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ABSTRACT

Metacalibration in Geometric Optimization

Donald Sampson
Department of Mathematics, BYU

Master of Science

A introduction to metacalibration methods and their application. This includes a new proof of
the double bubble conjecture, new results in the area of equitent problems (isoperimetric problems
with boundary), and comments on a mapping conjecture.
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Part I

A Friendly Introduction
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A Prelude

Do you remember the last time you played with soap bubbles? Have you noticed that they almost

all look the same? In fact, nearly every bubble you blow will quickly form into a sphere. Even

very large bubbles, if they last long enough before popping, will eventually turn into spheres.

Sometimes, though, bubbles will bump into each other. If you have blown bubbles enough, you’ve

probably seen a double bubble: a soap bubble that has two air pockets, with an interior surface

separating them. In double bubbles, each bubble surface looks like part of a sphere. Why do soap

bubbles always form spheres?

In recent years, mathematicians have been playing with soap bubbles too. Besides being a lot

of fun, bubbles provide an interesting mathematical problem: Why do they always form the same

shape? Internal cohesion in soapy water causes soap films to minimize surface tension. This same

surface tension causes drops of water to bead up on a table rather than spread out. In a soap film,

however, minimizing surface tension is equivalent to minimizing surface area. We can guess that

soap bubbles are always round because spheres are the shapes that minimize surface area. This is

true for single bubbles, but what about double bubbles, or even triple bubbles? Are those shapes

surface area minimizing too?

Minimizing surface area is an example of a geometric optimization problem. As they play

with bubbles, mathematicians are asking what shapes or structures have the least surface area.

Several questions have been answered using calculus of variations, but many remain unanswered.

Today, mathematicians are developing new methods to tackle this type of problem. We will look

at metacalibration, a new approach to geometric optimization problems that, along with previous

calibration methods, allows us to take on these unanswered problems.



Chapter 1

Geometric Optimization

1.1 Soap Films and Soap Bubbles

The earliest and most recognized soap bubble researcher was Belgian physicist Joseph Plateau.

He first started researching bubbles and surface tension in 1840 when a servant dropped some oil

into a mixture of water and alcohol. Plateau noticed that the oil surfaces formed perfect spheres,

which led to extensive experiments with soap films. He noticed that when he dipped a wire frame

into a soap solution, the result was a surface that appeared to minimize surface area. From his

experiments, Plateau devised four rules about the shapes that soap films form:

1. Soap films are made of smooth surfaces.

2. The mean curvature of a piece of soap film is constant for any piece on the same soap film.

This implies that soap films look like parts of spheres.

3. Soap films meet in groups of three, at angles of 120◦. This edge is called a Plateau border.

4. Plateau borders meet in groups of four at angles of cos−1(−1
3 )≈ 109.47◦ to form a vertex.

Any soap film not meeting these conditions is unstable will quickly evolve to one that does.
3



1.2 The Existence Problem 4

In the past few decades, Plateau’s results have sparked a great deal of interest in the mathemat-

ical community. The first task was to prove that Plateau’s rules were correct: that area-minimizing

surfaces in R3 follow Plateau’s Rules. Building on work of her advisor (and eventually husband)

Fredrick Almgren, Jean Taylor finally proved Plateau correct in 1976 [23].

Interest in Plateau’s work did not stop there, however. Two problems sprang from his study of

soap films: the existence problem and the instance problem.

1.2 The Existence Problem

Given a particular set of conditions, (such as fixed boundary as in Plateau’s case), is there a

surface that minimizes area among all surfaces meeting these conditions?

The existence problem has been studied extensively in the framework of geometric measure

theory. Using a generalization of manifolds called rectifiable currents, Herbert Federer, Frederick

Almgren, Jean Taylor, Frank Morgan and others were able to prove the existence of an area-

minimizing current in a wide variety of problems. Going further, they were also able to prove

several regularity results about area-minimizing rectifiable currents. For many of these problems,

they have shown that the area-minimizing solutions are actually unions of manifolds. For most

problems, the question of existence has been answered in the affirmative.

1.3 The Instance Problem

If there is an area-minimizing surface for a particular instance of a problem, what is the area

minimizing surface?

As geometric measure theory has shown the existence of a minimizer in many optimization

problems, the natural next question is ’What is it?’ How do we find the minimizing figure and how

do we prove that it is area-minimizing? As opposed to the existence problem, the instance problem
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is still largely an open one.

Approaches to solving the instance problem fall into two general categories: indirect and direct.

Calculus of variations, an indirect method, has historically been the main approach to the instance

problem. In my research, I have focused on calibration, a direct method, as a relatively new

alternative in solving instance problems.

1.4 Calculus of Variations and Indirect Proofs

In the past, calculus of variations has dominated geometric optimization problems. The variational

approach is a generalization of the optimization methods found in classical calculus. The general

idea is to take a derivative, set it equal to zero, and solve for the set of critical points. These critical

points are the set of surfaces of first variation zero with respect to area. We find the minimizer by

isolating the local minimizers from this set (analogous to taking the second derivative) and finding

the minimum from among these. Variational methods also have one more requirement: we need to

prove the existence of a minimizer. Even if there are local minimizers, there might not be a global

minimum. (This has been the major impetus behind efforts to solve the existence problem.)

The variational approach is of necessity an indirect one. By taking the first variation, each

competitor is compared to those nearby, and only locally minimal competitors are compared to

the global minimum. For example, suppose we are instead trying to find the tallest person in a

crowded room. The indirect approach of calculus of variations is akin to finding everyone who is

taller than the people next to them and then comparing heights of the ‘locally tallest’ individuals.

Variational methods have strengths and weaknesses. One strength is that first variation zero

surfaces can give insight into what shapes are likely to be minimizers. In some problems, vari-

ational methods can also give short proofs for minimization when the set of first variation zero

surfaces is small. One of this method’s major drawbacks is that many problems have large or
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complex sets of local minimizers. Even in problems where the minimizer is all but universally

accepted, formulating a proof of global minimization in a large set of first variation zero manifolds

can be all but impossible. Variational methods also encounter the problem of proving the existence

of a minimizer. This requires the existence problem to be solved before any proof can be called

complete.

While variational methods have had great success in a variety of problems, the difficulties of

the approach have left many others unanswered.

1.5 Calibrations and Direct Proofs

Calibration arguments explore a new avenue of direct proof. Instead of comparing each competitor

to those near it, we compare each competitor directly to the conjectured minimizer. Recalling our

previous example, finding the tallest person in a crowded room by a direct method would be akin

to starting with the person who we think is tallest, and comparing their height to each person in the

room directly.

In calibration proofs, this comparison is made by means of an intermediate function. Suppose

that there exists some function G such that for some surface Ω∗,

Area(Ω∗) = G(Ω∗)≤ G(Ω)≤ Area(Ω)

for all other competing surfaces Ω. Then it is simple to see that Ω∗ is area minimizing. Calibration

proofs all follow this basic format. This is generally accomplished by using a specialized integrand

(the calibration) to define G that relates it to the area of a competitor.



Chapter 2

Calibration Methods in Optimization Proof

What is an Optimization Problem?

Optimization problems ask what object has the least or most of something. Life is full of opti-

mization problems. Every day we find people looking for the shortest route to work, the most

goods they can get for their money, or the cheapest place to buy their groceries. Mathematicaly,

an optimization problem has two parts: a set of competitors and a real-valued function to compare

them with. The set of competitors is the collection of objects on which you try to maximize, or

minimize, the function. We denote the set of competitors for a given optimization problem by C .

We also define the objective function P : C → R by which we measure each competitor. For each

competitor Ω in C , P(Ω) is a real number representing the value to be minimized or maximized.

We say that a particular competitor Ω∗ in C minimizes P if

P(Ω∗)≤ P(Ω) for all Ω ∈ C ,

or similarly that Ω∗ maximizes P if

P(Ω∗)≥ P(Ω) for all Ω ∈ C .

7



2.1 Calibration 8

For several reasons, it is useful to limit our discussion to minimization problems. First, each

maximization problem is equivalent to minimizing −P. Secondly, a majority of the problems

encountered in geometric optimization are minimization problems. For example, the study of

minimal surfaces, soap films, and dynamical systems all deal in part with minimization problems.

For simplicity, we make this restriction.

Now let’s turn our attention to optimization problems in geometry. The competitors for a

geometric optimization problem may be manifolds that meet some given condition. These could

include manifolds with fixed boundary, manifolds that are themselves boundary, or manifolds with

fixed mass. Most commonly, this type of optimization problem asks which manifolds minimize

length or surface area. In general, we can define the objective function as

P(Ω) =
∫

Ω

Φ for all Ω ∈ S

given some general integrand Φ. For mass (length, area, or volume) minimization problems, Φ =

Vol = 1.

2.1 Calibration

In 1982 Harvey and Lawson published their landmark paper, Calibrated Geometries [12]. Building

on several disparate ideas, they presented a new framework of minimization proof. They found

that it is possible to construct an intermediate function that directly proves minimization by using

closed differential forms of unit comass. Some key results are summarized below.

2.2 Calibrated Geometries

While calibrated geometries have a natural definition in the realm of arbitrary Riemannian mani-

folds, in this section we look only at calibrations in Rn. This will suffice to give the reader a taste
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of the calibration argument. For the advanced reader, however, more information on calibrations

may be found in several texts, such as Frank Morgan’s Geometric Measure Theory: A Beginner’s

Guide [20] (c.f. chapter 6 and the reference in section 6.5).

Theorem 2.2.1. The Fundamental Theorem of Calibrations. Let ϕ be a closed differential k-form

of unit comass defined on Rn. Suppose that M is a k-dimensional manifold in Rn such that

〈ϕ,ξM〉= 1 for all x ∈M.

Then M is area-minimizing for its boundary.

Proof. The proof of this theorem is famous for its brevity:

Let S be any other k-dimensional manifold in Rn with the same boundary as M (∂S = ∂M).

Then ∫
M

1 =
∫

M
ϕ =

∫
S

ϕ ≤
∫

S
1.

We call a closed differential form of unit comass a calibration. If M is a manifold satisfying

the conditions of the previous theorem, then we say that M is calibrated by ϕ .

2.3 Metacalibration

Calibrations have greatly simplified some types of optimization problems, most notably those with

fixed boundary. But what happens when we want to use a fixed volume constraint instead?

2.4 An Almost-Proof

Consider the isoperimetric problem of minimizing perimeter while enclosing a given area. Let’s

see if we can use calibrations to give a proof that the circle has the least perimeter of all figures
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with the same area. The main task is finding an appropriate differential form ϕ that will calibrate

the circle.

We can already give some conditions that ϕ will have to meet. Let Ω∗ be the disk of radius

r centered at the origin with ∂Ω∗ its bounding circle. In order to calibrate Ω∗, we need to have

〈ϕ,ξ∂Ω∗〉= 1 everwhere on ∂Ω∗. This implies, however, that ϕ cannot be closed, because
∫

∂Ω∗ 1=∫
∂Ω∗ ϕ =

∫
M dϕ 6= 0. We can, however, use still Stokes’ theorem in our proof, but in a different way.

Let Ω be any other figure in the plane with the same area as Ω∗ with ∂Ω its boundary. Suppose

that dϕ = c for some constant c. Then we see that

G(Ω∗) =
∫

∂Ω∗
ϕ

=
∫

Ω∗
dϕ

= cπr2

=
∫

Ω

dϕ

=
∫

∂Ω

ϕ = G(Ω).

So we are looking for a differential form ϕ that is unit on ∂Ω∗ for which dϕ is constant. This

essentially limits us to ϕ = −ydx+xdy
r . Let’s see if it works.

First, by definition,

P(Ω∗) =
∫

∂Ω∗
1 =

∫
∂Ω∗
〈ϕ,ξ∂Ω∗〉= G(Ω∗).

Second, since dϕ = 2
r dx∧dy,

G(Ω∗) =
∫

Ω∗

2
r

dx∧dy =
2
r

πr2 =
∫

Ω

2
r

dx∧dy = G(Ω).

Unfortunately, the proof falls apart on the last step. Since ‖ϕ‖ > 1 outside of Ω∗, we run into

a statement we can’t prove:

G(Ω) =
∫

∂Ω

ϕ ≤
∫

∂Ω

‖ϕ‖
?
≤
∫

∂Ω

1 = P(Ω).
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This failure appears unavoidable: when we use any other differential form as our calibration we

can always find a competitor that it fails to be unit on. We need to try something else.

2.5 A Proof Indeed

In our attempt to calibrate the circle, the problem we ran into was that no single differential form

could handle all the different possible shapes of competitors. If we picked one particular competitor

however, it would be relatively easy to find a calibration-type differential form that could handle

just that competitor. Why can’t we just use those?

Here we find the fundamental concept behind metacalibration: use a different calibration for

each competitor. Let’s see if we can use this idea to construct a proof:

Let ϕΩ∗ =
−ydx+xdy

r . For each competitor Ω, we want to create a differential form ϕΩ that acts

on Ω like ϕΩ∗ acts on Ω∗. For each point (x0,y0) in Ω, let a(y0) be the area of S below the line

y = y0. Since Area(Ω∗) = Area(Ω), there exists y∗ such that the area of Ω∗ below the line y = y∗ is

equal to a(y0). Mapping the line segment of y = y0 in Ω linearly onto the line segment of y = y∗ in

Ω∗ lets us also define x∗ as the image of x0 under this map. This mapping is shown visually below.

Let ϕΩ(x0,y0) =
−y∗(y0)dx+x∗(x0,y0)dy

r and G(Ω) =
∫

Ω
ϕΩ.

Figure 2.1 Slicing Methods

Since the map (x,y) 7→ (x∗,y∗) is area preserving, we find that ∂x∗
∂x

∂y∗
∂y = 1 and, by the algebraic
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mean-geometric mean inequality, 2≤ ∂x∗
∂x + ∂y∗

∂y . Thus,

G(Ω∗) =
∫

∂Ω∗
ϕΩ∗

=
∫

Ω∗
dϕΩ∗ =

∫
Ω∗

2
r

=
2
r

πr2

=
∫

Ω

2
r

≤
∫

Ω

∂x∗
∂x + ∂y∗

∂y

r
=
∫

Ω

dϕΩ

=
∫

∂Ω

ϕΩ = G(Ω)

But since ‖ϕΩ‖ ≤ 1 everywhere on Ω, we also have

G(Ω) =
∫

∂Ω

ϕΩ ≤
∫

∂Ω

‖ϕΩ‖ ≤
∫

∂Ω

1ds = P(Ω).

Putting these results together we get

P(Ω∗) = G(Ω∗)≤ G(Ω)≤ P(Ω)

and we have a proof indeed.

2.6 The Metacalibration Theorem

Based on the previous section, we can see that that key difference between calibration and meta-

calibration methods is that calibrations use a single differential form for all competitors, while

metacalibrations use a unique differential form for each competitor. We formalize this difference

in the following definition.

Definition 2.6.1. Given a set of competitors C , a metacalibration is a set of differential forms

{ϕΩ ∈A k(Ω)| for all Ω ∈ C } such that for all Ω ∈ C and for some Ω∗ ∈ C ,



2.6 The Metacalibration Theorem 13

MC I. 〈ϕΩ(x),ξΩ(x)〉 ≤ 1 for all x ∈Ω,

MC II. 〈ϕΩ∗(x),ξΩ∗(x)〉= 1 for all x ∈Ω∗, and

MC III.
∫

Ω∗ ϕΩ∗ ≤
∫

Ω
ϕΩ.

In this sense we say that the metacalibration, {ϕΩ}, calibrates Ω∗.

Theorem 2.6.2. Metacalibration Theorem. Let C be a set of competitors, and suppose that {ϕΩ}

is a metacalibration for C that calibrates Ω∗ ∈ C . Then Ω∗ is mass-minimizing in C .

Proof. Let G(Ω) =
∫

Ω
ϕΩ for all Ω ∈ C . Then

P(Ω∗) =
∫

Ω∗
1

=
∫

Ω∗
〈ϕΩ∗,ξΩ∗〉

= G(Ω∗)≤ G(Ω)

=
∫

Ω

〈ϕΩ,ξΩ〉

≤
∫

Ω

1 = P(Ω).

At this point the major parts of a metacalibration proof become apparent. First, you need to

identify what competitor you believe is the minimizer. Second, you need to develop the metacal-

ibration with that conjectured minimizer as a basis. Typically, the first problem is easy to solve:

good guesses, computer simulations, and observing nature can all help. The second problem proves

much more difficult. We usually construct metacalibrations using the process of emulation to

model the differential form on a competitor Ω after a natural differential form on Ω∗.



Part II

Proof of the Double Bubble Conjecture in

Rn

14



Chapter 3

A New Proof of the Double Bubble

Conjecture in Rn and an Extension to

Surfaces with Boundary: By James Dilts,

Rebecca Dorff, and Donald Sampson

3.1 Introduction

In this paper we give a new proof of the double bubble conjecture: that the least surface area

way to separately enclose two given volumes in Rn is the so called ï£¡standard double bubbleï£¡

composed of three spherical caps meeting at 120◦. This conjecture was first proven by Hutchings,

Morgan, Ritoré, and Ros [13] using the calculus of variations. Our proof uses instead a calibration

type argument similar to the Knothe-Gromov proof of the Isoperimetric inequality.

The relatively new method of calibration, first popularized by Harvey and Lawson [12], has

been used in a variety of circumstances to solve surface area minimization problems. Typical

15
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problems include mass-minimization given a fixed boundary condition.

Our method is a generalization of this approach that can incorporate a fixed volume condition.

We call our method metacalibration. In particular it is a direct style of proof in which characteris-

tics of the conjectured minimizer are used to construct the necessary inequalities.

Let Ω be any admissible competitor, and let Ω∗ be the conjectured minimizer. Given an objctive

functional P, calibration proofs typically take the form

P(Ω∗) = G(Ω∗)≤ G(Ω)≤ P(Ω),

where G is an intermediary function defined using the characteristics of both Ω and Ω∗. In what

follows we let G(Ω) =
∫

∂Ω
〈ϕΩ,~n〉dA for ϕΩ defined separately on each competitor. This approach

unifies several proofs into a common frame work, such as those of Knothe-Gromov [11], Schmidt

[21], Lawlor [17], Dilts [5], and Brenier-McCann [19].

In this paper we use this approach to generalize the Knothe-Gromov proof of the isoperimetric

inequality to two enclosed areas. In Section 3.2 we review the Knothe-Gromov approach and

the proof of the standard isoperimetric inequality using this method. Section 3.3 presents our

generalization of the Knothe rearrangement to two volumes and defines the intermediate function

G for all competitors. We finish the proof in Section 3.4 by proving the three inequalities mentioned

above. Section 3.5 demonstrates how these results extend to solutions of the equitent problem [8]

of double bubbles with boundary constraint.

3.2 The Knothe-Gromov Proof of the Isoperimetric Inequality

in Rn

The following proof is due to Mikhail Gromov [11]. It relies primarily on a map from any competi-

tor Ω to the minimizing ball Ω∗ constructed by mapping ‘slices’ of one to ‘slices’ of the other. This
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map is now known as the Knothe-Rosenblatt rearrangement, developed independently by Herbert

Knothe [16] and Murry Rosenblatt [22]. We construct this map as follows:

Let Ω be any competitor (open domain) of fixed volume, and let Ω∗ be the ball of the same

volume centered at the origin. Let r be the radius of Ω∗. We define F : Ω→Ω∗ by (y1,y2, . . . ,yn) 7→

(z1,z2, . . . ,zn) such that

Vol(Ω∩{x1 = y1, . . . , x j−1 = y j−1, x j ≤ y j})
Vol(Ω∩{x1 = y1, . . . , x j−1 = y j−1})

=
Vol(Ω∗∩{x1 = z1, . . . , x j−1 = z j−1, x j ≤ z j})

Vol(Ω∗∩{x1 = z1, . . . , x j−1 = z j−1})

for all 1 ≤ j ≤ n. Scaled volume is preserved set-wise under each ‘slice,’ with the last coordinate

mapped (locally) linearly on the final ‘slice’ of a portion of a line in Ω mapped to a line segment in

Ω∗. Volume is then preserved pointwise, so that detDF = 1. Note that Fj is seen to depend only on

the variables {x1,x2, . . . ,x j}, so that DF is lower triangular with positive diagonal entries. Lastly,

if Ω = Ω∗ then F is simply the identity on Ω∗. The details of this construction of were worked

out by Brothers and Morgan in [3]. They also provide a version of the divergence theorem with

weakened hypotheses and show that F satisfies these.

We now give the proof after Gromov:

Theorem 3.2.1. The n−1-sphere is the least surface area figure in Rn among all those that enclose

a fixed volume.

Proof. Given any competitor Ω, let P(Ω) be the surface area of Ω. Let ϕΩ = F(x1,x2,...xn)
r , and let

G(Ω) =
∫

∂Ω
〈ϕΩ,~n〉dA where~n is the unit normal to the figure. This yields

G(Ω) =
∫

∂Ω

〈ϕΩ,~n〉dA

≤
∫

∂Ω

‖ϕΩ‖dA

≤
∫

∂Ω

dA

= P(Ω).
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since ϕΩ is at most a unit vector. Note also that if Ω = Ω∗, we have equality (P(Ω∗) = G(Ω∗))

since ϕΩ∗ =~n on ∂Ω∗.

Now consider that divϕΩ = 1
r divF = 1

r trDF . Since ∏
n
i=1

∂Fi
∂xi

= detDF = 1, the arithmetic

mean-geometric mean inequality implies that n≤ trDF . Thus n
r ≤ divϕΩ. Therefore

G(Ω∗) =
∫

∂Ω∗
〈ϕΩ∗,~n〉dA

=
∫

Ω∗
divϕΩ∗dV

=
∫

Ω∗

n
r

dV

=
nVol(Ω∗)

r

=
∫

Ω

n
r

dV

≤
∫

Ω

divϕΩdV

=
∫

∂Ω

〈ϕΩ,~n〉dA

= G(Ω).

Putting these three results together gives the famous one line proof common to all calibration

arguments:

P(Ω∗) = G(Ω∗)≤ G(Ω)≤ P(Ω).

3.3 Generalization to Two Volumes

In this section we describe a variation on the Knothe-Rosenblatt rearrangement for two volumes.

The key idea is to ‘tilt’ the slices to match volume in both bubbles. This map fails to preserve

volume locally, but we show in the following section that the necessary inequalities still hold when

averaged over slices. We then complete the proof of the double bubble conjecture in that section.
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Let Ω be an arbitrary competitor double bubble in Rn. Thus Ω = Ω1 ∪Ω2 where the Ωi are

disjoint open domains of fixed volume that may or may not share boundary. It was shown by Foisy

et al. in [10] that there exists a standard double bubble in Rn that separately encloses volumes

Vol(Ω1) and Vol(Ω2). Denote the standard double bubble as Ω∗ = Ω∗1 ∪Ω∗2 where Vol(Ωi) =

Vol(Ω∗i ). Now each Ωi has a natural center oi as the center of the spherical cap that forms its

exterior face. Similarly the interface between Ω1 and Ω2 is a spherical cap with center o3. Denote

the radii of these three spherical caps ri respectively. In all standard double bubbles 1
r3
= 1

r1
− 1

r2

[14]. Note that the oi are also collinear. Orient Ω∗ so that o1 is the origin and o2 lies on the positive

x1 axis.

Given a slice of Ω, our goal is to find a corresponding slice in Ω∗ that has the same area under

the slice in each corresponding bubble. Unfortunately, this is not always possible. In particular,

if the enclosed areas are not equal there is no hyper-plane through Ω∗ that separates them. We

get around this by reorienting our competitor Ω. By the so-called ham-sandwich theorem, there is

a hyper-plane that splits both volumes exactly in half. If we slice Ω parallel to this hyper-plane,

every slice of Ω will have a corresponding slice in Ω∗. Without loss of generality, we assume that

these hyper-planes are oriented with the coordinate hyper-planes appropriately. This means that

while the slices in Ω are all parallel, the slices in Ω∗ will tilt and may intersect. This represents the

image space, Ω∗, in a rotating frame of reference. Further details of this mapping were worked out

in [9], so we assume we are able to define the mappings Fi : Ωi→Ω∗ as follows:

Given~z = (z1,z2, . . . ,zn) ∈ Ωi, denote the slice of Ω∗ corresponding (as above) to the hyper-

plane {xn = zn} by Sn. Let yn
i be the signed distance from oi to Sn. (We let yn

i > 0 if Sn is above oi,

and yn
i < 0 otherwise.) As in the single bubble case, we now consider ‘slices of slices’. The slice

Sn is itself a (weighted) double bubble in one less dimension. Let Sn−1 be the slice of Ω∗∩Sn that

corresponds to the hyper-plane {xn−1 = zn−1} in Ω∩{xn = zn}. Let yn−1
i be the signed distance

from the projection of oi on Sn to the slice Sn−1. Proceed in the same fashion to define yn−1
i , . . . ,y1

i
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and let Fi(~z) = (y1
i ,y

2
i , . . . ,y

n
i ).

Sk

Sk-1

o2o1

y1 y2

l 11 l 12 l 21 l 22

v

1
2

k
k

Figure 3.1 Tilted Slicing

When we take slices of slices, there is no guarantee that the total volume of a slice in Ω to match

that of its corresponding slice in Ω∗. Instead of matching volume under the slice, we match the

volume fraction, or scaled volume. Denote Vol(Ωi∩{xn = zn, . . . ,xk = zk+1}) as V k
i and Vol(Ω∗i ∩

Sk+1) as V k∗
i . By convention we let V n(∗)

i = Voln(Ω(∗)
i ).

3.4 Proof of the Double Bubble Conjecture

We now use the map defined in the previous section to construct a metacalibration. We then

show that the intermediary function thus defined satisfies the three inequalities, P(Ω∗) = G(Ω∗)≤

G(Ω)≤ P(Ω).

The maps Fi : Ωi→Ω∗i can also be considered as a vector field on Ωi. We scale these to define

two new vector fields. Let

ϕΩi(~z) =
Fi(~z)

ri
.

We define our intermediary function as

G(Ω) =
∫

∂Ω1

〈ϕΩ1 ,~n〉d Voln−1+
∫

∂Ω2

〈ϕΩ2,~n〉d Voln−1,
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where~n is the unit exterior normal to the boundary surfaces. We now separately prove each of the

above inequalities.

Lemma 3.4.1. P(Ω∗) = G(Ω∗)

Proof. First note that for any point on the exterior boundary of Ω∗i the vector ϕΩ∗i
is equal to the

unit normal. Thus 〈ϕΩ∗i
,~n〉= 1. It was also shown in [9] that at all points on the interior boundary

∂Ω∗1∩∂Ω∗2, 〈ϕΩ∗1
−ϕΩ∗2

,~n〉= 1. Thus by definition of G(µ),

G(Ω∗) =
∫

∂Ω∗1−∂Ω∗2

〈ϕΩ∗1
,~n〉d Voln−1+

∫
∂Ω∗2−∂Ω∗1

〈ϕΩ∗2
,~n〉d Voln−1

+
∫

∂Ω∗1∩∂Ω∗2

〈ϕΩ∗1
−ϕΩ∗2

,~n〉d Voln−1

=
∫

∂Ω∗1−∂Ω∗2

d Voln−1+
∫

∂Ω∗2−∂Ω∗1

d Voln−1+
∫

∂Ω∗1∩∂Ω∗2

d Voln−1

=
∫

∂Ω∗1∪∂Ω∗2

d Voln−1 = P(Ω∗).

Lemma 3.4.2. G(Ω)≤ P(Ω)

Proof. Since Fi(~z) always lies on or inside a sphere of radius ri, ||ϕΩi|| ≤ 1. It was also shown

in [9] that on the shared boundary of the two bubbles, 〈ϕΩ∗1
−ϕΩ∗2

,~n〉 ≤ 1. Thus we find that

G(Ω) =
∫

∂Ω1

〈ϕΩ1,~n〉d Voln−1+
∫

∂Ω2

〈ϕΩ2 ,~n〉d Voln−1

=
∫

∂Ω1−∂Ω2

〈ϕΩ1,~n〉d Voln−1+
∫

∂Ω2−∂Ω1

〈ϕΩ2,~n〉d Voln−1

+
∫

∂Ω1∩∂Ω2

〈ϕΩ1−ϕΩ2,~n〉d Voln−1

≤
∫

∂Ω1−∂Ω2

‖ϕΩ1‖d Voln−1+
∫

∂Ω2−∂Ω1

‖ϕΩ2‖d Voln−1+
∫

∂Ω1∩∂Ω2

d Voln−1

≤
∫

∂Ω1−∂Ω2

d Voln−1+
∫

∂Ω2−∂Ω1

d Voln−1+
∫

∂Ω1∩∂Ω2

d Voln−1

=
∫

∂Ω1∪∂Ω2

d Voln−1 = P(Ω).
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This last lemma is the crux of the proof. We prove that the necessary inequalities hold when

integrated over slices.

Lemma 3.4.3. G(Ω∗)≤ G(Ω)

Proof. As an application of the divergence theorem, we have

G(Ω∗) =
∫

∂Ω∗1

〈ϕΩ∗1
,~n〉d Voln−1+

∫
∂Ω∗2

〈ϕΩ∗2
,~n〉d Voln−1

=
∫

Ω∗1

divϕΩ∗1
d Voln+

∫
Ω∗2

divϕΩ∗2
d Voln

=
∫

Ω∗1

n
r1

d Voln+
∫

Ω∗2

n
r2

d Voln

=
nVoln(Ω∗1)

r1
+

nVoln(Ω∗2)
r2

=
nVoln(Ω1)

r1
+

nVoln(Ω2)

r2
.

Letting F j
i be the jth coordinate of Fi, we also have

G(Ω) =
∫

∂Ω1

〈ϕΩ1,~n〉d Voln−1+
∫

∂Ω2

〈ϕΩ2 ,~n〉d Voln−1

=
∫

Ω1

divϕΩ1d Voln+
∫

Ω2

divϕΩ2d Voln

=
∫

Ω1

∑
n
j=1

∂F j
1

∂x j

r1
d Voln+

∫
Ω2

∑
n
j=1

∂F j
2

∂x j

r2
d Voln .

To finish the argument we first prove a set of propositions. In the following we use the notation

given in Figure 3.2. Given a slice Sk of Ω∗, an infinitesimal change dxk will cause a tilt in Sk,

causing an angle dθ to form.

Proposition 3.4.4.
l2
11− l2

12
r1

=
l2
22− l2

21
r2

.

Proof. Note that l2
11− l2

12 = (l11 + l12)(l11− l12), which is the product of the two lengths of a

chord though the point v. This product is constant over all chords through v, and in particular
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l 11 l 12 l 21 l 22

v

dF1
k

dxk
dF2

k

dxk d

Figure 3.2 An Infinitesimal Change

for a diameter. Thus l2
11− l2

12 = (l11 + l12)(l11− l12) = (r1 + s1)(r1− s1) = r2
1− s2

1 and similarly

l2
21− l2

22 = r2
2− s2

2. It was shown in [9] that r2
1−s2

1
r1

=
r2
2−s2

2
r2

. This completes the proof.

Proposition 3.4.5.

1
r1

(
V k−1

1
V k∗

1

V k
1
−V k−1∗

1
∂Fk

1
∂xk

)
=− 1

r2

(
V k−1

2
V k∗

2

V k
2
−V k−1∗

2
∂Fk

2
∂xk

)
= λk

Proof. Let W k(∗)
i be the volume underneath the ‘slice’ in Ω(∗). Consider then that according to our

weighting of slices

V k−1
i

V k∗
i

V k
i

=
∂W k

i
∂xk

V k∗
i

V k
i

=
∂W k∗

i
∂xk

.

Now the value ∂W k∗
i

∂xk
represents the change in volume under the slice in Ω∗, or equivalently the

volume between two infinitesimally near slices of Ω∗. Suppose as in figure 3.2 that the infinitesimal

change in tilt of the slices is to the right. Then

∂W k∗
i

∂xk
=
∫

Sk−1

V 1∗
i

∂Fk
i

∂xk
+

l2
i1− l2

i2
2

dθ

dxk
dx2 · · ·dxk−1

=V k−1∗
i

∂Fk
1

∂xk
+
∫

Sk−1

l2
i1− l2

i2
2

dθ

dxk
dx2 · · ·dxk−1.
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But by the previous proposition

1
r1

(
∂W k∗

1
∂xk

−V k−1∗
1

∂Fk
1

∂xk

)
=
∫

Sk−1

l2
11− l2

12
2r1

dθ

dxk
dx2 · · ·dxk−1

=−
∫

Sk−1

l2
21− l2

22
2r2

dθ

dxk
dx2 · · ·dxk−1

=− 1
r2

(
∂W k∗

2
∂xk

−V k−1∗
2

∂Fk
2

∂xk

)
.

The same result holds with signs reversed (λk < 0) for a tilt to the left. Substitution finishes the

proof.

Proposition 3.4.6.

∑
i=1,2

(
(k−1)

(
V k−1∗

i
V k−1

i

)1/(k−1)

+
∂Fk

i
∂xk

)
V k−1

i

ri
≥ ∑

i=1,2

k
(

V k∗
i

V k
i

)1/k
V k−1

i

ri
.

Proof. Starting out with the generalized arithmetic mean-geometric mean inequality we have:

∑
i=1,2

(
(k−1)

(
V k−1∗

i
V k−1

i

)1/(k−1)

+
∂Fk

i
∂xk

)
V k−1

i

ri

≥ ∑
i=1,2

k
(

V k−1∗
i

V k−1
i

∂Fk
i

∂xk

)1/k

V k−1
i

ri

= ∑
i=1,2

k
(

V k−1∗
i

V k−1
i

(
V k−1

i
V k−1∗

i

V k∗
i

V k
i
+(−1)i ri

V k−1∗
i

λk

))1/k

V k−1
i

ri

= ∑
i=1,2

k
(

V k∗
i

V k
i
+(−1)i ri

V k−1
i

λk

)1/k

V k−1
i

ri
= Hk

We now optimize this expression in terms of λk. Now

∂Hk

∂λk
= ∑

i=1,2
(−1)i

(
V k∗

i

V k
i
+(−1)i ri

V k−1
i

λk

)(1−k)/k

= 0
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if and only if V k−1∗
1

V k−1
1

∂Fk
1

∂xk
=

V k−1∗
2

V k−1
2

∂Fk
2

∂xk
. This only occurs when λk = 0 (in the absence of any change in

tilt), which gives a minimum value of Hk. Thus

Hk ≥ ∑
i=1,2

k
(

V k∗
i

V k
i

)1/k
V k−1

i

ri
,

completing the proof.

From Proposition 3.4.6 we have the following inequalities by integrating over each slice in

turn.

∑
i=1,2

∫
Ωi

∂Fk
i

∂xk
+(k−1)

(
V k−1∗

i
V k−1

i

)1/(k−1)

ri
dx1 · · ·dxn

= ∑
i=1,2

∫
Ωi

(
∂Fk

i
∂xk

+(k−1)
(

V k−1∗
i

V k−1
i

)1/(k−1)
)

V k−1
i

ri
dxk · · ·dxn

≥ ∑
i=1,2

∫
Ωi

k
(

V k∗
i

V k
i

)1/k
V k−1

i

ri
dxk · · ·dxn

≥ ∑
i=1,2

∫
Ωi

k
(

V k∗
i

V k
i

)1/k

ri
dx1 · · ·dxn

Since ∂F1
i

∂x1
=

V 1∗
i

V 1
i

, this gives the following chain of inequalities.
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∑
i=1,2

∫
Ωi

∑
n
k=1

∂Fk
i

∂xk

ri
d Voln = ∑

i=1,2

∫
Ωi

∑
n
k=2

∂Fk
i

∂xk
+

V 1∗
i

V 1
i

ri
dx1 · · ·dxn

≥ ∑
i=1,2

∫
Ωi

∑
n
k=3

∂Fk
i

∂xk
+2
(

V 2∗
i

V 2
i

)1/2

ri
dx1 · · ·dxn

≥ . . .

≥ ∑
i=1,2

∫
Ωi

∂Fn
i

∂xn
+(n−1)

(
V n−1∗

i
V n−1

i

)1/(n−1)

ri
dx1 · · ·dxn

≥ ∑
i=1,2

∫
Ωi

n
(

V n∗
i

V n
i

)1/n

ri
dx1 · · ·dxn

= ∑
i=1,2

∫
Ωi

n
(

Voln(Ω∗i )
Voln(Ωi)

)1/n

ri
dx1 · · ·dxn

= ∑
i=1,2

∫
Ωi

n
ri

dx1 · · ·dxn

=
nVoln(Ω1)

r1
+

nVoln(Ω2)

r2

Combining this with our earlier evaluations gives us G(Ω∗) ≤ G(Ω) and completes the proof.

Theorem 3.4.7. The standard double bubble is the least mass hyper-surface in Rn among all those

that separately contain two given n-volumes.

Proof. By lemmas 3.4.1, 3.4.2, and 3.4.3,

P(µ) = G(µ)≤ G(σ)≤ P(σ).

This completes the proof.
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3.5 Double Bubble Equitent Problems

The double bubble conjecture has been proven previously using calculus of variations (see [13]).

The key to this proof was the use of rotational symmetry. Unfortunately, when boundary con-

straints are included there is no such symmetries. Consider for example the surface in Figure 3.3.

Following [8] however, our metacalibration approach can be combined with external vector fields

(using paired calibration a la Lawlor and Morgan, [18]) to prove minimization. For example, it

is easy to show that the surface in Figure 3.3 is area minimizing among surfaces that contain the

same volumes and span the same boundary.

Figure 3.3 An Equitent Surface with Two Volumes

3.6 Conclusion

Using the techniques of metacalibration, we have reproved the double bubble conjecture and ex-

tended this result to so-called ‘equitent’ surfaces with boundary. To do this we adapted the Knothe-

Rosenblatt rearrangement to a simultaneous mapping of two volumes. Unfortunately, the natural

generalization to three volumes is not generally possible due to the failure of the ‘ham-sandwich’

theorem for three areas in two dimensions. We do believe however that this approach can be used

to reduce the triple bubble conjecture in three or more dimensions to a statement about weighted

triple bubbles in the plane.



3.6 Conclusion 28

Seeing that metacalibration unifies many different approaches, it is natural to ask whether an-

other method besides the Knothe-Rosenblatt rearrangement can be used to create a metacalibration

function for multiple bubble problems? The most promising alternate method is that of optimal

transport. McCann [19] showed that the Brenier map, found as the solution to an optimal mass

transport problem, can be used as a metacalibration function in proving the isoperimetric inequal-

ity. We hope that a variation of this map may be made to handle multiple bubbles. Such an ap-

proach could conceivably prove the n+ 1-bubble conjecture in Rn, including the as yet unproven

triple and quadruple bubble conjectures in R3.



Part III

Equitent Problems

29



Chapter 4

Isoperimetric Surfaces with Boundary: By

Rebecca Dorff, Drew Johnson, Gary

Lawlor, and Donald Sampson

We prove that many common combinations of soap films and soap bubbles that result from dipping

polyhedral wire frames in soap solution are minimizing with respect to their boundary and bubble

volume. This can be thought of as a combination of the Plateau problem of least area for surfaces

spanning a given boundary and the isoperimetric problem of least area for surfaces enclosing a

given volume. Proof is given in arbitrary dimension using a combination of the mapping of Gromov

[11] after Knothe [16] and the paired calibrations of Lawlor and Morgan [18].

4.1 Introduction

In this paper, we prove that many common soap-film-like surfaces that enclose a volume and have

a regular polytope “wireframe” as boundary are mass minimizing with respect to their boundary

and enclosed volume. Examples of such surfaces are shown in Figure 4.1. We give a direct proof

30
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using the flux of specialized vector fields to model the mass of each competitor a la Gromov [11]

and Lawlor and Morgan [18].

We propose the name of “equitent problem” for an area minimization question in which com-

petitors must enclose a given volume (“equal content”) as well as span a given boundary (“equal

extent”). Equitent problems are thus a generalization of Plateau problems (fixed boundary) and

isoperimetric problems (fixed enclosed volume). The equitent problem appears largely unexplored

to date; we give what we believe to be the first major results.

4.2 Knothe-Gromov

In 1989 Mikhail Gromov [11], following work of Herbert Knothe, described a beautiful method for

proving isoperimetric theorems. He used what is now called the Knothe-Rosenblatt rearrangement,

developed independently by Knothe [16] and Rosenblatt [22], which we now describe. Construct

an area-preserving map F from a competitor U to the round ball B of radius r (centered at the

origin) of the same volume by sending ‘slices’ of U to ‘slices’ of B, and repeating the same process

in each slice. Specifically, let this map be given by

F : U → B

(y1,y2, . . . ,yn) 7→ (z1,z2, . . . ,zn)

such that

H n− j+1U ∩{x1 = y1, . . . ,x j−1 = y j−1,x j ≤ y j}
H n− j+1U ∩{x1 = y1, . . . ,x j−1 = y j−1}

=
H n− j+1B∩{x1 = z1, . . . ,x j−1 = z j−1,x j ≤ z j}

H n− j+1B∩{x1 = z1, . . . ,x j−1 = z j−1}
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for all 1 ≤ j ≤ n. Thus Fj is seen to depend only on the variables {x1,x2, . . . ,x j}. Scaled volume

is preserved set-wise under each ‘slice,’ with the last coordinate mapped (locally) linearly on the

final ‘slice’ of a portion of a line in U mapped to a line segment in B. Volume is then preserved

pointwise. In addition, if U = B then F is simply the identity on B.

This scheme makes DF lower triangular with positive diagonal entries. Since ∏
n
i=1

∂Fi
∂xi

=

detDF = 1, the arithmetic-geometric mean inequality implies that trDF ≥ n. Thinking of F as

a vector field on U , trDF = divF ≥ n. Now since the image of F is a ball of radius r, the length of

the vector 1
r F(x) is always at most 1. The divergence theorem then gives us that

H n−1
∂U =

∫
∂U

1≥
∫

∂U

1
r

F ·n =
∫

U

1
r

divF ≥ n
r
·H nU,

with equality for the ball. The standard isoperimetric inequality in Rn results.

If we replace B with any convex set, this scheme still works to create a volume preserving map

F with divergence at least n. The details of this construction of were worked out by Brothers and

Morgan in [3]. They also provide a version of the divergence theorem with weakened hypotheses

and show that F satisfies these.

4.3 Paired calibration

In 1993, Lawlor and Morgan [18] gave a simple proof that in every dimension, the cone over the

(n−2)-skeleton of the regular simplex is area-minimizing. In R2 this is the length-minimizing Y -

shaped figure of three edges meeting at 120-degrees, and in R3 it is the union of isosceles triangles

from each edge of a regular tetrahedron in to its center of mass. This result had already been proved

by Jean Taylor in 1975 [23] for R3. However, the result by Lawlor and Morgan was new in higher

dimensions.

A simple description of their “paired calibration” technique is to line up (in R3, say) four heat

lamps shining directly toward the faces of a regular tetrahedron. Consider that the heat rays from
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a lamp are parallel with constant intensity, and are completely absorbed when they hit a surface.

Now place the proposed minimizing cone in this configuration for a set time, and measure the

temperature at each point of the cone. Replace the cone with any competing surface for the same

amount of time, and measure its temperature. Because each piece of the cone has the ideal surface

angle at which to absorb heat from the two lamps that shine on that piece (analogous to facing a

single lamp at 90 degrees), we know that the cone is at least as hot, pointwise, as the competing

surface. On the other hand, because both competitors span the same boundary, the total heat

absorbed is the same for both. Equal heat absorbed and hotter temperature pointwise means the

cone must have less surface area over which to distribute the heat. This approach is made rigorous

by representing heat absorbtion by the flux integrals of a set of constant vector fields.

We will combine the Knothe-Gromov vector field approach with paired calibration.

4.4 The Surfaces

A uniform polytope in Rn (or uniform polyhedron in R3) is a polytope with symmetric vertices

made of unform polytope facets of one dimension down. The uniform polytopes in two dimensions

are the regular polygons. In particular the edges of a unform polytope are all of equal length, and

the vertices of a unform polytope all have equal distance from its center of mass. Examples of

uniform polyhedra in R3 include the Platonic and Archimedean solids.

Definition 4.4.1 (A family of soap-film-like surfaces with enclosed volume). Let Γ be a convex

uniform polytope of dimension m ≤ n of unit edge length embedded in Rn and centered at the

origin. Let p1, . . . ,pk be the vertices of Γ. Then ∑i pi = 0 and ‖pi−p j‖= 1 for all vertices pi and

p j that are adjacent in Γ.

For each pi let Ci be the set of points of Rn lying strictly closer to pi than to any other p j, and

define K to be the complement of
⋃

Ci (if k = 1 let K = /0). We note then that Ci and C j share
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boundary non-trivially (on a set of non-zero H n−1 measure) if and only if pi and p j are adjacent

vertices in Γ.

Next, choose r ≥ 0 and define B as the intersection of the open balls of radius r centered at

−r pi. Let S be the boundary of B and β the volume of B.

Finally, define

M = M(Γ,r) = (K \B)∪S.

Figure 4.1 contains examples of M for various polytopes Γ. We note that in our construction the

faces of B correspond to the vertices of Γ and the vertices of B correspond to the faces of Γ. Thus

when this construction is applied to a uniform polytope Γ, the bubble B will be homeomorphic to

the dual polytope of Γ. This is why the bubble resulting from Γ = an icosahedron in Figure 4.1

looks like a dodecagon.

Figure 4.1 Examples of M for Γ = an equilateral triangle, a regular tetrahedron, a regular
octahedron, a regular icosahedron

Remark 4.4.2. As ‖pi‖= ‖p j‖ for all i, j, we see that B = /0 if and only if ‖pi‖< 1 or r = 0. If this
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is the case M = K and any volume constraint is vacuous. The proof below will apply to either case.

Convex regular polytopes for which ‖pi‖< 1 and this construction may yield a non-empty bubble

B include (m = 2) k-gons with k < 6, (m = 3) all platonic solids save the regular dodecahedron,

and (m≥ 4) the m-simplex and the m-orthoplex. Minimizers over convex uniform polytopes such

that ‖pi‖ ≥ 1 also exist, but need not be convex or have spherical caps as faces.

4.5 The Minimization Theorem

Theorem 4.5.1. Given Γ and r ≥ 0, the surface M = M(Γ,r) is area-minimizing, in the following

sense.

Let L0 be the closure of a bounded open set in Rn such that M0 = M∩L0 contains all of S. Let

T be any compact surface (rectifiable set) such that

(M \M0)∪T

divides Rn into k unbounded components Ti such that Ci \L0 ⊂ Ti and Ti and Tj share boundary

non-trivially only if pi is adjacent to p j in Γ. Let U be the union of the compact components, and

suppose that the volume of U is β , the same as the volume of B. Then

H n−1M0 ≤H n−1T.

Proof. Take an arbitrary L0 and define M0 as in the statement of the theorem. Choose a competing

surface T .

Label the unbounded components of [(M \M0)∪T ]C as T1, . . . ,Tk and label the union of the

compact components as U , as in the statement of the theorem. For each i let

Xi = ∂U ∩Ti,

and for each i 6= j let

Wi j = (∂Ti)∩ (∂Tj)∩L0.
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U

L0

S

X1
X2

X3

W12

W23
W13

T3

T2T1

Figure 4.2 Illustration of Labeling (n = 2, k = 3)

Note then that H n−1Wi j 6= 0 only if pi and p j are adjacent in Γ. This labeling is illustrated in an

example in Figure 4.2.

For each point pi define a constant vector field vi(x) = pi.

Use the Knothe/Gromov approach to define a volume-preserving map F from U to the convex

set B, with divF ≥ n wherever defined. Think of the map 1
r F as a vector field on U , so that

div
1
r

F ≥ n
r
.

Notice now that every point y ∈ B is within distance r of −rpi for all 1≤ i≤ k, which implies

that
∥∥1

r y+pi
∥∥ ≤ 1. So we see that the sum of vectors 1

r F + vi has length at most 1 anywhere.

Recall that the difference vectors vi−v j = pi−p j are also of length 1 on Wi j if Wi j has non-zero

measure. From this point on, we ignore all Wi j of measure zero. Let us establish the convention

that the (unit) normal n0 to ∂U is outward pointing, and the normal ni j to Wi j points toward the
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region with lower index. We may now compute:

H n−1T =
∫

∂U
1+∑

i< j

∫
Wi j

1 (4.1)

≥∑
i

∫
Xi

(
1
r

F +vi

)
·n0 +∑

i< j

∫
Wi j

(
vi−v j

)
·ni j (4.2)

We wish to rewrite (4.2) by considering the flux into the region Ti due to vi. This is the flux through

∂Ti∩T =
(⋃

iWi j
)
∪Xi, with normal ni pointing into Ti. From the first sum we have the contribution

of vi through Xi. For each j we also have flux through Wi j from the second sum. Notice that if

i < j, then ni j = ni, while if i > j, then ni j =−ni. Thus we may rewrite (4.2) as

∫
∂U

1
r

F ·n0 +∑
i

∫
∂Ti∩T

vi ·ni (4.3)

=
∫

U
div

1
r

F +∑
i

∫
∂Ti∩T

vi ·ni (4.4)

≥n
r

Volume(U)+∑
i

∫
∂Ti∩T

vi ·ni. (4.5)

Notice that any term in the sum in (4.5) is the flux of a constant vector field through a surface with

fixed boundary. We see then that the quantity (4.5) is independent of T (with L0 held constant).

We claim that equality holds throughout when we apply this estimate to the conjectured mini-

mal surface. When T = M0, we have F(x) = x. The inward pointing unit normal to Xi at x is given

by 1
r x+pi =

1
r F(x)+vi. Also, notice that Wi j consists of points equidistant from pi and p j, so if

i < j, the normal to Wi j is given by pi−p j. This shows that we have equality from (4.1) to (4.2).

Also notice that if F is the identity function, then divF = n, giving us equality in the last step (4.5).

Letting G(T ) = ∑i
∫

Xi

(1
r F +vi

)
·n0+∑i< j

∫
Wi j

(
vi−v j

)
·ni j from (4.2) above, we see that this

argument reduces to a proof that

H n−1T ≥ G(T )≥ G(M0) = H n−1M0.
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We have shown that M0 is mass minimizing among all figures that contain the same volume,

have the same boundary, and have the same connectivity (regions Ti and Tj for some competitor T

share boundary non-trivially only if they do in M0). If Γ is a regular simplex then, as Γ is also a

complete graph, Ti shares non-trivial boundary in M0 with all other Tj. Thus we have the following

corollary:

Corollary 4.5.2. If Γ is a regular simplex, then M0 is minimizing as above but without the connec-

tivity condition.

It is an open problem however as to which figures M(Γ,r) other than those generated from a

regular simplex are minimizing in this more general setting.

Corollary 4.5.3. If Γ′ is the dual polytope to some convex uniform polytope Γ, then the cone

over Γ′ is minimizing among all other surfaces that share the same boundary and have the same

connectivity.

Proof. Apply Theorem 4.5.1 to M(Γ,0).

The above corollary is a stronger version of the main result of [4], which showed that stationary

cones are minimizing over diffeomorphisms. Choe’s results however apply to the more general

class of polyhedral sets, and not just cones.

4.6 Metacalibration

The proof of Theorem 4.5.1 is an example of a method which we call metacalibration. Calibration

arguments [12] typically have the form

H nM =
∫

M
ϕ =

∫
M′

ϕ ≤H nM′

for some particular differential form ϕ , showing that M is mass minimizing among all competitors

M′. This method has been useful in solving fixed boundary problems, such as Plateau’s problem
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(see [20], c.f. chapter 6). Metacalibration generalizes the traditional calibration argument by

allowing ϕ to vary for each competitor. This allows metacalibration to tackle problems with fixed

volume constraints. As demonstrated in this paper, metacalibration can also handle combinations

of fixed boundary and fixed volume constraints.

Using a variation of the Knothe-Rosenblatt rearrangement in a metacalibration argument, the

authors were able to prove the double bubble conjecture in the plane [9]. Optimal transport

promises to be another promising tool for constructing metacalibrations. For instance, the Brenier

map [2] has many of the same properties of as the Knothe-Rosenblatt rearrangement, including the

divergence criterion used in this paper. We hope that a suitable generalization of the Brenier map

can be used to solve other isoperimetric problems such as the triple bubble conjecture.



Chapter 5

Soap Film Realization of Isoperimetric

Surfaces with Boundary: By Jacob Ross,

Donald Sampson, and Neil Steinburg

We examine surfaces of the type proved to be minimizing under a connectivity condition by Dorff

et al. in “Isoperimetric Surfaces with Boundary”. We determine which of these surfaces are stable

soap films. The connectivity condition is shown to be very restrictive; few of these surfaces are

stable (locally minimizing) without it.

5.1 Introduction

Surface area minimization in soap bubbles and soap films is one of the more fascinating subjects in

mathematics today. Metacalibration techniques (a generalization of the calibrations popularized by

Harvey and Lawson [12], see also [20], cf. chapter 6) were developed to investigate the problems

that arise in surface minimization. In particular metacalibration techniques prove very useful in

solving a new class of problems with both fixed volume and fixed boundary constraints. We call

40
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these problems equitent problems after Lawlor et al. Equitent stands for equal content (volume

condition) and equal extent (boundary condition). [7]

In this paper we consider a certain class of equitent problems addressed in “Isoperimetric Sur-

faces with Boundary” [8]. Dorff et al. show that certain equitent surfaces are globally minimizing

under a connectivity condition that restricts the surfaces’ homotopy class. This connectivity condi-

tion is not however true for general minimizing surfaces. We examine which of these surfaces are

locally minimizing without the connectivity condition. This is equivalent to showing these surfaces

are realizable as a soap film. We demonstrate this for those surfaces that are proved to be locally

minimal.

5.2 The Surfaces of Dorff et al.

The surfaces under consideration are described as the union of sections of spheres and planes.

They are constructed by starting with a cone over a wire frame polyhedron. The center of the cone

is then replaced by a volume (bubble) that is enclosed by spherical caps in the same polyhedral

arrangement. See the example soap film in Figure 5.1.

Figure 5.1 Equitent surface constructed on a cube wireframe

Dorff et al. categorize these figures by defining a connectivity graph. The connectivity graph is

used in the construction of these surfaces and describes the adjacency conditions on the resulting

surface. The wire frame polyhedron is the dual figure to this connectivity graph. In their paper
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Dorff et al. also define a connectivity condition, which is that exterior regions share boundary only

if the corresponding vertices in the connectivity graph are adjacent. They prove that the constructed

surfaces are globally area minimizing among all surfaces that enclose the same fixed volume, have

the same wire frame polyhedral boundary, and satisfy the connectivity condition.

5.3 Soap Film Stability

The following is our main result.

Theorem 5.3.1. Among all the minimal surfaces of Dorff et al. in R3, there are only six that

are stable as a soap film: those whose connectivity graphs are a single point, edge, equilateral

triangle, regular tetrahedron, regular octahedron, or regular icosahedron.

Proof. We relax the connectivity condition and look at which surfaces are locally area minimizing

among surfaces that enclose the same fixed volume and have the same wire frame polyhedral

boundary. We reduce conditions for local minimality to conditions on the connectivity graph.

First, in the constuction of the surfaces Dorff et al. require that the connectivity graph to be

a uniform polyhedron (polytope) of unit edge length. A uniform polyhedron is one with regular

polygon faces and congruent vertices. This guarantees the existence of particular vector fields

needed in the minimization proof. They also require the circumradius of the connectivity graph

to be strictly less than 1. A circumradius greater than or equal to 1 would create a central bubble

of volume zero. Uniform polyhedra that meet this condition are limited to the tetrahedron, cube,

octahedron, icosahedron, triangular prism, pentagonal prism, square antiprism, and pentagonal

antiprism.

Minimality conditions come from the work of Jean Taylor [23]. She proved that Plateau’s rules

for soap films must hold for locally minimizing surfaces in R3. These are:

1. Soap films are made of smooth surfaces of constant mean curvature.
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2. Soap films always meet in threes along a smooth curve, meeting at equal angles of 120o.

3. These curves meet in fours at a point, meeting at equal angles of cos−1(−1
3) (approximately

109o).

The first and third rules always hold as a result of the surface’s construction. The second rule,

however, further limits the number of connectivity graphs that can be formed. In the construction,

each face of the connectivity graph corresponds to one of these curves (from a vertex of the wire-

frame polyhedron) and each edge corresponds to a smooth surface connecting to this curve (from

an edge of the wire-frame polyhedron). Thus the second rule implies that connectivity graphs must

be constrained to have only triangular faces.

The uniform polyhedra that meet the conditions on the construction and satisfy this second

rule are limited to the tetrahedron, octahedron, and icosahedron. For connectivity graphs in lower

dimensions that also satisfy these conditions, we have a single point (0 dimensions), a line segment

(1 dimension), and an equilateral triangle (2 dimensions).

These conditions are very restrictive; out of the 18 convex uniform polyhedrons and infinite

sets of prisms, antiprisms, and lower dimensional figures, only six equitent surfaces can be created

in R3. In the next section we demonstrate each of these surfaces as a soap film.

5.4 Realization of the Bubbles

Equitent surfaces can be realized as a soap film by dipping a wire-frame in a soap solution and

blowing a soap bubble onto the surface. (It may however take several tries to get a surface of

a particular homotopy class, and have it last long enough to take a picture!) Each of the six

connectivity graphs identified in the last section do generate a stable minimal surface when realized

as a soap film this way. Note that the wire-frame polyhedron in each case is the dual figure to the
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connectivity graph. Also note that the number of vertices in the connectivity graph corresponds to

the number of exterior regions separated by the equitent surface.

For lower dimensional connectivity graphs we see that the surface realized from a single point

is a spherical bubble with no wire frame (5.2(a)). A single edge as a connectivity graph yields a

lens shaped bubble on a planar surface. Here we represent the wire-frame as a circle (any polygon

in 2 dimensions will do). (5.2(b)). From an equilateral triangle we have a ‘football’ shaped bubble

connected to three planar surfaces (5.2(c)).

(a) Dimension 0 (b) Dimension 1 (c) Dimension 2

Figure 5.2 Equitent surfaces with lower dimensional connectivity graph

For the three dimensional connectivity graphs, a polyhedral shaped bubble with spherical caps

will be formed. These figures will also have planar surfaces connecting to each edge of the bubble.

For tetrahedral, octahedral, or icosahedral connectivity graphs we get a tetrahedron (5.3(a)), cube

(5.3(b)), or dodecahedron (5.3(c)) shaped bubble respectively.

(a) Tetrahedral graph (b) Octahedral graph (c) Icosahedral graph

Figure 5.3 Equitent surfaces with dimension 3 connectivity graph
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5.5 Conclusion

As noted earlier, we have seen that the connectivity condition of Dorff et al. is a very restrictive

condition. Each of the locally minimizing surfaces were known prior to their work, though perhaps

not yet proven to be minimal. The real impact of their paper comes from the pioneering new

method of metacalibration and how we can use it to tackle equitent problems. Their paper gives

the first new results proven using this method, though it has also been used to provide new proofs

of some multiple bubble problems [6].

We hope to be able to generalize the metacalibration approach to handle further equitent prob-

lems. This includes finding an alternate construction of equitent surfaces that relaxes the unifor-

mity condition on the connectivity graphs. This would allow us to investigate surfaces such as

those generated on a rectangular prism wire-frame, not just a cube (see Figure 5.4(a)).

Another problem to consider are equitent surfaces that would be generated by connectivity

graphs of circumradius greater than or equal to 1. Such surfaces are stable in R2 and R3, though

the central bubble has negative pressure and the faces bow inwards (see Figure 5.4(b)).

(a) Rectangular prism wire-frame (b) Negative pressure soap bub-

bles

Figure 5.4 Other examples of equitent surfaces



Chapter 6

Isoperimetric Surfaces with Boundary II:

By Abraham Frandsen, Donald Sampson,

and Neil Steinburg

Following our previous work with Dorff and Lawlor, we extend results for the so-called equitent

problem of fixed boundary and fixed volume. We define sufficient conditions, which in R2 and

R3 are also necessary, for local minima to be piecewise spherical, and we show that these are

area-minimizing in their homotopy class. We also give new examples of these surfaces in R2 and

R3.

6.1 Introduction

Equitent problems, first introduced in “Isoperimetric Surfaces with Boundary,” [8] ask what is the

area minimizing surface enclosing a given volume and spanning a given boundary. In this way,

equitent problems represent a combination of isoperimetry and boundary conditions, such as in

Steiner problems and minimal surfaces. Our previous approach, which we extend here, uses the

46
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technique of metacalibration. Metacalibration is a version of the calibration methods popularized

by Harvey and Lawson [12] adapted to use on isoperimetric problems. In particular, we use a

combination of the mapping of Gromov [11], after Knothe [16], and the paired calibrations of

Lawlor and Morgan [18].

In our original results, we construct various classes of surfaces bounded by the dual figures of

uniform polytopes and enclosing a prescribed volume and prove that these surfaces are minimizing

in their homotopy class. The results, however, turn out to be limited in scope, as Ross et al. show in

their paper “Soap Film Realization of Isoperimetric Surfaces with Boundary” [15]. Consequently,

there remains much ground to be covered.

In this paper, we will extend previous results by considering equitent systems generated by

polytopes whose edges are all of a given length. This results in a much wider range of equitent

surfaces than those bounded by uniform polytopes. We construct the conjectured minimizing sur-

face using a refinement of previous methods and prove that this surface is indeed area-minimizing

in its homotopy class.

Further, we show that any homotopically area-minimizing equitent surface with piecewise

spherical faces and simplex vertex figures is equivalent to one generated by our construction. We

conclude with a discussion of new equitent surfaces and a survey of open problems.

6.2 The Surfaces

Let Γ be a convex polytope of dimension m ≤ n with equal edge lengths, r, embedded in Rn. Let

p1, . . . , pk be the vertices of Γ. For each pi let Ri = {x ∈ Rn : ||x− p j|| < ||x− pi||, for all j 6=

i,r < ||x− pi||} (the region farthest from pi). Note that if pi and p j share an edge in Γ, ∂Ri∩∂R j

is a subset of the perpendicular bisecting hyperplane of that edge. Now, define R0 = {x ∈ Rn :

||x− pi||< r,1≤ i≤ k}. See below. This region represents the enclosed volume. We suppose that
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R0 6= /0 and H n−1(∂R0∩∂Ri) 6= 0 for all i > 0. Let V0 = H n(R0). Then let M =
⋃k

i=0 ∂Ri.

Notice that ∂R0 is the portion of the surface that encloses the volume R0. In order to have a

nontrivial result, we require R0 6= /0. The condition H n−1(∂R0 ∩ ∂Ri) 6= 0 for all i > 0 ensures

that all smooth subsurfaces of M meet at 120 degree angles. For m = 2, the only viable generating

figures, Γ, are equilateral triangles, rhombi with interior angles strictly greater than 60◦, and small

perturbations of regular pentagons. For m = 3, the valid generating figures include all but two of

the eight convex deltahedra (polyhedra where all faces are equilateral triangles), as well as other

polytopes with faces of higher degree. It is worth noting, however, that those generating figures, Γ,

whose faces are not equilateral triangles produce surfaces which are locally minimal within their

homotopy class, but not globally minimal. As will be seen in the proof, this construction gives

sufficient conditions for minimizing surfaces to be piecewise spherical. Furthermore, due to the

regularity properties of soap films proved by Taylor and Almgren [23], these are also necessary

conditions in R2 and R3. In higher dimensions non-simplicial vertex figures may be minimizing,

but are not considered in this paper. See for example [1].
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6.3 The Minimization Theorem

In this section we prove that the surfaces constructed are homotopically minimizing in the follow-

ing sense: Let U be a bounded open set that contains R0, and let M0 = M∩U .

Theorem 6.3.1. The surface M0 is surface area minimizing among all compact surfaces (rectifiable

sets) in U with boundary ∂U ∩M that enclose the fixed volume H n(R0) and are homotopically

equivalent to M0. This also holds with the weaker assumption that competitor surfaces are not

nessisarily homotopic to M0 but separate space into the same regions as M0 and these regions share

boundary non-trivially (on a set of positive H n−1 measure) only if the corresponding regions do

in M0.

Our proof uses a metacalibration argument that compares figures according to their flux on

specially crafted vector fields. In particular, we use a paired-calibration approach with one vector

field defined for each separated region.

Let N be any competitor surface and let Si be the separated regions that correspond to each Ri

respectively. (Then H n(S0)=H n(R0) by the volume condition.) Define vi : Si→Rn for 1≤ i≤m

to be the constant vector field − pi
r . Let φ : S0→ R0 be the Knothe-Rosenblatt rearrangement and

let v0 : S0→ Rn be given by v0 =
φ

r .

At this point a few simple results would be useful:

Proposition 6.3.2. If Si and S j share boundary non-trivially, then vi−v j is a unit vector. If N = M0

then vi− v j is the unit normal to ∂Ri∩∂R j.

Proof. Note that Si and S j share boundary non-trivially if and only if pi and p j are adjacent in Γ.

Thus ||vi− v j|| = 1
r ||pi− p j|| = 1. Also if N = M0, vi− v j is the unit normal to ∂Ri∩ ∂R j since

∂Ri∩∂R j lies on the hyperplane equidistant to pi and p j.

Proposition 6.3.3. The matrix Dv0 is triangular. If N = M then v0 is the identity scaled by 1
r .
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Proof. Follows from the definition of v0. See [8] for details.

Proposition 6.3.4. For i 6= 0,
∫

N∩∂Si
vi ·ndH n−1 =

∫
M∩∂Ri

vi ·ndH n−1, where n is the unit normal

to the surface of integration, outward pointing with respect to Si or Ri.

Proof. Follows from the divergence theorem since vi is divergence free and ∂ (M∩∂Ri) = ∂ (N ∩

∂Si).

We now complete the proof of Theorem 6.3.1.

Proof. For any competitor surface N, let G(N)=∑i
∫

N∩∂Si
vi ·ndH n−1. Letting P(N)=∑i

∫
N∩∂Si

dH n−1

be our objective function, we find that

G(N) = ∑
i

∫
N∩∂Si

vi ·ndH n−1

= ∑
i6= j

∫
N∩(∂Si∩∂S j)

(vi− v j) ·ndH n−1

≤∑
i6= j

∫
N∩(∂Si∩∂S j)

||vi− v j||||n||dH n−1

≤∑
i6= j

∫
N∩(∂Si∩∂S j)

dH n−1

= ∑
i

∫
N∩∂Si

dH n−1 = P(N),

with equality if N = M0.

Now also note that∫
N∩∂S0

v0 ·ndH n−1 =
∫

S0

divv0 dH n−1

=
∫

S0

1
r

(
∂φ1

∂x1
+

∂φ2

∂x2
+ · · ·+ ∂φn

∂xn

)
dH n−1

≥
∫

S0

n
r

n

√
∂φ1

∂x1

∂φ2

∂x2
· · · ∂φn

∂xn
dH n−1

=
∫

S0

n
r

n
√

1dH n−1

=
n
r
H n−1(S0) =

n
r
H n−1(R0),
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with equality if N =M0. This follows from the AM-GM inequality and the equality ∂φ1
∂x1

∂φ2
∂x2
· · · ∂φn

∂xn
=

det(Dφ) = 1, since φ is volume preserving.

Combining these results we find

P(M0) = G(M0) = ∑
i 6=0

∫
M0∩∂Ri

vi ·ndH n−1 +
∫

M0∩∂R0

v0 ·ndH n−1

= ∑
i 6=0

∫
N∩∂Si

vi ·ndH n−1 +
n
r
H n−1(R0)

≤∑
i 6=0

∫
N∩∂Si

vi ·ndH n−1 +
∫

N∩∂S0

v0 ·ndH n−1

= G(N)≤ P(N).

6.4 Soap films in R3

In [8], [15] we identified the regular tetrahedron, the regular octahedron, and the regular icosa-

hedron as polytopes that generate realizable soap films. The only other three-dimensional poly-

topes, Γ, that generate surfaces realizable as soap films are the triangular dipyramid, the pentagonal

dipyramid, and the snub disphenoid. The generated soap films are shown below.

This is due to the conditions proven by Jean Taylor in [23], namely that each face not inter-

secting with the boundary must meet with exactly two other faces in 120-degree angles. Thus, any

generating figure, Γ, with non-triangular faces will not yield a surface realizable as a soap film.

The remaining two deltahedra fail to meet the conditions of our construction because of their large

circumradius.
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Every surface generated by our construction will have piecewise spherical faces and simplicial

vertex figures. The converse is also true. Given any area-minimizing equitent surface with piece-

wise spherical faces and simplicial vertex figures, we can recover the generating polytope, Γ, as

the set of centers of each spherical face. In higher dimensions there may exist area minimizing

equitent surfaces with non-simplicial vertex figures.

6.5 Conclusion

In this paper we have characterized all piecewise-spherical equitent surfaces in two and three di-

mensions, and proven them to be area minimizing. Several interesting and open problems arise.

An especially intriguing question deals with equitent surfaces that have negatively curved bubbles,

meaning each face of the bubble region bends inward. Such a surface can be created using soap

films, but our methods are not yet able to address this case. Similarly, equitent surfaces with non-

spherical faces fall outside the scope of our approach. Finally, our construction generates surfaces

whose vertices are cones over simplices. In spaces of dimension greater than three, however, min-

imal surfaces need not have simplicial vertex figures, and we may yet find interesting new equitent

surfaces. Extensions of the metacalibration methods outlined in this paper show great promise in

solving these open problems.



Part IV

A Note on Metacalibration Maps
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Chapter 7

Metacalibration Maps

7.1 Unification of Previous Methods

As mentioned previously in Section 3.1, metacalibration provides a strong tool for unifying a

variety of approaches to proving the isoperimetric inequality. While the result is the same in each

case, each approach is in essence using a subtly different metacalibration function. Since each

approach is unique and has both positive and negative aspects it is appropriate to mention a little

about them.

The clearest application of metacalibration comes from Gromov’s proof of the isoperimetric

inequality [11] in arbitrary dimension. As mentioned several times above, this proof relies on the

Knothe-Rosenblatt rearrangement (see [16], [22]). For simplicity, we may say that this rearrange-

ment matches both the total volume and ‘volume under a slice’ of the competitor figure. While the

simplest in application, this approach relies on mapping straight lines through the figure. This can

get difficult, however, when we try to map more complicated figures or spaces (see Chapter 3).

Gary Lawlor also made a nice adaptation of the Knothe-Rosenblatt rearrangement to prove

the isoperimetric inequality. While using the same rearrangement as Gromov, Lawlor altered the
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metacalibration so that G(Ω∗) = G(Ω) for all competitors Ω. One benefit of this approach is that

it can be simplified to use only first-year, one-variable calculus. The drawback is that it is difficult

to generalize to dimensions higher than two.

Under advisement from Lawlor, my colleague James Dilts created a new metacalibration ap-

proach [5] that we affectionately named the τ-method. His metacalibration map matches the vol-

ume under a slice, but matches the area of the slice instead of the total volume, letting the image

space vary. This allows the application of this approach to spaces with metrics constant along par-

allel lines. Successful proofs have been given this way for the isoperimetric inequality in spherical

and hyperbolic spaces.

One interesting and unexpected application of metacalibration was found in Schmidt’s proof

of the isoperimetric inequality [21]. At first glance the proof is hard to relate to a metacalibration

approach. Noting however that the crux of the argument relies on Green’s theorem, we can rear-

range terms to show that Schmidt is in effect using a rearrangement that preserves the total height

of the figure and the height of each slice. It is a very elegant proof and an excellent example of

Green’s theorem for students of multivariate calculus, but it also has no natural generalization to

dimensions higher than two.

As opposed to all other approaches, Robert McCann gave a unique version of the isoperimetric

inequality [19] in that the rearrangement used was not found constructively. Previously, Yann

Brenier found that any volume preserving map between spaces can be ‘factored’ into a composition

of maps in which one is the gradient of a convex function [2]. This map was found as the solution to

an optimal transport problem, which was previously proven (non-constructively) to exist. McCann

used this map as the basis of his metacalibration function to complete a very short and elegant

proof of the isoperimetric inequality.
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7.2 New Methods

With the wide variety of rearrangements that can be used in a metacalibration framework, it is not

surprising to expect there to be many more. With each having its own drawbacks and strengths,

we should be able to find some map that will be able to work in almost any situation. The non-

constructive approach using optimal transport seems especially promising in this regard for cre-

ating maps with the specific properties needed in a variety of isoperimetric problems. Believing

these maps to exist, the next chapter describes what could be done once they are found.



Chapter 8

Maps with Boundary Control

8.1 A Conjecture

Over the past few years my faith in the beauty of mathematics has led me to believe that there must

exist some metacalibration map that has some control on how the boundary of a competitor figure

gets mapped. One example of how this might look is the following:

Conjecture 8.1.1. Given any figure Ω=Ω1∪Ω2∪·· ·∪Ωm⊂Rn, let Ω∗=Ω∗1∪Ω∗2∪·· ·∪Ω∗m⊂Rn

be a conjectured minimizer such that Voln(Ωi) = Voln(Ω∗i ) for all 1≤ i≤m. Given a separation of

∂Ω into regions R1,R2, . . . ,Rk and a corresponding separation of ∂Ω∗ into regions R∗1,R
∗
2, . . . ,R

∗
k

that preserve the adjacency of Ω
(∗)
i and R(∗)

j , then there exists a map ϕΩ : Ω→Ω∗ such that ϕΩ is

volume preserving, divϕΩ ≥ n, ϕΩ(Ωi) = Ω∗i for all 1≤ i≤m, and ϕΩ(R j) = R∗j for all 1≤ j≤ k.

With a proof of this conjecture, a wide variety of results could be easily obtained.
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8.2 Equitent Problems

For all three papers in Part III we required that all the bubbles in minimizing equitent surfaces have

relatively positive pressure with respect to the bubble’s exterior (equivalently an inward pointing

mean curvature vector). This was generally achieved via some form of circumradius condition or

limitation on the bubble’s connectivity. This is however merely an artifact of not having proper

boundary control on the mapping of negatively pressured bubbles.

Take for example the construction in Chapter 6. If we alter the region R0 to be the bounded

component of {x∈Rn : ||x− pi||> r,1≤ i≤ k} and let vi : Si→Rn for 1≤ i≤m to be the constant

vector field + pi
r then the proof follows in exactly the same fashion to show minimization of a

bubble with interior pressure −1
r . Without the appropriate boundary control however, we would

find ||v0− vi|| > 1 if any point on the boundary of S0 was mapped away from the corresponding

face of R0.

8.3 Multiple Bubble Problems

With conjecture 8.1.1, proof of the multiple bubble conjecture comes naturally.

Theorem 8.3.1. The least surface volume way to separately enclose n+ 1 volumes in Rn is the

standard n+1-bubble made of parts of spheres.

Proof. Let Ω = Ω1∪Ω2∪ ·· ·∪Ωn+1 be any competitor figure and Ω∗ = Ω∗1∪Ω∗2∪ ·· ·∪Ω∗n+1 be

the standard n+1 bubble of the same volumes. Define the regions in ∂Ω and ∂Ω∗ to be the exterior

boundaries of each bubble, R(∗)
i , and the interfaces between each pair of bubbles, R(∗)

i j . Given then

the existence of ϕΩ, let G(Ω) = ∑i
∫

∂Ωi
〈~n,(ϕΩ−oi)/ri〉d Voln−1 where~n is the unit normal and oi

is the center and ri the radius of spherical region R∗i . Then we find the following:
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P(Ω∗) =
∫

∂Ω∗
d Voln−1

= ∑
i

∫
R∗i

d Voln−1+∑
i6= j

∫
R∗i j

d Voln−1

= ∑
i

∫
R∗i
〈~n, id−oi

ri
〉d Voln−1+∑

i 6= j

∫
R∗i j

〈~n, id−oi

ri
−

id−o j

r j
〉d Voln−1

= ∑
i

∫
∂Ω∗i

〈~n, id−oi

ri
〉d Voln−1 = G(Ω∗)

= ∑
i

∫
Ω∗i

div
id−oi

ri
d Voln

= ∑
i

∫
Ω∗i

n
ri

d Voln

= ∑
i

n
ri

Vol(Ω∗i ) = ∑
i

n
ri

Vol(Ωi)

= ∑
i

∫
Ωi

n
ri

d Voln

≤∑
i

∫
Ωi

div
ϕΩ−oi

ri
d Voln

= ∑
i

∫
∂Ωi

〈~n, ϕΩ−oi

ri
〉d Voln−1 = G(Ω)

= ∑
i

∫
Ri

〈~n, ϕΩ−oi

ri
〉d Voln−1+∑

i 6= j

∫
Ri j

〈~n, ϕΩ−oi

ri
−

ϕΩ−o j

r j
〉d Voln−1

≤∑
i

∫
Ri

d Voln−1+∑
i 6= j

∫
Ri j

d Voln−1

=
∫

∂Ω

d Voln−1 = P(Ω∗)
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