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Abstract

Asian Spread Option Pricing Models and Computation

Sijin Chen

Department of Mathematics

Doctor of Philosophy

In the commodity and energy markets, there are two kinds of risk that traders and an-
alysts are concerned a lot about: multiple underlying risk and average price risk. Spread
options, swaps and swaptions are widely used to hedge multiple underlying risks and Asian
(average price) options can deal with average price risk. But when those two risks are com-
bined together, then we need to consider Asian spread options and Asian-European spread
options for hedging purposes.

For an Asian or Asian-European spread call option, its payoff depends on the differ-
ence of two underlyings’ average price or of one average price and one final (at expiration)
price. Asian and Asian-European spread option pricing is challenging work. Even under
the basic assumption that each underlying price follows a log-normal distribution, the av-
erage price does not have a distribution with a simple form. In this dissertation, for the
first time, a systematic analysis of Asian spread option and Asian-European spread option
pricing is proposed, several original approaches for the Black-Scholes-Merton model and a
special stochastic volatility model are developed and some numerical computation tests are
conducted as well.

Keywords: Asian spread option, Asian-European spread option, option pricing, stochastic
volatility model, affine structure
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Chapter 1. Introduction

The ongoing subprime mortgage crisis which started in 2007 makes “risk” a very popular

word. There are all kinds of risk in the market, such as credit risk, business risk, operational

risk, basis risk and so on. Different markets may have different risks related to the market

structure. In the commodity and energy markets, there are two kinds of risk that traders

and analysts are concerned a lot about: multiple underlying risk and average price risk.

Multiple underlying risk arises from uncertainty of multiple underlyings in the market.

This is quite common in the energy markets. For example, for an energy company owning

natural gas fired power plants, they have the risk exposure not for the natural gas or power

price only but the spread of these two underlyings’ price. In most circumstances, natural gas

and power prices are highly correlated, so we need combine these two underlyings together

to quantify the risk.

Average price risk is related to the average underlying price. For example, many com-

modities and types of energy are delivered over a period of time, so the buyer and seller are

both exposed to the underlying price risk for this whole period. To continue with the energy

market example, if an energy company wants to sell its power in the day-ahead or day-of

market for one month, then it has risk exposure to the average daily power price for that
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month. Also, for an energy company, average risk plays a very important role in long term

planning and analysis.

Commodity and energy markets are huge: according to BIS (-Bank of International Set-

tlements) statistics, only the notional value of OTC (-over-the-counter) commodity deriva-

tives contracts is $6.4 trillion in mid 2006; in the energy market, crude oil approaches $2

trillion in annual trade [2]. Because of the need to hedge risk, similarly to the way we buy car

insurance to protect from possible future accidents, traders in the market can buy options to

hedge the risk. An option, as a derivative, gives the holder the right but not the obligation

to buy or sell some particular asset at a previously agreed price in the future. Such a buy

right, is a call option; a sell right is a put option. The previously agreed price is the strike

price. Traders need to pay some amount of money to have such a right; this is called the

premium of the option and corresponds to the value of the option. For example, a utility

company can buy a call option on natural gas if it needs to buy a certain amount of gas

next summer but it has a concern that the price will be too high. Some people may think

trading derivatives equals speculation. One counter example will be for utility companies,

which are not allowed to speculate but, because of the huge exposure on market risk, still

need to trade a huge amount of different kinds of options to hedge the risk. People use

spread options, swaps and swaptions to hedge multiple underlying risk and Asian options

to deal with average price risk. But what if there is the combination of these two kinds of

risk? In this case, Asian spread options and Asian-European spread options will be ideal

ways to hedge it. The pricing problem is, given the nature of an option, which is a right in

the future, to determine the current “true” value when this option is transacted in the market.
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Before we go through the technique of pricing Asian or Asian-European spread options,

let’s take a look at European spread options and Asian options.

A spread option is an option where the payoff is dependent on the difference between

two market variables. As Eydeland and Wolyniec point out in [10]: “It is impossible to

underestimate the significance of spread options in the energy markets. Practically every

energy asset and every structured deal has a spread option embedded in it.” For example,

there are crack spread options which consider the difference price of crude oil and the refiner-

ies; there are spark spread options which are about the difference price of electricity and the

power-generating fuel. In fact, for an energy company owning natural gas fired power plants,

the value for the power generation, from the financial point of view, is holding a spread call

option. When this energy company is making the decision about whether to use this plant

to generate power, it would like to see this spread option’s payoff at expiration whether it

ends up with in the money, which means it is economical to generate, or out of the money,

which means it is not economic to generate.

The payoff of an European spread option is max{S2(T )− S1(T )−K, 0}, where T is the

expiration time, K is the strike price and S1 and S2 are two underlyings in this option. The

first result about pricing European spread options came from Margrabe in [19] in 1978; he

gave the closed-form formula for underlyings that are forward contracts with K = 0 under

the classic Black-Scholes-Merton model. For nonzero strike price, at present there is no

simple closed-form formula but there are many ways to approximate the price of European
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spread options under Black-Scholes-Merton models. For example Kirk in [18] absorbed strike

price into the second underlying’s price to use Margrabe’s formula and Pearson in [20] used

semi-analytical techniques to change the two-dimensional problem (double integrals) into a

one-dimensional problem (single integral). For other examples see [5], [15] and [21].

An Asian option is an option whose payoff depends on the average price, so it is also called

an average price option. For a fixed-strike arithmetic Asian call it has payoffmax{ 1
T

∫ T

0
S(t)dt−

K, 0}; for a floating-strike Asian call it has payoff max{S(T )− 1
T

∫ T

0
S(t)dt, 0}. As Wengler

mentions in [25], “Many energy contracts are European-type options but with strike prices

that are averages for a period. ( The averaging effect is so common that most energy op-

tions can be classified as Asian...)”. Here we only discuss the fixed-strike Asian call since

it naturally leads to the Asian spread option. To my best knowledge, there is no analytic

solution about arithmetic average Asian options yet. The closest one is from Geman and

Yor in [13] where they obtained the semi-analytic solution under the Black-Scholes-Merton

model. Other valuable approaches include Monte Carlo simulation by Kemna and Vorst in

[17]; upper and lower bounds by Curran in [6] and Rogers and Shi in [22]; partial differential

equation by Vecer in [24] and Fouque and Han in [11]; Laplace transform by Fu and Madan

and Wang in [12]; and moment-matching method by Zhou and Wang in [27].

One may have the concern that right now in the market there are not many real Asian

spread options or Asian-European spread options being traded everyday, so what’s the point

for industry to care about them? Well, let’s use the European style power and natural gas

spread options as an example. Even for this usual spread option in the energy market, they
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are OTC derivatives. They are not as liquid as stock options, so you may not be able to sell

deep “out of the money” calls, and actually no one in the market will be interested in buying

your cheap but almost useless options. But for an energy company owning natural gas fired

power plants, if the plant is old and not as efficient as the average plants in the market, as

we just discussed, this plant is like an “out of the money” spread call option. It still has

its value even if you can not “sell” it directly in the market. What you can do is build a

replicate portfolio using future and forward contracts of natural gas and power for this “out

of the money” spread option. Delta hedging will play an important role in this process, by

dynamically changing this portfolio based on natural gas and power market price changes;

this portfolio will help you to get the true value (premium) of the “out of the money” spread

option without trading it directly (you can’t do that). Understanding pricing spread options

is the basis of delta hedging it. This example can easily go to Asian spread options and

Asian-European spread options.

Another area closely related to option pricing is so called real option analysis (ROA) which

applies call and put option valuation techniques to valuate different business strategies. It

is an increasingly active topic extending to “real life” decision making under uncertainty,

especially for physical asset pricing. Right now in industry, more and more companies use

option pricing methods to help them make the optimal decision about some business which

may have nothing to do with derivative trading. From valuing a generation unit for a utility

company to deciding the investment amount of a certain project for updating a factory’s

facility, this kind of analysis actually need techniques for pricing Asian or Asian-European

spread options.
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Asian and Asian-European spread option pricing is a challenging work. For an Asian or

Asian-European spread call with strike priceK it has payoff max{ 1
T

∫ T

0
[S1(t)−S2(t)]dt−K, 0}

or max{ 1
T

∫ T

0
S1(t)dt−S2(T )−K, 0} respectively. Even under the basic assumption that for

each underlying price it follows a log-normal distribution, the average price does not have

a distribution of a simple form. And how about for some complicated stochastic volatility

model, what is the distribution for the average price? In this dissertation, for the first time,

a systematic analysis of Asian spread option and Asian-European spread option pricing is

proposed. Several original approaches for the Black-Scholes-Merton model and a special

stochastic volatility model are developed and some numerical computation tests are con-

ducted as well. In Chapter 2, we review methodologies for pricing European spread options

and Asian options which will lead our approach later. Then the Asian spread option is

discussed in Chapter 3, and the Asian European spread option is discussed in Chapter 4.

Numerical computation tests for the proposed approaches are in Chapter 5. We conclude

with directions for future research in Chapter 6.
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Chapter 2. Background Information

2.1 European Spread Option

Here we consider a spread European call option with the payoff related to two underlying

assets’ price, S1, S2. The payoff at maturity T of this option with strike value K is the

amount

max[(S2(T )− S1(T )−K), 0].

So the pricing problem is to compute the expectation

V (t) = EQ[e−r(T−t)max[(S2(T )− S1(T )−K), 0]|F(t)], 0 ≤ t ≤ T, (2.1.1)

where EQ is the expectation under the risk neutral measure Q, and F(t) is the σ−algebra

generated by the stochastic process S1(t), S2(t).

Consider the Black-Scholes-Merton model:

dS1 = S1[(r − δ1)dt+ σ1dW1],

dS2 = S2[(r − δ2)dt+ σ2dW2], (2.1.2)

where W1,W2 are standard Brownian motions with correlation coefficient ρ, r is the risk

free rate and δ1, δ2 are the instantaneous dividend yields. Then the solution of stochastic
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differential equation (2.1.2) is log-normal. Letting si := log(Si), by Ito’s formula, we have

ds1 = (r − δ1 −
1

2
σ2

1)dt+ σ1dW1,

ds2 = (r − δ2 −
1

2
σ2

2)dt+ σ2dW2.

By the independence of the Brownian motion increments W (T )−W (t) and F(t), we have

s1(T ) = s1(t) + (r − δ1 −
1

2
σ2

1)(T − t) + σ1

√
(T − t) · w1

s2(T ) = s2(t) + (r − δ2 −
1

2
σ2

2)(T − t) + ρσ2

√
(T − t) · w1 +

√
1− ρ2σ2

√
(T − t) · w2

where w1, w2 are independent standard normal random variables. So conditional on time t

value, (s1(T ), s2(T ))T is a bivariate normally distributed random variable with mean µ and

covariance matrix Σ where

µ =

 s1(t) + (r − δ1 − 1
2
σ2

1)τ

s2(t) + (r − δ2 − 1
2
σ2

2)τ

 ,Σ =

 σ2
1τ ρσ2σ2τ

ρσ2σ2τ σ2
2τ

 .

Let φ(s1, s2) be the density function of a bivariate normal random variable with mean µ and

covariance matrix Σ; we compute the spread option price (2.1.1) as

V (t) = e−r(T−t)EQ[[(S2(T )− S1(T )−K)]+|F(t)]

= e−r(T−t)EQ[[(es2(T ) − es1(T ) −K)]+|F(t)]

= e−r(T−t)

∫ ∞

−∞

∫ ∞

−∞
[es2 − es1 −K]+φ(s1, s2; t, T )ds2ds1.

8



Here we used Lemma 3.3.1, which is given in section 3.3. Since φ is known under this model,

V (t) can be computed numerically.

Because of the existence of the volatility smile [16], a better model was used to describe

the assets’ price S1, S2. In [15], Hong proposed a method based on [7] and [14] to compute

European spread options under the so called stochastic volatility model:

ds1 = (r − δ1 −
1

2
σ2

1ν)dt+ σ1ν
1
2dW1,

ds2 = (r − δ2 −
1

2
σ2

2ν)dt+ σ2ν
1
2dW2,

dν = κ(µ− ν)dt+ σνν
1
2dWν , (2.1.3)

where

EQ[dW1dW2] = ρdt,

EQ[dW1dWν ] = ρ1dt,

EQ[dW2dWν ] = ρ2dt.

For simplicity, we consider the time 0 spread call option price. The key idea of Hong’s

method is the following.

9



For any (k1, k2) ∈ R2, we define

Π1(k1, k2) :=

∫ ∞

k1

∫ ∞

k2

(es2 − es1)qT (s1, s2)ds2ds1,

where qT (·, ·) is the joint risk neutral density of s1(T ) and s2(T ) conditional on s1(0), s2(0)

and ν(0). Thus we can use Π1(k1, k2) for different values of k1, k2 to give an approximation

of V (0). Applying the two dimensional Fourier transform to the following modified integral

π1(k1, k2) := eα1k1+α2k2Π1(k1, k2), α1, α2 > 0,

we obtain

χ1(υ1, υ2) := π̂1(k1, k2)

=

∫ ∞

−∞

∫ ∞

−∞
ei(υ1k1+υ2k2)π1(k1, k2)dk2dk1

=

∫ ∞

−∞

∫ ∞

−∞
e(α1+iυ1)k1+(α2+iυ2)k2

∫ ∞

k2

∫ ∞

k1

(es2 − es1)qT (s1, s2)ds2ds1dk2dk1

=

∫ ∞

−∞

∫ ∞

−∞
(es2 − es1)qT (s1, s2)

∫ s2

−∞

∫ s1

−∞
e(α1+iυ1)k1+(α2+iυ2)k2dk2dk1ds2ds1

=

∫ ∞

−∞

∫ ∞

−∞
(es2 − es1)qT (s1, s2)

e(α1+iυ1)s1+(α2+iυ2)s2

(α1 + iυ1)(α2 + iυ2)
ds2ds1

=
φT (υ1 − α1i, υ2 − (α2 + 1)i)− φT (υ1 − (α1 + 1)i, υ2 − α2i)

(α1 + iυ1)(α2 + iυ2)
, (2.1.4)

10



where

φT (u1, u2) := EQ[exp(iu1s1(T ) + iu2s2(T ))|s1(0), s2(0), ν(0)]

=

∫ ∞

−∞

∫ ∞

−∞
ei(u1s1+u2s2)qT (s1, s2)ds2ds1,

is the characteristic function of the joint risk neutral density of s1(T ), s2(T ) conditional on

s1(0), s2(0) and ν(0).

So, as long as we know the characteristic function φT (u1, u2), we can compute χ1(υ1, υ2).

Then by using the two-dimensional inverse fast Fourier transform, we get the value for

Π1(k1, k2), hence V (0).

Now the question is how to find the characteristic function φT (u1, u2) for the stochastic

volatility model (2.1.6).

Since model (2.1.6) is an affine structure model, by using the affine property (see section

3.4 later), the characteristic function has an exponential affine form. By solving a Riccati

ordinary equation, Hong obtained the closed-form expression for the characteristic function

φT (u1, u2):

φT (u1, u2) = EQ[exp(iu1s1(T ) + iu2s2(T ))|s1(0), s2(0), ν(0)]

= exp[
∑
j=1,2

i[sj(0) + (r − δj)T ] · uj + (
2ζ(1− e−θT )

2θ − (θ − γ)(1− e−θT )
) · ν(0)

−κµ
σ2

ν

[2 · log(
2θ − (θ − γ)(1− e−θT )

2θ
) + (θ − γ)T ]], (2.1.5)

11



where

ζ := −1

2
[(σ2

1u
2
1 + σ2

2u
2
2 + 2ρσ1σ2u1u2) + i(σ2

1u1 + σ2
2u2)],

γ := κ− i(ρ1σ1u1 + ρ2σ2u2)σν ,

θ :=
√
γ2 − 2σ2

νζ.

2.2 Asian Option

Here we will introduce the Monte Carlo simulation method by Kemna and Vorst[17], then

the partial differential equation method from Vecer[24].

Under the Black-Scholes-Merton model, the underlying asset price satisfies the stochastic

differential equation

dS(t) = rS(t)dt+ σS(t)dW (t)

where r is the interest rate, σ is the volatility of the asset and W (t) is the standard Brownian

motion. The payoff at time T for this Asian call option is

V (T ) = (
1

T

∫ T

0

S(t)dt−K)+.

Here

1

T

∫ T

0

S(t)dt

12



is the arithmetic average of the asset price.

Since we can solve this stochastic differential equation, we can use standard Monte Carlo

simulation

S(t+ h) = S(t) exp{rh+ σ
√
hw − σ2h

2
}

to update the asset price, where h is the step size and w is a standard normally distributed

random variable generated at each time step. As long as we get a whole sample path about

the asset price from time 0 to time T , we can compute the arithmetic average 1
T

∫ T

0
S(t)dt.

Hence we get the option payoff V (T ) = ( 1
T

∫ T

0
S(t)dt−K)+ for this sample path. We need to

repeat this process to get enough sample paths, then the present value of the average payoff

of these sample paths will be a good approximation of the value of this Asian call option.

Because of the low accuracy and high computing price of the standard Monte Carlo sim-

ulation, Kemna and Vorst used the geometric average of S(t) as a control variable. At

first they approximated the geometric average by G(T ) = (
∏n

i=0 S(ti))
1/(n+1), then they

substituted G(T ) for the arithmetic average 1
T

∫ T

0
S(t)dt in the payoff. Since S(t) is log-

normally distributed, so is G(T ). They showed the mean and variance of log(G(T )) is

1
2
(r − 1

2
σ2)T + log(S(0)) and 1

3
σ2T . So this kind of “geometric” payoff has a closed-form

13



expression. Hence the price of the Asian call option at time 0 is

V (0) = EQ[e−rT (
1

T

∫ T

0

S(t)dt−K)+|F(0)]

= e−rTEQ[(
1

T

∫ T

0

S(t)dt−K)+ − (G(T )−K)+|F(0)]

+e−rTEQ[(G(T )−K)+|F(0)]

= e−rTEQ[(
1

T

∫ T

0

S(t)dt−K)+ − (G(T )−K)+|F(0)]

+e−rT [ed∗S(0)N(d)−KN(d− σ

√
1

3
T )],

where N is the cumulative standard normal distribution function, and d and d∗ are defined

as

d∗ =
1

2
(r − 1

6
σ2)T

d =
log(S(0)/K) + 1

2
(r + 1

6
σ2)T

σ
√

1
3
T

.

Then the only part unknown is the difference of “arithmetic” and “geometric” payoff

e−rTEQ[(
1

T

∫ T

0

S(t)dt−K)+ − (G(T )−K)+|F(0)]

which is computed by the standard Monte Carlo simulation.

The other classic method to deal with the Asian option price problem is the partial dif-

ferential method. The basic method is using the Feynman-Kac theorem, see [23] for a good

reference.
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Let Y (t) =
∫ t

0
S(u)du be the running average of the asset price; then the payoff at time T is

V (T ) = (
1

T

∫ T

0

S(t)dt−K)+ = (
1

T
Y (T )−K)+.

There exists a function v(t, x, y) such that v(t, S(t), Y (t)) = EQ[e−r(T−t)( 1
T

∫ T

0
S(u)du −

K)+|F(t)] and that satisfies a partial differential equation

vt(t, x, y) + rxvx(t, x, y) + xvy(t, x, y) +
1

2
σ2x2vxx(t, x, y) = rv(t, x, y)

and boundary conditions

v(t, 0, y) = e−r(T−t)(
y

T
−K)+, 0 ≤ t < T, y ∈ R,

lim
y→−∞

v(t, x, y) = 0, 0 ≤ t < T, x ≥ 0,

v(T, x, y) = (
y

T
−K)+, x ≥ 0, y ∈ R.

Since this equation is not easy to solve, Vecer in [24] used a change of numeraire method to

simplify the equation.

Let

X(t) =

∫ t

0

S(u)du−K,

and introduce the new process

Y (t) =
X(t)

S(t)
;
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then we have

dY (t) = d[(e−rtX(t))(e−rtS(t))−1]

= −σY (t)dW (t) + σγ(t)dW (t) + σ2Y (t)dt− σ2γ(t)dt

= σ(γ(t)− Y (t))(dW (t)− σdt),

where

γ(t) =
1

rT
(1− e−r(T−t)).

Here we use the changing measure method.

Letting

Z(t) = exp{σW (t)− 1

2
σ2t}

Ŵ (t) = W (t)− σt,

by Girsanov’s Theorem, we can define a new probability measure P̂ such that

P̂ (A) =

∫
A

Z(T )dQ

for all measurable set A ∈ F , where Q is the original risk neutral measure and Ŵ (t) is a

Brownian motion under the new measure P̂ . So we obtain

dY (t) = σ(γ(t)− Y (t))dŴ (t),
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which shows Y (t) is a martingale under this new measure. Then for V (t),

V (t) = EQ[e−r(T−t)(
1

T

∫ T

0

S(u)du−K)+|F(t)]

=
S(t)

Z(t)
EQ[Z(T )Y +(T )|F(t)]

= S(t)EP̂ [Y +(T )|F(t)].

By using the Feynman-Kac Theorem there exists a function g(t, y) such that

g(t, Y (t)) = EP̂ [Y +(T )|F(t)].

So the Asian call option price is

V (t) = S(t)g(t, Y (t))

and this function g(t, y) satisfies the partial differential equation

gt(t, y) +
1

2
σ2(γ(t)− y)2gyy(t, y) = 0, 0 ≤ t < T, y ∈ R,

with boundary conditions

lim
y→−∞

g(t, y) = 0, 0 ≤ t ≤ T,

lim
y→∞

[g(t, y)− y] = 0, 0 ≤ t ≤ T,

g(T, y) = y+, y ∈ R.
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After this transformation with the new process Y (t), the number of the variables of the

partial differential equation is decreased by 1 which is much easier to compute numerically.
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Chapter 3. Asian Spread Option

In this chapter, we will study pricing Asian spread option. In section 1, we introduce the

Asian spread option. In section 2 to 4, we present three different methods under two different

stochastic models for pricing the Asian spread option.

3.1 Introduction of Asian Spread Option

The Asian spread option is an option about two assets’ price spread with an Asian style

payoff. So far there is no theoretical result on the Asian spread option. Part of the reason

is that we still have no very efficient way to deal with the Asian option. However, it is an

important problem in energy markets. Here we only consider the arithmetic average Asian

style and time 0 call option since geometric average Asian style is quite simple to deal with.

Suppose S1, S2 are the price of two assets; then the payoff for this Asian spread call option

with strike price K is

max{ 1

T

∫ T

0

S1(t)− S2(t)dt−K, 0}.

Compared to the European spread option, the payoff of the Asian spread option contains

1

T

∫ T

0

S1(t)− S2(t)dt

which is the average of the assets’ price difference. This average of the assets’ price difference

is the key source of difficulty for pricing.

19



For example, if S1, S2 are under the Black-Scholes-Merton model, we know S1(T ) and S2(T )

are log-normal given the value of S1(0), S2(0) , but
∫ T

0
S1(t)dt and

∫ T

0
S2(t)dt are not. Ac-

tually, in section 3.3, we will show how to price the Asian spread option with the density

function method.

As with the relationship between the European option and the European spread option,

the key difference between the Asian option and the Asian spread option is that there are

two assets involved in the pricing problem. Since under the same model, the Asian option

pricing problem already has one more dimension compared to European option, i.e., the

average price from payoff, all together, there are two more dimensions for the Asian spread

option compare to the European option. That means, instead of solving a 2 dimensional

stochastic differential equation of the Black-Sholes-Merton model on the European spread

option, we have 3 dimensions for the Asian spread option.

The following three sections discuss three different methods, under two different stochas-

tic models, to treat the pricing problem of the Asian spread option.

3.2 Martingale Approach

In this section, we consider the Black-Scholes-Merton model and will use the martingale

approach to price the Asian spread options.

Consider a time 0 Asian spread call option of two assets whose price processes are the
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solutions of the stochastic differential equations

dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t),

where r is the interest rate, σ1, σ2 are volatilities of the assets, and W1 and W2 are the

standard Brownian motions with correlation coefficient ρ, i.e., EQ[dW1dW2] = ρdt. The

payoff at time T for this spread call option is

V (T ) = (
1

T

∫ T

0

[S1(t)− S2(t)]dt−K)+.

Here

1

T

∫ T

0

[S1(t)− S2(t)]dt

is the arithmetic average of the difference of two assets’ price.

Our approach is based on an idea from [23], where the Asian option was considered.

We start with the option price

V (t) = EQ[e−r(T−t)V (T )|F(t)].

By multiplying by e−rt to V (t)

e−rtV (t) = EQ[e−rTV (T )|F(t)],
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we have e−rtV (t) is a martingale under the risk neutral measure Q. Define Y (t) be the

average difference of the two assets’ price

Y (t) =

∫ t

0

S1(u)− S2(u)du

i.e.,

dY (t) = S1(t)dt− S2(t)dt.

Here is the very unique factor Y (t) of Asian style option pricing. The reason we add this

additional stochastic process to the model is that the special payoff

V (T ) = (
1

T

∫ T

0

[S1(t)− S2(t)]dt−K)+ = (
1

T
Y (T )−K)+

of the Asian spread option depends on Y (T ) instead of S1(T ), S2(T ). Since here Y (t) itself

is not a Markov process, we use (S1(t), S2(t), Y (t)) together to constitute a 3-dimensional

Markov process.

Since V (T ) = ( 1
T
Y (T ) − K)+, by the Feynman-Kac Theorem, there exists a function v,

such that

v(t, S1(t), S2(t), Y (t)) = EQ[e−r(T−t)(
1

T
Y (T )−K)+|F(t)]

= EQ[e−r(T−t)V (T )|F(t)]

= V (t).
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By the Ito formula, we have

d(e−rtv(t, S1(t), S2(t), Y (t)))

= e−rt[−rvdt+ vtdt+ vx1dS1 + vx2dS2 + vydY

+
1

2
vx1x1dS1dS1 +

1

2
vx2x2dS2dS2 +

1

2
vx1x2dS1dS2]

= e−rt[−rv + vt + rS1(t)vx1 + rS2(t)vx2 + (S1(t)− S2(t))vy

+
1

2
σ2

1S1(t)
2vx1x1 +

1

2
σ2

2S2(t)
2vx2x2 + σ1σ2S1(t)S2(t)vx1x2ρ]dt

+e−rt(σ1S1(t)vx1dW1(t) + σ2S2(t)vx2dW2(t)).

Since e−rtV (t) is a martingale under Q, letting dt term equal 0, we get the partial differential

equation for the function v:

vt + rx1vx1 + rx2vx2 +(x1−x2)vy +
1

2
σ2

1x
2
1vx1x1 +

1

2
σ2

2x
2
2vx2x2 +σ1σ2ρx1x2vx1x2 = rv, (3.2.1)

under the boundary conditions

v(T, x1, x2, y) = (
y

T
−K)+,

for x1, x2 ≥ 0, y ∈ R;

lim
y→−∞

v(t, x1, x2, y) = 0,
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for 0 ≤ t < T, x1, x2 ≥ 0; and

v(t, 0, 0, y) = e−r(T−t)(
y

T
−K)+,

for 0 ≤ t < T, y ∈ R.

3.3 Density Function Method

In the last section we changed the pricing problem to solving partial differential equation

(3.2.1). Because of the complicated form and the fact that there is no efficient way to sim-

plify it, it’s not easy to solve even numerically. In this section we’ll use the density function

method.

The density function method is quite natural: the price of option, V (t), is the conditional

expectation of payoff on F(t) which is a random variable that is F(t) measurable. If we

have the density function of this random variable, the pricing problem will be some integral

problem involving this density function as we reviewed about the European spread option

in section 2.1.

Consider the Black-Scholes-Merton model:

dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t),
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where r is the interest rate, σ1, σ2 are volatilities of the assets, and W1 and W2 are standard

Brownian motions with correlation coefficient ρ, i.e., EQ[dW1dW2] = ρdt.

For the European spread option, since the solutions of these stochastic differential equa-

tions follow a two dimensional log-normal distribution, so we can use the known density

function to compute European spread option value V (t). Similarly, in this section we try to

find out the density function of Y (t) to compute V (t).

We know the solution of this stochastic differential equation is a log bivariate normal vector

conditional on its value at time t; moreover, S1(T ) is also a log-normal random variable

conditional on S2(T ), S1(t) and S2(t):

log(S1(T )|S1(t),S2(t),S2(T )) ∼ N(µ1|2, σ
2
1|2),

where

µ1|2 = log(S1(t)) + (r − 1

2
σ2

1)(T − t)

+
ρσ1

σ2

(log(S2(T ))− (log(S2(t))− (r − 1

2
σ2

2)(T − t))),

σ1|2 =
√

1− ρ2σ1

√
T − t.
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V (T ) can be computed as follows:

V (T ) = (
1

T

∫ T

0

[S1(u)− S2(u)]du−K)+

= (
1

T

∫ t

0

[S1(u)− S2(u)]du+
1

T

∫ T

t

[S1(u)− S2(u)]du−K)+

= (
1

T

∫ T

t

[S1(u)− S2(u)]du− (K − 1

T

∫ t

0

[S1(u)− S2(u)]du))
+

=: (
1

T

∫ T

t

[S1(u)− S2(u)]du−K ′)+,

where

K ′ = K − 1

T

∫ t

0

[S1(u)− S2(u)]du.

Here K ′ is determined by the price of S1, S2 from time 0 to t, so it is known at time t. So

from the solution of the stochastic differential equation, we have

V (T ) = (
1

T

∫ T

0

[S1(u)− S2(u)]du−K)+

= [
1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds

− 1

T
S2(t)

∫ T−t

0

exp(σ2Ŵ2(s) + (r − σ2
2/2)s)ds−K ′]+,

where

Ŵi(s) = Wi(t+ s)−Wi(t),

for i = 1, 2, 0 ≤ s ≤ T − t are both new Brownian motions independent of F(t). Here we

need the following result.
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Lemma 3.3.1

Let (Ω,F0, P ) be a probability space , F be a sub σ-algebra of F0, and X, Y be two

random variables with E|X| < ∞, E|Y | < ∞. Suppose X is measurable in F , Y is

independent of F , f(x, y) : R × R → R is measurable and E|f(X, Y )| < ∞. Then

E(f(X, Y )|F) = E(f(x, Y ))|x=X .

Proof:

Here we use five steps to prove the Lemma. we start with the case where the function f is

an indicator function, then the case for a product indicator function, the case for a simple

function and the case for a nonnegative measurable function and at last for the general mea-

surable function.

Step 1: Indicator function

Suppose A and B are measurable in R, i.e., A ∈ B(R) and B ∈ B(R), {X ∈ A} ∈ F ,

{Y ∈ B} is independent of F , and f = 1A×B; then

E(f(X,Y )|F) = E(1A×B(X, Y )|F)

= E(1A(X)1B(Y )|F)

= 1A(X)E(1B(Y )) = E(f(x, Y ))|x=X .
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Step 2: Product indicator function

Let f =
∑n

m=1 cm1Am×Bm , where cm ∈ R, Am and Bm are measurable in R, {X ∈ Am} ∈ F ,

and {Y ∈ Bm} is independent of F ; then the linearity of the conditional expectation and

the result for indicator functions gives

E(f(X, Y )|F) =
n∑

m=1

E(cm1Am×Bm|F)

=
n∑

m=1

cm1Am(X)E(1Bm(Y )) = E(f(x, Y ))|x=X .

Step 3: Simple function

Let f =
∑n

m=1 cm1J where J is a product measurable set in R× R.

Claim: E(1J(X, Y )|F) = E(1J(x, Y ))|x=X .

If the claim is true, then by linearity of the conditional expectation, for f =
∑n

m=1 cm1J , we

have E(f(X, Y )|F) = E(f(x, Y ))|x=X .

To prove the claim, notice that if

J := {J ∈ B(R)× B(R)|E(1J(X, Y )|F) = E(1J(x, Y ))|x=X},

then J is a λ-system. Since by the result of indicator functions, all the sets of the form

A × B where A ∈ B(R), B ∈ B(R), i.e., B(R) × B(R), are in J , and B(R) × B(R) is a

π-system, then by Dynkin’s π − λ theorem, σ(B(R)× B(R)) ∈ J .

Hence for f =
∑n

m=1 cm1J where J is a product measurable set in R× R, E(f(X, Y )|F) =

E(f(x, Y ))|x=X .
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Step 4: Nonnegative measurable function

Suppose f ≥ 0, and let fn(x, y) = ([2nf(x, y)]/2n)∧n; then each fn(x, y) is a simple function,

such that fn(x, y) ↗ f(x, y) as n→∞. Then by the Monotone Convergence theorem of the

conditional expectation and the result for simple functions we have

E(f(X, Y )|F) = lim
n→∞

E(fn(X, Y )|F)

= lim
n→∞

E(fn(x, Y ))|x=X

= E(f(x, Y ))|x=X .

Step 5: General measurable function

Write f = f+ − f−; the conclusion is proved by the linearity of the conditional expectation

and the result for nonnegative functions.�
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By Lemma 3.3.1, we can change the conditional expectation to the regular expectation

V (t) = EQ[e−r(T−t)V (T )|F(t)]

= EQ[e−r(T−t){ 1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds

− 1

T
S2(t)

∫ T−t

0

exp(σ2Ŵ2(s) + (r − σ2
2/2)s)ds−K ′}+|F(t)]

= EQ[e−r(T−t){ 1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds

− 1

T
S2(t)

∫ T−t

0

exp(σ2Ŵ2(s) + (r − σ2
2/2)s)ds−K ′}+]

= e−r(T−t)

∫ ∞

0

∫ ∞

0

[a1 − a2 −K]+f1|2(a1|a2)f2(a2)da1da2

= e−r(T−t)

∫ ∞

0

∫ ∞

a2+K

[a1 − (a2 +K)]f1|2(a1|a2)da1f2(a2)da2

=:

∫ ∞

0

F (a2)f2(a2)da2,

where

F (a2) : = e−r(T−t)

∫ ∞

a2+K

[a1 − (a2 +K)]f1|2(a1|a2)da1,

A1 : =
1

T

∫ T

0

S1(u)du,

A2 : =
1

T

∫ T

0

S2(u)du.

f2(·), f1|2(·|a2) represent the density function of A2 and the conditional density function of

A1 given value of A2 respectively.
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Note that F (a2) is the price of the Asian call option on S1 with strike price a2 +K. There

is no closed form formula to compute Asian call option price. The best result we can use is

given by Geman and Yor in [13]:

F (a2) :=
e−r(T−t)

T
(
4S1(t)

σ2
1|2

)C(ν)(h, q),

where

ν =
2r

σ2
1|2
− 1; h =

σ2
1|2

4
(T − t); q =

σ2
1|2

4S1(t)
[(a2 +K)T −

∫ t

0

S1(u)du];

C(ν)(h, q) := EQ[(

∫ h

0

exp[2(Ws + νs)]ds− q)+].

By using that result, the Laplace transform of C(ν)(h, q) with respect to the variable h is

∫ ∞

0

e−λhC(ν)(h, q)dh =

∫ 1/2q

0
e−xx(µ−ν)/2−2(1− 2qx)(µ+ν)/2+1dx

λ(λ− 2− 2ν)Γ((µ− ν)/2− 1)
,

where µ =
√

2λ+ ν2, Γ is the gamma function, and we can get the value of C(ν)(h, q) via

the inverse Laplace transform.

Now we turn to the question of finding V (t).
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Now

A2 =
1

T

∫ T

0

S2(u)du

=
1

T
(

∫ t

0

S2(u)du+ S2(t)

∫ T−t

0

exp(σ2Ŵ (s) + (r − σ2
2/2)s)ds)

=
1

T
(

∫ t

0

S2(u)du+ S2(t)
4

σ2
2

∫ (T−t)σ2
2

4

0

exp(2Ŵ (s) +
4(r − σ2

2/2)s

σ2
2

)ds)

=:
1

T
(

∫ t

0

S2(u)du+ S2(t)
4

σ2
2

A(T−t)σ2
2/4) =: A2(A),

let the density function of A(T−t)σ2
2/4 be f(·); then we have

V (t) =

∫ ∞

0

F (A2(u))f(u)du. (3.3.1)

Letting P (
∫ τ

0
exp(2Bs)ds ∈ dz|Bτ = x) = aτ (x, z)dz, Yor showed in [26] that

P (

∫ τ

0

exp(2(Bs + νs))ds ∈ dz|Bτ + ντ = x) = aτ (x, z)dz,

and

1√
2πτ

exp(−x
2

2t
)aτ (x, z) =

1

z
exp(− 1

2z
(1 + exp(2x)))θex/z(τ).
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so we can plug into (3.3.2) and obtain the option price V (t)

V (t) =

∫ ∞

−∞
dx

∫ ∞

0

dzF (A2(z))a
ν
τ (x, z)

=

∫ ∞

−∞
dx

∫ ∞

0

dz

F (
1

T
(

∫ t

0

S2(u)du+ S2(t)
4

σ2
2

z))
1

z
exp(− 1

2z
(1 + exp(2x)))θex/z(τ),

(3.3.2)

where

τ =
σ2

2(T − t)

4
, ν =

2(r − σ2
2/2)

σ2
2

,

θr(u) =
r

(2π3u)
1
2

exp(
π2

2u
)

∫ ∞

0

exp(−y2/2u) exp(−r(cosh y))(sinh y) sin(
πy

u
)dy.

This is so far the best semi-analytic solution for pricing Asian spread options under Black-

Scholes-Merton model.

From (3.3.2), it’s quite clear that this semi-analytic solution is really difficult to compute

numerically. This is the basic Black-Scholes-Merton model, which shows the difficulty of the

Asian spread option pricing problem.

33



3.4 Characteristic Function Method

In this section, based on Duffie, Pan and Singleton’s powerful result of Affine structure in

[8], and more general result from Duffie, Filipovic and Schachermayer in [9], we will propose

an analytic and computable result for an affine structure stochastic volatility model.

The stochastic model is

dS1(t) = rS1(t)dt+ σ1

√
γ(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2

√
γ(t)dW2(t),

dγ(t) = κ(µ− γ(t))dt+ σγ

√
γ(t)dWγ(t),

dY (t) = (S1(t)− S2(t))dt, (3.4.1)

where

E[dW1(t)dW2(t)] = ρdt,

E[dW1(t)dWγ(t)] = ρ1dt,

E[dW2(t)dWγ(t)] = ρ2dt.

Taking the state vector Xt = (S1(t), S2(t), γ(t), Y (t))T , this is an affine diffusion model,

dXt = Θ(Xt)dt+ Σ(Xt)dw(t),
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where

Θ(Xt) =



r 0 0 0

0 r 0 0

0 0 −κ 0

1 −1 0 0


Xt +



0

0

κµ

0


=: K1Xt +K0,

Σ(Xt) =



√
1− ρ2

1σ1

√
γ(t) 0 ρ1σ1

√
γ(t) 0

ρ−ρ1ρ2√
1−ρ2

1

σ2

√
γ(t)

√
1−ρ2

1−ρ2
2−ρ2+2ρ1ρ2ρ√
1−ρ2

1

σ2

√
γ(t) ρ2σ2

√
γ(t) 0

0 0 σγ

√
γ(t) 0

0 0 0 0


,

and w(t) = (w1(t), w2(t), w3(t), w4(t))
T is a standard 4-dimensional Brownian motion. In

this model, we call σ1

√
γ(t) and σ2

√
γ(t) the volatility of S1 and S2 respectively. The exis-

tence and uniqueness of the general regular affine process is proved by Duffie, Filipovic and

Schachermayer in [9].

Note that

Σ(Xt)Σ(Xt)
T =



σ2
1 ρσ1σ2 ρ1σ1σγ 0

ρσ1σ2 σ2
2 ρ2σ2σγ 0

ρ1σ1σγ ρ2σ2σγ σ2
γ 0

0 0 0 0


γ(t) =: H1γ(t).

The stochastic model (3.4.1) is similar to the stochastic volatility model (2.1.3). But here

S1, S2’s volatility is determined only by the process γ(t) instead of γ(t) and S1, S2. That
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means under this model, the volatility of S1 and S2 have a constant ratio. This assumption

is quite reasonable since the spread option always involves two highly related assets. Also,

the same as model (2.1.3), model (3.4.1) can deal with the volatility smile problem.

The payoff of the Asian spread option with strike price c is

(
1

T
YT − c)+,

if we let b = (0, 0, 0, 1
T
)T , then the price of this Asian spread option at time 0 is

C(X0, c, 0, T ) = E(exp(−rT )(b ·XT − c)+|F(0))

= E(exp(−rT )(b ·XT − c)1b·XT≥c|F(0)).

(3.4.2)

If we follow the similar approach in [8], define the “generalized expected present value”

functions by

G
(1)
a,b(y;Xt, t, T ) = E(exp(−r(T − t)) exp(a ·X(T ))1b·X(T )≤y|F(t)),

G
(2)
a,b,d(y;Xt, t, T ) = E(exp(−r(T − t))(a ·X(T )) exp(d ·XT )1b·X(T )≤y|F(t)),

where a ∈ R4,b ∈ R4 and d ∈ R4.

Then Asian spread option at time 0 is

C(X0, c, 0, T ) = G
(2)

b,−b,~0
(−c;X0, 0, T )− cG

(1)
~0,−b

(−c;X0, 0, T ). (3.4.3)
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Also we define

ψ1(u,Xt, t, T ) = E(exp(−r(T − t)) exp(u ·XT )|F(t)),

where u = (u1, u2, u3, u4)
T ∈ C4; and

ψ2(v, u,Xt, t, T ) = E(exp(−r(T − t))(v ·XT ) exp(u ·XT )|F(t)),

where v = (v1, v2, v3, v4)
T ∈ R4. Here ψ1 and ψ2 are called the “characteristic” function

and the “extended characteristic” function respectively. Then from [8], by using the inverse

Fourier transform, we have

C(X0, c, 0, T ) = G
(2)

b,−b,~0
(−c;X0, 0, T )− cG

(1)
~0,−b

(−c;X0, 0, T )

= [
ψ2(b,~0, X0, 0, T )

2
− 1

π

∫ ∞

0

Im[ψ2(b,−ivb,X0, 0, T ) exp(ivc)]

v
dv]

− c[
ψ1(~0, X0, 0, T )

2
− 1

π

∫ ∞

0

Im[ψ1(−ivb,X0, 0, T ) exp(ivc)]

v
dv]. (3.4.4)

So the Asian spread option pricing problem under model (3.4.1) becomes finding the “char-

acteristic” function and the “extended characteristic” function ψ1 and ψ2. Since [8] and [9]

proved the general affine process characteristic functions property, for the special case model

(3.4.1), we have the corresponding results.

“Characteristic” function is obtained by

ψ1(u,Xt, t, T ) = exp(α(t, T, u) + β(t, T, u) ·Xt),
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where β(t, T, u) =: βt = (β
(1)
t , β

(2)
t , β

(3)
t , β

(4)
t )T , α(t, T, u) := αt satisfy the following complex

ordinary differential equations

β̇t =



˙
β

(1)
t

˙
β

(2)
t

˙
β

(3)
t

˙
β

(4)
t



= −



r 0 0 1

0 r 0 −1

0 0 −κ 0

0 0 0 0


βt −

1

2



0

0∑
i,j β

(i)
t H1(i, j)β

(j)
t

0


(3.4.5)

α̇t = r − κµβ
(3)
t , (3.4.6)

under the boundary conditions

βT = u

αT = 0.

“Extended characteristic” function is obtained by

ψ2(v, u,Xt, t, T ) = ψ1(u,Xt, t, T )(A(t, T, v, u) +B(t, T, v, u) ·Xt),
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where B(t, T, v, u) =: Bt = (B
(1)
t , B

(2)
t , B

(3)
t , B

(4)
t )T , A(t, T, v, u) =: At satisfy the following

complex ordinary differential equations

Ḃt =



˙
B

(1)
t

˙
B

(2)
t

˙
B

(3)
t

˙
B

(4)
t



= −



r 0 0 1

0 r 0 −1

0 0 −κ 0

0 0 0 0


Bt −



0

0∑
i,j β

(i)
t H1(i, j)B

(j)
t

0


(3.4.7)

Ȧt = −κµB(3)
t , (3.4.8)

under the boundary condition

BT = v

AT = 0.

To find the value of αt, βt, At, Bt, we need solve boundary value ordinary differential equa-

tions (3.4.5), (3.4.6), (3.4.7) and (3.4.8). We can only solve part of these differential equations

analytically and some of them need to be solved numerically.
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For u = (u1, u2, u3, u4),

β
(1)
t = u1 exp(r(T − t)) +

u4

r
[exp(r(T − t))− 1]

β
(2)
t = u2 exp(r(T − t))− u4

r
[exp(r(T − t))− 1]

β
(4)
t = u4.

For β
(3)
t ,

β̇
(3)
t = stβ

(3)2
t + qtβ

(3)
t + pt, (3.4.9)

where

st = −1

2
σ2

γ

qt = κ− ρ1σ1σγβ
(1)
t − ρ2σ2σγβ

(2)
t

pt = −1

2
[σ2

1β
(1)2
t + 2ρσ1σ2β

(1)
t β

(2)
t + σ2

2β
(2)2
t ].

Equation (3.4.9) is a Riccati ordinary equation, and we can solve it numerically and then

solve (3.4.6) for αt numerically. Then we use the result of αt, βt to solve for At, Bt. In section

5.3, we present some numerical results for this method.
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Chapter 4. Asian-European Spread Option

In this chapter, we will focus on pricing the Asian-European spread options. In section 1,

we introduce the Asian-European spread option. In section 2, 3, 4, we use three different

methods under two different stochastic models to price Asian-European spread options.

4.1 Introduction of Asian-European Spread Option

The Asian-European spread option is an option about two assets’ price spread with one side

Asian and the other side European style payoff.

Similar as Asian spread option we introduced in Chapter 3, here we only consider the arith-

metic average Asian style and time 0 call option. Suppose S1, S2 are the price of two assets,

and we take Asian style payoff for S1; then the payoff for this Asian-European spread call

option with strike price K is

max{ 1

T

∫ T

0

S1(t)dt− S2(T )−K, 0}.

Although it seems this kind of spread option is less complicated than the Asian spread

option, it still contains the average of asset price 1
T

∫ T

0
S1(t)dt which will be the key difficulty

of pricing.
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4.2 Martingale Approach

In this section, we start with the classic Black-Scholes-Merton model and use a martingale

approach to price Asian-European spread options.

Consider a time 0 Asian-European spread call option of two assets whose price processes

are the solutions of stochastic differential equations

dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t),

where r is the interest rate, σ1, σ2 are volatilities of the assets, and W1 and W2 are the

standard Brownian motions with correlation coefficient ρ, i.e. EQ[dW1dW2] = ρdt. Suppose

the Asian style is for S1. Two kinds of payoff at time T for this spread call option are

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+

or

V (T ) = (S2(T )− 1

T

∫ T

0

S1(t)dt−K)+.

In the payoff, 1
T

∫ T

0
S1(t)dt is the Asian style, the arithmetic average of the asset price S1;

S2(T ) is the European style payoff. So we call this spread option an Asian-European spread

option.
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Consider the first of the two kinds of payoff at time T :

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+;

actually, the other payoff is very similar to this one. Let option price be

V (t) = EQ[e−r(T−t)V (T )|F(t)],

Similar as the Asian spread option case, e−rtV (t) is a martingale under the risk neutral

measure Q. Let Y1(t) be the average price of asset 1,

Y1(t) = Y1(0) +

∫ t

0

S1(u)du

i.e.,

dY1(t) = S1(t)dt.

The average price is the “trade mark” of Asian style options. As before, we add this addi-

tional stochastic process to the model because the payoff

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+ = (
1

T
Y1(T )− S2(T )−K)+

contains Y1(T ). So we use (S1(t), S2(t), Y1(t)) together to constitute a 3-dimensional Markov

process.
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Since V (T ) = ( 1
T
Y1(T )−S2(T )−K)+, by the Feynman-Kac Theorem, there exists a function

v, such that

v(t, S1(t), S2(t), Y1(t)) = EQ[e−r(T−t)(
1

T
Y1(T )− S2(T )−K)+|F(t)]

= EQ[e−r(T−t)V (T )|F(t)]

= V (t).

By the Ito formula, we have

d(e−rtv(t, S1(t), S2(t), Y1(t)))

= e−rt[−rvdt+ vtdt+ vx1dS1 + vx2dS2 + vy1dY1

+
1

2
vx1x1dS1dS1 +

1

2
vx2x2dS2dS2 +

1

2
vx1x2dS1dS2]

= e−rt[−rv + vt + rS1(t)vx1 + rS2(t)vx2 + S1(t)vy1

+
1

2
σ2

1S1(t)
2vx1x1 +

1

2
σ2

2S2(t)
2vx2x2 + σ1σ2S1(t)S2(t)vx1x2ρ]dt

+e−rt(σ1S1(t)vx1dW1(t) + σ2S2(t)vx2dW2(t)).

Since e−rtV (t) is a martingale under Q, letting the dt term equal 0 we get a partial differential

equation for the function v:

vt + rx1vx1 + rx2vx2 + x1vy1 +
1

2
σ2

1x
2
1vx1x1 +

1

2
σ2

2x
2
2vx2x2 + σ1σ2ρx1x2vx1x2 = rv, (4.2.1)
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for 0 ≤ t < T, x1, X2 ≥ 0, y1 ∈ R,

with boundary conditions

v(T, x1, x2, y1) = (
y1

T
− x2 −K)+,

for x1, x2 ≥ 0, y1 ∈ R;

lim
y1→−∞

v(t, x1, x2, y1) = 0,

for 0 ≤ t < T, x1, x2 ≥ 0; and

v(t, 0, 0, y1) = e−r(T−t)(
y1

T
−K)+,

for 0 ≤ t < T . If the payoff is of the form

V (T ) = (S2(T )− 1

T

∫ T

0

S1(t)dt−K)+,

then we have the same differential equation (4.2.1), under different boundary conditions

though:

v(T, x1, x2, y1) = (x2 −
y1

T
−K)+,

for x1, x2 ≥ 0, y1 ∈ R;

lim
y1→∞

v(t, x1, x2, y1) = 0,
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for 0 ≤ t < T, x1, x2 ≥ 0; and

v(t, x1, 0, y1) = 0,

for 0 ≤ t < T, x1 ≥ 0, y1 ∈ R.

4.3 Density Function Method

In this section we’ll use a density function method to price the Asian-European spread op-

tions.

Consider the Black-Scholes-Merton model:

dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t), (4.3.1)

where r is the interest rate, σ1, σ2 are the volatilities of the assets, and W1 and W2 are

standard Brownian motions with correlation coefficient ρ, i.e. EQ[dW1dW2] = ρdt. Suppose

the Asian style is for S1; at first consider the payoff at time T for this spread call option is

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+.

The solution of the stochastic differential equation (4.3.1) is a log bivariate normal vec-
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tor conditional on its value at time t; moreover, S1(T ) is also a log-normal random variable

conditional on S2(T ), S1(t) and S2(t):

log(S1(T )|S1(t),S2(t),S2(T )) ∼ N(µ1|2, σ
2
1|2),

where

µ1|2 = log(S1(t)) + (r − 1

2
σ2

1)(T − t)

+
ρσ1

σ2

(log(S2(T ))− (log(S2(t))− (r − 1

2
σ2

2)(T − t))),

σ1|2 =
√

1− ρ2σ1

√
T − t.

V (T ) can be computed as follows:

V (T ) = (
1

T

∫ T

0

S1(u)du− S2(T )−K)+

= (
1

T

∫ t

0

S1(u)du+
1

T

∫ T

t

S1(u)du− S2(T )−K)+

= (
1

T

∫ T

t

S1(u)du− S2(T )− (K − 1

T

∫ t

0

S1(u)du))
+

=: (
1

T

∫ T

t

S1(u)du− S2(T )−K ′)+,

where

K ′ = K − 1

T

∫ t

0

S1(u)du.
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Here K ′ is determined by the price of S1 from time 0 to t, so it is known at time t. So from

the solution of the stochastic differential equation, we have

V (T ) = (
1

T

∫ T

0

S1(u)du− S2(T )−K)+

= [
1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds

−S2(t) exp(σ2Ŵ2(s) + (r − σ2
2/2)s)−K ′]+,

where

Ŵi(s) = Wi(t+ s)−Wi(t),

for i = 1, 2, 0 ≤ s ≤ T − t are both new Brownian motions independent of F(t). Then by

the Lemma 3.3.1 we can change the conditional expectation to the regular expectation

V (t) = EQ[e−r(T−t)V (T )|F(t)]

= EQ[e−r(T−t){ 1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds

−S2(t) exp(σ2Ŵ2(s) + (r − σ2
2/2)s)−K ′}+|F(t)]

= EQ[e−r(T−t){ 1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds

−S2(t) exp(σ2Ŵ2(s) + (r − σ2
2/2)s)−K ′}+]

= e−r(T−t)

∫ ∞

0

∫ ∞

0

[a1 − s2 −K]+f1|2(a1|s2)f2(s2)da1ds2

= e−r(T−t)

∫ ∞

0

∫ ∞

s2+K

[a1 − (s2 +K)]f1|2(a1|s2)da1f2(s2)ds2

=:

∫ ∞

0

F (s2)f2(s2)ds2,
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where

F (s2) = e−r(T−t)

∫ ∞

s2+K

[a1 − (s2 +K)]f1|2(a1|s2)da1,

A1 =
1

T

∫ T

0

S1(u)du.

Here f2(·) represents the density function of S2(T ) given the value of S2(t) which is a log-

normal density function, and f1|2(·|s2) is the conditional density function of A1 given the

value of S2(T ).

Note that F (s2) is the price of the Asian call option on S1 with strike price s2 +K. We use

the result from Geman and Yor in [13] again to get

F (s2) =:
e−r(T−t)

T
(
4S1(t)

σ2
1|2

)C(ν)(h, q),

where

ν =
2r

σ2
1|2
− 1; h =

σ2
1|2

4
(T − t); q =

σ2
1|2

4S1(t)
[(s2 +K)T −

∫ t

0

S1(u)du];

C(ν)(h, q) := EQ[(

∫ h

0

exp[2(Ws + νs)]ds− q)+].

By using that result the Laplace transform of C(ν)(h, q) with respect to the variable h is

∫ ∞

0

e−λhC(ν)(h, q)dh =

∫ 1/2q

0
e−xx(µ−ν)/2−2(1− 2qx)(µ+ν)/2+1dx

λ(λ− 2− 2ν)Γ((µ− ν)/2− 1)
,

49



where µ =
√

2λ+ ν2, and Γ is the gamma function, and we can get the value of C(ν)(h, q)

via inverse Laplace transform.

If the payoff of this spread option is of the form

V (T ) = (S2(T )− 1

T

∫ T

0

S1(t)dt−K)+,

we consider that S2(T ) is also a log-normal random variable conditional on S1(T ) and

S1(t), S2(t):

log(S2(T )|S1(t),S2(t),S1(T )) ∼ N(µ2|1, σ
2
2|1),

where

µ2|1 = log(S2(t)) + (r − 1

2
σ2

2)(T − t)

+
ρσ2

σ1

(log(S1(T ))− (log(S1(t))− (r − 1

2
σ2

1)(T − t))),

σ2|1 =
√

1− ρ2σ2

√
T − t.
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In this case, we have the option price

V (t) = EQ[e−r(T−t)V (T )|F(t)]

= EQ[e−r(T−t){S2(t) exp(σ2Ŵ2(s) + (r − σ2
2/2)s)

− 1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds−K ′}+|F(t)]

= EQ[e−r(T−t){S2(t) exp(σ2Ŵ2(s) + (r − σ2
2/2)s)

− 1

T
S1(t)

∫ T−t

0

exp(σ1Ŵ1(s) + (r − σ2
1/2)s)ds−K ′}+]

= e−r(T−t)

∫ ∞

0

∫ ∞

0

[s2 − a1 −K]+f2|1(s2|a1)f1(a1)ds2da1

= e−r(T−t)

∫ ∞

0

∫ ∞

a1+K

[s2 − (a1 +K)]f2|1(s2|a1)ds2f1(a1)da1

=:

∫ ∞

0

F (a1)f1(a1)da1,

where

F (a1) = e−r(T−t)

∫ ∞

a1+K

[s2 − (a1 +K)]f2|1(s2|a1)ds2,

A1 =
1

T

∫ T

0

S1(u)du.

Here f1(·) represents the density function of A1, and f2|1(·|a1) is the conditional density

function of S2(T ) given the value of S1(T ) which is a log-normal density function. Hence

F (a1) is the Black-Scholes-Merton price of a call option on S2 with strike price a1 +K and

we have the closed form for it

F (a1) = e−r(T−t)[exp(µ2|1 +
1

2
σ2|1)N(d1(a1)) + (a1 +K)N(d2(a1))],
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where

d1(a1) =
µ2|1 − log(a1 +K) + σ2

2|1

σ2|1

d2(a1) = d1(a1)− σ2|1.

Then we can use the density function of A1 to find out V (t).

A1 =
1

T

∫ T

0

S1(u)du

=
1

T
(

∫ t

0

S1(u)du+ S1(t)

∫ T−t

0

exp(σ1Ŵ (s) + (r − σ2
1/2)s)ds)

=
1

T
(

∫ t

0

S1(u)du+ S1(t)
4

σ2
1

∫ (T−t)σ2
1

4

0

exp(2Ŵ (s) +
4(r − σ2

1/2)s

σ2
1

)ds)

=
1

T
(

∫ t

0

S1(u)du+ S1(t)
4

σ2
1

A(T−t)σ2
1/4) := A1(A).

If we let the density function of A(T−t)σ2
1/4 be f(·), then we obtain

V (t) =

∫ ∞

0

F (A1(u))f(u)du

=

∫ ∞

−∞
dx

∫ ∞

0

dzF (A1(z))a
ν
τ (x, z)

=

∫ ∞

−∞
dx

∫ ∞

0

dzF (A1(z))
1

z
exp(− 1

2z
(1 + exp(2(x+ ντ))))θex+ντ /z(τ)

=

∫ ∞

−∞
dx

∫ ∞

0

dz

F (
1

T
(

∫ t

0

S1(u)du+ S1(t)
4

σ2
1

z))
1

z
exp(− 1

2z
(1 + exp(2x)))θex/z(τ)
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where

τ =
σ2

1(T − t)

4
, ν =

2(r − σ2
1/2)

σ2
1

,

θr(u) =
r

(2π3u)
1
2

exp(
π2

2u
)

∫ ∞

0

exp(−y2/2u) exp(−r(cosh y))(sinh y) sin(
πy

u
)dy.

4.4 Characteristic Function Method

In this section, we consider a similar affine structure stochastic volatility model as in section

3.4 to propose an analytic and computable result. Let’s assume the Asian style payoff is for

S1.

The stochastic model is

dS1(t) = rS1(t)dt+ σ1

√
γ(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2

√
γ(t)dW2(t),

dγ(t) = κ(µ− γ(t))dt+ σγ

√
γ(t)dWγ(t),

dY (t) = S1(t)dt,
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where

E[dW1(t)dW2(t)] = ρdt,

E[dW1(t)dWγ(t)] = ρ1dt,

E[dW2(t)dWγ(t)] = ρ2dt.

Taking the state vector Xt = (S1(t), S2(t), γ(t), Y (t))T , this is an affine diffusion model,

dXt = Θ(Xt)dt+ Σ(Xt)dw(t),

where

Θ(Xt) =



r 0 0 0

0 r 0 0

0 0 −κ 0

1 0 0 0


Xt +



0

0

κµ

0


=: K1Xt +K0,

Σ(Xt) =



√
1− ρ2

1σ1

√
γ(t) 0 ρ1σ1

√
γ(t) 0

ρ−ρ1ρ2√
1−ρ2

1

σ2

√
γ(t)

√
1−ρ2

1−ρ2
2−ρ2+2ρ1ρ2ρ√
1−ρ2

1

σ2

√
γ(t) ρ2σ2

√
γ(t) 0

0 0 σγ

√
γ(t) 0

0 0 0 0


,

and w(t) = (w1(t), w2(t), w3(t), w4(t))
T is a standard 4-dimensional Brownian motion. In

this section, we call σ1

√
γ(t) and σ2

√
γ(t) the volatility of S1 and S2 respectively.
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Note that

Σ(Xt)Σ(Xt)
T =



σ2
1 ρσ1σ2 ρ1σ1σγ 0

ρσ1σ2 σ2
2 ρ2σ2σγ 0

ρ1σ1σγ ρ2σ2σγ σ2
γ 0

0 0 0 0


γ(t) =: H1γ(t).

Here we need the same assumption that the volatilities of S1, S2 are determined only by the

process γ(t) as we discussed in section 3.4.

Then under this model, fixing T ∈ [0,∞), Duffie’s “characteristic” function is

ψ1(u,Xt, t, T ) = E(exp(−r(T − t)) exp(u ·XT )|F(t))

= exp(α(t, T, u) + β(t, T, u) ·Xt),
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where u = (u1, u2, u3, u4)
T ∈ C4 , and β(t, T, u) =: βt = (β

(1)
t , β

(2)
t , β

(3)
t , β

(4)
t )T , α(t, T, u) =: αt

satisfy the following complex ordinary differential equations

β̇t =



˙
β

(1)
t

˙
β

(2)
t

˙
β

(3)
t

˙
β

(4)
t



= −



r 0 0 1

0 r 0 0

0 0 −κ 0

0 0 0 0


βt −

1

2



0

0∑
i,j β

(i)
t H1(i, j)β

(j)
t

0


α̇t = r − κµβ

(3)
t ,

under the boundary condition

βT = u

αT = 0.

For the “extended characteristic” function, we have

ψ2(v, u,Xt, t, T ) = E(exp(−r(T − t))(v ·XT ) exp(u ·XT )|F(t))

= ψ1(u,Xt, t, T )(A(t, T, v, u) +B(t, T, v, u) ·Xt),
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where v = (v1, v2, v3, v4)
T ∈ R4, andB(t, T, v, u) =: Bt = (B

(1)
t , B

(2)
t , B

(3)
t , B

(4)
t )T , A(t, T, v, u) =:

At satisfy the following complex ordinary differential equations

Ḃt =



˙
B

(1)
t

˙
B

(2)
t

˙
B

(3)
t

˙
B

(4)
t



= −



r 0 0 1

0 r 0 0

0 0 −κ 0

0 0 0 0


Bt −



0

0∑
i,j β

(i)
t H1(i, j)B

(j)
t

0


Ȧt = −κµB(3)

t ,

under the boundary condition

BT = v

AT = 0.

These differential equations are a little bit different from the ones in section 3.4; also we can

solve part of them numerically.

As long as we have these “characteristic functions”, we can get the “generalized expected
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present value” functions by

G
(1)
a,b(y;Xt, t, T ) = E(exp(−r(T − t)) exp(a ·X(T ))1b·X(T )≤y|F(t)),

G
(2)
a,b,d(y;Xt, t, T ) = E(exp(−r(T − t))(a ·X(T )) exp(d ·XT )1b·X(T )≤y|F(t)),

where a ∈ R4,b ∈ R4 and d ∈ R4.

Note that the payoff of the Asian-European spread option with strike price c is of the form

(b ·XT − c)+,

where b = (0,−1, 0, 1
T
)T for the payoff

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )− c)+,

and b = (0, 1, 0,− 1
T
)T for the payoff

V (T ) = (S2(T )− 1

T

∫ T

0

S1(t)dt− c)+.

So we can compute the value of the function

C(X0, b, c, 0, T ) = E(exp(−rT )(b ·XT − c)+|F(0))

= E(exp(−rT )(b ·XT − c)1b·XT≥c|F(0))

= G
(2)

b,−b,~0
(−c;X0, 0, T )− cG

(1)
~0,−b

(−c;X0, 0, T ).
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Recall section 3.4 for the way of computing G(1), G(2) when the “characteristic” functions

ψ1, ψ2 are given:

G
(1)
a,b(y;Xt, t, T ) =

ψ1(a,Xt, t, T )

2
− 1

π

∫ ∞

0

Im[ψ1(a+ ivb,Xt, t, T ) exp(−ivy)]
v

dv

G
(2)
a,b,d(y;Xt, t, T ) =

ψ2(a, d,Xt, t, T )

2
− 1

π

∫ ∞

0

Im[ψ2(a, d+ ivb,Xt, t, T ) exp(−ivy)]
v

dv.
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Chapter 5. Numerical Computations

In this chapter, we show the numerical results of pricing based on the methods introduced in

previous chapters. In section 1, we discuss the Monte Carlo simulation method result used

in pricing Asian-European spread options. In section 2, we implement the density function

method to compute the Asian-European spread option based on section 2.3. In section

3, we implement the characteristic function method to price Asian spread options under a

stochastic volatility model based on section 3.4. All the code is written in Visual C++ and

the computations are conducted on an Intel Pentium 4 2.40 GHz CPU with 768 MB RAM.

5.1 Monte Carlo Simulation Method

In this section, general Monte Carlo simulation is used to price Asian-European spread

options under the Black-Scholes-Merton model:

dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t), (5.1.1)

where r is the interest rate, σ1, σ2 are volatilities of the assets, and W1 and W2 are standard

Brownian motions with correlation coefficient ρ, i.e. EQ[dW1dW2] = ρdt. Suppose the Asian

style is for S1; at first consider the payoff at time T for this spread call option is

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+.
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This option price at time 0 is therefore

V (0) = EQ[e−rTV (T )|F(0)].

Researchers have employed Monte Carlo simulation methods in single asset Asian option

pricing, see [3],[4],[12] and [17].

The solution of equation (5.1.1) is log-normal, that is, letting si(t) := log(Si(t)) for i = 1, 2,

we have

ds1(t) = (r − 1

2
σ2

1)dt+ σ1dW1(t),

ds2(t) = (r − 1

2
σ2

2)dt+ σ2dW2(t),

and hence

si(T ) = si(t) + (r − δi −
1

2
σ2

i )(T − t) + σi[Wi(T )−Wi(t)]

for i = 1, 2. By the independence of the Brownian motion increments W (T ) − W (t) and

F(t), given the value s1(t), s2(t), we have

s(T ) = µ(t) + Σ(t) · w (5.1.2)
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where

µ(t) =

 s1(t) + (r − 1
2
σ2

1)(T − t)

s2(t) + (r − 1
2
σ2

2)(T − t)

 ,

Σ(t) =

 σ1

√
T − t 0

ρσ2

√
T − t

√
1− ρ2σ2

√
T − t

 ,

w =

 w1

w2

 ,

and s(T ) = (s1(T ), s2(T ))T , w1, w2 are independent standard normal random variables. So

based on (5.1.2), we use

S1(t+ h) = S1(t) exp{rh+ σ1

√
hw1 −

σ2
1h

2
}

S2(t+ h) = S2(t) exp{rh+ σ2

√
hρw1 + σ2

√
h
√

1− ρ2w2 −
σ2

2h

2
}

to update the assets’ price.

Table 5.1 shows the numerical result of Monte Carlo simulation. M is the total number

of replications of sample path, N is the number of price reading per day. “Time” is the

computation time with unit second.

Full results are shown in figure 5.1. Since when M = 10000, the result value is too far away

from the “converged value”, figure 5.2, which has the results for M ≥ 50000, gives a clearer

picture.
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N=1 N=10 N=100

M Value Time M Value Time M Value Time

10000 13.2842 1 10000 13.2260 10 10000 13.0188 94

50000 13.1763 5 50000 13.1594 47 50000 13.2095 468

100000 13.1866 10 100000 13.1428 93 100000 13.2045 937

200000 13.1862 18 200000 13.1918 188 200000 13.1895 1864

500000 13.1773 47 500000 13.1892 468 500000 13.1932 4678

1000000 13.1810 95 1000000 13.1932 1048 1000000 13.1896 9707

Table 5.1 Monte Carlo simulation results.

S1(0) = 100, S2(0) = 80, K = 10, T = 0.4year

r = 0.09, σ1 = 0.2, σ2 = 0.4, ρ = 0.3

Figure 5.1 Full result
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Figure 5.2 M≥50000 result

From the table and the graph, it is easy to see the result has not converged very well. For

N = 1, i.e. one reading data daily case, even one million sample paths gives the result

13.1810 which is 1 cent away from the result 13.1932 when daily data reading frequency is

10 and the number of sample paths is one million and the result 13.1896 when daily data

reading frequency is 100 and the number of sample paths is one million. In other words,

the variation of the Monte Carlo simulation is too big to converge quickly. Besides, the

computation time cost is expensive. From table 5.1, to get within 1 cent, the simulation

result at least needs N = 10 and M = 200000, i.e. 10 daily data reading frequency and

200000 sample paths which need computation time about 200 seconds.

Actually, this is not a strange result. In [17], Kemna and Vorst got a similar result when

using Monte Carlo simulation for pricing an Asian option of a single asset. Now that we are
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dealing with Asian-European spread option about two assets, it’s natural to find the volatile

property of the Monte Carlo simulation result. Also in [17], Kemna and Vorst applied a

variance reduction method to solve this volatile problem. They used the geometric average

of the stock price as a control variable to reduce the variance of the Monte Carlo simula-

tion. Here, for the first time, we use the geometric average of S1 as a control variable to get

a much better Monte Carlo simulation method for pricing the Asian-European spread option.

Under the Black-Scholes-Merton model (5.1.1), Asian-European spread option pricing is

to find the value of conditional expectation

V (0) = EQ[e−rT (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+|F(0)].

Then we have

V (0) = EQ[e−rT (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+|F(0)]

= e−rTEQ[(
1

T

∫ T

0

S1(t)dt− S2(T )−K)+ − (G(T )− S2(T )−K)+|F(0)]

+e−rTEQ[(G(T )− S2(T )−K)+|F(0)]

where G(T ) is the geometric average of S1 and is approximated by (
∏n

i=0 S1(ti))
1/(n+1).

Since G(T ) is lower than 1
T

∫ T

0
S1(t)dt, e

−rTEQ[(G(T ) − S2(T ) − K)+|F(0)] is therefore

a lower bound of the Asian-European spread option price and we name it VG(0). Fur-

thermore, this lower bound is actually a price of a European spread option which can be

computed efficiently. So we just need to use Monte Carlo simulation to find the value of
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e−rTEQ[( 1
T

∫ T

0
S1(t)dt− S2(T )−K)+ − (G(T )− S2(T )−K)+|F(0)], which is the difference

of the Asian-European spread option price and its lower bound VG(0), then add it to the the

lower bound value to get the Asian-European spread option value.

For the value of lower bound VG(0), we obtain

VG(0) = e−rTEQ[(G(T )− S2(T )−K)+|F(0)]

= e−rT

∫ ∞

0

∫ ∞

0

[g − s2 −K]+f1,2(g, s2)dgds2

= e−rT

∫ ∞

0

∫ ∞

0

[g − s2 −K]+f1|2(g|s2)f2(s2)dgds2

= e−rT

∫ ∞

0

∫ ∞

s2+K

[g − (s2 +K)]f1|2(g|s2)dgf2(s2)ds2

=:

∫ ∞

0

F (s2)f2(s2)ds2, (5.1.3)

where

F (s2) := e−rT

∫ ∞

s2+K

[g − (s2 +K)]f1|2(g|s2)dg,

f1,2(·, ·) is the joint density function of G(T ) and S2(T ) conditional on S1(0) and S2(0); f2(·)

represents the density function of S2(T ) given the value of S2(t) which is a known log-normal

density function. f1|2(·|s2) is the conditional density function of G given value of S2 which is

also a known log-normal density function. Note that F (s2) is a European option value with

strike price s2 +K for the geometric average of S1 as the underlying. So we can easily use

the Black-Scholes formula to find the value of F (s2) (this value is a function of s2).

First, conditional on S2(T ), lnS1(T ) is normally distributed with mean and standard devi-
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ation

µ1|2 = lnS1(0) + (r − 1

2
σ2

1)T +
ρσ1

σ2

(ln
S2(T )

S2(0)
− (r − σ2

2

2
)T )

σ1|2 =
√

1− ρ2σ1

√
T .

Then we have

F (s2) = e−rT [exp(µG +
1

2
σ2

G)N(d1)−KGN(d1 − σG)]

where

µG = lnS1(0) + (r +
ρσ1(ln

S2(T )
S2(0)

− (r − σ2
2

2
)T )

σ2T
− σ2

1

2
)
T

2

σG =

√
1− ρ2

3
σ1T

KG = K + s2

d1 =
µG − lnKG + 1

2
σ2

G

σG

.

N(·) is the cumulative distribution function of the standard normal. See [10] and [17] for

the detail of geometric average Asian options. At last we use Gauss-Legendre quadrature

method to approximate the value of the righthand side of (5.1.3).
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N=1 N=10 N=100

M Value Time M Value Time M Value Time

10000 13.1813 1 10000 13.1801 11 10000 13.1783 113

50000 13.1801 6 50000 13.1799 57 50000 13.1795 554

100000 13.1799 11 100000 13.1799 115 100000 13.1796 965

200000 13.1803 23 200000 13.1797 225 200000 13.1795 1953

500000 13.1803 57 500000 13.1796 486 500000 13.1796 4822

1000000 13.1806 113 1000000 13.1798 975 1000000 13.1797 9320

Table 5.2 Improved Monte Carlo simulation results.

S1(0) = 100, S2(0) = 80, K = 10, T = 0.4year

r = 0.09, σ1 = 0.2, σ2 = 0.4, ρ = 0.3

Figure 5.3 Improved Monte Carlo Result
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Full numerical results of this improved Monte Carlo simulation is in Table 5.2.

The graph of table 5.2 is figure 5.3. This improved Monte Carlo method converges so well

that all the results’ difference is less than 1 cent. Notice that this value, 13.18, is 1 cent away

from the original Monte Carlo simulation result, 13.19. Later you will see 13.18 will match

the result computed by the density function method in section 5.2.

The comparison of the original Monte Carlo simulation and the improved Reduced Vari-

ance Monte Carlo simulation is in figure 5.4, figure 5.5 and figure 5.6. It’s clear that the

improved Monte Carlo method is much more efficient and accurate than the original one.

Figure 5.7 and 5.8 are the surface graph of option price for different values of T when

N = 1,M = 10000. You can compare them with figure 5.9 which is just the payoff value

since T = 0.
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Figure 5.4 MC and Improved MC N=1

Figure 5.5 MC and Improved MC N=10

Figure 5.6 MC and Improved MC N=100
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Figure 5.7 Improved Monte Carlo Result, T = 0.4 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.
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Figure 5.8 Improved Monte Carlo Result, T = 0.2 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.
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Figure 5.9 Option Value Result, T = 0 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.
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Figure 5.10 Improved Monte Carlo Option Value Result (in the money), K = 15.

r = 0.03;T = 0.2; ρ = 0.5;S1(0) = 100;S2(0) = 80.

Figure 5.11 Improved Monte Carlo Option Value Result (at the money), K = 20.

r = 0.03;T = 0.2; ρ = 0.5;S1(0) = 100;S2(0) = 80.
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Figure 5.12 Improved Monte Carlo Option Value Result (out of the money), K = 25.

r = 0.03;T = 0.2; ρ = 0.5;S1(0) = 100;S2(0) = 80.

Figure 5.10 is the option value for different value of volatilities σ1 and σ2 when the option is

in the money. Figure 5.11 is the option value when the option is at the money. Figure 5.12

is the option value when the option is out of the money.

Figure 5.13 is the option value for different values of the interest rate r and correlation

coefficient ρ when the option is in the money. Figure 5.14 is the option value when the

option is at the money. Figure 5.15 is the option value when the option is out of the money.

Figure 5.16 is the option value for different values of the strike price K and expire time T .
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Figure 5.13 Improved Monte Carlo Option Value Result (in the money), K = 15.

σ1 = 0.3;σ2 = 0.3;T = 0.2;S1(0) = 100;S2(0) = 80.

Figure 5.14 Improved Monte Carlo Option Value Result (at the money), K = 20.

σ1 = 0.3;σ2 = 0.3;T = 0.2;S1(0) = 100;S2(0) = 80.
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Figure 5.15 Improved Monte Carlo Option Value Result (out of the money), K = 25.

σ1 = 0.3;σ2 = 0.3;T = 0.2;S1(0) = 100;S2(0) = 80.

Figure 5.16 Improved Monte Carlo Option Value Result.

r = 0.03;σ1 = 0.3;σ2 = 0.3; ρ = 0.5;S1(0) = 100;S2(0) = 80.
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5.2 Density Function Method Numerical Computation

Recall from section 4.3, the Black-Scholes-Merton model:

dS1(t) = rS1(t)dt+ σ1S1(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2S2(t)dW2(t),

where r is the interest rate, σ1, σ2 are volatilities of the assets, and W1 and W2 are standard

Brownian motions with correlation coefficient ρ, i.e. EQ[dW1dW2] = ρdt. Suppose the Asian

style is for S1, the European style is for S2; then the payoff at time T for this Asian-European

spread option is

V (T ) = (
1

T

∫ T

0

S1(t)dt− S2(T )−K)+. (5.2.1)

The price of this Asian-European spread option at time 0 is therefore

V (0) = EQ[e−rTV (T )|F(0)]

= e−rT

∫ ∞

0

∫ ∞

s2+K

[a1 − (s2 +K)]f1|2(a1|s2)da1f2(s2)ds2

=:

∫ ∞

0

F (s2)f2(s2)ds2, (5.2.2)

where

F (s2) = e−r(T−t)

∫ ∞

s2+K

[a1 − (s2 +K)]f1|2(a1|s2)da1,

A1 =
1

T

∫ T

0

S1(u)du.
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f2(·) represents the density function of S2(T ) given the value of S2(0), which is a log-normal

density function, and f1|2(·|s2) is the conditional density function of A1 given the value of

S2(T ).

Then we use the fact that F (s2) is the price of the Asian call option on S1 with strike

price s2 +K. From Geman and Yor in [13]:

F (s2) =:
e−r(T−t)

T
(
4S1(t)

σ2
1|2

)C(ν)(h, q), (5.2.3)

where

ν =
2r

σ2
1|2
− 1; h =

σ2
1|2

4
(T − t); q =

σ2
1|2

4S1(t)
[(s2 +K)T −

∫ t

0

S1(u)du];

C(ν)(h, q) := EQ[(

∫ h

0

exp[2(Ws + νs)]ds− q)+].

By using that result the Laplace transform of C(ν)(h, q) with respect to the variable h is

∫ ∞

0

e−λhC(ν)(h, q)dh =

∫ 1/2q

0
e−xx(µ−ν)/2−2(1− 2qx)(µ+ν)/2+1dx

λ(λ− 2− 2ν)Γ((µ− ν)/2− 1)
,

where µ =
√

2λ+ ν2, Γ is the gamma function, and we can get the value of C(ν)(h, q) via

inverse Laplace transform.

The key difficulty here is this inverse Laplace transform. So here we need an efficient way to

numerically compute it with high accuracy. In [12], Fu, Madan and Wang compared several

methods to numerically compute this kind of Asian option price. Based on their comparison
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results and recommendation, we use the method of Euler and Post-Widder from [1] by Abate

and Whitt:

If f̂(λ) is the Laplace transform of f(y), then we can approximate f(y) by

f(y) ∼=
m∑

k=0

C(m, k)2−msn+k(y),

where

sn(y) =
eA/2

2y
Re{f̂(

A

2y
)}+

eA/2

y

n∑
k=1

(−1)kak(y)

ak(y) = Re{f̂(
A+ 2kπi

2y
)},

and C(m, k) = m!
k!(m−k)!

is the combination number; the choices of the constant m,n and A

are m = 11, n = 15 and A = 18.4. After we have the value of C(ν)(h, q), we plug it into

(5.2.3) to get F (s2), then use a Gauss-Legendre quadrature method in (5.2.2) to get the

price of this Asian-European spread option at time 0.

Tables 5.3 through 5.5 are some numerical results. In the tables, Vd is the Density Function

method result, VMC1 is the improved Monte Carlo method result with N = 1,M = 10000,

VMC2 is the improved Monte Carlo method result with N = 1,M = 50000, and VMC3 is the

improved Monte Carlo method result with N = 10,M = 10000. The time spent for Vd is

less than 2 seconds (which is similar to VMC1), for VMC2 is 6 seconds, and for VMC3 is 11

seconds. From the tables, the results from the Density Function method and the improved

Monte Carlo methods match very well. In most cases, the difference is less than 1 cent.
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ρ K Vd VMC1 VMC2 VMC3

r = 1.03

10 14.0766 14.0772 14.0787 14.0794

0.2 20 7.86881 7.87023 7.87020 7.87035

30 3.56675 3.56783 3.56774 3.56641

10 13.8506 13.8548 13.8548 13.8544

0.3 20 7.60510 7.60850 7.60788 7.60702

30 3.32650 3.33006 3.32891 3.32841

10 13.6139 13.6227 13.6208 13.6225

0.4 20 7.32801 7.33222 7.33387 7.33242

30 3.07605 3.07987 3.07866 3.07841

r = 1.06

10 13.7383 13.7387 13.7402 13.7411

0.2 20 7.67582 7.67721 7.67727 7.67748

30 3.48465 3.48580 3.48554 3.48438

10 13.5105 13.5146 13.5146 13.5143

0.3 20 7.41278 7.41607 7.41541 7.41464

30 3.24679 3.25053 3.24918 3.24853

10 13.2718 13.2804 13.2786 13.2802

0.4 20 7.13644 7.14038 7.14224 7.14043

30 2.99900 3.00278 3.00150 3.00132

r = 1.09

10 13.4061 13.4059 13.4075 13.4086

0.2 20 7.48637 7.48781 7.48788 7.48813

30 3.40391 3.40499 3.40480 3.40383

10 13.1762 13.1802 13.1802 13.1798

0.3 20 7.22407 7.22712 7.22668 7.22589

30 3.16846 3.17218 3.17081 3.17003

10 12.9356 12.9437 12.9422 12.9440

0.4 20 6.94857 6.95242 6.95436 6.95231

30 2.92336 2.92703 2.92583 2.92566

Table 5.3 Comparison of different methods(1).

S1(0) = 100, S2(0) = 80, T = 0.4year

σ1 = 0.2, σ2 = 0.4.
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σ2 K Vd VMC1 VMC2 VMC3

r = 1.03

10 11.1607 11.1663 11.1693 11.1727

0.2 20 4.87133 4.87479 4.87595 4.87592

30 1.53131 1.53089 1.53418 1.53098

10 12.4184 12.4290 12.4271 12.4262

0.3 20 6.23150 6.23482 6.23496 6.23381

30 2.42793 2.43177 2.43036 2.43057

10 14.0061 14.0168 14.0123 14.0154

0.4 20 7.86221 7.86605 7.86887 7.86740

30 3.64298 3.64442 3.64497 3.64344

r = 1.06

10 10.7871 10.7927 10.7955 10.7996

0.2 20 4.68736 4.69062 4.69184 4.69188

30 1.47254 1.47222 1.47532 1.47226

10 12.0657 12.0763 12.0744 12.0732

0.3 20 6.04313 6.04654 6.04635 6.04500

30 2.35638 2.36040 2.35875 2.35889

10 13.6676 13.6782 13.6735 13.6766

0.4 20 7.66916 7.67259 7.67565 7.67411

30 3.55928 3.56072 3.56107 3.55970

r = 1.09

10 10.4211 10.4265 10.4291 10.4339

0.2 20 4.50840 4.51129 4.51268 4.51295

30 1.41549 1.41545 1.41823 1.41558

10 11.7197 11.7305 11.7283 11.7268

0.3 20 5.85892 5.86205 5.86204 5.86001

30 2.28639 2.29082 2.28873 2.28870

10 13.3350 13.3448 13.3407 13.3435

0.4 20 7.47964 7.48278 7.48600 7.48415

30 3.47696 3.47847 3.47866 3.47708

Table 5.4 Comparison of different methods(2).

S1(0) = 100, S2(0) = 80, T = 0.4year

σ1 = 0.3, ρ = 0.3.
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σ1 K Vd VMC1 VMC2 VMC3

r = 1.03

10 12.1298 12.1326 12.1341 12.1357

0.2 20 5.77679 5.78026 5.77965 5.77991

30 1.96243 1.96439 1.96405 1.96351

10 12.4184 12.4290 12.4271 12.4262

0.3 20 6.23150 6.23482 6.23496 6.23381

30 2.42793 2.43177 2.43036 2.43057

10 12.9141 12.9264 12.9245 12.9250

0.4 20 6.94438 6.94508 6.94976 6.95039

30 3.14225 3.14081 3.14253 3.14051

r = 1.06

10 11.7723 11.7751 11.7765 11.7783

0.2 20 5.58982 5.59310 5.59266 5.59295

30 1.89850 1.90041 1.90006 1.89951

10 12.0657 12.0763 12.0744 12.0732

0.3 20 6.04313 6.04654 6.04635 6.04500

30 2.35638 2.36040 2.35875 2.35889

10 12.5685 12.5808 12.5787 12.5789

0.4 20 6.75394 6.75437 6.75912 6.75978

30 3.06105 3.05972 3.06142 3.05921

r = 1.09

10 11.4215 11.4240 11.4256 11.4273

0.2 20 5.40723 5.41057 5.41018 5.41019

30 1.83614 1.83805 1.83766 1.83733

10 11.7197 11.7305 11.7283 11.7268

0.3 20 5.85892 5.86205 5.86204 5.86001

30 2.28639 2.29082 2.28873 2.28870

10 12.2292 12.2411 12.2393 12.2394

0.4 20 6.56737 6.56782 6.57248 6.57328

30 2.98138 2.98013 2.98173 2.97947

Table 5.5 Comparison of different methods(3).

S1(0) = 100, S2(0) = 80, T = 0.4year

σ2 = 0.3, ρ = 0.3.
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Figure 5.17 Density Method Result, T = 0.4 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.
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Figure 5.18 Density Method Result, T = 0.2 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.
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Figure 5.19 Option Value Difference, T = 0.4 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.

Figure 5.20 Option Value Difference, T = 0.2 year.

r = 0.09;σ1 = 0.3;σ2 = 0.3; ρ = 0.3;K = 20.
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Figure 5.17, 5.18 are surface graphs of the Density Function method option price for different

values of T . Figure 5.19, 5.20 are the difference graphs of the Density Function method and

improved Monte Carlo method. From Figure 5.20, all the differences are less than 2 cents.

From Fig 5.19, most points’ difference is less than 2 cents, but there are some few positions

where the difference is between 2 to 4 cents. Notice that those are the values where the

option is deep in the money, i.e., in this case, S1(0) is really big and S2(0) is really small.

Actually, those in the money option are so “deep” that the moneyness index K
S1−S2

from

[15] is already less than 0.3 which is considered to be out of the plausible range commonly

encountered in practice.

If the Asian style is still for S1, the European style is still for S2, but the order of the

spread changes to S2− S1, then the payoff at time T for this Asian-European spread option

is

V (T ) = (S2(T )− 1

T

∫ T

0

S1(t)dt−K)+.

The price of this Asian-European spread option at time 0 is therefore

V (0) = EQ[e−rTV (T )|F(0)].

From section 4.4, we can numerically compute this value by

V (0) =

∫ ∞

−∞
dx

∫ ∞

0

dz

F (
1

T
(S1(0)

4

σ2
1

z))
1

z
exp(− 1

2z
(1 + exp(2x)))θex/z(τ)
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where

τ =
σ2

1T

4
, ν =

2(r − σ2
1/2)

σ2
1

,

θr(u) =
r

(2π3u)
1
2

exp(
π2

2u
)

∫ ∞

0

exp(−y2/2u) exp(−r(cosh y))(sinh y) sin(
πy

u
)dy,

F (a1) = e−r(T−t)[exp(µ2|1 +
1

2
σ2|1)N(d1(a1)) + (a1 +K)N(d2(a1))],

d1(a1) =
µ2|1 − log(a1 +K) + σ2

2|1

σ2|1
,

d2(a1) = d1(a1)− σ2|1,

µ2|1 = log(S2(0)) + (r − 1

2
σ2

2)T

+
ρσ2

σ1

(log(S1(T ))− (log(S1(0))− (r − 1

2
σ2

1)T )),

σ2|1 =
√

1− ρ2σ2

√
T .

Clearly this requires a painful computation. Now we propose another method to solve this

problem much easier.

Rename the payoff

V2(T ) := (S2(T )− 1

T

∫ T

0

S1(t)dt−K)+,

and define

W (T ) := S2(T )− 1

T

∫ T

0

S1(t)dt−K;
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then we have

W (T )− V2(T ) = min{S2(T )− 1

T

∫ T

0

S1(t)dt−K, 0}

= −(
1

T

∫ T

0

S1(t)dt− S2(T ) +K)+

=: −V1(T ).

So we obtain

V2(T ) = W (T ) + V1(T ).

From the linearity of conditional expectation, we have

V2(0) = EQ[e−rTV2(T )|F(0)]

= EQ[e−rT (W (T ) + V1(T ))|F(0)]

= EQ[e−rTW (T )|F(0)] + EQ[e−rTV1(T )|F(0)].

Notice that V1(T ) is just the payoff in (5.2.1) if we replace the strike price K by −K, so

EQ[e−rTV1(T )|F(0)] is the price of an Asian-European spread option of the previous form,

1
T

∫ T

0
S1(t)dt−S2(T ), with strike price −K which we can use the previous Density Function

method or the improved Monte Carlo method to numerically compute easily.
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As for EQ[e−rTW (T )|F(0)], we have

EQ[e−rTW (T )|F(0)] = EQ[e−rT (S2(T )− 1

T

∫ T

0

S1(t)dt−K)|F(0)]

= EQ[e−rTS2(T )|F(0)]− EQ[e−rT 1

T

∫ T

0

S1(t)dt|F(0)]− e−rTK

= e−rT{S2(0)erT − 1

T
S1(0)EQ[

∫ T

0

exp(σ1Ws + (r − σ2
1

2
)s)ds]−K}

= e−rT{S2(0)erT − 1

T
S1(0)

4

σ2
1

EQ[

∫ σ2
1
4

T

0

exp 2(Ws +
2

σ2
1

(r − σ2
1

2
)s)ds]−K}

= e−rT [S2(0)erT − S1(0)

rT
(erT − 1)−K].

Here we use Lemma 3.3.1 and the fact in [13]:

If we let

A
(γ)
t =

∫ t

0

exp[2(Ws + γs)]ds,

then its expectation is

E(A
(γ)
t ) =

1

2(γ + 1)
[exp(2(γ + 1)t)− 1].

So the price for the Asian-European spread option with payoff

V2(T ) = (S2(T )− 1

T

∫ T

0

S1(t)dt−K)+

at time 0 is

V2(0) = e−rT [S2(0)e
rT − S1(0)

rT
(erT − 1)−K] + V1(0)
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where V1(0) is the price of an Asian-European spread option of the previous form, 1
T

∫ T

0
S1(t)dt−

S2(T ), with strike price −K at time 0.

5.3 Asian Spread Option Numerical Computation

In section 3.4, we considered the following stochastic volatility model

dS1(t) = rS1(t)dt+ σ1

√
γ(t)dW1(t),

dS2(t) = rS2(t)dt+ σ2

√
γ(t)dW2(t),

dγ(t) = κ(µ− γ(t))dt+ σγ

√
γ(t)dWγ(t),

dY (t) = (S1(t)− S2(t))dt, (5.3.1)

where

E[dW1(t)dW2(t)] = ρdt,

E[dW1(t)dWγ(t)] = ρ1dt,

E[dW2(t)dWγ(t)] = ρ2dt.

And this is an affine diffusion model,

dXt = Θ(Xt)dt+ Σ(Xt)dw(t),
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where

Xt = (S1(t), S2(t), γ(t), Y (t))T ,

Θ(Xt) =



r 0 0 0

0 r 0 0

0 0 −κ 0

1 −1 0 0


Xt +



0

0

κµ

0


=: K1Xt +K0,

and

Σ(Xt) =



√
1− ρ2

1σ1

√
γ(t) 0 ρ1σ1

√
γ(t) 0

ρ−ρ1ρ2√
1−ρ2

1

σ2

√
γ(t)

√
1−ρ2

1−ρ2
2−ρ2+2ρ1ρ2ρ√
1−ρ2

1

σ2

√
γ(t) ρ2σ2

√
γ(t) 0

0 0 σγ

√
γ(t) 0

0 0 0 0


,

and w(t) = (w1(t), w2(t), w3(t), w4(t))
T is a standard 4-dimensional Brownian motion.

For the Asian spread price with strike price K under model (5.3.1), we have the following

result:

C(Xt, b,K, t, T ) = E(exp(−r(T − t))(b ·XT −K)+|F(t))

= E(exp(−r(T − t))(b ·XT −K)1b·XT≥K |F(t))

= G
(2)

b,−b,~0
(−K;Xt, t, T )−KG

(1)
~0,−b

(−K;Xt, t, T )

=
ψ2(b,~0, Xt, t, T )

2
− 1

π

∫ ∞

0

Im[ψ2(b,−ivb,Xt, t, T ) exp(ivK)]

v
dv

−Kψ1(~0, Xt, t, T )

2
+K

1

π

∫ ∞

0

Im[ψ1(−ivb,Xt, t, T ) exp(ivK)]

v
dv

(5.3.2)
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where b = (0, 0, 0, 1
T
)T . So we just need to numerically solve differential equations (3.4.5),

(3.4.6), (3.4.7) and (3.4.8) under corresponding boundary conditions to get characteristic

functions ψ1 and ψ2, then plug into (5.3.2) to get the Asian spread price C(Xt, b,K, t, T ).

We compare the numerical result with Monte Carlo simulation and find that the character-

istic function method result is satisfactory. Tables 5.6 and 5.7 show the numerical result of

Monte Carlo simulation. M is the total number of replications of sample path, and N is the

number of price reading per day. “Time” is the computation time with unit second. For the

case in table 5.6, the characteristic function method has value 5.34029 with computing time

3 seconds. For the case in table 3.7, the characteristic function method has value 5.84394

with computing time 3 seconds.

N=1 N=10 N=100

M Value Time M Value Time M Value Time

10000 5.29894 1 10000 5.28762 7 10000 5.24064 60

50000 5.32906 3 50000 5.35315 30 50000 5.36688 299

100000 5.33322 6 100000 5.34027 59 100000 5.35201 602

200000 5.33033 12 200000 5.34466 120 200000 5.33864 1197

500000 5.33538 31 500000 5.34445 300 500000 5.34428 2992

1000000 5.34076 61 1000000 5.34168 599 1000000 5.34171 5988

Table 5.6 Monte Carlo simulation results.

S1(0) = 100, S2(0) = 80, γ(0) = 400, K = 15, r = 0.05, κ = 1, µ = 400, T = 0.2year

σ1 = 0.5, σ2 = 1.0, σγ = 4, ρ = 0.5, ρ1 = −0.5, ρ2 = 0.25
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N=1 N=10 N=100

M Value Time M Value Time M Value Time

10000 5.70156 1 10000 5.76834 13 10000 5.79358 132

50000 5.82701 7 50000 5.80755 66 50000 5.83950 657

100000 5.83101 13 100000 5.82654 131 100000 5.85096 1314

200000 5.83442 26 200000 5.85004 263 200000 5.83733 2653

500000 5.84696 66 500000 5.83943 657 500000 5.84240 6558

1000000 5.84562 132 1000000 5.84914 1315 1000000 5.84095 13130

Table 5.7 Monte Carlo simulation results.

S1(0) = 100, S2(0) = 80, γ(0) = 400, K = 15, r = 0.05, κ = 1, µ = 400, T = 0.4year

σ1 = 0.5, σ2 = 1.0, σγ = 4, ρ = 0.5, ρ1 = −0.5, ρ2 = 0.25
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Chapter 6. Conclusion

Now we have a better understanding about Asian spread option and Asian-European spread

option pricing. For the Asian spread option pricing, under the Black-Scholes-Merton model,

we have the semi-analytic solution which contains triple integrals; or we can try to numeri-

cally solve partial differential equation under boundary conditions; under a special stochastic

volatility model, we have the analytic and numerically computable solution. For Asian-

European spread option pricing, under the Black-Scholes-Merton model, not only do we

have the similar semi-analytic solution and partial differential equation under the boundary

conditions as in the Asian spread option case, but also an improved Monte Carlo simula-

tion method and the numerical computation method for the semi-analytic solution. Both

numerical methods are efficient and accurate. Under the special stochastic volatility model,

we have the similar analytic and computable solution as well. We also established an easy

way to combine Asian-European spread option and European-Asian spread option pricing

problems together.

There are still many interesting questions for the future research about Asian spread op-

tion though. Here all the Asian spread options are actually European style, that is, you

need wait until the expire date to exercise. How about American style Asian spread option

or other strange style payoff options pricing?

We considered the Black-Scholes-Merton model and the special affine structure stochas-
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tic volatility model, but how about other stochastic models? In real markets, jump is a very

common behavior for underlying price, how about stochastic models containing jumps?

For the special affine structure stochastic volatility model, how can we efficiently calibrate

and estimate the ten parameters? Furthermore, in real energy and commodity markets,

many exotic options are traded over-the-counter which usually lack liquidity [2] [10]; this

will make usual statistical methods difficult to conduct. How to reflect this property in the

model setting?

Correlation structure is also an important issue. We made the assumption that the two

underlyings are constantly correlated. But here the underlying price is followed over a pe-

riod of time; it is quite natural to doubt this assumption. How can we describe the possible

changing correlation during this period of time and how will this affect the pricing problem?
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