < δ

}
.

Here the infimum is taken over all covers U . We define the n-dimensional Hausdorff measure

of S to be

Hm(S) = lim
δ→0

Hm(S, δ).

We have the following theorems:

Theorem 3.2. Let S ⊂ Rn. Let 0 < α < β. If Hα(S) <∞, then Hβ(S) = 0.
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Proof. Given a covering U =
⋃
Ui of S with diam(Ui) < δ, we have

∑
i

diam(Ui)
β =

∑
i

(diam(Ui)
β−α)(diam(Ui)

α)

≤
∑
i

δβ−α(diam(Ui)
α)

= δβ−α
∑
i

diam(Ui)
α.

So

inf

{∑
i

diam(Ui)
β

}
≤ inf

{
δβ−α

∑
i

diam(Ui)
α

}
≤ δβ−α inf

{∑
i

diam(Ui)
α

}
.

Hence

0 ≤ Hβ(S) = lim
δ→0

inf

{∑
i

diam(Ui)
β

}

≤ lim
δ→0

δβ−α inf

{∑
i

diam(Ui)
α

}

≤ lim
δ→0

δβ−α lim
δ→∞

inf

{∑
i

diam(Ui)
α

}
= lim

δ→0
δβ−αHα(S)

= 0 ·Hα(S)

= 0.

Corollary 3.3. Let S ⊂ Rn. Let 0 < α < β. If 0 < Hβ(S) <∞, then Hα(S) =∞. �

In the case where the dimension n = 1 we define L1(S) = H1(S) and L2(S) = H1(S) to

be the L1 and L2 lengths of S using the l1 and l2 definitions of diameter, respectively. When

n = 2 we let area(S) = H2(S) using the l2 diameter.
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Note that if Ui is a special rectangle in R2 then

l2-diam(Ui) ≤ l1-diam(Ui) ≤ 2 · l2-diam(Ui).

We deduce the following corollary:

Corollary 3.4. In the case where n = 2, the L1 and L2 lengths of S satisfy the inequality

L2(S) ≤ L1(S) ≤ 2 · L2(S). If either is finite then area(S) = 0. �

Chapter 4. Peano Continua

The sets that come under consideration in solving the constrained isoperimetric inequality

can be very general. In the plane R2 this fact leads us to interesting problems in plane

topology. We collect some basic results from [8].

We begin with a classical convergence theorem. Let X be a metric space with countable

basis U = {u1, u2, . . .}. Let N(x, ε) denote the open ε-neighborhood of x ∈ X. Let X0 = {X01,

X02, . . .} denote a sequence of subsets of X. We define

lim supX0 = {x ∈ X | ∀ ε > 0, N(x, ε) intersects infinitely many X0i’s}, and

lim inf X0 = {x ∈ X | ∀ ε > 0, N(x, ε) intersects all but finitely many X0i’s}.

We say that the sequence X0 converges if lim inf X0 = lim supX0. This common set is called

the limit of the sequence X0. This notion is defined in [5], page 5.

Lemma 4.1. There is a subsequence of X0 that converges. If X is compact and if each X0i is

nonempty, compact, and connected, then the limit is also nonempty, compact, and connected.

Proof. Suppose a subsequence Xj = {Xj1, Xj2, . . .} has been chosen. If there is an infinite

subsequence of Xj that misses the basis element uj+1, then let Xj+1 be such a subsequence.

Otherwise, let Xj+1 = Xj.
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We claim that the diagonal subsequence D = {X11, X22, . . .} converges. Indeed, if x ∈

lim supD, we must show that x ∈ lim inf D. If not, then there is a subsequence of D that

misses some neighborhood N(x, ε) of x, and thus misses some basic open set uj about x.

This means that the subsequence Xj also misses uj. Hence uj misses all Xkk for k > j, a

contradiction to the inclusion x ∈ lim supD.

We next assume that each Xii is nonempty, compact, and connected. Taking xi ∈

Xii, we obtain a sequence which must have a convergent subsequence, since X is compact.

Thus the limit point is in lim supD, and hence, lim supD is not empty. Since lim supD is

obviously closed, lim supD is both nonempty and compact. It remains to show that lim supD

is connected. Suppose to the contrary that it is the disjoint union of nonempty compact sets

A and B. Let U and V be disjoint open neighborhoods of A and B, respectively. Since

each Xii is connected and intersects both U and V for large i, then for such large i, Xii will

contain a point xi ∈ X \ (U ∪ V ). A limit point of the xi’s must be a point of lim supD that

is in neither A nor B, a contradiction. We conclude that lim supD is connected.

This limit theorem allows us to characterize compact, connected, and locally connected

subsets of the plane. A compact, connected metric space is called a continuum. If a contin-

uum is also locally connected then it is called a Peano continuum.

Lemma 4.2. Suppose that M is a continuum in the plane R2 that is not locally connected.

Then there is an annulus A in the plane such that M ∩ A has infinitely many components

that intersect both boundary components of A.

Proof. Since M is not locally connected, there is a point p ∈M and a closed disc neighbor-

hood D of p such that the component C of D ∩M that contains p is not a neighborhood of

p in M . Thus, there is a sequence C1, C2, . . . of components of D ∩M distinct from C and

points xi ∈ Ci that converge to p. We lose no generality in assuming that each intersects a

smaller disc neighborhood E of p. Each Ci then contains a component of M ∩ (D \ intE)

that intersects both boundary components of the annulus A = D \ intE.
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Lemma 4.3. If M is a continuum in the plane that is not locally connected, then L2(∂M) =

∞. Consequently, L1(∂M) =∞.

Proof. Let A be an annulus in the plane such that M ∩ A has infinitely many components

C1, C2, . . . that intersect both boundary components of A. Let d denote the L2 distance

between the two boundary components of A. It suffices to show that each Ci contains a

portion of the boundary of M of L1 length ≥ d.

d

> d=

C

Ci

A

D

Let C be one of them and use two arcs near another Ci to cut A into a disc D crossed from

side to side by C. Then C separates the top and the bottom of the disc from one another

in D. Hence D ∩ ∂C separates the top and the bottom of the disc from one another in D.

By the unicoherenceof D (see [8], chapter 2, section 4 and 5), some component of D ∩ ∂C

7



separates the top and the bottom of the disc from one another in D. This component must

have L1 length ≥ L2 length ≥ d since it must intersect both sides of D (recall Corollary

3.4).

There are a number of slight modifications to the previous result. Here are two of them.

Lemma 4.4. If M is a compact subset in the plane having infinitely many components

C1, C2, . . . of diameter ≥ ε > 0, then L2(∂M) = L1(∂M) =∞.

Proof. By the convergence theorem (lemma 4.1), we may assume that the Ci converge to a

continuum C of diameter ≥ ε. Let p denote a point of lim supCi, and let A denote a round

annulus centered at p in the ε/4 neighborhood of p. Then, for all large i, Ci intersects both

the inner and outer boundary components of A. Hence A ∩ ∂Ci contains a component that

crosses A and therefore, has length at least as large as the distance from one component

of ∂A to the other. Since there are infinitely many C’s, the total length is infinite whether

measured using L1 or L2.

Lemma 4.5. Suppose that M is a continuum in the plane R2 that does not separate R2 and

that has finite boundary length. Then

(0) The continuum M is a Peano continuum.

(1) The set ∂M is connected,

(2) The components u of M \ ∂M form a null sequence u1, u2, . . .

(3) The closure of each ui is a topological disc di.

(4) If di and dj intersect then they intersect in a single point.

(5) The area of M is the sum of the areas of the open sets ui.

(6) The length of ∂M (using either of the L1 and L2 lengths) is greater than or equal to

the sum of the (corresponding) boundary lengths of the discs di.

Proof. (0): Otherwise, ∂M has infinite length.

(1): If ∂M were not connected then there would be a disc D in R2 whose boundary misses

∂M such that ∂M intersects both the interior and exterior of D. Since M is connected, it
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must intersect ∂D. Since ∂D misses ∂M , we must have ∂D ⊂M . Since M does not separate

R2, the interior of D must also lie in M . But the interior of D intersects ∂M , a contradiction.

(2): If the components of M \ ∂M do not form a null sequence, then we may pick arcs

A1, A2, . . . in distinct components of M \ ∂M with all of the Ai of diameter ≥ ε, for some

fixed ε > 0. Using the convergence theorem, we find the existence of an annulus A such

that each Ai joins the two boundary components of A. These Ai are separated in A from

one another by ∂M . This separation requires infinitely many distinct long components of

∂M ∩ A, so that the length of ∂M is infinite, a contradiction.

(3): Since ∂M is a continuum of finite length, it must be locally connected. A standard

result from plane topology ([8], Chapter 4, Theorem 6.7.) states that, if u is a bounded

complementary domain of a locally connected continuum, then ∂u contains a simple closed

curve J(u) that separates u from infinity in R2. In the case of ui, the simple closed curve

J(ui) must contain ui in its interior, and since M does not separate R2, that interior must

coincide with ui. That is, the union of ui and J(ui) is a disc di that is precisely the closure

of ui.

(4): If di∩dj were to contain more than one point, then the union di∪dj would separate

R2, and the bounded complementary components of the union would have to lie in M . But

this would contradict the assumption that ui and uj are maximal components of M \ ∂M .

(5): Since the boundary of M has finite length, it also has 0 area (by Corollary 3.4).

Thus the area of M is entirely carried by the open sets ui. Thus the area of M is the sum

of the areas of the ui’s.

(6): It suffices to show that, for each n, the sum of the boundary lengths of d1, d2, . . . , dn

is less than or equal to the boundary length of ∂M . But that is obvious since these di’s share

only finitely many points.
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Chapter 5. The Unconstrained Isoperimetric problem

The classical unconstrained isoperimetric problem in the plane R2 has a well known solution

[6]. Our problem is the L1 analogue of this result. We state this classical result and prove

the L1 case.

Theorem 5.1 (Classical unconstrained isoperimetric problem). A set of L2 boundary length

L in the plane R2 cannot enclose an area greater than L2/4π. This inequality is sharp,

realized by a circle of circumference L and radius L/2π.

Theorem 5.2 (The L1 unconstrained isoperimetric problem). A set of L1 boundary length L

in the plane R2 cannot enclose an area greater than L2/16. This inequality is sharp, realized

by a special square of perimeter L.

Proof. We assume that we are given a compact set M in R2 with L1 boundary length L <∞.

We are to show that area(M) ≤ L2/16. We use the results from the previous chapter.

We may add to M any of the bounded complementary domains of M without increasing

the boundary length and possibly increasing the area. We may, therefore, assume that M

does not separate R2.

Since the boundary length is finite, the nondegenerate components M1, M2, . . . of M

form a null sequence, and each Mi is a locally connected continuum that does not separate

R2.

The bounded components of M \ ∂M form a null sequence u1, u2, . . ., each ui having

closure di that is a disc. The area of M is the sum of the areas of the di’s and the boundary

length of M is greater than or equal to the sum of the boundary lengths of the di’s.

We translate the di’s into the plane so that they are contained in disjoint special squares

Qi in R2. We treat each di separately.

Let Ri denote the minimal special rectangle in Qi that contains the translated di. Then,

di intersects each of the four boundary edges of Ri. It is an easy matter to show that the

10



L1 boundary length of Ri is less than or equal to the boundary length of di. Hence, we

may replace di by Ri without increasing the boundary length and without decreasing the

area. Now among special rectangles with a given boundary length, area is maximized by the

square of the same boundary length. Thus, we may replace Ri by a square Si ⊂ Qi without

increasing boundary length and possibly increasing area.

If we have at least two Qi’s we may place them side by side into one disc while decreasing

boundary length and maintaining total area. The result may then be replaced by a single

square of larger area and the same (decreased) boundary length.

By induction, we find that we may, without increasing boundary length, enclose almost

as much area as the original by a single square. That is, the optimum is realized by a single

square. Since the area of a square with perimeter L is L2/16, our proof is complete.

We deduce the following corollaries regarding the bound on Følner ratio of a set.

Corollary 5.3. Let S be compact, with L2 boundary length L. Then

FR(S) ≤ 1

2
√
π
|S|1/2.

Proof. By Theorem 5.1, |S| ≤ L2

4π
, so L ≥ 2

√
π|S|1/2, and hence

FR(S) =
|S|
L
≤ |S|

2
√
π|S|1/2

=
1

2
√
π
|S|1/2.

Corollary 5.4. Let S be compact, with L1 boundary length L. Then

FR(S) ≤ 1

4
|S|1/2.
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Proof. By Theorem 5.2, |S| ≤ L2

16
, so L ≥ 4|S|1/2, and hence

FR(S) =
|S|
L
≤ |S|

4|S|1/2
=

1

4
|S|1/2.

Chapter 6. Characterizing Optimal Følner Sets

We have not as yet managed to show that for every compact set C, there actually exists a

compact subset S0 ⊂ C whose Følner ratio is maximum. In the previous chapter we showed

that the Følner ratios are bounded above so that there is a sequence of compact subsets with

Følner ratios approaching a finite supremum. We now show that, in special cases, a subset

with maximum possible Følner ratio, if it exists, may be taken to have a particular form.

Theorem 6.1. If C is a closed disc in R2 and if there is a subset S0 ⊂ C that has maximum

possible Følner ratio, then we may take S0 to be a closed disc.

This theorem is a corollary to the following lemma and theorem.

Lemma 6.2. Suppose
∑
ai and

∑
bi are convergent series of positive numbers and that

ai/bi → 0. Then max(ai/bi) ≥ (x =
∑
ai/
∑
bi).

Proof. Otherwise, max(ai/bi) = λx, with λ < 1. Hence, for each i, ai ≤ λxbi so

x =

∑
ai∑
bi
≤
∑
λxbi∑
bi

= λx < x,

a contradiction.

Theorem 6.3. Suppose that S is a compact subset of R2 that does not separate R2 and that

FR(S) > 0. Then there is a disc D in S such that FR(D) ≥ FR(S).
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Proof. We have seen that each component of S is locally connected, that the nondegenerate

components of S form a null sequence, and that the area of S is carried by a null sequence

of discs D1, D2, . . . in S, each pair intersecting in at most one point. Let the area of Di be

ai, and length of ∂Di be bi. Then FR(S) ≤
∑
ai/
∑
bi = x. By lemma 6.3 there exists i,

such that FR(Di) = ai/bi ≥ x ≥ FR(S).

Theorem 6.4. If C is a convex disc in R2, and if there is a subset S0 ⊂ C that has maximum

possible Følner ratio, then we may take S0 to be the intersection of C with special rectangle.

Proof. We may assume S0 is a disc by Theorem 6.1. Let t, b, l, r be top, bottom, left, and

right most points of S0, respectively. They define a special rectangle R0 containing the points

in the top, bottom, left, and right edges. Let S1 = R0 ∩ C. We claim FR(S1) ≥ FR(S0).

Certainly area(S1) ≥ area(S0). It suffices to show that the boundary length of S1 is no greater

than the boundary length of S0. The path from r to b in S1 is a geodesic by convexity of C

and has length as short as the corresponding path in the boundary of S0 and similarly for

the paths from t to r, from b to l and from l to t. Thus, the boundary length of S1 is less

than or equal to the boundary of S0.

Theorem 6.5. If C admits an isometry T : C → C (L1 or L2 as appropriate), and if S0

has maximum Følner ratio in C, then S0 ∪ T (S0) also has maximum Følner ratio in C.

Proof. Let S0 ⊂ C have maximum Følner ratio
|S0|
|∂S0|

= r. Then
|T (S0)|
|∂T (S0)|

= r. Now

|S0 ∩ T (S0)|
|∂(S0 ∩ T (S0))|

≤ r, so |S0 ∩ T (S0)| ≤ r|∂(S0 ∩ T (S0))|. Hence

|S0 ∪ T (S0)|
|∂(S0 ∪ T (S0))|

=
|S0|+ |T (S0)− |S0 ∩ T (S0)|

|∂S0|+ |∂T (S0)| − |∂(S0 ∩ T (S0))|

≥ r|∂S0|+ r|∂T (S0)| − r|∂(S0 ∩ T (S0))|
|∂S0|+ |∂T (S0)| − |∂(S0 ∩ T (S0))|

= r.
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Remark. We did not prove the existence of optimal Følner sets but rather if they existed,

they would have the above descriptions. Steiner [6] also did not give a proof of existence of

a solution to the classical isoperimetric inequality.

Chapter 7. Applications

We have not shown the existence of optimal Følner sets; however, if there exists an optimal

Følner set, we show what form it must take in the following settings.

Theorem 7.1. Let |S| denote the area of S and |∂S| the Euclidean length of the boundary

of S where S ⊂ R2. Let C be the unit square. If there is an optimal set S0 ⊂ C, then

S0 =
⋃
Di⊂C

Di, where Di are discs with radius
1

2 +
√
π

. Furthermore, FR(S0) =
1

2 +
√
π
.

Proof. We use the following results from the calculus of variations:

(1) S must be locally convex in C, otherwise we can increase the area and decrease the

boundary length.

(2) Boundary of S must intersect the boundary of C tangentially, otherwise rounding the

corners of S increases the Følner ratio.

(3) S may be taken to be a disc if C does not separate R2 by Theorem 6.1.

(4) Boundary arcs of S that miss the boundary of C must have constant curvature (classical

result).

(5) S may be taken to realize the symmetries of C, because an optimal set union its image

under a symmetry is also optimal by Theorem 6.5.

The only sets in the setting of Theorem 7.1 that satisfy these conditions are circular discs

or a square minus the fragments cut off by four quarter circles at the four corners of C. (See
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the figure below.) Hence, if there is an optimal S0, then S0 =
⋃
Di⊂C

Di, where Di are discs of

uniform radius in C. Let ε be the radius of Di. Then

|S0| = 1− 4(ε2 − 1

4
πε2) = 1− ε2(4− π),

and

|∂S| = 4(1− 2ε+
1

4
· 2πε) = 4− 2ε(4− π),

hence

FR(S0) =
1− ε2(4− π)

4− 2ε(4− π)
,

which maximizes when ε =
1

2 +
√
π

with FR(S0) =
1

2 +
√
π
.

Classical Folner set./

ε

ε

εε

ε

Theorem 7.2. Let the measures of sets and boundaries be the same as in Theorem 7.1, and

let C be a regular n-polygon in R2 with side lengths 1. If there is an optimal set S0 ⊂ C, then

S0 =
⋃
Di⊂C

Di, where Di are discs with radius εn =
n tan

(
π
n

)
−
√
n tan

(
π
n

)
π

2(tan
(
π
n

) (
n tan

(
π
n

)
− π

)
)
. Furthermore,

FR(S0) = εn.

Proof. By the same argument as above we have S0 =
⋃
Di⊂C

Di, where Di are discs of uniform

radius in C. Let ε be the radius of Di. We first divide the polygon Pn with side length s

15



into n congruent triangles with central angel 2π/n as described below.

n
_π

s

h

Then

area(Pn) = n · hs
2

= n ·

(
s/2

tan(π/n)

)
(s)

2
=
n

4

s2

tan(π/n)
.

In the case when s = 1 we have

area(Pn) =
n

4 tan(π/n)
.

We think of S0 as Pn removing n corners as described in the figure below.

εε

ε ε

εε

Classical Folner set in 
   a regular hexagon.

/
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Now we look at one corner of the polygon Pn with center O.

x

O
π2

α
β
ε

ε

−n

A
C

B

D

Now α = (π − 2π/n)/2 =
π

2
− π

n
, and so

x = ε/ tanα =
ε

tan(π
2
− π

n
)

=
ε

cot(π/n)
= ε · tan(π/n).

Also, tan β = x/ε =
ε tan(π/n)

ε
= tan(π/n). So β = π/n. So area of sector ABD is

1

2
ε2 · 2β =

1

2
ε2 · 2π/n =

ε2π

n
.

Then the area of corner BCD is

2 · 1

2
xε− area(ABD) = ε · ε tan(π/n)− ε2π

n
= ε2

(
tan
(π
n

)
− π

n

)
.

Then

|S0| = area(Pn)− n · area(BCD)

=
n

4 tan(π/n)
− nε2

(
tan
(π
n

)
− π

n

)
.

17



Now

|∂S0| = n(1− 2x) + n · length(BD)

= n(1− 2ε · tan(π/n)) + 2πε

= n− 2ε
(
n tan

(π
n

)
− π

)
.

Hence, the Følner ratio of S0 is

FR(S0) =

n

4 tan(π/n)
− nε2

(
tan
(π
n

)
− π

n

)
n− 2ε

(
n tan

(
π
n

)
− π

) .

The Følner ratio of S0 is then maximized when ε =
n tan

(
π
n

)
−
√
n tan

(
π
n

)
π

2(tan
(
π
n

) (
n tan

(
π
n

)
− π

)
)

and FR(S0) =

ε.

We now present the L1 examples.

Theorem 7.3. Let FR(S) = |S|/|∂S| where |S| denotes area of S and |∂S| denotes the

L1 length of the boundary of S for S ⊂ R2. Let C ⊂ R2 be a special rectangle. Then

FR(C) ≥ FR(S) for all S ⊂ C.

Proof. Without loss of generality, assume that S is centered at the origin. From Theorem

6.4, if there is an optimal S0 ⊂ C, then S0 can be taken as the intersection of C and a special

rectangle R centered at the origin. Any special rectangle R ( C will have FR(R) < FR(C),

so for S0 to be optimal, S0 = C ∩ C = C, and hence, C is itself optimal.

Theorem 7.4. Let C ⊂ R2 be a unit disc under the L1 norm, centered at the origin.

Let S0 = C ∩ R, where R is a special square centered at the origin with side
√

2 . Then

FR(S0) ≥ FR(S) for all S ⊂ C. Also, FR(S0) =
2−
√

2

2
.

Proof. By Theorem 6.4 and Theorem 6.5, we have S0 = C ∩ R where R is a special square

centered at the origin with side s.

18



The L  constrained isoperimetric problem1

s
δ

δ

δ
δδ

C

R

1−2δ

We think of S0 as the diamond C with four cut off corners of depth δ. Then

|S0| = (
√

2)2 − 4 · (2δ2/2) = 2− 4δ2,

and

|∂S0| = 8δ + 4 · (2− 4δ) = 8− 8δ.

So

FR(S0) =
2− 4δ2

8− 8δ
=

1− 2δ2

4(1− δ)
,

which maximizes when δ =
2−
√

2

2
or s =

√
2 since s = 1− δ. The maximum Følner ratio

is

FR(S0) =
2−
√

2

2
.

Theorem 7.5. Let C ⊂ R2 be the standard Euclidean unit disc. Equip R2 with the L1

19



measure of distance. If there is an optimal S0 ⊂ C, then S0 = R ∩ C, where R is a square

of side length s = 2 cos(π/4− d/2), where d is the solution to the equation x− cosx = 0.

Proof. By Theorem 6.4 and and Theorem 6.5, the optimal Følner set is the intersection with

C by a special square centered at the center of the disc C.

L  Folner set in a circle.1 /

a
O

b

d
c

e

f

π −−2
2α

α

α

Let α be the angle between Oa and Ob as in the picture, 0 < α < π/2. Then the area

of triangles Obe and Ocf is
sinα · cosα

2
=

sin 2α

4
. The area of the sector Obc is

π/2− 2α

2
.

Hence, the area of the intersection S0 is

|S0| = 4 ·
(

2 · sin 2α

4
+

1

2
(π/2− 2α)

)
.

Now the lengths of ab and cd are sinα. Notice here we use the L1 length. The L1 length of

arc bc is

L1(bc) = 2(cosα− sinα).
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Hence, the boundary length of S0 is

|∂S0| = 4 · (2 sinα + 2(cosα− sinα)) = 4 · 2 cosα.

The Følner ratio of S0 is

FR(S0) =
(sin(2α) + π/2− 2α)

4 cosα
,

which has derivative FR′(S0) = −1

8
(4α + 2 sin(2α)− π) tanα secα. Thus, FR(S0) is maxi-

mized when α = π/4− d/2 where d is the solution to the equation cos x = x. Insertion of α

in the derivative function shows that this result is correct. The side s of the square R where

S0 = R ∩ C is simply s = 2 cos(α) = 2 cos(π/4− d/2).

Remark. The distance d is called the Dottie number, which is the distance between the

centers of two unit circles each of which divides the area of the other in two.

L  Folner set in a circle.1 /

d

r =1

r =1

We have a result for the analogous cases in R3 of Theorem 7.4, however it is only a

heuristic result rather than a rigorous proof.

Conjecture 7.6. For S ⊂ R3, denote |S| to be the volume of S and |∂S| to be the surface

area of S. Let C be the unit cube. If there is an optimal Følner set S0 ⊂ C, then S0 =
⋃
Bi⊂C

Bi

where Bi are balls of radius ε. We approximate the Følner ratio of S0 to be maximized at

FR(S0) ≈ 0.185296 with ε ≈ 0.25848315.
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Proof. By the same argument in Theorem 7.1, S0 has the desired form. We think of S0 as

the cube removing the fragments cut off by an eighth of a sphere at eight corners of the cube

as well as removing the eight cylindrical fragments along the twelve edges of the cube. Let

ε be the radius of the balls Bi. Each corner fragment then has volume

ε3
(

1− π

6

)
.

Each cylindrical fragment along the edges has volume

ε2(1− 2ε)(1− π/4).

The volume of S0 is then

volume(S0) = 1− 8ε3(1− π/6)− 12ε2(1− 2ε)(1− π/4).

We now compute the surface area of S0. Once we remove the corner fragments there are

eight rounded corners; each is an eighth of a sphere of radius ε, hence the corner area of S0

is

4πε2.

We removed the twelve fragments along the edged of the cube leaving twelve rounded edges.

The area of these are

12 ·
(

1

4
· 2πε

)
(1− 2ε).

Finally, the area of the six remaining faces are

6 · (1− 2ε)2.
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Thus the surface area of S0 is

area(S0) = 4πε2 + 6πε(1− 2ε) + 6(1− 2ε)2.

Hence the Følner ratio of S0 is

FR(S0) =
1− 8ε3(1− 1

6
π)− 12ε2(1− 2ε)(1− 1

4
π)

4πε2 + 6πε(1− 2ε) + 6(1− 2ε)2
.

Setting the derivative of FR(S0) to zero and solving for ε, we obtain the maximum of

FR(S0) ≈ 0.185296 with ε ≈ 0.25848315.

Remark. The resulting S0 has the following depiction.

Conjecture 7.7. Let C ⊂ Z3 be a ball of radius r under the L1 norm centered at the

origin. For S ⊂ Z3, let |S| denote the number of points in S and |∂S| denote the number

of edges having exactly one vertex in S. We conjecture that if there is an optimal S0, the

it is obtained by cutting off corners with depth c and cutting along the twelve edges of the

resulting octahedron with depth d, where 0 ≤ c < r/2 and 0 ≤ d < c/2. The Følner ratio of

the resulting shape is

FR(S0) =
|S0|
|∂S0|

,
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where

|S0| =
(

4

3
r3 + 2r2 +

8

3
r + 1

)
− 6

(
2

3
c3 +

1

3
c

)
− 12

(
2

3
d3 + (r − 2c+

1

2
)d2 − 1

6
d

)
,

and

|∂S0| = 24

(
(r + 1)(r + 2)

2
− 3

c(c+ 1)

2
− 3d

(
r − 2c+

d+ 1

2

))
+24(r − 2c+ d+ 1)(2d− 1) + 6

(
2c2 + 2c+ 1− 4(d2 + 2d+ 1)

)
.

The data provided by Maple suggests that FR(S0) maximizes when c ≈ 0.4r and d ≈ c/3.

Proof. Under the L1 norm, the ball of radius r has a shape of two pyramids with square

base. We first focus on the top half of the ball.

c

Cut at level c.

First at each z-level set k of the ball C counting level zero at the top, there are

2

(
k∑
j=0

(2j + 1)

)
− (2k + 1) = 2k2 + 2k + 1 points.
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Since the ball C comprises of two pyramids each of height r we have the following formula

for the number of points in C:

volume(C) = 2

(
r∑

k=0

(2k2 + 2k + 1)

)
− (2r2 + 2r + 1) =

4

3
r3 + 2r2 +

8

3
r + 1.

Similarly, the volume of each corner cut CC of depth c is

volume(CC) =
c−1∑
k=0

(2k2 + 2k + 1) =
2

3
c3 +

1

3
c.

We now compute the volume of each edge cut EC of depth d along each edge of the resulting

octahedron. We depict the local part of the resulting shape after cutting off the corners of

the pyramid as below.

d

Edge cut of depth d.

  layers

n   layerth

1   layer

There are r-2c+n  points on this edge

There are 2n-1 points on this edge

Face A

Face Ba

e

st
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On face A the edge ae has r + 1− 2c points. We think of each layer of the edge cut EC as

a plane slicing parallel to the edge ae at each level l = 1, 2, . . . , n. At l = 1 only the edge ae

is sliced off. At layer l = n, there are r+ 1− 2c− (1− n) = r− 2c+ n points on face A and

there are 2n − 1 points on face B. So the number of points being cut off at layer l = n is

(r − 2c + n)(2n − 1) points. An edge cut EC of depth d cuts off all layers from 1 to d, so

the volume of the edge cut is

volume(EC) =
d∑
l=1

((r − 2c+ l)(2l − 1)) =
2

3
d3 + (r − 2c+

1

2
)d2 − 1

6
d.

There are 6 corner cuts and 12 edge cuts in total, so the final remaining volume is

(
4

3
r3 + 2r2 +

8

3
r + 1

)
− 6

(
2

3
c3 +

1

3
c

)
− 12

(
2

3
d3 + (r − 2c+

1

2
)d2 − 1

6
d

)
.

We now proceed to compute the surface area. First, we compute the number of points on

each face. Before any cut, each triangular face has

r+1∑
i=1

i =
(r + 1)(r + 2)

2
points.

The number of points lost due to corner cut is

c∑
i=1

i =
c(c+ 1)

2
points.

Now we compute the number of points lost due to the edge cut. Recall the picture of edge

cut of depth d. At each layer l, there are r− 2c+ l points on face A, so the number of points

lost due to an edge cut of d layers is

d∑
l=1

r − 2c+ l = (r − 2c)d+
d(d+ 1)

2
points.
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So the number of points remaining on each side face SF is

(r + 1)(r + 2)

2
− 3

c(c+ 1)

2
− 3d

(
r − 2c+

d+ 1

2

)
.

r

c

cc dd

dd

Side face (SF)

Now cutting off corners results in six new corner faces CF , each of which has

2
c∑
j=0

(2j + 1) = 2c2 + 2c+ 1 points.

Corner face (CF)

Cutting off the edges results in twelve new edge faces EF . Each has

(r − 2c+ d+ 1)(2d+ 1) points.
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Edge face

After cutting off the edges, we must recount the number of points on each corner face.

Indeed, for each edge cut,
d∑
i=1

2l − 1 = d2 points have been removed from a corner face, so

the number of remaining points on each corner face CF is

2c2 + 2c+ 1− 4d2.

New corner face (CF)

Remember that the surface area is not simply the number of points on the boundary

faces. Rather, it is the number of edges connected to the outside of S0 from these points. On

each side face SF there are
(r + 1)(r + 2)

2
−3

c(c+ 1)

2
−3d

(
r − 2c+

d+ 1

2

)
points, each of

which has three exterior edges. Now on each edge face EF there are (r− 2c+ d+ 1)(2d+ 1)

points. However, 2(r − 2c + d + 1) points have already been counted toward the side face.

The remaining (r − 2c+ d+ 1)(2d− 1) points have two exterior edges each.

On each corner face there are 2c2 + 2c + 1 − 4d2 points. 4 · (2d − 1) points have been

counted toward the edge faces, and eight have been counted toward the side faces. The
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remaining 2c2 + 2c+ 1− 4d2 − 4(2d− 1)− 8 = 2c2 + 2c+ 1− 4(d2 + 2d+ 1) interior points

has one exterior edge each.

Number of exterior edges
  at points on each face

1

2

3

Since there are eight side faces, the surface area due to these faces is

8 · 3
(

(r + 1)(r + 2)

2
− 3

c(c+ 1)

2
− 3d

(
r − 2c+

d+ 1

2

))
.

There are twelve edge faces, the surface area due to these faces is

12 · 2(r − 2c+ d+ 1)(2d− 1).

There are six corner faces, the surface area due to these faces is

6 ·
(
2c2 + 2c+ 1− 4(d2 + 2d+ 1)

)
.
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Hence, the surface area of S0 is

area(S0) = 24

(
(r + 1)(r + 2)

2
− 3

c(c+ 1)

2
− 3d

(
r − 2c+

d+ 1

2

))
+24(r − 2c+ d+ 1)(2d− 1) + 6

(
2c2 + 2c+ 1− 4(d2 + 2d+ 1)

)
.

Maple yields the following maximum Følner ratios for the following values of r.

r c d FR(S0)

10 4 2 1117/750

20 9 4 7603/2670

30 14 5 8379/1978

40 19 7 ≈ 5.635

50 23 8 ≈ 7.036

60 28 10 ≈ 8.441

70 33 11 ≈ 9.847

80 38 13 ≈ 11.252

90 43 14 ≈ 12.66

100 47 15 ≈ 14.066

200 95 30 ≈ 28.148

300 144 44 ≈ 42.236

400 192 58 ≈ 56.325

500 240 72 ≈ 70.414

600 288 86 ≈ 84.503

700 336 100 ≈ 98.593

800 384 114 ≈ 112.683

900 432 128 ≈ 126.773

1000 480 142 ≈ 140.863

2000 961 283 ≈ 281.763
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Remark. The resulting shape has the following depiction.

Chapter 8. Cooling Functions and Cooling Fields

Let G be an infinite group with finite generating set C, and let Γ be the Cayley graph of G.

Given a finite set S ⊂ G, let E(S) denote the edges of Γ with at least one vertex in S; and

let ∂E(S) denote the edges of Γ with exactly one vertex in S. We orient each edge e ∈ E(S)

and let i(e) be the initial vertex of e and t(e) be the terminal vertex of e. For each edge e,

we choose the orientation so that i(e) ∈ S.

We give the definition of cooling function from [1].

Definition 8.1 (Cooling Function). A cooling function for S is a function c : E(S) → R

such that for all vertices v ∈ S,

h(v) :=
∑
i(e)=v

c(e)−
∑
t(e)=v

c(e) ≥ 1,

where h(v) can be interpreted as the net loss of heat at each point v ∈ S. The cooling norm

of c is ‖c‖ = max
e∈E(S)

|c(e)|.

We have the following result from [1].
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Theorem 8.2 (Absolute Cooling). Let Γ be an infinite, locally finite, connected graph with

vertex set G and let S ⊂ G be a finite set such that S together with E(S) form a connected

graph. Then S admits a cooling function c of minimum possible cooling norm N = ‖c‖, and

N = ‖c‖ = max
S0⊂S

FR(S0) = max
S0⊂S
|S0|/|∂E(S0)|.

In the case S is optimal i.e., FR(S) ≥ FR(S0) for all S0 ⊂ S, then we say c is an optimal

cooling function.

The Absolute Cooling Theorem guarantees an optimal cooling function on an optimal

Følner set S ⊂ G. We investigate to see whether it is possible to construct an analogue of

a cooling function in the continuous case, where the space X is R2 with the L1 boundary

length. We define the notion of a cooling field.

Definition 8.3 (Cooling Field). A cooling field for S ⊂ R2 is a differentiable function

C : S → R2 satisfying

divC((x, y)) ≥ 1 for all (x, y) ∈ S.

The cooling norm of C is ‖C‖ = sup
(x,y)∈S

{sup
~vi

|~vi · C((x, y))|} where {~vi} are standard unit

vectors of R2.

Since the existence of an optimal cooling function is guaranteed, our goal is to construct

an approximation to a cooling field from a cooling function on the integer lattice.

Let S ⊂ R2 be compact. Let k ∈ N and let the transformation map Tk : S → R2

be defined as Tk(x, y) = k(x, y) = (kx, ky). Let Qk be a collection of squares Qi,j =

[i, i+ 1]× [j, j + 1] with i, j ∈ Z such that Qi,j ∩ Tk(S) 6= ∅ and let Sk = Qk ∩ Z2.

Let ck be a cooling function on Sk as guaranteed by Theorem 8.2. Let v ∈ Sk and denote

the left, right, above and below edges at v to be el, er, ea, eb, respectively. If v = i(ej) then we

define sg(ej) = 1 otherwise, sg(ej) = −1, where j = {l, r, a, b}. Then let γvj = sg(ej) · ck(ej)

for j = {l, r, a, b}.

For each point v ∈ Sk, let sv ⊂ R2 be the square centered at v with sides 1. We define
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fv : sv → R2 by

fv(x, y) = ((1− (x− bxc))γvl + (x− bxc)γvr , (1− (y − byc))γvb + (y − byc)γva),

where b·c denotes the floor function.

Let fk : Tk(S)→ R2 be defined as follows: given (x, y) ∈ Tk(S), there exists a point v ∈ Z2

such that (x, y) lies inside the square of side 1 centered at v. We let fk(x, y) = fv(x, y) and

let f : S → R2 be defined as f(x, y) = fk(Tk(x, y)).

We have the following theorem:

Theorem 8.4. The function f is a cooling field almost everywhere on S, i.e., f exhibits the

following properties:

1. divf =
∂f1
∂x

+
∂f2
∂y
≥ 1 almost everywhere.

2. ‖f‖ ≤ FR(S) =
H2(S)

H1(∂S)
at all points where f is defined, where H i are Euclidean ith

dimensional Hausdorff measures on S and ∂S.

If S is an optimal Følner set then we obtain the following two conditions:

3. divf =
∂f1
∂x

+
∂f2
∂y

= 1 almost everywhere.

4. ‖f |∂S‖ = FR(S) at all points on the boundary of S where f is defined.

Proof.

1,3 Let ck be a cooling function defined on Sk and fk and consequently f be defined as

above. Let (x, y) ∈ S. Note that Tk(x, y) = k(x, y) ∈ Sk. We assume k(x, y) lies

inside the interior of a square of sides 1 centered at some v ∈ Sk. We show that

divf(k(x, y)) ≥ 1. Since we are concentrating on one square centered at v, without

loss of generality let’s assume that the lower left corner of the this square lies at the
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origin. Furthermore, for simplicity, let’s denote k(x, y) = (x0, y0). Then the function

fv(x, y) simplifies to fv(x, y) = ((1− x)γvl + xγvr , (1− y)γvb + yγva). So

divf(x0, y0) = divfv(x0, y0)

= γvr − γvl + γva − γvb

= h(v) =
∑
i(e)=v

ck(e)−
∑
t(e)=v

ck(e) ≥ 1,

Equality is obtained the same way for an optimal Følner set. Hence, except on the

edges and corners of all squares v, conditions 1 and 3 hold.

2,4 This is a direct consequence of the properties of the cooling function c and the definition

of the norm.

Chapter 9. Example of Cooling Functions and Cooling Fields

We would like to explicitly construct an example of a cooling field given a cooling function.

On an arbitrary M ×N grid centered at the origin of 1× 1 squares in Z×Z, with M,N

odd, let

f(x, y) =

(
N(2x+ 1)

2(M +N)
,
M(2y + 1)

2(M +N)

)
,

for (x, y) in the first quadrant. For each point (x, y) assign f1 to the right edge and f2 to

the top edge, then with appropriate sign changes in other quadrants, f defines an optimal

cooling function on the grid. From here we may think of a cooling function as being defined

on the points and assign the values of f1 to the right edge and f2 to the top edge.

Let r be a m×n rectangle in R2. Let Rk be a grid of size km× kn centered at the origin
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of 1× 1 squares in Z× Z, with km and kn odd. Then

ck(kx, ky) =

(
kn(2kx+ 1)

2k(m+ n)
,
km(2ky + 1)

2k(m+ n)

)
,

for (x, y) in the first quadrant and with appropriate sign changes in other quadrants defines

an optimal cooling function on Rk.

We defined the scaled cooling function by dividing all lengths by the k factor

ck scaled(x, y) =

( 1
k
kn( 1

k
(2kx+ 1))

1
k
2k(m+ n)

,
1
k
km( 1

k
(2ky + 1))

1
k
2k(m+ n)

)
=

(
n( 1

k
(2kx+ 1))

2(m+ n)
,
m( 1

k
(2ky + 1))

2(m+ n)

)
=

(
n((2x+ 1

k
))

2(m+ n)
,
m((2y + 1

k
))

2(m+ n)

)
.

Then C(x, y) = lim
k→∞

ck scaled(x, y) =

(
nx

(m+ n)
,

my

(m+ n)

)
is a cooling field on r.

Remark. Note that since we a have a nicely constructed cooling function on Rk, we can

simply use a limiting method here rather than an interpolation method as described in the

previous chapter.

On the other hand given a cooling field C(x, y), we would like to create a cooling function

on subsets of Z×Z. By this we mean there exists k > 0 such that when we define Ck(kx, ky) =

kC
(
kx
k
, ky
k

)
on the Rk grid, we have that Ck(kx, ky) is “approximately” a cooling function.

For example: Let C(x, y) =

(
nx

m+ n
,
my

m+ n

)
be a cooling field on an m by n rectangle

r in R2. On the grid Rk we define Ck(kx, ky) = kC

(
kx

k
,
ky

k

)
= k

(
nx

m+ n
,
my

m+ n

)
=(

knx

m+ n
,
kmy

m+ n

)
. We check to see whether Ck “approximates” a cooling function.

1. Net input and output of heat at each point in Rk should be 1:

Let (x, y) ∈ r, then k(x, y) = (kx, ky) ∈ Rk. Then the outflow of heat at the point

(kx, ky) is Ck(kx, ky) =

(
knx

m+ n
,
kmy

m+ n

)
. The input of heat at the point (kx, ky) is

composed of the x component of the outflow of heat from the point (kx − 1, ky) and
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the y component of the outflow of heat from the point (kx, ky−1). We compute those:

Ck(kx− 1, ky) = kC

(
kx− 1

k
,
ky

k

)
= k

(
nkx−1

k

m+ n
,
mky

k

m+ n

)
=

(
n(kx− 1)

m+ n
,
mky

m+ n

)
;

Ck(kx, ky − 1) = kC

(
kx

k
,
ky − 1

k

)
= k

(
nkx
k

m+ n
,
mky−1

k

m+ n

)
=

(
nkx

m+ n
,
m(ky − 1)

m+ n

)
;

The total net loss of heat at the point (kx, ky) is then

nkx

m+ n
− n(kx− 1)

m+ n
+

mky

m+ n
− m(ky − 1)

m+ n
=

n

m+ n
+

m

m+ n
= 1.

2. We require ‖Ck(kx, ky)‖ to be the Følner ratio of Rk for (kx, ky) ∈ ∂Rk. Since Rk is

a rectangle of size km × kn, the Følner ratio of Rk is
k2mn

2k(m+ n)
=

kmn

2(m+ n)
. Points

on the boundary of Rk have the form

(
±km

2
, y1

)
or

(
x1,±

kn

2

)
, where x1 ≤

∣∣∣∣km2
∣∣∣∣

and y1 ≤
∣∣∣∣kn2

∣∣∣∣. Since we are using the sup norm it follows that

∥∥∥∥Ck (±km2 , y1

)∥∥∥∥ =∥∥∥∥Ck (x1,±kn2
)∥∥∥∥ =

kmn

2(m+ n)
.
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