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ABSTRACT

Asian Spread Option Pricing Models and Computation

Sijin Chen
Department of Mathematics

Doctor of Philosophy

In the commodity and energy markets, there are two kinds of risk that traders and an-
alysts are concerned a lot about: multiple underlying risk and average price risk. Spread
options, swaps and swaptions are widely used to hedge multiple underlying risks and Asian
(average price) options can deal with average price risk. But when those two risks are com-
bined together, then we need to consider Asian spread options and Asian-European spread
options for hedging purposes.

For an Asian or Asian-European spread call option, its payoff depends on the differ-
ence of two underlyings’ average price or of one average price and one final (at expiration)
price. Asian and Asian-European spread option pricing is challenging work. Even under
the basic assumption that each underlying price follows a log-normal distribution, the av-
erage price does not have a distribution with a simple form. In this dissertation, for the
first time, a systematic analysis of Asian spread option and Asian-European spread option
pricing is proposed, several original approaches for the Black-Scholes-Merton model and a
special stochastic volatility model are developed and some numerical computation tests are
conducted as well.

Keywords: Asian spread option, Asian-European spread option, option pricing, stochastic
volatility model, affine structure
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CHAPTER 1. INTRODUCTION

The ongoing subprime mortgage crisis which started in 2007 makes “risk” a very popular
word. There are all kinds of risk in the market, such as credit risk, business risk, operational
risk, basis risk and so on. Different markets may have different risks related to the market
structure. In the commodity and energy markets, there are two kinds of risk that traders

and analysts are concerned a lot about: multiple underlying risk and average price risk.

Multiple underlying risk arises from uncertainty of multiple underlyings in the market.
This is quite common in the energy markets. For example, for an energy company owning
natural gas fired power plants, they have the risk exposure not for the natural gas or power
price only but the spread of these two underlyings’ price. In most circumstances, natural gas
and power prices are highly correlated, so we need combine these two underlyings together

to quantify the risk.

Average price risk is related to the average underlying price. For example, many com-
modities and types of energy are delivered over a period of time, so the buyer and seller are
both exposed to the underlying price risk for this whole period. To continue with the energy
market example, if an energy company wants to sell its power in the day-ahead or day-of

market for one month, then it has risk exposure to the average daily power price for that



month. Also, for an energy company, average risk plays a very important role in long term

planning and analysis.

Commodity and energy markets are huge: according to BIS (-Bank of International Set-
tlements) statistics, only the notional value of OTC (-over-the-counter) commodity deriva-
tives contracts is $6.4 trillion in mid 2006; in the energy market, crude oil approaches $2
trillion in annual trade [2]. Because of the need to hedge risk, similarly to the way we buy car
insurance to protect from possible future accidents, traders in the market can buy options to
hedge the risk. An option, as a derivative, gives the holder the right but not the obligation
to buy or sell some particular asset at a previously agreed price in the future. Such a buy
right, is a call option; a sell right is a put option. The previously agreed price is the strike
price. Traders need to pay some amount of money to have such a right; this is called the
premium of the option and corresponds to the value of the option. For example, a utility
company can buy a call option on natural gas if it needs to buy a certain amount of gas
next summer but it has a concern that the price will be too high. Some people may think
trading derivatives equals speculation. One counter example will be for utility companies,
which are not allowed to speculate but, because of the huge exposure on market risk, still
need to trade a huge amount of different kinds of options to hedge the risk. People use
spread options, swaps and swaptions to hedge multiple underlying risk and Asian options
to deal with average price risk. But what if there is the combination of these two kinds of
risk? In this case, Asian spread options and Asian-FEuropean spread options will be ideal
ways to hedge it. The pricing problem is, given the nature of an option, which is a right in

the future, to determine the current “true” value when this option is transacted in the market.



Before we go through the technique of pricing Asian or Asian-European spread options,

let’s take a look at European spread options and Asian options.

A spread option is an option where the payoff is dependent on the difference between
two market variables. As Eydeland and Wolyniec point out in [10]: “It is impossible to
underestimate the significance of spread options in the energy markets. Practically every
energy asset and every structured deal has a spread option embedded in it.” For example,
there are crack spread options which consider the difference price of crude oil and the refiner-
ies; there are spark spread options which are about the difference price of electricity and the
power-generating fuel. In fact, for an energy company owning natural gas fired power plants,
the value for the power generation, from the financial point of view, is holding a spread call
option. When this energy company is making the decision about whether to use this plant
to generate power, it would like to see this spread option’s payoff at expiration whether it
ends up with in the money, which means it is economical to generate, or out of the money,

which means it is not economic to generate.

The payoff of an European spread option is maz{Se(T) — S1(T") — K, 0}, where T is the
expiration time, K is the strike price and S; and S are two underlyings in this option. The
first result about pricing European spread options came from Margrabe in [19] in 1978; he
gave the closed-form formula for underlyings that are forward contracts with K = 0 under
the classic Black-Scholes-Merton model. For nonzero strike price, at present there is no

simple closed-form formula but there are many ways to approximate the price of European



spread options under Black-Scholes-Merton models. For example Kirk in [18] absorbed strike
price into the second underlying’s price to use Margrabe’s formula and Pearson in [20] used
semi-analytical techniques to change the two-dimensional problem (double integrals) into a

one-dimensional problem (single integral). For other examples see [5], [15] and [21].

An Asian option is an option whose payoff depends on the average price, so it is also called
an average price option. For a fixed-strike arithmetic Asian call it has payoff maz{ % fOT S(t)dt—
K,0}; for a floating-strike Asian call it has payoff maxz{S(T) — + fOT S(t)dt,0}. As Wengler
mentions in [25], “Many energy contracts are European-type options but with strike prices
that are averages for a period. ( The averaging effect is so common that most energy op-

tions can be classified as Asian...)”.

Here we only discuss the fixed-strike Asian call since
it naturally leads to the Asian spread option. To my best knowledge, there is no analytic
solution about arithmetic average Asian options yet. The closest one is from Geman and
Yor in [13] where they obtained the semi-analytic solution under the Black-Scholes-Merton
model. Other valuable approaches include Monte Carlo simulation by Kemna and Vorst in
[17]; upper and lower bounds by Curran in [6] and Rogers and Shi in [22]; partial differential
equation by Vecer in [24] and Fouque and Han in [11]; Laplace transform by Fu and Madan

and Wang in [12]; and moment-matching method by Zhou and Wang in [27].

One may have the concern that right now in the market there are not many real Asian
spread options or Asian-European spread options being traded everyday, so what’s the point
for industry to care about them? Well, let’s use the European style power and natural gas

spread options as an example. Even for this usual spread option in the energy market, they



are OTC derivatives. They are not as liquid as stock options, so you may not be able to sell
deep “out of the money” calls, and actually no one in the market will be interested in buying
your cheap but almost useless options. But for an energy company owning natural gas fired
power plants, if the plant is old and not as efficient as the average plants in the market, as
we just discussed, this plant is like an “out of the money” spread call option. It still has
its value even if you can not “sell” it directly in the market. What you can do is build a
replicate portfolio using future and forward contracts of natural gas and power for this “out
of the money” spread option. Delta hedging will play an important role in this process, by
dynamically changing this portfolio based on natural gas and power market price changes;
this portfolio will help you to get the true value (premium) of the “out of the money” spread
option without trading it directly (you can’t do that). Understanding pricing spread options
is the basis of delta hedging it. This example can easily go to Asian spread options and

Asian-European spread options.

Another area closely related to option pricing is so called real option analysis (ROA) which
applies call and put option valuation techniques to valuate different business strategies. It
is an increasingly active topic extending to “real life” decision making under uncertainty,
especially for physical asset pricing. Right now in industry, more and more companies use
option pricing methods to help them make the optimal decision about some business which
may have nothing to do with derivative trading. From valuing a generation unit for a utility
company to deciding the investment amount of a certain project for updating a factory’s
facility, this kind of analysis actually need techniques for pricing Asian or Asian-European

spread options.



Asian and Asian-European spread option pricing is a challenging work. For an Asian or
Asian-European spread call with strike price K it has payoff max{ fOT[Sl (t)—Sa(t)]dt—K, 0}
or max{ 7 fOT S1(t)dt — So(T) — K, 0} respectively. Even under the basic assumption that for
each underlying price it follows a log-normal distribution, the average price does not have
a distribution of a simple form. And how about for some complicated stochastic volatility
model, what is the distribution for the average price? In this dissertation, for the first time,
a systematic analysis of Asian spread option and Asian-Furopean spread option pricing is
proposed. Several original approaches for the Black-Scholes-Merton model and a special
stochastic volatility model are developed and some numerical computation tests are con-
ducted as well. In Chapter 2, we review methodologies for pricing European spread options
and Asian options which will lead our approach later. Then the Asian spread option is
discussed in Chapter 3, and the Asian European spread option is discussed in Chapter 4.
Numerical computation tests for the proposed approaches are in Chapter 5. We conclude

with directions for future research in Chapter 6.



CHAPTER 2. BACKGROUND INFORMATION

2.1 EUROPEAN SPREAD OPTION

Here we consider a spread European call option with the payoff related to two underlying
assets’ price, S1,S5,. The payoff at maturity T of this option with strike value K is the

amount

max[(Se(T) — S1(T) — K),0].

So the pricing problem is to compute the expectation

V(t) = Egle" ™ Ymaz((S2(T) — Si(T) — K),0)|F(t)],0 < t < T, (2.1.1)

where Eg is the expectation under the risk neutral measure Q, and F(t) is the c—algebra

generated by the stochastic process S (t), Sa(t).

Consider the Black-Scholes-Merton model:

ds, = Sl[(T — (51)dt + UldW1]7

dSQ = Sg[(?" — (52)dt + O'QdWQ], (212)

where Wy, W, are standard Brownian motions with correlation coefficient p, r is the risk

free rate and d;, 9, are the instantaneous dividend yields. Then the solution of stochastic



differential equation (2.1.2) is log-normal. Letting s; := log(S;), by Ito’s formula, we have

1
d81 = (’I" - 51 - 50’%)dt+0‘1dWh

1
d82 = (?” — 62 — §O'§>dt + O'QdWQ.
By the independence of the Brownian motion increments W (T') — W (t) and F(t), we have

a(T) = si(t)+(r— 61 — %af)(T )+ o T 1) - wr

so(T) = 32(t)+(r—(52—%03)(T—t)+p02\/ZT—t)-wl—i—\/l—p202\/ZT—t)-w2

where wy,ws are independent standard normal random variables. So conditional on time ¢
value, (s1(T), so(T))T is a bivariate normally distributed random variable with mean y and

covariance matrix X where

si(t) + (r— 61 — toi)7 0T pO90aT
H= X =

So(t) + (r — 9y — %U%)T pPO20ST 05T

Let ¢(s1, s2) be the density function of a bivariate normal random variable with mean p and

covariance matrix ¥; we compute the spread option price (2.1.1) as

V() = e TIE(Su(T) - Si(T) - K)JIF()
= I B[[(er — e D) )] IF()

_ (@) / [ — e — K|T¢(s1, s2; 1, T)dsads.



Here we used Lemma 3.3.1, which is given in section 3.3. Since ¢ is known under this model,

V(t) can be computed numerically.

Because of the existence of the volatility smile [16], a better model was used to describe
the assets’ price Sy, Ss. In [15], Hong proposed a method based on [7] and [14] to compute

European spread options under the so called stochastic volatility model:

1 1

ds;, = (r—o,— éafu)dt + owv2dWy,
1 1

dss = (r—od9— Eagl/)dt + oov2dWs,

dv = k(p—v)dt+ o,vidW,, (2.1.3)
where

Eo[dWdWs] = pdt,
Eo[dWydW,] = pydt,

Eo[dWadW,] = padt.

For simplicity, we consider the time 0 spread call option price. The key idea of Hong’s

method is the following.



For any (ki, k2) € R?, we define

k’l,k’g = / / QT(Sl,SQ)d82d817
k1 ko

where ¢r(-,-) is the joint risk neutral density of s;(7") and s2(7") conditional on s1(0), s2(0)
and v(0). Thus we can use I1; (ky, k) for different values of kq, ko to give an approximation

of V(0). Applying the two dimensional Fourier transform to the following modified integral

m1(ky, k) = e Rtk L (k) ko), an, g > 0,

we obtain
X1(’017U2) = 7AT1(/‘€1,/‘€2)
= / / e kvl (K ko) dkady

_ / / (a1+w1 k14 (az+ivo)k / / QT<517 S2)d5’2d81dk}2dk1
—00 J—00 ko Jk1

s2 s1 . .
= / / (632 _ esl)QT<51, 82)/ / e a1+w1)k1+(a2+w2)k2dkzdk1d82d81

elaitivi)si+(az+ive)ss

N /_oo /_00(682 —ar(sy, s2) (o + ivy)(ag + ivg)

_ ¢r(v1 — ari, va — (ag + 1)i) — (v — (o + 1)i, v — asi) (2.1.4)

(g + 1v1) (g + iv3) ’

d82d81

10



where

¢r(ui,uz) = Eglexp(iuisi(T) + iuas2(T))|51(0), s2(0), v(0)]
/ / Z u151+u252) (81, 82)d82d81,

is the characteristic function of the joint risk neutral density of s;(7'), s2(T") conditional on

51(0), s2(0) and v(0).

So, as long as we know the characteristic function ¢r(uq,us), we can compute xi(vy, vs).
Then by using the two-dimensional inverse fast Fourier transform, we get the value for

Iy (K1, ka), hence V(0).

Now the question is how to find the characteristic function ¢r(u1,us) for the stochastic

volatility model (2.1.6).

Since model (2.1.6) is an affine structure model, by using the affine property (see section
3.4 later), the characteristic function has an exponential affine form. By solving a Riccati

ordinary equation, Hong obtained the closed-form expression for the characteristic function

¢T(U1,U2)i
or(ur,ug) = Eglexp(iugsi(T) + iugs2(T))|s1(0), s2(0), v(0)]
. 2¢(1 —e="")
- eXp[Z Z[Sj(o) + (T - 5])T] U + (20 — (0 — 7)(1 — B,QT)) ' V(O)
210 Nl Gl gg(l . e70T)) + (0 —)T], (2.1.5)

l/

11



where

1 )
¢ = —5[(0%1@ + Ugug + 2po109uqug) + Z(O’%ul + Ugug)],

Vo= Kk — i(pro1ug + paoaus)oy,,

0 = /v*—20%.

2.2  AsiaAN OPTION

Here we will introduce the Monte Carlo simulation method by Kemna and Vorst[17], then

the partial differential equation method from Vecer[24].

Under the Black-Scholes-Merton model, the underlying asset price satisfies the stochastic
differential equation

dS(t) = rS(t)dt + oS(t)dW (1)

where r is the interest rate, o is the volatility of the asset and W () is the standard Brownian

motion. The payoff at time T for this Asian call option is

V(T) = (% /OT S(t)dt — K)*.

Here

% /0 " s()at

12



is the arithmetic average of the asset price.

Since we can solve this stochastic differential equation, we can use standard Monte Carlo
simulation
a’h

S(t+h) = S(t)exp{rh—l—o\/_w— -

to update the asset price, where h is the step size and w is a standard normally distributed
random variable generated at each time step. As long as we get a whole sample path about
the asset price from time 0 to time 7', we can compute the arithmetic average % fOT S(t)dt
Hence we get the option payoff V(T fo t)dt — K)™ for this sample path. We need to
repeat this process to get enough sample paths, then the present value of the average payoff

of these sample paths will be a good approximation of the value of this Asian call option.

Because of the low accuracy and high computing price of the standard Monte Carlo sim-
ulation, Kemna and Vorst used the geometric average of S(t) as a control variable. At
first they approximated the geometric average by ( ) = (IT-, S(:))Y ™Y then they
substituted G(T') for the arithmetic average fo t)dt in the payoff. Since S(t) is log-
normally distributed, so is G(T'). They showed the mean and variance of log(G(T)) is

5(r — 30%)T + 1og(5(0)) and $0°T. So this kind of “geometric” payoff has a closed-form

13



expression. Hence the price of the Asian call option at time 0 is

VI0) = Bole"(5 [ Sttt = K)"17(0)

= B [ St - K)T — (G(T) = K)7IF(0)
b T Bol(G(T) — K)F(0)]

= TR [ St = K) = (G(T) = K)*1F(0)

+e e S(0)N(d) — KN(d — o\/;T)],

where N is the cumulative standard normal distribution function, and d and d* are defined

as

¢ = to-loyr
2 6
log(S(0)/K) + 5(r + %02)T‘

1
03T

Then the only part unknown is the difference of “arithmetic” and “geometric” payoff

B [ St = K) = (G(T) ~ K)IFO)

which is computed by the standard Monte Carlo simulation.
The other classic method to deal with the Asian option price problem is the partial dif-

ferential method. The basic method is using the Feynman-Kac theorem, see [23] for a good

reference.

14



Let Y (t) = f(f S(u)du be the running average of the asset price; then the payoff at time T is

V(T) = (% /OT S(t)dt — K = (=Y(T) — K)*.

There exists a function v(t,z,y) such that v(t,S(t),Y(t)) = Egle " 9(% fOT S(u)du —

K)T|F(t)] and that satisfies a partial differential equation
L 5 5
u(t, x,y) + revg(t, x,y) + xv,(t, x,y) + 50T Ve (t, 2,y) = 10(t, 2, Y)

and boundary conditions

o(t,0,y) = T (L —K)*, 0<t<TyeR

lim v(t,z,y) =0, 0<t<T,xz >0,

y——00

o(lzy) = (5 - K z20yek

Since this equation is not easy to solve, Vecer in [24] used a change of numeraire method to
simplify the equation.

Let

and introduce the new process

15



then we have

dY(t) = dl(e™"X(t)(e7"S(t)) 7]
= —oY ()dW(t) + oy(t)dW (t) + oY (t)dt — o>~ (t)dt

= a(y(t) =Y (£)(dW(t) — odt),

where

1
1) = — (1 — e (T,
v(t) 7ﬂT( e )

Here we use the changing measure method.

Letting

for all measurable set A € F, where Q is the original risk neutral measure and W(t) is a

Brownian motion under the new measure P. So we obtain

A

dY (t) = o(y(t) = Y (£))dW (t),

16



which shows Y'(¢) is a martingale under this new measure. Then for V(t),

V(t) = Bole @ 0(~ / S(u)du — )M F (1)

T
_ %EQ[Z(T)Y+(T)|~7:(75)]

= SOEY(T)|F (@)
By using the Feynman-Kac Theorem there exists a function g(¢,y) such that
g9(t, Y (t)) = Ep[Y ™ (T)|F(1)].

So the Asian call option price is

and this function g(t,y) satisfies the partial differential equation

1
9i(t,y) + 50" (1(1) = y) gy (t,y) =0, 0<t<Ty€R,

with boundary conditions

lim g(t,y) =0, 0<t<T,

Y——00

lim [g(t,y) —y] =0, 0<t<T,

Yy—oo

g(Ty)=y", yeR

17



After this transformation with the new process Y (¢), the number of the variables of the

partial differential equation is decreased by 1 which is much easier to compute numerically.

18



CHAPTER 3. ASIAN SPREAD OPTION

In this chapter, we will study pricing Asian spread option. In section 1, we introduce the
Asian spread option. In section 2 to 4, we present three different methods under two different

stochastic models for pricing the Asian spread option.

3.1 INTRODUCTION OF ASIAN SPREAD OPTION

The Asian spread option is an option about two assets’ price spread with an Asian style
payoff. So far there is no theoretical result on the Asian spread option. Part of the reason
is that we still have no very efficient way to deal with the Asian option. However, it is an
important problem in energy markets. Here we only consider the arithmetic average Asian
style and time 0 call option since geometric average Asian style is quite simple to deal with.
Suppose S1, Sy are the price of two assets; then the payoff for this Asian spread call option

with strike price K is
1 /7
max{ - / Si() — Ss(t)dt — K, 0.
0

Compared to the European spread option, the payoff of the Asian spread option contains

% /OT Sy(1) — Sa(t)dt

which is the average of the assets’ price difference. This average of the assets’ price difference

is the key source of difficulty for pricing.

19



For example, if Sy, Sy are under the Black-Scholes-Merton model, we know S1(7") and Sa(7T)
are log-normal given the value of S;(0), S2(0) , but fOT Sy (t)dt and fOT Sy(t)dt are not. Ac-
tually, in section 3.3, we will show how to price the Asian spread option with the density

function method.

As with the relationship between the European option and the European spread option,
the key difference between the Asian option and the Asian spread option is that there are
two assets involved in the pricing problem. Since under the same model, the Asian option
pricing problem already has one more dimension compared to European option, i.e., the
average price from payoff, all together, there are two more dimensions for the Asian spread
option compare to the European option. That means, instead of solving a 2 dimensional
stochastic differential equation of the Black-Sholes-Merton model on the European spread

option, we have 3 dimensions for the Asian spread option.

The following three sections discuss three different methods, under two different stochas-

tic models, to treat the pricing problem of the Asian spread option.

3.2 MARTINGALE APPROACH

In this section, we consider the Black-Scholes-Merton model and will use the martingale

approach to price the Asian spread options.

Consider a time 0 Asian spread call option of two assets whose price processes are the

20



solutions of the stochastic differential equations

dSl(t) = T‘Sl<t)dt + alSl(t)dWl(t),

ng (t) = ’I“Sg(t)dt + O'QSQ (t)de (t),

where r is the interest rate, 01,09 are volatilities of the assets, and W; and W5 are the
standard Brownian motions with correlation coefficient p, i.e., Eg[dW1dWs] = pdt. The

payoff at time 7" for this spread call option is

VIT) = (5 [ 1500 = Saftae = K"

Here

7 | 150 = sty

is the arithmetic average of the difference of two assets’ price.

Our approach is based on an idea from [23], where the Asian option was considered.

We start with the option price

V(t) = Bole " OV(T)|F(1)).
By multiplying by e~ to V (¢)

e "V(t) = Egle™ V(T)|F (1),
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we have e "V (t) is a martingale under the risk neutral measure Q. Define Y (¢) be the

average difference of the two assets’ price

Y(t) = /0 Sy (u) — Sa(u)du

ie.,

dY (t) = Sy (t)dt — So(t)dt.

Here is the very unique factor Y (¢) of Asian style option pricing. The reason we add this

additional stochastic process to the model is that the special payoff

VIT) = (5 | 1810 = Sufolat = K)" = (Y (1)~ K"

of the Asian spread option depends on Y (T') instead of Sy(7"), So(T). Since here Y'(t) itself
is not a Markov process, we use (S1(t), S2(t), Y (t)) together to constitute a 3-dimensional

Markov process.

Since V(T) = (3Y(T) — K)*, by the Feynman-Kac Theorem, there exists a function v,

such that

o1, $1(0), S50, V(1)) = Bale "0 (LY (T) ~ K)*IF()

= Bole"V(T)|F (1))

= V(.
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By the Ito formula, we have

d(e "w(t, Si(t), Sa(t), Y (t)))
= e "[—rvdt + vdt + vy, dS) + vV, dSs + v,dY
+%vx1x1d51d51 + %vmdszdsg + %vxmdSlng]
= e "[=rv+ v +rSi(t)ve, + rSa(t)ve, + (S1(t) — Sa2(t))v,
1

1
+§OfSl(t)20mm + 5035'2(75)2%”2 + 010251 (1) S (t) Vg 2, p)dt

_'_efrt<0,1 Sl (t)?)xl dWl (t) + 0'252 (t)?)x2 dW2 (t)) .

Since e~ "'V (t) is a martingale under Q, letting dt term equal 0, we get the partial differential

equation for the function v:

1 1
2 2 2.2
Vg + TT Vg, +TT204, + (21 — 22)vy, + 50121 Va1, + 50203 Vssa, + 0109pT1 L9V, 4y = TV, (3.2.1)

under the boundary conditions
U(T7 X1, T2, y) = (_ - K>+7

for 1,29 > 0,y € R;

lim o(t,x1,29,y) =0,

Y——00
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for 0 <t <T,x1,29 > 0; and

for 0 <t<T,yeR.

3.3 DENsITY FUNCTION METHOD

In the last section we changed the pricing problem to solving partial differential equation
(3.2.1). Because of the complicated form and the fact that there is no efficient way to sim-
plify it, it’s not easy to solve even numerically. In this section we’ll use the density function

method.

The density function method is quite natural: the price of option, V/(¢), is the conditional
expectation of payoff on F(t) which is a random variable that is F(t) measurable. If we
have the density function of this random variable, the pricing problem will be some integral
problem involving this density function as we reviewed about the European spread option

in section 2.1.

Consider the Black-Scholes-Merton model:

dSi(t) = rSy(t)dt + oSy (t)dW (¢),

dSs(t) = rSa(t)dt + 0285 (t) AW (t),
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where r is the interest rate, o1, oo are volatilities of the assets, and W; and W5 are standard

Brownian motions with correlation coefficient p, i.e., Eg[dWdWs]| = pdt.

For the European spread option, since the solutions of these stochastic differential equa-
tions follow a two dimensional log-normal distribution, so we can use the known density
function to compute European spread option value V' (¢). Similarly, in this section we try to

find out the density function of Y'(¢) to compute V().

We know the solution of this stochastic differential equation is a log bivariate normal vector
conditional on its value at time ¢; moreover, S;(T") is also a log-normal random variable

conditional on So(7T), Si(t) and Sy(t):

10g(S1(T) 51 (8),52.9:(1)) ~ N (a2, 03)9),

where

pis = 1og(S1(8)) + ( — 5oD)(T — 1)

+27 log($5(7)) ~ (l08(S2(1)) — (r — 303)(T ~ 1)),

2
Oz = \/1 — p2o VT —t.
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V(T) can be computed as follows:

VT) = (% / 15, (u) — Sa(w)]du — K)*

_ L ]du+;/t (S (1) — Sa(w)]du — K)*

T

L T L/ +
- ] (w)ldu — (K - % / 1S1(u) — Sa(w))du))

1 T N

? (uw)]du — K",

where

, 1
K = K - 27/0 (S () — Sa(w)du.

Here K' is determined by the price of Si, Sy from time 0 to ¢, so it is known at time ¢. So

from the solution of the stochastic differential equation, we have

VT) = (7 [ 15100 = Sa(wldu = K)*

= S0 [ explelile) + (/25

—%Sg(t) /0 ) exp(oaWa(s) + (r — 02/2)s)ds — K],

where

A

Wi(s) = Wit +s) = Wi(t),

fori =1,2,0 < s < T —t are both new Brownian motions independent of F(¢). Here we

need the following result.
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Lemma 3.3.1

Let (Q, Fy, P) be a probability space , F be a sub o-algebra of Fy, and X,Y be two
random variables with E|X| < oo, E|Y| < oo. Suppose X is measurable in F, Y is
independent of F, f(z,y) : R x R — R is measurable and FE|f(X,Y)| < oo. Then
E(f(X,Y)IF) = E(f(5,Y))|aex.

Proof:

Here we use five steps to prove the Lemma. we start with the case where the function f is
an indicator function, then the case for a product indicator function, the case for a simple
function and the case for a nonnegative measurable function and at last for the general mea-

surable function.

Step 1: Indicator function
Suppose A and B are measurable in R, ie., A € B(R) and B € B(R), {X € A} € F,
{Y € B} is independent of F, and f = 14.p; then

E(f(X,Y)F) = E(as(X,Y)|F)
= E(1a(X)15(Y)|F)

= LW(X)E(1(Y)) = B(f(2,Y))|x.
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Step 2: Product indicator function
Let f=3"" _, ¢mla,.xB.,, Where ¢, € R, A,, and B, are measurable in R, {X € A,,} € F,
and {Y € B,,} is independent of F; then the linearity of the conditional expectation and

the result for indicator functions gives

E(f(X.Y)|F) = Y E(cmla,xp.lF)

m=1

= > ewla, (X)E(1p,(Y)) = E(f(2,Y))]a=x.

Step 3: Simple function

Let f =>" _, ¢nly where J is a product measurable set in R x R.

Claim: E(1,(X,Y)|F) = E(1;(2,Y))|s=x-

If the claim is true, then by linearity of the conditional expectation, for f =>"" _ ¢;,1,, we
have E(f(X,Y)|F) = E(f(x,Y))lx.

To prove the claim, notice that if

7 = {J € BR) x BR)| E(1;(X, Y)|F) = E(Ly(,Y))ex},

then J is a A-system. Since by the result of indicator functions, all the sets of the form
A x B where A € B(R), B € B(R), i.e., B(R) x B(R), are in J, and B(R) x B(R) is a
m-system, then by Dynkin’s 7 — A\ theorem, o(B(R) x B(R)) € J.

Hence for f =" _, ¢l where J is a product measurable set in R x R, E(f(X,Y)|F) =

E(f(2,Y))|e=x-
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Step 4: Nonnegative measurable function

Suppose f > 0, and let f,(z,y) = ([2"f(x,y)]/2") An; then each f,(x,y) is a simple function,
such that f,(z,y) / f(x,y) as n — oo. Then by the Monotone Convergence theorem of the
conditional expectation and the result for simple functions we have

E(f(X,YV)|F) = lim E(fu(X,Y)|F)

n—oo

= nhjglo E(fn(xa Y))'ac:X

= E(f(:L‘? Y))|x:X-

Step 5: General measurable function
Write f = f* — f7; the conclusion is proved by the linearity of the conditional expectation

and the result for nonnegative functions.ll
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By Lemma 3.3.1, we can change the conditional expectation to the regular expectation

V(t) = Egle " V(T)|F(t)]

= E’Q[G_T(T_t){%Sl (t)/o . exp(oyWi(s) + (r — 02/2)s)ds
—55:0) [ eanloatVals) + (r = o /2)s)ds — K'Y (D)

— EQ[G_T(T_t){%Sl (t)/o i exp(oyWi(s) + (r — 02/2)s)ds
_%SQ(t)/O . exp(oaWa(s) + (r — 02/2)s)ds — K'} 7]

= €T(Tt)/0 /0 la1 — ag — K4 fij2(a1]az) fa(az)daiday

= 7T /OOO /OiK[al — (a2 + K)]f1|2(a1|a2>da1f2(a2)da2

_. /0 " Play) fo(as)das,

where

F(az) L= e_T(T_t)/ [0,1 — (CLQ +K)]f1|2(a1|a2)da1,
as+K
1 T
A = T/ S1(u)du,
0
1 T
Ay = T/ So(u)du.
0

f2(+), fi2(+|az) represent the density function of Ay and the conditional density function of

Aj given value of A, respectively.
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Note that F'(as) is the price of the Asian call option on S; with strike price as + K. There

is no closed form formula to compute Asian call option price. The best result we can use is

given by Geman and Yor in [13]:

e (@0 4G,
Flas) = S ()00 )

P
where
2r Ufp Uf|2 t
v O'%|2 ) h 4 ( t)? q 451 (t) [((,7/2 + ) /0 Sl (u)dU/L
h
CW(hq) = Egl / expl2(W, + vs)|ds — g)*].
0

By using that result, the Laplace transform of C*)(h,q) with respect to the variable h is

o0 120 _0 (u—w)/2— ,
/ MW, gy — Jo €T = 2q2) 0
0 ) AMA=2=20)((p—v)/2—1) ;

where = 2\ + 12, T' is the gamma function, and we can get the value of C®)(h, q) via

the inverse Laplace transform.

Now we turn to the question of finding V'(¢).
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Now

1 T
A2 == f/o SQ(U)dU
— %( /0 Sy(u)du + Sy(t) /O exp(a2W (s) + (r — 03/2)s)ds)
(T—t)o3

4

— %(/ﬂ S2(u)du+52(t)—2/0 ' exp(QW(s)—l—m_—i?/Q)s)ds)

03

= [ Satwtu+ $a0) A ) = Al )
let the density function of Ap_y,2/4 be f(-); then we have
Vi) = [ Pl fdu
Letting P( [ exp(2B;)ds € dz|B; = x) = a,(x, z)dz, Yor showed in [26] that
P(/T exp(2(Bs + vs))ds € dz|B; + v = ) = a,(x, 2)dz,
0

and

\/217T_T exp(—”g)aT(a:, 2) = %eXp(—%(l + exp(27)))0ce /- (7).
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so we can plug into (3.3.2) and obtain the option price V (¥)

V(t) = /00 dx/ooosz a’(z, z)
= /00 dm/oodz
%/OSQ du+5’2()42 ))%exp(—%(l+exp(2x)))96m/z(7'),
(3.3.2)
where
S o3 (T — ) y = 27 05/4) (7’—02/2)
4 7 o3
= ! ex 7T—2 ooex —y?/2u) exp(—r(cos sin sinﬂ .
0w) = iren5) [ ey 2u) explr(cosh)sinhy)sin )y

This is so far the best semi-analytic solution for pricing Asian spread options under Black-

Scholes-Merton model.
From (3.3.2), it’s quite clear that this semi-analytic solution is really difficult to compute

numerically. This is the basic Black-Scholes-Merton model, which shows the difficulty of the

Asian spread option pricing problem.
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3.4 (CHARACTERISTIC FUNCTION METHOD

In this section, based on Duffie, Pan and Singleton’s powerful result of Affine structure in
[8], and more general result from Duffie, Filipovic and Schachermayer in [9], we will propose

an analytic and computable result for an affine structure stochastic volatility model.

The stochastic model is

dSi(t) = rSy(t)dt + o1/7(t)dW (),

dSy(t) = rSy(t)dt + oo/~ (t)dWs (1),

dy(t) = k(p—y(1)dt + oy /(8)dWV,(2),

dY (t) = (Sy(t) — Sy(t))dt, (3.4.1)

where

E[dW,(t)dWs(t)] = pdt,
EldWi(t)dW,(t)] = pidt,

E[dWa(t)dW,(t)] = padt.

Taking the state vector X; = (Si(t), S2(t),y(t), Y (¢))T, this is an affine diffusion model,

dX, = O(X,)dt + L(X,)dw(t),
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where

r 0 0 O 0
0 r 0 O 0
@<Xt) = Xt—|— = KlXt+K0,
0 0 -k O KL
1 -1 0 0 0
\/1—P%01\/7(t) 0 p1o1y/7(t) 0
p—pip2 /) V/ 1=p2—p3—p>+2p1p2p m D0
Z(Xt) _ MO? 7( ) \/l—p% 02/ 7( ) P202/ 7( ) ’
0 0 o\/(t) 0
0 0 0 0

and w(t) = (wyi(t), wa(t), ws(t), wys(t))? is a standard 4-dimensional Brownian motion. In
this model, we call o11/7(t) and g2+/7(t) the volatility of S; and S5 respectively. The exis-
tence and uniqueness of the general regular affine process is proved by Duffie, Filipovic and

Schachermayer in [9].

Note that
0'% poioy  pro1o, 0
T Po10 o3 paoao, 0
Z(Xt)E(Xt) = V(t) = HW(t)
1010  P2020~ 03 0
0 0 0 0

The stochastic model (3.4.1) is similar to the stochastic volatility model (2.1.3). But here

S1,S9’s volatility is determined only by the process v(t) instead of v(t) and Sj,Ss. That
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means under this model, the volatility of S; and Sy have a constant ratio. This assumption
is quite reasonable since the spread option always involves two highly related assets. Also,

the same as model (2.1.3), model (3.4.1) can deal with the volatility smile problem.
The payoff of the Asian spread option with strike price c is

1
(TYT - C)+,

if we let b = (0,0,0, %)T, then the price of this Asian spread option at time 0 is

C(Xo,¢,0,T) = E(exp(—rT)(b- X7 —¢)T|F(0))
= FE(exp(—rT)(b- X1 — ¢)1p.x,>:|F(0)).

(3.4.2)

If we follow the similar approach in [8], define the “generalized expected present value”

functions by

GOy X t,T) = Blexp(—r(T —t)) exp(a - X (T))Lp.x(r)<y|F (1),

Ggl);,d(y;Xt’t7T) = E(exp(—r(T —t))(a- X(T)) exp(d - X7)1p.x(1)<y| F (1)),

where a € R*,b € R* and d € R*.

Then Asian spread option at time 0 is

C(X0,¢,0,T) = G (—¢;X0,0,T) — ¢GY (—¢; X0,0,7). (3.4.3)
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Also we define

r(u, X, 1, T) = E(exp(—r(T — 1)) exp(u - Xr)|F(t)),

where u = (u1, up, us, us)’ € C* and
¢2(Uu u, Xta L, T) - E(exp(—r(T - t))(’U ’ XT) exp(u ’ XT)lf(t»a

where v = (Ul,UQ,Ug,U4)T € R*. Here 9; and 1)y are called the “characteristic” function
and the “extended characteristic” function respectively. Then from [8], by using the inverse

Fourier transform, we have

C(Xo,¢,0,T) = G, (=i X0,0,T) = Gy (=¢; X0,0,T)

b,—b,0
B [¢2(b, 0,X,0,7) 1 /°° Im[i(b, —ivb, Xy, 0, T) exp(ivc)] "
B 2 T Jo v
B c[wl(O,X;,O,T) B l/ Im[zﬂl(—wb,Xz,O,T) exp(wc)]dv]‘ (3.4.4)
T Jo

So the Asian spread option pricing problem under model (3.4.1) becomes finding the “char-
acteristic” function and the “extended characteristic” function t; and . Since [8] and [9]
proved the general affine process characteristic functions property, for the special case model

(3.4.1), we have the corresponding results.

“Characteristic” function is obtained by

U (u, Xy, t,T) = exp(a(t, T,u) + B(t, T, u) - Xy),
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where G(t, T,u) =: B, = (ﬁt(l), 52),5§3),ﬁ§4))T,a(t,T, u) = «ay satisfy the following complex

ordinary differential equations

B
5
5P

(4)
t

r 0 0 1 0
Or 0 -1 1 0
- B3 ; . (3.4.5)
00 -k O Zi,j ﬁt Hl(imj)ﬁt]

00 0 O 0

d = r—ruB?, (3.4.6)

under the boundary conditions

ar = 0.
“Extended characteristic” function is obtained by

Po(v,u, Xy t, T) = by (u, Xy, t, T)(A(L, T, v,u) + B(t, T, v,u) - Xy),
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where B(t,T,v,u) =: B; = (B,@,Btm),Bt(g),Bfl))T,A(t,T,v,u) =: A, satisfy the following

complex ordinary differential equations

B
. B
Bt - .
BY
B
r 0 0 1 0
0Or 0 -1 0
= — B, — ‘ ' (3.4.7)
00 =k 0 >, 8 i, j) BY
00 0 O 0
A, = —kuB?, (3.4.8)
under the boundary condition
BT = v
AT - 0

To find the value of a4, §;, As, By, we need solve boundary value ordinary differential equa-
tions (3.4.5), (3.4.6), (3.4.7) and (3.4.8). We can only solve part of these differential equations

analytically and some of them need to be solved numerically.
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For u = (uq, ug, us, uy),

u
ﬁt(l) = wupexp(r(T —1t))+ %[GXP(T(T — 1)) — 1]
Uy
ﬁt@) = wugexp(r(T —1)) — 7[6XP(T(T —t)) —1]
BY = .
For 8,
31 = 5B + 487 + i, (3.4.9)
where
1
St — _503
@ = k- poio,BY = poro, 57
1
Py = —5[0%@(1)2 + 200102@5(1)@(2) + 03@(2)2]'

Equation (3.4.9) is a Riccati ordinary equation, and we can solve it numerically and then
solve (3.4.6) for oy numerically. Then we use the result of oy, §; to solve for A;, B;. In section

5.3, we present some numerical results for this method.
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CHAPTER 4. ASIAN-EUROPEAN SPREAD OPTION

In this chapter, we will focus on pricing the Asian-European spread options. In section 1,
we introduce the Asian-European spread option. In section 2, 3, 4, we use three different

methods under two different stochastic models to price Asian-European spread options.

4.1 INTRODUCTION OF ASIAN-EUROPEAN SPREAD OPTION

The Asian-European spread option is an option about two assets’ price spread with one side

Asian and the other side European style payoft.

Similar as Asian spread option we introduced in Chapter 3, here we only consider the arith-
metic average Asian style and time 0 call option. Suppose S, S are the price of two assets,
and we take Asian style payoff for Si; then the payoff for this Asian-European spread call

option with strike price K is
1 T
0

Although it seems this kind of spread option is less complicated than the Asian spread
option, it still contains the average of asset price % fOT S1(t)dt which will be the key difficulty

of pricing.
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4.2 MARTINGALE APPROACH

In this section, we start with the classic Black-Scholes-Merton model and use a martingale

approach to price Asian-European spread options.

Consider a time 0 Asian-European spread call option of two assets whose price processes

are the solutions of stochastic differential equations

dSl(t) = T‘Sl<t>dt + JlSl(t)dWl(t),

ng (t) = T‘Sg(t)dt + O'QSQ (t)de (t),

where r is the interest rate, 01,09 are volatilities of the assets, and W; and W5 are the
standard Brownian motions with correlation coefficient p, i.e. Eg[dWdWs] = pdt. Suppose

the Asian style is for S;. Two kinds of payoff at time T for this spread call option are

V(T) = (= /T Sy(#)dt — So(T) — K)*

or

In the payoff, % fOT Si(t)dt is the Asian style, the arithmetic average of the asset price Si;
So(T) is the European style payoff. So we call this spread option an Asian-European spread

option.

42



Consider the first of the two kinds of payoff at time 7™

V(T) = (% /OT Sy (t)dt — So(T) — K)™;

actually, the other payoff is very similar to this one. Let option price be
V(t) = Egle " OV(T)|F(1)],

Similar as the Asian spread option case, e "V (t) is a martingale under the risk neutral

measure Q. Let Y;(¢) be the average price of asset 1,
t
Yi(t) = Y (0) + / S (w)du
0

ie.,

dY;(t) = S, (t)dt.

The average price is the “trade mark” of Asian style options. As before, we add this addi-

tional stochastic process to the model because the payoff

V(T) = (%/0 Si(t)dt — So(T) — K)* = (%Yl(T) ~ Sy(T) — K)*

contains Y; (7). So we use (51(t), Sa(t), Y1(t)) together to constitute a 3-dimensional Markov

process.
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Since V(T') = (+Y1(T) — S5(T) — K) ™, by the Feynman-Kac Theorem, there exists a function

v, such that

v(t, Si(t), 52(1), Ya(t)) = E@[GT(T”(%K(T) — 5(T) = K)"|F(t)]

= Eole " "OV(T)|F(t)]

= V().
By the Ito formula, we have

d(e_rtv(tv Sh (t)v S2(t)’ 3/1(75)))

= e "[-rvdt + vdt + vy, dS) + v, dSs + vy, dY)
1 1 1
+§vx1x1d51d51 + §U$2x2d52d82 —f- valedsldSQ]
= e "[—rv+ v +rSi(t) vy, + 7S2(t) vy, + Si (t)vy,
1 2 2 1 2 2
+20'151(t) (o + 20252(t) Vrozo + Uldgsl(t)SQ(t)’lemp]dt

+€_Tt(01 Sl (t)"le dWl (t) + O'QSQ(t)UxQ dW2 (t)) .

Since e "V (t) is a martingale under Q, letting the dt term equal 0 we get a partial differential

equation for the function v:

1 1
2.2 2.2
U+ TV, + TV, + T1Vy, F SOTT Va0, + 05T Vg0, + 0102PT1 T2V, =170,  (4.2.1)

2 2

44



for 0 <t<T,z1,X5>0,y; € R,

with boundary conditions

U<T,$17$2;y1> = (2 — T2 — K)+7

for xy, 25 > 0,9, € R;

lim  o(t,z1,29,y1) =0,
Yy1——00

for 0 <t <T,x1,29 > 0; and

v(t,0,0,y1) = e_’"(T_t)(% - K)*,

for 0 <t < T. If the payoff is of the form

V(T) = (S5(T) — %/0 S\ (1)t — K,

then we have the same differential equation (4.2.1), under different boundary conditions
though:

U<T,$17$2;yl> = (x2 - % - K)+7

for x1,29 > 0,91 € R;

lim v(t, zq,29,91) =0,
Y1—00
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for 0 <t <T,x1,29 > 0; and

U(t7 Iy, 07 yl) = 07

for0<t<T,z; >0,y € R.

4.3 DENSITY FUNCTION METHOD

In this section we’ll use a density function method to price the Asian-European spread op-

tions.

Consider the Black-Scholes-Merton model:

dSi(t) = rSy(t)dt + oSy (£)dW (¢),

where r is the interest rate, 01,09 are the volatilities of the assets, and W; and W, are
standard Brownian motions with correlation coefficient p, i.e. Eg|dW1dWs] = pdt. Suppose

the Asian style is for S7; at first consider the payoff at time T for this spread call option is

V(T) = (%/0 S\ (1)dt — So(T) — K)*.

The solution of the stochastic differential equation (4.3.1) is a log bivariate normal vec-
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tor conditional on its value at time ¢; moreover, S1(T) is also a log-normal random variable

conditional on Sy(T"), S1(t) and Sy(t):

10g(S1(T)5,).52().8:(1)) ~ N (piaj2,0%j9),

where

i = log(Si(t)) + (r = 30T — )

pPo1

+, - (10g(S55(T)) = (log(Se(t)) — (r - %o%)(T —1))),

012 = \/1 —p20'1\/T—t.

V(T') can be computed as follows:

V(T) = (%/0 Sy (u)du — Sy(T) — K+

— (%/0 Sl(u)du—i-%/t Si(u)du — So(T) — K)*

_ (%/t Si(wdu = Su(1) ~ (5 = 7. [ Si(wydu)*

0

— (7 [ Sitwdu=5u1) - K",

where

/ 1 !
K :K—T/O S1(u)du.
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Here K’ is determined by the price of Sy from time 0 to ¢, so it is known at time ¢. So from

the solution of the stochastic differential equation, we have

V(T) = (%/0 Sy (u)du — Sy(T) — K+

= S0 [ eplotTals) + = ot/

—Ss(t) exp(JQWQ(S) + (r —03/2)s) — K'|*,

where

A

Wi(s) = Wit +s) — Wi(t),

fori =1,2,0 < s < T —t are both new Brownian motions independent of F(¢). Then by

the Lemma 3.3.1 we can change the conditional expectation to the regular expectation

V() = Bole " TOVT)|F()
= Bl L0 [ ool + - ot /2s)ds
—Sy(t) exp(2 V(o) + (r — 03/2)s) — K'HF(0)
= Bl L0 [ ealols) + - od/2s)ds
—55(8) exploaWals) + (r — 03/2)s) — K'}]
= @0 [ Mo s - Kl il o) dands
= [T o= (s Bt s s

=: /Ooo F(s2) f2(s2)ds2,
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where

F(Sg) _ e—r(T—t) /OO [al — (32 + K)]f1|2(a1|32)da1,

2+ K

1 T

Here f5() represents the density function of Sy(7T) given the value of Sy(t) which is a log-
normal density function, and fi2(-|s2) is the conditional density function of A; given the

value of Sy(7T).

Note that F'(ss) is the price of the Asian call option on S} with strike price sy + K. We use

the result from Geman and Yor in [13] again to get

Gir(Tit) 45, (t)
F(sg) = ( )C™¥(h, q),
T U%I2
where
I T ' .
V—@—l, h = T(T_t)v q_451(t)[(82+K>T_/0 S1(u)dul;
h
C(")(h, q) = E@[(/ exp2(W, + vs)]ds — q)"].
0

By using that result the Laplace transform of C®)(h, q) with respect to the variable & is

00 1/2¢ o (u—v)/2— ,
/ e MO (h, q)dh = Jy e g W22 (] — 9 ) ()24 iy,
0 ’ AA=2—-20)((p—v)/2—1) )
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where p = v/2\ + 12, and I is the gamma function, and we can get the value of C)(h, q)

via inverse Laplace transform.

If the payoff of this spread option is of the form

V(T) = (Sy(T) — %/0 S\ (1)dt — K)*,

we consider that Sy(7) is also a log-normal random variable conditional on S;(7") and

S1(t), Sa(t):

10g(52(T) 5, (.52(.8: (1)) ~ N (piapr, o),

where

po = 108(S5(1)) + (r — 30T~ 1

pPo2

+U—1(1og(Sl(T)) — (log(S1(t)) — (r — %0%)(T —1))),

021 = \/1 —pQUg\/T—t.
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In this case, we have the option price

V() = Eole ™ OV(T)|F()
= Egle T {Ss(t) exp(osWa(s) + (r — 03/2)s)
510 [ explontii(s) + 7~ o3 21ds — K'Y 7(0)
= Bole " TIS,(0) exploala(s) + (r — 03/2)s)
10 [ exploni(s) + - ot 21 — K'Y
_ /0 ) /0 52— a1 — Kl fop(selar) fular)dsaday
= e [0 iK[SQ ~ (ay + K] foa(szlardsa fu () da

= /OOO F(a1) fi(ar)day,

where

Fla) = e [ T [sa— (a1 + K] fop(selar)dss,

1+K

1 /T
A = T/o Sy (u)du.

Here fi(-) represents the density function of A;, and fy1(-|a;) is the conditional density
function of Sy(T") given the value of S;(7') which is a log-normal density function. Hence
F(ay) is the Black-Scholes-Merton price of a call option on Sy with strike price a; + K and
we have the closed form for it

Flar) = ¢TI expluap + 504 N(da(ar)) + (ar + K)N(dafan))],
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where

pop — log(ar + K) + o3
di(ar) = - 21

dg(a,l) = dl(al)—02|1.

Then we can use the density function of A; to find out V(¢).

1 T
A1 == T/O Sl(u)du

= /0 S1(w)du + S1(t) /0 exp(onW(s) + (r — 02/2)s)ds)

(T—t)o2
1 t 4 [ A Ar — o?/2)s
= f(/o S1(u)du + Sl(t)a_%/o exp(2W (s) + (U—%l/))ds)
1,/ 4
= ([ Si(w)du+51(t) 5 Aw1)53/4) = Ai(A).
0 01

If we let the density function of A(_y,2/4 be f(-), then we obtain

V() = /OOOF(Al(u))f(u)du

dzF(A;(2))a’(z, 2)

g

dx

|
g

h sz(Al(z))é exp!

o0

dz

—%(1 + exp(2(z + v7))))0eetvr 5 (T)

8

QU
8

\
8

Il
\w\

8%
— .

t

o

(1| Su(uddu+ 51(1) )~ exp(—5-(1 -+ exp(22)))es(7)

01

el
o\,.
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where

2
oo al(T—t)’
4
,
0.(u) = - exp(—
) = sy o

2(r — 0?/2)

) = ——M——

Y
ot

u) /000 exp(—y?/2u) exp(—r(coshy))(sinh ) sin(%y)dy.

4.4 (CHARACTERISTIC FUNCTION METHOD

In this section, we consider a similar affine structure stochastic volatility model as in section

3.4 to propose an analytic and computable result. Let’s assume the Asian style payoftf is for

Si.

The stochastic model is

dS, (t)
dSs(t)
dv(t)

dY (¢)

rSy(t)dt + oy \/y(t)dW, (1),
rSy(t)dt + oo/~ () dWs(t),

R = (1))t + o /Y () AW, (8),
Sy (t)dt,
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where

ElAW, (1)dW, (1)] = pdt,

E[dWy(t)dW, ()] = padt.

Taking the state vector X; = (S;(t), Sa(t),y(t), Y (¢))T, this is an affine diffusion model,

dX; = O(Xy)dt + X(X;)dw(t),

where
r 0 0 O 0
O r 0 O 0
@(Xt> = X, + = KX, + Ko,
00 —x O K
1 0 0 O 0
\/1—P%01\/7(t) 0 pio1y/(t) 0
‘0—_&&(7 t \/1—P%—p§—ﬂ2+2p1p2pa t o n O
(X)) = S 2/ v(t) N 2/ () p2 2V v(t) |
0 0 lop¥ v() 0
0 0 0 0

and w(t) = (wy(t), wao(t), ws(t), wy(t))” is a standard 4-dimensional Brownian motion.

this section, we call o11/7(t) and g94/7(t) the volatility of S; and Sy respectively.
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Note that

o? poi1os  p1o10, 0

T pPO109 0% p2020~ 0
B(X)E(Xy) = v(t) =: Hiv(1)

p1010y  pao20,  0F 0

0 0 0 0

Here we need the same assumption that the volatilities of 57, .55 are determined only by the

process Y(t) as we discussed in section 3.4.

Then under this model, fixing T' € [0, 00), Duffie’s “characteristic” function is

1(u, Xy, t, T) = E(exp(—r(T —1t))exp(u- X7)|F(t))

— exp(a(t, T, U) + ﬂ(t, T, U) : Xt)7
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where u = (uy, Uz, uz, uq)’ € C*,and B(t,T,u) =: B; = (ﬁt(l), 52),@(3),@(4))T, alt,T,u) =: a

satisfy the following complex ordinary differential equations

8
3
3
By

r 0 0 1 0

Or 0 O 1 0

2 i RN
00 —k 0 > B H (G, 5) 3
00 0 0 0

dt - T_/fﬂﬁgg)a

under the boundary condition

OéTZO.

For the “extended characteristic” function, we have

o(v,u, Xy, t, T) = E(exp(—r(T —1t))(v- Xr)exp(u- X7)|F(t))

= 1(u, Xy, t, T)(A(t, T,v,u) + B(t, T,v,u) - X3),

o6



where v = (v, vo,v3,v4)T € RY, and B(t,T,v,u) =: B; = (Bt(l), B® B®), Bt(4))T, A(t, T,v,u) =:

Ay satisfy the following complex ordinary differential equations

B
. BY?
Bt - .
BY
B
r 0 0 1 0
0Or 0 0 0
= - By — . 4
0 0 —k O Z%Jﬁt(l)Hluaj)Bt(j)
00 0 O 0
At = _I{MBt(g)v
under the boundary condition
BT = v
AT - 0

These differential equations are a little bit different from the ones in section 3.4; also we can

solve part of them numerically.

As long as we have these “characteristic functions”, we can get the “generalized expected
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present value” functions by

Gobly; X, t,T) = E(exp(—r(T —t)) exp(a - X(T))Lpxn<y|F (1),

GOy X t,T) = Blexp(—r(T —t))(a- X(T)) exp(d - X7)Lp.x(r)<y| F (L)),

where a € R*b € R* and d € R*.
Note that the payoff of the Asian-European spread option with strike price ¢ is of the form

(b ' XT - C)+7

where b = (0, 1,0, 7)” for the payoff

and b= (0, 1,0, —%)T for the payoff

V(T) = (SQ(T)—%/O S\ (1)t — o).

So we can compute the value of the function

C(Xo,b,c,0,T) = E(exp(—rT)(b- Xt — c)"|F(0))

= Eexp(—rT)(b- X1 — c)Lp.x,>¢|F(0))
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Recall section 3.4 for the way of computing G, G® when the “characteristic” functions

1, 19 are given:

GOy X, 1, T) = Yi(a, Xe, t,T) 1 /°° Imy(a+ ivb, Xy, t,T) exp(—ivy)]dv
’ 2 T Jo v
d, X, t,T 1[I d +ivb, X3, t, T —1
G,(fl))d(y;Xt,t,T) _ ’sz((l, 72 ty by ) . _/ m[¢2(a7 + 1wb, Xy, t, )eXp( wy)]dv.
e 7 Jo v
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CHAPTER 5. NUMERICAL COMPUTATIONS

In this chapter, we show the numerical results of pricing based on the methods introduced in
previous chapters. In section 1, we discuss the Monte Carlo simulation method result used
in pricing Asian-European spread options. In section 2, we implement the density function
method to compute the Asian-European spread option based on section 2.3. In section
3, we implement the characteristic function method to price Asian spread options under a
stochastic volatility model based on section 3.4. All the code is written in Visual C++ and

the computations are conducted on an Intel Pentium 4 2.40 GHz CPU with 768 MB RAM.

5.1 MONTE CARLO SIMULATION METHOD

In this section, general Monte Carlo simulation is used to price Asian-European spread

options under the Black-Scholes-Merton model:

dSi(t) = rSy(t)dt + oSy (H)dW (¢),

where 7 is the interest rate, o1, oo are volatilities of the assets, and W7 and W5 are standard
Brownian motions with correlation coeflicient p, i.e. Eg[dW1dWs] = pdt. Suppose the Asian

style is for Sy; at first consider the payoff at time T for this spread call option is

V(T) = (%/g S\ (8)dt — So(T) — K)*.
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This option price at time 0 is therefore
V(0) = Egle™"V(T)|F(0)].

Researchers have employed Monte Carlo simulation methods in single asset Asian option

pricing, see [3],[4],[12] and [17].

The solution of equation (5.1.1) is log-normal, that is, letting s;(¢) := log(S;(¢)) for i = 1,2,

we have

1
dsi(t) = (r — éaf)dt + o dWy (1),

1
dSQ(t) = (7’ — 50'%)(# + UQdWQ(t),

and hence

7

for i = 1,2. By the independence of the Brownian motion increments W (7') — W (t) and

F(t), given the value s1(t), sa(t), we have

s(T) = u(t) + 2(t) - w (5.1.2)
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where

s1(t) + (r — 500)(T = t)

pult) = )
so(t) + (r — 303) (T — 1)
01 T—1t 0

Z(t) — I
poo/ T —t \/1 — ploo/T —t

w = o ,

Wa

and s(T) = (s1(T),s2(T))T, wy,wy are independent standard normal random variables. So

based on (5.1.2), we use

2p,
Sit+h) = Si(t)explrh+onhw — ‘%

2h
Sy(t+h) = So(t) exp{rh + ooV hpw, + coVh/1 — pPw, — %}

to update the assets’ price.

Table 5.1 shows the numerical result of Monte Carlo simulation. M is the total number
of replications of sample path, N is the number of price reading per day. “Time” is the
computation time with unit second.

Full results are shown in figure 5.1. Since when M = 10000, the result value is too far away
from the “converged value”, figure 5.2, which has the results for M > 50000, gives a clearer

picture.
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N=1 N=10 N=100
M Value | Time M Value | Time M Value | Time
10000 | 13.2842 1 10000 | 13.2260 | 10 10000 | 13.0188 | 94
50000 | 13.1763 5 50000 | 13.1594 | 47 50000 | 13.2095 | 468
100000 | 13.1866 | 10 100000 | 13.1428 | 93 100000 | 13.2045 | 937
200000 | 13.1862 | 18 200000 | 13.1918 | 188 | 200000 | 13.1895 | 1864
500000 | 13.1773 | 47 500000 | 13.1892 | 468 | 500000 | 13.1932 | 4678
1000000 | 13.1810 | 95 | 1000000 | 13.1932 | 1048 | 1000000 | 13.1896 | 9707
Table 5.1 Monte Carlo simulation results.
S1(0) =100, S52(0) = 80, K = 10,T = 0.4year
r=0.09,001 =0.2,00=04,p=0.3
g B —w —ne1
% = —

1315

200000

400060

Value of M

600300

BGOO0D

|
1006300

== N=100

Figure 5.1 Full result
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1391
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- \
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= ’-_.__ et - —
= 1319 - Qe -"---—..._._._.-—-"""'- — —
2 —B—N=10
B
o i NZ100

1318 +

1217

13116

13.15

1314 -+

Value:of M
1313
b} 200000 400000 500000 800000 1000000

Figure 5.2 M>50000 result

From the table and the graph, it is easy to see the result has not converged very well. For
N =1, i.e. one reading data daily case, even one million sample paths gives the result
13.1810 which is 1 cent away from the result 13.1932 when daily data reading frequency is
10 and the number of sample paths is one million and the result 13.1896 when daily data
reading frequency is 100 and the number of sample paths is one million. In other words,
the variation of the Monte Carlo simulation is too big to converge quickly. Besides, the
computation time cost is expensive. From table 5.1, to get within 1 cent, the simulation
result at least needs N = 10 and M = 200000, i.e. 10 daily data reading frequency and

200000 sample paths which need computation time about 200 seconds.

Actually, this is not a strange result. In [17], Kemna and Vorst got a similar result when

using Monte Carlo simulation for pricing an Asian option of a single asset. Now that we are
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dealing with Asian-European spread option about two assets, it’s natural to find the volatile
property of the Monte Carlo simulation result. Also in [17], Kemna and Vorst applied a
variance reduction method to solve this volatile problem. They used the geometric average
of the stock price as a control variable to reduce the variance of the Monte Carlo simula-
tion. Here, for the first time, we use the geometric average of S; as a control variable to get

a much better Monte Carlo simulation method for pricing the Asian-European spread option.

Under the Black-Scholes-Merton model (5.1.1), Asian-European spread option pricing is

to find the value of conditional expectation

VI0) = Bale (5. [ Sultyit = Su(T) ~ K) | F(0)]

0

Then we have

T

Si(t)dt — S5(T) = K)|F(0)]

T

Si(t S(T) — K)© = (G(T) = S(T) — K)*|F(0)]

+e T EQ[(G(T) — So(T) — K)*|F(0)]

V(0) = Egle(

HIH -

NN

— —T‘TE

where G(T) is the geometric average of S and is approximated by ([, Si(t:))Y @Y.
Since G(T) is lower than %fOT Sy(t)dt, e T Eg[(G(T) — So(T) — K)*|F(0)] is therefore
a lower bound of the Asian-European spread option price and we name it Vi (0). Fur-
thermore, this lower bound is actually a price of a European spread option which can be

computed efficiently. So we just need to use Monte Carlo simulation to find the value of
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e T Eg[(+ fOT Si(t)dt — So(T) — K)" — (G(T) — So(T) — K)T|F(0)], which is the difference
of the Asian-European spread option price and its lower bound V(0), then add it to the the

lower bound value to get the Asian-European spread option value.

For the value of lower bound V(0), we obtain

Va(0) = e Eg[(G(T) — Su(T) — K)*|F(0)]

= TT/ / g — S9 — fl 2(g,52)dgds,

_ T / / g — 52— KT* fuplglsa) fo(s2)dgds,
_ rT/ /82+K (52 + K)]f112(g]s2)dg fo(s2)dso
_. /0 F(55) fa(52)dsa, (5.1.3)

where

Flss) i= e / o= (52 ) fup(glsa)dg,

2+ K
f12(+,+) is the joint density function of G(T") and Sy(7") conditional on S;(0) and S»(0); fa()
represents the density function of Sy(7") given the value of Sy(t) which is a known log-normal
density function. fi2(:|sz) is the conditional density function of G' given value of S, which is
also a known log-normal density function. Note that F'(sy) is a European option value with
strike price s; + K for the geometric average of S; as the underlying. So we can easily use

the Black-Scholes formula to find the value of F'(sq) (this value is a function of ss).

First, conditional on Sy(T"), In S1(T") is normally distributed with mean and standard devi-
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ation

Then we have

F(sa) = e fexplyic + 502)N(dr) = KaN(d: — o)

where

= InS;(0 2 _ 1
po = MSi0) + (r+ UZT )3
1 _ 2
oq = 3p o1 T
KG = K—}—Sg

e —In Kg + %aé
d, = .

oG

N(-) is the cumulative distribution function of the standard normal. See [10] and [17] for
the detail of geometric average Asian options. At last we use Gauss-Legendre quadrature

method to approximate the value of the righthand side of (5.1.3).
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N=1 N=10 N=100
M Value | Time M Value | Time M Value | Time
10000 | 13.1813 1 10000 | 13.1801 | 11 10000 | 13.1783 | 113
50000 | 13.1801 6 50000 | 13.1799 | 57 50000 | 13.1795 | 554
100000 | 13.1799 | 11 100000 | 13.1799 | 115 | 100000 | 13.1796 | 965
200000 | 13.1803 | 23 200000 | 13.1797 | 225 | 200000 | 13.1795 | 1953
500000 | 13.1803 | 57 500000 | 13.1796 | 486 | 500000 | 13.1796 | 4822
1000000 | 13.1806 | 113 | 1000000 | 13.1798 | 975 | 1000000 | 13.1797 | 9320

Table 5.2 Improved Monte Carlo simulation results.

$1(0) = 100, S5(0) = 80, K = 10, T = 0.4year

Option Value

r=0.09,0, = 02,05 = 0.4, p = 0.3

131815

13181

131805 -

131795 4

131479 -

31785

13478 +

0 500000

Value of M

1000000

1500000

Figure 5.3 Improved Monte Carlo Result
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Full numerical results of this improved Monte Carlo simulation is in Table 5.2.

The graph of table 5.2 is figure 5.3. This improved Monte Carlo method converges so well
that all the results’ difference is less than 1 cent. Notice that this value, 13.18, is 1 cent away
from the original Monte Carlo simulation result, 13.19. Later you will see 13.18 will match

the result computed by the density function method in section 5.2.

The comparison of the original Monte Carlo simulation and the improved Reduced Vari-
ance Monte Carlo simulation is in figure 5.4, figure 5.5 and figure 5.6. It’s clear that the
improved Monte Carlo method is much more efficient and accurate than the original one.
Figure 5.7 and 5.8 are the surface graph of option price for different values of 7" when
N = 1,M = 10000. You can compare them with figure 5.9 which is just the payoff value

since T = 0.

—t—N=1,MCAY

== N=1,MC

Option Value

1322 -

132 1

1318 iy \F-——-

1316

o 300000 1000000 1500000

value of M
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Figure 5.4 MC and Improved MC N=1

Option Value

13.24

1323

13.22 -

1323

1319

13.18:

1317

13.16

13.15

1314

1313

=10, MERY

. — wefli=N=10,MC

4.

} '
00000 1000000 1300000

Value of M

Figure 5.5 MC and Improved MC N=10

Option Value

13.1z2

i31

13:08

13.06

Q) et

e N=10G, MERV

== N=100,MC

00000 1000000 1300000

Value of M

Figure 5.6 MC and Improved MC N=100
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Option Vilus of MC Method

70

5.7 Improved Monte Carlo Result, 7' = 0.4 year.

Figure

K =20.

)

0.3

Y

g1 = 0.3

.09;

=0

r
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M Method

Cipticn Yalue of

Figure 5.8 Improved Monte Carlo Result, T'= 0.2 year.

;p=0.3; K = 20.

09 = 0.3

I

g1 = 0.3

Y

r=0.09
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T =0 year.

Figure 5.9 Option Value Result,

= 20.
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S Sigmal

Figure 5.10 Improved Monte Carlo Option Value Result (in the money), K = 15.
r=0.03;T = 0.2; p = 0.5; 51(0) = 100; S2(0) = 80.

Sigma2

Sigmat

Figure 5.11 Improved Monte Carlo Option Value Result (at the money), K = 20.

r=0.03;T = 0.2; p = 0.5;.5,(0) = 100; S5(0) = 80.
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Siama2

Sigmat

Figure 5.12 Improved Monte Carlo Option Value Result (out of the money), K = 25.

r=0.03;T = 0.2; p = 0.5; 51(0) = 100; S2(0) = 80.

Figure 5.10 is the option value for different value of volatilities ; and o5 when the option is
in the money. Figure 5.11 is the option value when the option is at the money. Figure 5.12
is the option value when the option is out of the money.

Figure 5.13 is the option value for different values of the interest rate r and correlation
coefficient p when the option is in the money. Figure 5.14 is the option value when the
option is at the money. Figure 5.15 is the option value when the option is out of the money.

Figure 5.16 is the option value for different values of the strike price K and expire time 7.
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Option Valua

Figure 5.13 Improved Monte Carlo Option Value Result (in the money), K = 15.
o1 =0.3;00 =0.3;7 = 0.2; 51(0) = 100; S5(0) = 80.

Figure 5.14 Improved Monte Carlo Option Value Result (at the money), K = 20.
o1 = 0.3; 05 = 0.3:; T = 0.2; 5,(0) = 100; Sx(0) = 80.
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Figure 5.15 Improved Monte Carlo Option Value Result (out of the money), K = 25.
o1 =0.3;00=0.3;7 = 0.2; 51(0) = 100; S(0) = 80.

Figure 5.16 Improved Monte Carlo Option Value Result.
r =0.03;01 = 0.3;00 = 0.3; p = 0.5; 51(0) = 100; S5(0) = 80.
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5.2 DENSITY FuNcTION METHOD NUMERICAL COMPUTATION

Recall from section 4.3, the Black-Scholes-Merton model:

dSi(t) = rSy(t)dt + oSy (£)dWy (¢),

d52 (t) = TSQ(t)dt + 0'252 (t)dWQ (t),

where 7 is the interest rate, oq, oo are volatilities of the assets, and W7 and W, are standard
Brownian motions with correlation coefficient p, i.e. Eg[dW1dWs] = pdt. Suppose the Asian

style is for S, the European style is for Ss; then the payoff at time T for this Asian-European

spread option is

V(T) = (% /OT S\ (1)dt — So(T) — K)* (5.2.1)

The price of this Asian-European spread option at time 0 is therefore

V(0) = Egle"V(T)|F(0)]

= 7 /000 /OiK[al — (82 + K)| fi2(a1]s2)day f2(s2)ds:
= /Ooo F(SQ)fQ(SQ)dSQ, (522)

where

F(sy) = er(Tt)/ lar — (52 + K)]f1|2(@1’52)d01>
so+ K

1 T
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fa(+) represents the density function of Sy(7) given the value of S5(0), which is a log-normal
density function, and fi2(-|s2) is the conditional density function of A; given the value of

So(T).

Then we use the fact that F'(sg) is the price of the Asian call option on S; with strike

price s + K. From Geman and Yor in [13]:

e m(T=1) 48 (¢
F(s2) = ——( 2())0(”)(71,61), (5.2.3)
P
where
T . o ' .
V_gp_l’ h = T(T_t)v (J—4sl(t)[(82+K)T—/oSl(u)du],
h
CW(hq) = Byl / expl2(W, + vs)|ds — g)*].
0

By using that result the Laplace transform of C™)(h, q) with respect to the variable h is

o0 124 o (ues)/2 V
/ e M CW(h, q)dh = Jo e a2 (1 — 2qa) W2 d
’ | AA=2=2)((n—v)/2-1) ~

where p = v2A + 12, T is the gamma function, and we can get the value of C®)(h,q) via

inverse Laplace transform.

The key difficulty here is this inverse Laplace transform. So here we need an efficient way to
numerically compute it with high accuracy. In [12], Fu, Madan and Wang compared several

methods to numerically compute this kind of Asian option price. Based on their comparison
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results and recommendation, we use the method of Euler and Post-Widder from [1] by Abate
and Whitt:

If f (\) is the Laplace transform of f(y), then we can approximate f(y) by

g Z O 3n+k’(y)7

k=0
where
A2
sn(y) = —Re{f( It ;(—U’“ak(y)
aly) = R(FE 5"””)}7
and C(m, k) = L), is the combination number; the choices of the constant m,n and A

are m = 11,n = 15 and A = 18.4. After we have the value of C)(h,q), we plug it into
(5.2.3) to get F(sz), then use a Gauss-Legendre quadrature method in (5.2.2) to get the

price of this Asian-European spread option at time 0.

Tables 5.3 through 5.5 are some numerical results. In the tables, V; is the Density Function
method result, Ve is the improved Monte Carlo method result with N = 1, M = 10000,
Vmes is the improved Monte Carlo method result with N = 1, M = 50000, and V¢35 is the
improved Monte Carlo method result with N = 10, M = 10000. The time spent for Vj is
less than 2 seconds (which is similar to Viysc1), for Voo is 6 seconds, and for Vyses is 11
seconds. From the tables, the results from the Density Function method and the improved

Monte Carlo methods match very well. In most cases, the difference is less than 1 cent.
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p

K

Va

Ve

Ve

Vies

r =1.03

0.2

10
20
30

14.0766
7.86881
3.56675

14.0772
7.87023
3.56783

14.0787
7.87020
3.56774

14.0794
7.87035
3.56641

0.3

10
20
30

13.8506
7.60510
3.32650

13.8548
7.60850
3.33006

13.8548
7.60788
3.32891

13.8544
7.60702
3.32841

0.4

10
20
30

13.6139
7.32801
3.07605

13.6227
7.33222
3.07987

13.6208
7.33387
3.07866

13.6225
7.33242
3.07841

r =1.06

0.2

10
20
30

13.7383
7.67582
3.48465

13.7387
7.67721
3.48580

13.7402
7.67727
3.48554

13.7411
7.67748
3.48438

0.3

10
20
30

13.5105
7.41278
3.24679

13.5146
7.41607
3.25053

13.5146
7.41541
3.24918

13.5143
7.41464
3.24853

0.4

10
20
30

13.2718
7.13644
2.99900

13.2804
7.14038
3.00278

13.2786
7.14224
3.00150

13.2802
7.14043
3.00132

r=1.09

0.2

10
20
30

13.4061
7.48637
3.40391

13.4059
7.48781
3.40499

13.4075
7.48788
3.40480

13.4086
7.48813
3.40383

0.3

10
20
30

13.1762
7.22407
3.16846

13.1802
7.22712
3.17218

13.1802
7.22668
3.17081

13.1798
7.22589
3.17003

0.4

10
20
30

12.9356
6.94857
2.92336

12.9437
6.95242
2.92703

12.9422
6.95436
2.92583

12.9440
6.95231
2.92566

Table 5.3 Comparison of different methods(1).
S1(0) = 100, S5(0) = 80,T = 0.4year
o1 =0.209=04.
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02

K

Va

Ve

Ve

Vies

r =1.03

0.2

10
20
30

11.1607
4.87133
1.53131

11.1663
4.87479
1.53089

11.1693
4.87595
1.53418

11.1727
4.87592
1.53098

0.3

10
20
30

12.4184
6.23150
2.42793

12.4290
6.23482
243177

12.4271
6.23496
2.43036

12.4262
6.23381
2.43057

0.4

10
20
30

14.0061
7.86221
3.64298

14.0168
7.86605
3.64442

14.0123
7.86887
3.64497

14.0154
7.86740
3.64344

r =1.06

0.2

10
20
30

10.7871
4.68736
1.47254

10.7927
4.69062
1.47222

10.7955
4.69184
1.47532

10.7996
4.69188
1.47226

0.3

10
20
30

12.0657
6.04313
2.35638

12.0763
6.04654
2.36040

12.0744
6.04635
2.35875

12.0732
6.04500
2.35889

0.4

10
20
30

13.6676
7.66916
3.55928

13.6782
7.67259
3.56072

13.6735
7.67565
3.56107

13.6766
7.67411
3.55970

r=1.09

0.2

10
20
30

10.4211
4.50840
1.41549

10.4265
4.51129
1.41545

10.4291
4.51268
1.41823

10.4339
4.51295
1.41558

0.3

10
20
30

11.7197
0.85892
2.28639

11.7305
2.86205
2.29082

11.7283
5.86204
2.28873

11.7268
5.86001
2.28870

0.4

10
20
30

13.3350
7.47964
3.47696

13.3448
7.48278
3.47847

13.3407
7.48600
3.47866

13.3435
7.48415
3.47708

Table 5.4 Comparison of different methods(2).
S1(0) = 100, S5(0) = 80,T = 0.4year
o1 =0.3,p=0.3.
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01

K

Va

Ve

Ve

Vies

r =1.03

0.2

10
20
30

12.1298
5.77679
1.96243

12.1326
5.78026
1.96439

12.1341
5.77965
1.96405

12.1357
5.77991
1.96351

0.3

10
20
30

12.4184
6.23150
2.42793

12.4290
6.23482
243177

12.4271
6.23496
2.43036

12.4262
6.23381
2.43057

0.4

10
20
30

12.9141
6.94438
3.14225

12.9264
6.94508
3.14081

12.9245
6.94976
3.14253

12.9250
6.95039
3.14051

r =1.06

0.2

10
20
30

11.7723
9.58982
1.89850

11.7751
2.59310
1.90041

11.7765
5.59266
1.90006

11.7783
9.59295
1.89951

0.3

10
20
30

12.0657
6.04313
2.35638

12.0763
6.04654
2.36040

12.0744
6.04635
2.35875

12.0732
6.04500
2.35889

0.4

10
20
30

12.5685
6.75394
3.06105

12.5808
6.75437
3.05972

12.5787
6.75912
3.06142

12.5789
6.75978
3.05921

r=1.09

0.2

10
20
30

11.4215
5.40723
1.83614

11.4240
5.41057
1.83805

11.4256
5.41018
1.83766

11.4273
5.41019
1.83733

0.3

10
20
30

11.7197
0.85892
2.28639

11.7305
2.86205
2.29082

11.7283
5.86204
2.28873

11.7268
5.86001
2.28870

0.4

10
20
30

12.2292
6.56737
2.98138

12.2411
6.56782
2.98013

12.2393
6.57248
2.98173

12.2394
6.57328
2.97947

Table 5.5 Comparison of different methods(3).
S1(0) = 100, S5(0) = 80,T = 0.4year
7y = 0.3, p = 0.3.
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Option Malue of Density Methiod

T = 0.4 year.

Y

5.17 Density Method Result

Figure

;09 =0.3;p=0.3; K = 20.

3

;o1 = 0.

r=0.09
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Difference Value

50 50
S2'
51

Figure 5.19 Option Value Difference, T' = 0.4 year.
r=0.09;01 =0.3;0, =0.3; p = 0.3; K = 20.

Figure 5.20 Option Value Difference, T' = 0.2 year.

r=20.09;01 =0.3;00 =0.3;p = 0.3; K = 20.
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Figure 5.17, 5.18 are surface graphs of the Density Function method option price for different
values of T'. Figure 5.19, 5.20 are the difference graphs of the Density Function method and
improved Monte Carlo method. From Figure 5.20, all the differences are less than 2 cents.
From Fig 5.19, most points’ difference is less than 2 cents, but there are some few positions
where the difference is between 2 to 4 cents. Notice that those are the values where the
option is deep in the money, i.e., in this case, S1(0) is really big and S5(0) is really small.
Actually, those in the money option are so “deep” that the moneyness index ﬁ from
[15] is already less than 0.3 which is considered to be out of the plausible range commonly

encountered in practice.

If the Asian style is still for S;, the European style is still for S5, but the order of the
spread changes to S — 51, then the payoff at time T for this Asian-European spread option
is

1

V(T) = (5:(T) - . /OT S\ (1)dt — K)*.

The price of this Asian-European spread option at time 0 is therefore
V(0) = Eqle™"V(T)|F(0)].
From section 4.4, we can numerically compute this value by

V(0) = / dx dz

1 4 1
T 2
1

F((51(0) 2))~ exp(— (1 + exp(2r)) - (7)

z
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where

0211

71.2

—(27r3u)% eXp(Z) /Ooo exp(—y?/2u) exp(—r(coshy))(sinh ) sin(%y)dy,

1

T Dfexp( + ) N(dy(a)) + (an + K)N ()]
2

po — log(ar + K) + ‘7§|1

o211 ’
dl(al) — 021,
log(S2(0)) + (r — %US)T
+%(1og(51(T)) — (log(81(0)) — (r — 501)T)),

\ 1-— p20'2ﬁ.

Clearly this requires a painful computation. Now we propose another method to solve this

problem much easier.

Rename the payoff

and define

Vo(T) = (SH(T) — / Si(t)dt — K)*,

W(T) = So(T) — %/OT S\ (1)t — K:
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then we have

W(T) = Va(T) = min{SQ(T)—% / " S (0)dt — K.0)
_ _(%/Tsl(t)dt—Sg(T)+K)+
= =W (T).

So we obtain

Vo(T) = W(T) + Vi(T).

From the linearity of conditional expectation, we have

Vo(0) = Egle " Va(T)|F(0)]
—  Egle ™" (W(T) + VA(T))|F(0)]

= Egle " W(T)|F(0)] + Egle™" Vi(T)|F(0)].

Notice that Vi(7T) is just the payoff in (5.2.1) if we replace the strike price K by —K, so
Egle ™V (T)|F(0)] is the price of an Asian-European spread option of the previous form,
T fOT S1(t)dt — So(T'), with strike price —K which we can use the previous Density Function

method or the improved Monte Carlo method to numerically compute easily.
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As for Egle "W (T)|F(0)], we have

1

Bole " W(T)F(O)] = Bele™"(Su(T) ~ = | Si(tydt = 1)\ 7(0)

= Bole "S,(T)|F(0)] - Ble " 7 /0 Sy(B)dt|F(0)] — e TK

T 2
= e "{S5(0)e" — %SI(O)E@[/ exp(onWs + (r = %)S)ds] - K}
0
_ —rT T l i /?T 3 - O-_%
= e {52(0)6 TSI(O) U% E@[ 0 eXpQ(WS T 0'% (T 2
S1(0
= s, - I ey kg

Here we use Lemma 3.3.1 and the fact in [13]:

If we let

t
AP = [ el +9))ds,
0

then its expectation is

= St + 0 - 1

So the price for the Asian-European spread option with payoff

Vo(T) = (SuT) ~ / Sy(t)dt — K)*
at time 0 is
a(0) = (5,00~ (T 1) K+ (0
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where V;(0) is the price of an Asian-European spread option of the previous form, % fOT Sy(t)dt—

So(T), with strike price —K at time 0.

5.3 ASIAN SPREAD OPTION NUMERICAL COMPUTATION

In section 3.4, we considered the following stochastic volatility model

dS, ()
dSs(t)
dry(t)

Y (¢)

where

= 7Sy (t)dt + o1/ () AW (1),
= rSy(t)dt + o9/ y(t)dWs(t),
= k(p—7(t)dt + oy /7y (t)dW, (1),

= (S1(t) — Sa(t))dt, (5.3.1)

E[AW, (1)dWV, (1)] = pdt,

And this is an affine diffusion model,

dX, = O(X,)dt + S(X,)dw(t),
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where

r 0 0 O 0
0O » 0 O 0
@(Xt) == Xt + = KlXt —+ Ko,
0 0 -k O KL
1 -1 0 0 0
and
V1= ploi/A(t) 0 proy/y(t) 0
p—p1p2 t \/1_/’%_/3%—024'291929 7 a0
sxy= | VeV Vg Vil meyalt) 0
0 0 oy/(t) 0
0 0 0 0

and w(t) = (wy(t), ws(t),

ws(t), wy(t))? is a standard 4-dimensional Brownian motion.

For the Asian spread price with strike price K under model (5.3.1), we have the following

result:

C(Xt,b, K,t,T) —

E(exp(—r(T' = 1))(b- Xz — K)"|F(t))
E(exp(=r(T' = 1))(b- X — K) 1y xp>k|F (1))

1
G\ G(—K: X0, t,T) — KGé’)_b(—K;Xt,t,T)

$a(b,0,X,,1,T) 1 /°° Imia(b, —ivb, X, t, T) exp(ivK)]
2 T Jo v
—K¢ 1(0, X4, t,T) Ll / Im[iy (—ivb, X4, t,T) exp(wK)]dv
2 v
(5.3.2)
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where b = (0,0,0, 7)”. So we just need to numerically solve differential equations (3.4.5),
(3.4.6), (3.4.7) and (3.4.8) under corresponding boundary conditions to get characteristic
functions 1, and 15, then plug into (5.3.2) to get the Asian spread price C(X,,b, K,t,T).

We compare the numerical result with Monte Carlo simulation and find that the character-
istic function method result is satisfactory. Tables 5.6 and 5.7 show the numerical result of
Monte Carlo simulation. M is the total number of replications of sample path, and NV is the
number of price reading per day. “Time” is the computation time with unit second. For the
case in table 5.6, the characteristic function method has value 5.34029 with computing time
3 seconds. For the case in table 3.7, the characteristic function method has value 5.84394

with computing time 3 seconds.

N=1 N=10 N=100

M Value | Time M Value | Time M Value | Time

10000 | 5.29894 1 10000 | 5.28762 7 10000 | 5.24064 | 60

50000 | 5.32906 3 50000 | 5.35315 | 30 20000 | 5.36688 | 299
100000 | 5.33322 6 100000 | 5.34027 | 59 100000 | 5.35201 | 602
200000 | 5.33033 | 12 200000 | 5.34466 | 120 | 200000 | 5.33864 | 1197
500000 | 5.33538 | 31 500000 | 5.34445 | 300 | 500000 | 5.34428 | 2992
1000000 | 5.34076 | 61 | 1000000 | 5.34168 | 599 | 1000000 | 5.34171 | 5988

Table 5.6 Monte Carlo simulation results.
S1(0) =100, S2(0) = 80,~(0) = 400, K = 15,7 = 0.05,k = 1, u = 400, T = 0.2year
01 =05,00=1.0,0,=4,p=0.5,p1 = —0.5,ps = 0.25
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N=1 N=10 N=100
M Value | Time M Value | Time M Value | Time
10000 | 5.70156 1 10000 | 5.76834 | 13 10000 | 5.79358 | 132
50000 | 5.82701 7 50000 | 5.80755 | 66 50000 | 5.83950 | 657
100000 | 5.83101 | 13 100000 | 5.82654 | 131 | 100000 | 5.85096 | 1314
200000 | 5.83442 | 26 200000 | 5.85004 | 263 | 200000 | 5.83733 | 2653
500000 | 5.84696 | 66 500000 | 5.83943 | 657 | 500000 | 5.84240 | 6558
1000000 | 5.84562 | 132 | 1000000 | 5.84914 | 1315 | 1000000 | 5.84095 | 13130

Table 5.7 Monte Carlo simulation results.

S1(0) = 100, S5(0) = 80,7(0) = 400, K = 15,7 = 0.05, % = 1, u = 400, T = 0.4year

01 =05,00=1.0,0,=4,p=05p = —0.5,p, =0.25
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CHAPTER 6. CONCLUSION

Now we have a better understanding about Asian spread option and Asian-European spread
option pricing. For the Asian spread option pricing, under the Black-Scholes-Merton model,
we have the semi-analytic solution which contains triple integrals; or we can try to numeri-
cally solve partial differential equation under boundary conditions; under a special stochastic
volatility model, we have the analytic and numerically computable solution. For Asian-
European spread option pricing, under the Black-Scholes-Merton model, not only do we
have the similar semi-analytic solution and partial differential equation under the boundary
conditions as in the Asian spread option case, but also an improved Monte Carlo simula-
tion method and the numerical computation method for the semi-analytic solution. Both
numerical methods are efficient and accurate. Under the special stochastic volatility model,
we have the similar analytic and computable solution as well. We also established an easy
way to combine Asian-European spread option and European-Asian spread option pricing

problems together.

There are still many interesting questions for the future research about Asian spread op-
tion though. Here all the Asian spread options are actually European style, that is, you
need wait until the expire date to exercise. How about American style Asian spread option

or other strange style payoff options pricing?

We considered the Black-Scholes-Merton model and the special affine structure stochas-
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tic volatility model, but how about other stochastic models? In real markets, jump is a very

common behavior for underlying price, how about stochastic models containing jumps?

For the special affine structure stochastic volatility model, how can we efficiently calibrate
and estimate the ten parameters? Furthermore, in real energy and commodity markets,
many exotic options are traded over-the-counter which usually lack liquidity [2] [10]; this
will make usual statistical methods difficult to conduct. How to reflect this property in the

model setting?

Correlation structure is also an important issue. We made the assumption that the two
underlyings are constantly correlated. But here the underlying price is followed over a pe-
riod of time; it is quite natural to doubt this assumption. How can we describe the possible

changing correlation during this period of time and how will this affect the pricing problem?
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