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Abstract

Topological Properties of Invariant Sets for Anosov Maps with Holes

Skyler Clayson Simmons

Department of Mathematics

Master of Science

We begin by studying various topological properties of invariant sets of hyperbolic toral
automorphisms in the linear case. Results related to cardinality, local maximality, entropy,
and dimension are presented. Where possible, we extend the results to the case of hyperbolic
toral automorphisms in higher dimensions, and further to general Anosov maps.
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Chapter 1. Introduction

A relatively new field of dynamical systems is the idea of an open system. An open system

presents the possibility that the forward (or reverse) orbit of a given point may “escape”

and never return, contributing nothing to the overall dynamics of the system. Aside from

pure mathematical intrigue, these systems lend themselves very naturally to certain physical

phenomena which are of interest to physical scientists. Prominent examples of application

in physics and chemisty include the escaping of a gas from a container (as in [1], [2], and [3])

or modeling sub-atomic quantum phenomena (as in [4] and [5]). Applications from other

fields such as ecology have even been considered (see [6]).

In this paper, we further the work done in open systems. We begin by studying invariant

sets of open systems formed on tori with the action induced by area-preserving integer-valued

matrices. We give results related to cardinality, local maximality, connectedness, entropy

and Hausdorff dimension. Whenever possible, we extend the results to more general Anosov

maps.

Billiards present a common example in the study of open systems. In a dynamical bil-

liard, one or more particles travel at unit speed along straight-line trajectories within sets

X ⊂ R2, with angle-reflecting and velocity-preserving collisions. For each (x, θ) ∈ X × S1,

there is an orbit passing through x with angle θ. Behaviors of the system are categorized

in terms of these points. For instance, (x, θ) is periodic if the orbit passing through x at

angle θ eventually returns to x, moving in the same direction. Billiards are divided into

two categories, inner and outer billiards. A dynamical billiard is an inner billiard if X is

bounded, and is an outer billiard if X is unbounded. Open systems can be considered in
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dynamical billiards by considering only the points whose orbit stay bounded in the case of

an outer billiard. For inner billiards, a portion of the boundary can be removed, and the

orbits which fall into the removed portion of the boundary are considered to have escaped.

One example of the latter case is given in [1]. In the paper, Alt et. al. consider the orbits

of particles in the Bunimovich stadium billiard (a rectangle with two congruent semicircles

attached to opposite ends, resembling a medicinal capsule), with a small hole cut in one of

the boundaries. The paper gives numerical estimates for the probability that the orbit of an

arbitrarily chosen particle will remain in the stadium for a given length of time. The decay

is found to be roughly exponential as a function of the length of the orbit. Further work on

the same problem is done by Dettmann and Georgiou in [2], where explicit values for the

constant C in the decay equation Ct−1 are computed in terms of the size of the hole.

These ideas are furthered in [3], where Demers, Wright, and Young consider arbitrary

holes both on the boundary and in the interior of arbitrary billiards. They are able to prove

that for a certain class of initial distributions, there is a common escape rate as well as a

common limiting distribution. They also show that as the sizes of the holes tend to zero,

the distributions, thought of as measures, tend to the natural invariant measure of the cor-

responding billiard without holes.

An outer billiard example is given in [7]. Lopes and Markarian consider an open billiard

system in which three circular scatterers are placed at the vertices of an equilateral triangle.

The authors are able to determine that the set of all points whose forward and reverse orbits

bounce of the scatterers infinitely many times for forward and reverse time form a Cantor

set, and the iteration map restricted to this invariant set is similar to Smale’s horseshoe map.

This last example hints at a very natural question regarding this type of dynamical sys-
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tem: “What’s left?” The set of points in an open dynamical system which never leave the

system form an invariant set. Certain properties of such invariant sets are known. For in-

stance, due to work by Xia in [8] and by Bochi and Viana in [9], measure theoretic properties

of invariant sets are considered. A key result of this work is that for any volume-preserving

diffeomorphism of a manifold, if a closed, invariant set is hyperbolic and has non-empty

interior, it must be the entire manifold, and the diffeomorphism is therefore Anosov. The

converse of this statement, therefore, applies to open systems: For any volume-preserving

Anosov diffeomorphism of a manifold, any invariant set which is not the whole manifold has

empty interior.

In [10], Bundfuss et. al. study a purely dynamical example of an open system. They

consider the unit interval with a non-invertible interval map, and remove a finite number of

connected open intervals from the unit interval. The topological and dynamical structures

of the resulting invariant set are studied. In particular, the authors are able to provide some

interesting results on the cardinality of topologically transitive components as well as an

upper bound on the number of possible topologically transitive components in terms of the

number of holes removed.

Another property that can be used in describing invariant sets is dimension. This too

has been studied in manners that are immediately applicable to open systems. For instance,

in [11], Urbański considers the set of points of a compact Riemannian manifold M . It is

shown that the set of all points of M whose full orbits are not dense in M have the same

Hausdorff dimension as M itself.

A particularly interesting study in dimension is given by Przytycki in [12]. In this paper,

Przytycki shows that for the n-dimensional torus, there exist invariant subsets of topologi-

cal dimension 1, 2, ..., n − 2, and that it is not possible to construct an invariant subset of
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dimension n− 1 on the torus.

A direct application of dimension studies to open systems is given in a two-part paper by

Horita and Viana (see [13] and [14]). In the first, the authors consider the invariant set of a

piecewise-smooth map on a manifold with holes. They are able to show that the Hausdorff

dimension of the repeller is less than the Hausdorff dimension of the ambient manifold. The

study is continued in the second paper, where they consider transitive Anosov diffeomor-

phisms through Hopf bifurcations.

In the next chapter, we will present necessary definitions and background information.

Chapter 3 will give some basic results. Chapter 4 will focus on results related to topological

entropy and the dimension of invariant sets.
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Chapter 2. Background

2.1 Basics

A dynamical system (X, f) is a topological space X together with a continuous map f :

X → X. Among the goals of the study of dynamical systems is to study/characterize the

long-term behaviors of subsets of the set X under repeated iteration of the map f . If f is

a homeomorphism, the study of subsets of X under iterations of f−1 are also considered.

Some simple behaviors are those of fixed points, periodic points and invariant sets :

• A point x ∈ X is said to be a fixed point if f(x) = x.

• A point x ∈ X is said to be periodic if there is some n ∈ N such that fn(x) = x. If n

is the smallest positive integer such that fn(x) = x, then n is said to be the minimal

period of the point x.

• A set Λ ⊂ X is said to be invariant if f(Λ) = Λ.

It is worth clarifying that for an invariant set, the set Λ need not be fixed point-wise. For

instance, if x is a periodic point with period n, then the set Λ = {x, f(x), f 2(x), ..., fn−1(x)}

is invariant, but clearly not fixed point-wise.

For a point x ∈ X, the forward orbit of x is equal to the set

{fn(x) : n ∈ N ∪ {0}}

and is denoted O+(x). Similarly, if f is invertible, the reverse orbit O−(x) is the set

{f−n(x) : n ∈ N ∪ {0}}.
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Finally, the orbit of x is denoted by O(x) and is equal to O+(x) ∪ O−(x).

A map f : X → X is said to be transitive on an invariant set Λ if the forward orbit of

some point x ∈ Λ is dense in Λ, e.g. for any point y ∈ Λ, there is a point of O+(x) arbitrarily

close to y. A map is said to be topologically mixing if given two open sets U, V ⊂ X, there is

some positive integer n0 such that for all n ≥ n0, fn(U) ∩ V 6= ∅. Any map which is mixing

is automatically transitive.

2.2 Conjugacy

The idea of a topological conjugacy is analogous to the idea of a similarity transformation

in matrix theory or an isomorphism in algebra. Two maps f : X → X and g : Y → Y

are said to be topologically conjugate if there is a homeomorphism k : X → Y that satisfies

k ◦ f = g ◦ k, or (re-arranging) f = k−1 ◦ g ◦ k. In this case, k is said to be a topological

conjugacy between f and g. Topological conjugacy preserves topological properties such as

topological entropy, but does not necessarily preserve properties such as Hausdorff dimen-

sion (both of which will be addressed later). Sometimes it is easier to study behavior in the

conjugate system rather than in the original setting.

A weaker but related idea is that of a topological semi-conjugacy. If f : X → X and

g : Y → Y satisfy k ◦ f = g ◦ k for some continuous surjective map k, not necessarily a

homeomorphism, then k is said to be a topological semi-conjugacy. As can be expected,

certain properties are not preserved under semi-conjugacy, but often it is the case that some

information can be recovered in the form of inequalities. For instance, if both X and Y are

compact, then htop(f) ≥ htop(g), where htop(f) and htop(g) represent the topological entropy

of the maps f and g, respectively. (See [15], p. 376)
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2.3 Symbolic Dynamics

Let Σ+
n = {s0s1s2s3s4... : si = 1, 2, ..., n} be the space of one-sided infinite sequences on n

symbols. Let σ : Σ+
n → Σ+

n be the map defined by

σ(s0s1s2s3s4...) = s1s2s3s4

e.g. the map σ simply “pulls off” the first symbol in the sequence. Here, σ is called the shift

map, and (Σ+
n , σ) is called the full one-sided n-shift space. This space also has a natural

topology. For a fixed m ∈ N, a cylinder set is the set of all sequences whose first m entries

are equal. The collection of all cylinder sets forms the basis of topology on Σ+
n .

An extension is to consider the space of bi-infinite sequences on n symbols. In this case,

we let Σn = {...s−2s−1.s0s1s2... : si = 1, 2, ..., n}, and the map σ is now defined as

σ(...s−2s−1.s0s1s2...) = s−2s−1s0.s1s2

with the period in the middle of the sequence denoting the “current” position in the sequence.

A key difference between the space (Σ+
n , σ) and (Σn, σ) is the fact that σ is invertible in the

second case and n-to-one in the first. (Σn, σ) is called the full n-shift space. Cylinder sets

can also be defined in this case. In particular, the set of all sequences whose entries between

−m and m are equal form a cylinder set.

One further extension involves an n × n matrix A, with aij = 0, 1 for each entry of the

matrix. (We assume that each row and column of A have at least one non-zero entry.) In this

case, we define Σ+
A = {s0s1s2s3 : si = 1, 2, 3, ..., n, asisi+1

= 1}. That is to say, we only allow

sequences where consecutive symbols are “adjacent” in terms of the matrix A. The space

ΣA is defined in an analogous fashion. The spaces (Σ+
A, σ) and (ΣA, σ) are called subshifts
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of finite type.

Each of the three preceding are examples of symbolic dynamics. These types of spaces

are natural targets for topological conjugacy, as the behavior on shift spaces or subshifts of

finite type are often far more easily understood than their conjugate counterparts.

2.4 Hyperbolic Dynamics

Let M be a manifold, and f : M → M be a C1 diffeomorphism. A periodic point x with

minimal period m is said to be a hyperbolic periodic point if there is a splitting of the tangent

space TxM = Eup
⊕

Esp so that Eup is expanding under the map Dfm(p) and Esp is contracting

under the map Dfm(p). (Recall that in applying the map Dfm(p) to the subspaces, we

identify the point p with the origin in Rl, where l represents the dimension of the subspace.)

Extending this notation, let Λ be any invariant set of the same map f . The set Λ has

a uniform hyperbolic structure if for every point p ∈ Λ (not necessarily periodic), there is a

splitting of TpM = Eup
⊕

Esp satisfying:

• Df(p)(Eup) = Euf(p), Df(p)(Esp) = Esf(p)

• There are constants 0 < λ < 1 and C ≥ 1, not depending on the point p ∈ Λ, such

that for all m ≥ 0 we have:

– |Dfn(p)vs| ≤ Cλn|vs| for all vs ∈ Esp, and

– |Df−n(p)vu| ≤ Cλn|vu| for all vu ∈ Eup .

A compact invariant subset of a manifold M having a uniform hyperbolic structure is appro-

priately called a hyperbolic invariant set. If Λ = M , then the map f is said to be an Anosov
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diffeomorphism.

A stronger condition than hyperbolicity is that of conformality. A map f is said to be

conformal if dfx is a scalar multiple of an isometry on TxM . The scalar multiple is allowed

to vary with the point x. (See [16], p. 199.) f is said to be u-conformal (respectively

s-conformal) if f |Eu (f |Es) is conformal. (See [16], p. 230.)

If p is a hyperbolic fixed point for a Ck map f and U is a neighborhood of p, we define

the local stable manifold of p, denoted W s
U(p), to be the set of all points x in U such that

the distance between fn(x) and p approaches 0 as n → ∞. Similarly, the local unstable

manifold of p, W u
U(p), is the set of all points x in U such that the distance between f−n(x)

and p approaches 0 as n → ∞ in the case that f is invertible. In the case that f is not

invertible, x belongs to W u
U(p) if it is possible to create a sequence {xi} with each xi chosen

to be one point of f−i(x) such that {xi} converges to p.

Both of W s
U(p) and W u

U(p) can be extended to form the global stable manifold and global

unstable manifold of p, denoted W s(p) and W u(p) respectively. W u(p) is formed by taking

the union of all forward iterates of W u
U(p) under f . W s(p) is formed by taking the union of

all inverse images of W s
U(p) under f if f−1 exists. In the event that f is not invertible, we

form a sequence of sets W s
U(p) = X0 ⊂ X1 ⊂ X2... with x ∈ Xi if f(x) ∈ Xi−1. The proof

that these sets are actually manifolds can be found in [15], pp. 187-199.

If p is a hyperbolic periodic point, we can perform a similar procedure by replacing f by

fm and replacing f−1 by f−m, where m is the period of p. Since p is a fixed point of fm, all

of the above results hold. Further, for a general point p ∈ M , not necessarily periodic, we

define

W s(p) = {x ∈M : d(fn(x), fn(p))→ 0 as n→∞}
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where d is a complete metric on M . Similarly, if f is invertible, we can define

W u(p) = {x ∈M : d(f−n(x), f−n(p))→ 0 as n→∞}.

If f is not invertible, we can adapt the above definition as follows: x belongs to W u
U(p) if it

is possible to create a sequence {xi} with each xi chosen to be one point of f−i(x) such that

d(xi, f
−i(p)) converges to 0 as i tends to infinity.

An important result about W s(p) and W u(p) is the stable manifold theorem for a hy-

perbolic set. This states that if f : M → M is a Ck diffeomorphism, and Λ is a hyperbolic

invariant set for f , then there is some ε > 0 such that for all p ∈ Λ there are two Ck em-

bedded disks W s
ε (p, f) and W u

ε (p, f) which are tangent to Esp and Eup respectively, on which

W s
ε (p, f) is the graph of a Ck function Esp → Eup , and W u

ε (p, f) is the graph of a Ck function

Eup → Esp. Further, both of these functions and their first k derivatives vary continuously as

p varies.

For a hyperbolic periodic point p, a point q lying in the intersection of the stable and

unstable manifolds through p is said to be a homoclinic point of p. For such a point, fn(q)

approaches O(p) as n → ∞ and as n → −∞ (assuming f−1 exists). Further, q is called

a transverse homoclinic point if the vector space sum of the stable and unstable tangent

spaces of W s(p) and W u(p) at q has full dimension. An important result related to homo-

clinic points is the Smale-Birkhoff Theorem (see [15], p. 288.) . This states that if q is a

transverse homoclinic point for a hyperbolic periodic point p of a diffeomorphism f , then for

each neighborhood U of the two-point set {p, q} there is a positive integer n such that fn has

a hyperbolic invariant set Λ ⊂ U with p, q ∈ Λ and on which fn is topologically conjugate

to the two-sided shift map on Σ2.

10



A useful property for hyperbolic invariant sets to posses is local maximality. A hyperbolic

invariant set Λ is locally maximal (with respect to the map f) if there exists an open set

U ⊃ Λ such that

Λ =
⋂
n∈Z

fn(U).

In other words, Λ is the largest invariant set contained in a neighborhood of itself. An

equivalent condition for local maximality is that of a local product structure. The set Λ has

a local product structure if there exists δ > 0 such that for all points x and y that are less

than δ apart, the local stable manifold through x and the local unstable manifold through y

intersect in a single point z and z ∈ Λ. (See [17], p. 272.)

2.5 Markov Partitions

A rectangle is a subset R of a manifold that satisfies R = int(R), e.g. R is the closure of

its own interior. In certain cases, the rectangles look like rectangles in the usual geometric

sense. An example of such is hyperbolic toral automorphisms of the 2-torus, which will be

discussed at length in the following chapters. Markov partitions are a finite collection of

rectangles {Ri} that partition a hyperbolic manifold with overlap only along the boundaries,

and whose construction is closely tied in with the dynamics of the system. Specifically, for

an Anosov diffeomorphism on a manifold M , the collection {Ri} form a Markov partition if:

1. M =
⋃n
i=1Ri

2. the interiors of distinct rectangles are disjoint

3. for any two distinct points x and y in a single Ri, the stable manifold of x lying in Ri

and the unstable manifold of y lying in Ri intersect in a single point z ∈ Ri.

4. f(W u(x,Ri)) ⊃ W u(f(x), Rj) where x ∈ Ri, f(x) ∈ Rj, and W u(x,Ri) denotes the
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part of the unstable manifold of x contained in Ri.

5. f(W s(x,Ri)) ⊂ W s(f(x), Rj) where x ∈ Ri, f(x) ∈ Rj, and W s(x,Ri) denotes the

part of the stable manifold of x contained in Ri.

(See [18].) One algorithm for constructing Markov partitions for the 2-torus is given in [15],

p. 313.

Associated with each of these partitions is a transition matrix T , which describes the

behavior of each of the rectangles under iteration by f . The transition matrix T has as

many rows as rectangles in the partition. Each entry tij of the matrix T is the number of

connected components of f(Ri) ∩Rj. If the rectangles are sufficiently small, each entry will

be either 0 or 1. Markov partitions provide the mechanism for a semi-conjugacy between

hyperbolic and symbolic dynamics.

A transition matrix T is said to be irreducible if for all i, j ∈ {1, 2, ..., n} there exists

k ∈ N such that tkij > 0, where tkij represents the ij entry of T k. If the transition matrix

is thought of as an adjacency matrix for a directed graph, this is equivalent to strong con-

nectivity of the graph–i.e. there is a directed path between any two vertices. A transition

matrix that is not irreducible is said to be reducible.

If there exists some k ∈ N such that T kij > 0 for all i, j, then T is eventually positive.

Any matrix that is eventually positive is irreducible, but not all irreducible matrices are

eventually positive. For instance,

T =

0 1

1 0


is irreducible but not eventually positive.
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Remark: Computing the transition matrix associated with the Markov partition is gen-

erally done by brute force. For purposes of this paper, a MATLAB program was written to

perform this computation in the case of two-dimensional hyperbolic toral automorphisms.

The source code has been included as an appendix.

2.6 Entropy

One very important measurement in a dynamical system is that of topological entropy. As

suggested by its name, this is quantity that reflects the complexity of the system. Given a

metric space X with metric d, continuous map f : X → X, and n ∈ N, define a distance

function

dn(x, y) = max
0≤j<n

(d(f j(x), f j(y)).

In other words, two points of X are close in the dn metric if they remain close under n

iterations of the map f .

Next, we define an (n, ε)-separated set. A set S ⊂ X is said to be (n, ε)-separated for f

if dn(x, y) > ε for any distinct x, y ∈ S. Define a new function

rsep(n, ε) = max{|S| : S ⊂ X is an (n, ε)-separated set},

where by |S| we mean the cardinality of the set S. Note that in the case of X being a

compact set the value of r(n, ε) will be finite.

Lastly, the entropy of a map f , htop(f), measures the average rate of exponential growth
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of the size of these (n, ε)-separated sets as n and ε tend to zero. Specifically,

htop(f) = lim
ε→0

(
lim sup
n→∞

log(rsep(n, ε))

n

)
,

where htop(f) is given the value ∞ if the inner limit is infinite.

Alternatively, a set S ⊂ X is said to be (n, ε)-spanning for f if for any point x ∈ X there

is a point y ∈ S such that dn(x, y) ≤ ε. Defining rspan(n, ε) to be the smallest number of

elements in an (n, ε)-spanning set, we can also define the entropy of the system as

htop(f) = lim
ε→0

(
lim sup
n→∞

log(rspan(n, ε))

n

)
.

A third definition of entropy can be derived in terms of open covers. A collection A of

subsets of X is called an open cover of X if each A ∈ A is an open subset of X and the

union of all A ∈ A is equal to X. A subcollection B is called a subcover if the union of all

A ∈ B is equal to X. Define

An =

{
n−1⋂
j=0

f−j(Aj) : Aj ∈ A and
n−1⋂
j=0

f−j(Aj) 6= ∅

}
.

Let N(A) denote the minimum cardinality of a subcover B ⊂ A. Define

h(A, f) = lim sup
n→∞

log(N(An))

n
.

The entropy of the system is then given by

htop(f) = sup{h(A, f) : A is an open cover of X}.

In [15], Lemma 1.10, p. 380, it is demonstrated that all of these definitions of entropy are
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equal.

Another important result on topological entropy is that the entropy of a subshift of finite

type with adjacency matrix A is the modulus of the eigenvalue furthest from the origin.

(See [15], Theorem 1.9, p. 376.) This also holds in the case of Markov partitions, where the

transition matrix need not contain only ones and zeros. Topological entropy is one quantity

that is preserved under conjugacy as well as under uniform finite-to-one semi-conjugacy, as

in the case of hyperbolic toral automorphism.

For an invariant Borel probability measure µ, the measure-theoretic entropy of f is de-

noted hµ(f). Roughly speaking, the measure-theoretic entropy measures the exponential

growth rate of orbits which are “relevant” to µ. (A precise definition of measure-theoretic

entropy can be found in [17], p. 169.)

For an f -invariant set Λ ⊂M , consider the quantity

sup
µ∈M(Λ)

hµ(f)

where M(Λ) is the set of all f -invariant Borel ergodic measures on M . If there exists a

measure µ∗ for which

hµ∗(f) = sup
µ∈M(Λ)

hµ(f),

then the measure µ∗ is called a measure of maximal entropy. A result that relates measure-

theoretic entropy and topological entropy is the variational principle (or the variational

principle for entropy), which states that

htop(f) = sup
µ∈M(Λ)

hµ(f).
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(See [17], p. 181.)

Another important concept that is related to topological entropy is that of topological

pressure. This is another technique for measuring the exponential growth rate of orbits with

respect to some weighting function φ. If PX(φ) denotes the topological pressure of φ on a

space X, then the variational principle (for pressure) is given by

PX(φ) = sup
µ∈M(Λ)

hµ(f) +

∫
X

φ dµ.

(See [17], p. 625.) A measure µ∗ for which

PX(φ) = hµ∗(f) +

∫
X

φ dµ∗.

is called an equilibrium state. More information on these concepts will not be necessary

for understanding the results in this thesis. The curious reader is referred to the references

indicated for more information.

2.7 Dimension

Multiple definitions exist for computing the dimension of a set. We focus here on two com-

monly used definitions: box dimension and Hausdorff dimension.

For a compact set S ⊂ Rn, consider a grid of n-dimensional cubes of side length ε, which

overlap only on their common boundaries. Let N(ε, S) be the number of cubes that contain

at least one point of S. The lower box dimension (or inner box dimension) of S is defined as

dimb(S) = lim inf
ε→0

log(N(ε, S))

− log(ε)
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and the upper box dimension (or outer box dimension) of S is defined as

dimB(S) = lim sup
ε→0

log(N(ε, S))

− log(ε)
.

When the two coincide, the limit is the box dimension of the set S.

It is also possible to define the box dimension by using a related quantity. If we define

N ′(ε, S) to be the minimum number of ε-cubes covering S (not necessarily in a grid), replac-

ing N by N ′ in the definitions above will yield the same number.

Alternatively, we can consider the Hausdorff dimension of a compact set S. First, we

define the d-dimensional Hausdorff Content of S, denoted Cd
H(S). This is given by

Cd
H(S) = inf

{∑
i

rdi | S ⊂
⋃
i

B(xi, ri)

}

where the infimum is taken over all collections of balls covering S.

The Hausdorff Dimension of a set S, dimH(S), is given to be the infimum of all non-

negative numbers d such that the d-dimensional Hausdorff content of S is zero.

From the definitions, the following are also apparent:

• If A ⊂ B, then dimH(A) ≤ dimH(B).

• dimH(A ∪B) = max{dimH(A), dimH(B)}.

The above statements remain true if the subscript H is replaced by either B or b.
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Finally, if S ⊂ Rn is compact, we have

0 ≤ dimH(S) ≤ dimb(S) ≤ dimB(S) ≤ n.

An important equation that is related to dimension is Bowen’s equation. For a negative

function φ on a set Λ, the function ψ(t) = PΛ(tφ) has a unique positive root. For properly

defined functions φ, the root of this equation gives information about the Hausdorff dimen-

sion of the set Λ. For instance, in [16], Theorem 22.2, the Hausdorff dimension of a locally

maximal hyperbolic set with some additional technical conditions is given as a sum of two

roots of Bowen’s equation for two functions φ1 and φ2.

Some well-known examples of all three dimensions being equal include the Cantor middle-

thirds set, which has all three dimensions equal to log3(2), and the Sierpinski triangle, which

has all three dimensions equal to log2(3). However, the inequalities between all three dimen-

sions may be strict. For example, the set of rational numbers on the unit interval I = [0, 1]

has zero Hausdorff dimension (in fact, any countable set has zero Hausdorff dimension). But

since Q is dense in I, any box in I will contain a point of Q. Hence, the quantity N(ε, I ∩Q)

is equal to the number of boxes needed to cover I, which is roughly 1/ε. (Strictly speaking,

this quantity should be rounded up to the nearest integer, but this additional “noise” van-

ishes in the limit.)

It is also possible to construct sets for which the lower box dimension and upper box

dimensions are not equal. For example, let S be the set of all numbers of the form

0.0xx0000xxxxxxxx0000000000000000...

where the x represents any digit. That is to say, we consider all numbers in I with a block
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of zeros having length 1, then a block of arbitrary digits having length 2, then a block of

zeros having length 4, etc. A simple combinatorial argument can be used to find N(ε, S) for

ε = 10−2n for n ∈ N. The behavior for these is different depending on whether n is even or

odd. Because of this, dimb(S) = 1/3 and dimB(S) = 2/3.

These examples where the three dimensions differ lack the structure imposed by a dynam-

ical system. In these cases, it may be true that the Hausdorff dimension and box dimensions

are equal. In [16], p. 119, conditions that will give equality are listed. Further, in section

4.1 of [19], it is shown that a certain construction will always give a case where these quan-

tities are all equal. General statements relating to dynamical systems, however, are notably

absent.
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Chapter 3. Some First Results for T2

As stated in the introduction, the goal of this work will be to give as much information as can

be given about a particular class of hyperbolic invariant sets. To approach the problem, we

give a few preliminary standing assumptions. Unless otherwise stated, in this and succeeding

chapters, A will be understood to be a matrix with determinant ±1, non-negative integer

entries, and no eigenvalue of unit modulus. For many examples, we will let A be 2 × 2.

Further, fA : Tn → Tn is defined by the map fA(x) = Ax mod Zn. Since the determinant

of A is ±1, fA defines a C∞ automorphism, and is called a hyperbolic toral automorphism.

Also, the manifold Tn is a hyperbolic set for the map fA. Finally, if U ⊂ Tn is open and

non-empty, we define

ΛU = {x ∈ Tn : fn(x) /∈ U,∀n ∈ Z}.

Remark: This notation is not in agreement with standard notation. Indeed, ΛU gener-

ally represents the intersection of all forward and backward images of U . In this sense, the

sets that we call ΛU would commonly be known as ΛUc , with c denoting the complement.

For convenience, we will use our “adapted” notation to avoid the cumbersome use of the

complement in all discussions.

It is not difficult to see that the set ΛU is an invariant set under the map f , and it is

precisely these sets whose properties we wish to describe. Additionally, we will use Λ to

denote a general invariant set, and ΛU to denote a particular invariant set from a hyperbolic

toral automorphism.

We start by giving some elementary well-known results that will be important later on

in our analysis of the invariant sets. We will then proceed to give a result related to con-
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nectedness as well as two results on the cardinality of the invariant set.

3.1 Preliminary Remarks on Area-preserving Linear Maps

The next two results are well-known, and proofs are included for completeness.

Theorem 3.1. If A satisfies the conditions listed above and n = 2, then:

• A has real eigenvalues,

• The eigenvalues of A are irrational, and

• The ratio of the two entries of both eigenvectors is irrational.

Proof. Suppose A has a complex eigenvalue z. Then z is also an eigenvalue of A. Since the

product of the eigenvalues of A is the determinant of A, then zz = |z|2 = 1, violating the

assumption that no eigenvalue of A has unit modulus.

Suppose the matrix A is given by

A =

a b

c d

 .
The eigenvalues of A are then the solutions of the quadratic

λ2 − (a+ d)λ+ ad− bc = 0

Recognizing ad− bc as the determinant of A, the solutions of this equation are given by

λ =
(a+ d)±

√
(a+ d)2 − 4det(A)

2
.
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Suppose that the eigenvalues of A are rational. Then the expression under the radical must

be a perfect square that is exactly four more or four less than some other perfect square.

There are only two such numbers, namely 0 and 4. If det(A) = 1 then it must be that

(a+ d)2 = 4. Then (a+ d) = ±2. This gives

λ =
±2±

√
4− 4

2
= ±1

contrary to assumption. Conversely, if det(A) = −1, then if the eigenvalues are rational

(a+ d)2 = 0 which again gives a unit-modulus eigenvector by a similar computation.

Let x be an eigenvector of A, λ its corresponding eigenvalue. Suppose one entry of x is

zero. Then a b

c d


 0

x2

 =

 0

λx2

 ,
which gives dx2 = λx2, so d = λ. But λ /∈ Q, d ∈ Z, an obvious contradiction. Hence, we

can scale x so that the first entry is 1. This gives

a b

c d


 1

x2

 =

 λ

λx2

 .
Suppose x2 ∈ Q. Then a+ bx2 = λ. But a, b, x2 ∈ Q and λ /∈ Q. Hence x2 /∈ Q, which gives

the ratio of x1/x2 /∈ Q.

Theorem 3.2. If fA is a hyperbolic toral automorphism of dimension n, the set of periodic

points of the map f is dense in Tn.

Proof. Let x be a column vector of a point with both rational entries. Without loss of

generality each entry of x has common denominator d. Then fA(x) is also a point of Tn

with all rational entries. Further, these entries again have common denominator d. Since
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there are only finitely many points of Tn with all rational entries whose denominator is d,

successive images of the point x under fA must eventually repeat. Hence, the point x must

be periodic. This is true for all points Qn, so points of Qn are periodic. Further, these points

are dense in Tn, completing the proof.

3.2 Connectivity of Invariant Sets

We now give the first topological property about the set ΛU associated with an open set

U . Recall that a set is said to be totally disconnected if its only connected components are

single points.

Theorem 3.3. For any non-empty open set U ⊂ T2 and hyperbolic toral automorphism fA,

the associated invariant set ΛU is totally disconnected.

Proof. Let U be an arbitrary open set in T2. By Theorem 3.2, we know that U contains

a periodic point z. Let L be an open segment of W u(z) entirely contained in U which

contains z. Then, if n is the period of z under f , it will be true that L ⊂ fn(L). Further,

fmn(L) ⊂ f (m+1)n(L) for all natural numbers m. Also, since W u(z) has irrational slope when

viewed as a line, the inclusion will always be proper. Then W u(z) be the union of all images

fmn(L) for all natural numbers m. As the slope of W u(z) is irrational, W u(z) is dense in

T2. Note that this can be repeated using f−1 and W s(z).

Let x and y be distinct points of ΛU . Let Px and Py be two parallelograms whose sides are

segments of W u(z) and W s(z) such that x ∈ Px, y ∈ Py, and Px∩Py = ∅. (The last condition

is possible by the density of W u(z) and W u(z).) Hence there are two disjoint open sets in

ΛU that contain one of x or y but not both, and ΛU is therefore totally disconnected.

Remark: As the stable and unstable manifolds through periodic points are also dense for
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Anosov maps on 2-manifolds, this result holds in that case as well.

3.3 Cardinality of Invariant Sets

We now present two theorems that give a relationship between the “size” of the set U and

the cardinality of the set ΛU . As each of these theorems are both true for any transitive

Anosov map f on an n-manifold M , we will present the theorems in this context. In this

sense, ΛU will represent

ΛU = {x ∈M : fn(x) /∈ U,∀n ∈ Z}.

Theorem 3.4. There is a positive number δ∞ such that if U is an open ball in a manifold

M with radius smaller than δ∞, then the set ΛU contains infinitely many points.

Proof. Let x1 denote one of the homoclinic points through a periodic point (e.g. x1 ∈

W s(y1) ∩W u(y1) for y1 a periodic point.) Then for any positive ε, there are finitely many

points of O(x1) whose distance from the origin is greater than ε. Let x2 denote one of the

homoclinic points through any other periodic point y2 (where O(y1) ∩ O(y2) = ∅). Then,

again, for any positive ε, there are finitely many points of O(x2) whose distance from O(y2)

is greater than ε.

Now, for every point x ∈M , let d1 be the distance between x and O(x1) and let d2 be the

distance between x and O(x2). Let rx be the greater of d1 and d2. (Note that by definition,

O(x1)∩O(x2) = ∅, and both sets are closed, so rx > 0.) Define Vx to be an open ball about

the point x of radius rx. Then the collection of all sets {Vx} is an open cover for M . Hence

there is some finite subcover of these sets. Let δ∞ be the Lebesgue number for that finite

subcover.
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Notice now that if U ⊂ M is an open ball of radius smaller than δ∞, then U ⊂ Vx for

some x ∈ M . Then either O(x1) or O(x2) does not intersect U by construction of each set

Vx. So ΛU contains a non-periodic point, and so ΛU has infinite cardinality.

A related theorem is as follows:

Theorem 3.5. There is a positive number δfinite such that if U is an open ball with radius

greater than δfinite, then the set ΛU is finite.

The proof of this depends on two preliminary results:

Lemma 3.6. For a closed (compact) set K, define dK(x) = d(x,K), where d(x,K) repre-

sents the distance function between x and K. Then |dK(x)− dK(y)| ≤ d(x, y).

Proof. By the triangle inequality, we have

d(x,K) ≤ d(x, y) + d(y,K)

and consequently

d(x,K)− d(y,K) ≤ d(x, y)

or

d(y,K)− d(x,K) ≥ −d(x, y).

Similarly, since

d(y,K) ≤ d(x, y) + d(x,K)

we conclude

d(y,K)− d(x,K) ≤ d(x, y).

Combining, we get

−d(x, y) ≤ d(y,K)− d(x,K) ≤ d(x, y)
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or

|d(x,K)− d(y,K)| = |dK(x)− dK(y)| ≤ d(x, y)

as claimed.

Lemma 3.7. Let J be an arbitrary collection of closed subsets of M . Define g(x) =

supK∈JdK(x). Then g(x) is continuous.

Proof. Let ε > 0 be given, and let x be an arbitrary point of M . Then for all y with

d(x, y) < ε/2, we know that |dK(x) − dK(y)| < d(x, y) for all K ∈ J by Lemma 3.6. Then

by definition of g(x), |g(x)− g(y)| ≤ ε/2 < ε. Hence g(x) is continuous.

We now give the proof of Theorem 3.5.

Proof. Let S be a finite set of periodic points of M together with every point in their

respective orbits. For every point x 6∈ S, define Kx = O(x), the closure of the orbit of x. Let

J be the set of all Kx. Define the function g(x) as in Lemma 3.7. Let δfinite be the maximum

of g(x) on T2. Then for any point x ∈ M , if U is an open ball of radius greater than δfinite,

then U contains at least one point of the orbit of each point not in S. Hence, ΛU is a subset

of S, and must therefore be finite.

Remark: For both Theorems 3.4 and 3.5, no metric was specified for the distance func-

tions giving the size of the open sets and the point-set distances. Both theorems proceed

without difficulty if any complete metric is used. It is also easy to see that a complete metric

is necessary, as the discrete metric readily gives counterexamples in both cases.

Remark: Theorem 3.5 holds for the extension of the problem into dimension higher than

2. Theorem 3.4 can also be extended by using two periodic points y1 and y2 by a similar

procedure, although explicitly locating the homoclinic points is more difficult.
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Figure 3.1: A partition of T2 with two rectangles.

A specific computation of δfinite and δ∞ can be somewhat difficult, if not impossible.

However, in the case of hyperbolic toral automorphisms we can establish some bounds for

these values.

Example 3.8. Let A be the matrix

A =

1 1

1 0

 .

Consider the Markov partition of T2 given in Figure 3.1. Let R1 be the larger, white rectangle

and R2 be the shaded rectangle. Then the transition matrix for this example turns out to

be

T =

1 1

1 0

 ,
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just the same as A. Now, let U be the interior of R1. As can be seen by the transition matrix,

removing the interior of R1 leaves no permissible transitions in the set ΛR1 from the interior

of one rectangle to the interior of another. Hence, the only points of ΛR1 are the homoclinic

points through the origin and the origin itself. (Note that a point whose orbit lands in the

interior of R2 exactly once and then lies on W s(0) or W u(0) would also be permissible, but

in this case, no such point exists.) In any event, ΛR1 has infinitely many points, so δfinite

needs to be large enough so as to enclose all of R1. Again, the particular value will depend

on the metric used.

The set ΛR1 given in this example is countably infinite, as the orbit of each homoclinic

point is countable, and there are only finitely many of them whose orbits never fall into R1,

namely, the points at the corners of the rectangles in the partition. Uncountable sets ΛU are

also possible. In fact, if we let U be a subset of the interior of R1 so that every point of U

is at least some fixed distance from the boundary of R1, then the Smale-Birkhoff theorem

(see background) applies and we obtain (among other things) ΛU being uncountable. On

the other hand, if the set U is expanded so as to include all of the boundary of R1, then no

homoclinic orbits remain in ΛU , so ΛU is empty. Hence, ΛU may have finite, countable, or

uncountable cardinality.

One final topological/dynamical property of ΛU can also be given that is relevant for

our analysis later. Recall that an invariant set Λ is locally maximal if it contains a local

product structure. ΛR2 is not locally maximal, as can be demonstrated by Figure 3.2. Here,

the thick points highlight the orbit of a homoclinic point, the thick lines are the boundaries

of R2, and the thinner lines are the (un)stable manifolds of the points in the orbit of the

homoclinic point. Since the intersection of the stable and unstable manifolds of points near

the origin all lie within R2, they are not included in ΛR2 by definition. Hence, ΛR2 is not
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Figure 3.2: An example to show that ΛU need not be locally maximal. Some points of ΛU

with (un)stable manifolds are drawn, showing the absence of a local product structure.

locally maximal. This argument is readily extended to any set ΛU , where ΛU represents the

interior of a rectangle with one corner at the origin (or any other fixed point).

In this chapter, we have given some basic properties about the invariant sets ΛU relating to

connectivity and cardinality. Later, we will proceed to give some more “advanced” properties

of ΛU , with our ultimate goal being a determination of the Hausdorff dimension of the set.

This will require a few more advanced tools and techniques.
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Chapter 4. The Dimension of ΛU

In the previous chapter, we gave some simple topological results of the invariant sets ΛU .

Here, we wish to develop a more advanced concept, that of the Hausdorff dimension of ΛU .

Among other things, the Hausdorff dimension will give a classification of the relative size of

ΛU , as ΛU has Lebesgue measure zero for all open sets U .

Results for this chapter will be limited to the two-dimensional case. Additionally, we will

require the set U to be simply connected.

4.1 Self-Similarity and Dimension

A highly desirable property of a fractal set is that of self-similarity. A set S is said to be self-

similar if S can be subdivided into k congruent subsets, each of which may be magnified by

a constant M such that the resulting set is identical to S. In this case, the fractal dimension

dfrac of a self-similar set S is defined as

dfrac(S) =
log k

logM
= logM(k).

Some well-known examples of this definition are that of the Cantor middle-thirds set,

which has dimension log3(2), and the Sierpinski triangle, which has dimension log2(3) (as in

the introduction). It is well-known that the Hausdorff dimension of both of these sets are

equal to their fractal dimension. For now, we will use the fractal dimension of ΛU as an

a priori estimate of the Hausdorff dimension. As an example, let

A =

1 1

1 0


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Figure 4.1: A Markov partition of T2. For the examples referencing this partition, R1 is the
white rectangle, R2 is the lighter gray rectangle, and R3 the darker gray rectangle.

and let U be the interior of R3 in the Markov partition given in Figure 4.1.

Again, with the aid of a computer program, we can demonstrate the effect of performing

a few iterations of the map. The results are given in Figure 4.2. The self-similarity of the

image is readily apparent, and it is not difficult to see that continuing in a similar fashion

will yield a set ΛU that resembles Cantor dust (a cross product of the Cantor set with it-

self). In this case, because of the similarities present, we can use some simple algebra and

geometry to compute dfrac(ΛU). Doing so, we obtain logϕ(2), or approximately 1.44042009.

Here, ϕ = 1+
√

5
2

, the golden ratio. This is also the larger of the two eigenvalues of A.

The fractal dimension of Λ will ultimately depend on two things: The set that is removed
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Figure 4.2: Successive approximations of the set ΛU for the map fA. The shaded region
represents ∪i=mi=−mf

i
A(U) for m = 0, 1, ...5 (left to right, top to bottom).
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from T2, and the matrix A. Consider now the effect of using the map

A2 =

2 1

1 1


The eigenvectors are in the same direction, so we can begin with the same partition. How-

ever, even if R3 is used, a pattern is not so obvious (see Figure 4.3). Hence, we need some

more sophisticated machinery to approach this problem.

4.2 A Connection between Entropy and Dimension

The following theorem gives a method with which we can compute the box dimension of

the invariant sets ΛU . It is based on a result of Fathi (see [20]), modified to work in the

particular case of the two-dimensional hyperbolic toral automorphism.

Theorem 4.1. Let fA be a two-dimensional hyperbolic toral automorphism, and let λ be the

absolute value of the eigenvalue of A greater than 1. Then if K is a compact fA-invariant

set, the box dimension of K is given by

2htop(fA|K)

log λ
.

Proof. Let the metric d be given by the ∞-metric in terms of the basis given by the two

eigenvectors of A. In this metric, a “ball” is a square with sides parallel to the eigenvectors

of A. For instance, the interior of R3 in Figure 4.1 is a ball about the point (1/2, 1/2).

Let ε > 0 such that 1/λ + ε < 1. If B(x, ε) represents the open ball about x of radius ε
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Figure 4.3: Successive approximations of the set ΛU for the map fA2 . The shaded region
represents ∪i=mi=−mf

i
A2(U) for m = 0, 1, 2, 3 (left to right, top to bottom).
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in the metric d, then for n ∈ N define Bn(x, ε) to be

Bn(x, ε) =
n⋂

i=−n

f−iA B(f iA(x), ε).

Note that this is precisely equal to B(x, ελ−n) by our choice of metric. Define N (n, ε) to be

the minimum number of sets Bn(x, ε) required to cover K.

Lemma 4.2. N (n, ε) ≤ rspan(2n+ 1, ε).

Proof. Let Y be a minimal (2n+ 1, ε)-spanning set for K. Then for all x ∈ K, we have that

there is a point y of Y such that d(f i(x), f i(y)) < ε for all 0 ≤ i ≤ 2n + 1. But then it

certainly holds that d(f i(x), f i(y)) < ε for all 0 ≤ i ≤ 2n, and so Y is a (2n, ε)-spanning set

for K as well.

Now, consider the set {Bn(fn(y), ε) : y ∈ Y }. We claim that this forms a cover for the

set K. To see this, note that

Bn(fn(y), ε) = {x ∈ K : d(f i(fn(y)), f i(x)) < ε : −n ≤ i ≤ n}

= {x ∈ K : d(f i(y)), f i(x)) < ε : 0 ≤ i ≤ 2n}

Since Y is a (2n, ε)-spanning set, every point x ∈ K is included in one of the sets Bn(fn(y), ε).

Hence, the collection {Bn(fn(y), ε) : y ∈ Y } is a cover for K. As this cover may not be

minimal, we get N (n, ε) ≤ rspan(2n+ 1, ε).
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We now return to the proof of Theorem 4.1. By definition, we have that

htop(fA|K) = lim
ε→0

(
lim sup
n→∞

log(rspan(2n+ 1, ε))

2n+ 1

)
≥ lim

ε→0
lim sup
n→∞

log(N (n, ε))

2n+ 1

with the inequality following from Lemma 4.2. Multiplying both sides by 2 yields

2htop(fA|K) ≥ lim
ε→0

lim sup
n→∞

log(N (n, ε))

n+ 1
2

= lim
ε→0

lim sup
n→∞

log(N (n, ε))

n
.

Let N(ε,K) be the minimum number of balls of radius ε that are needed to cover K, as

in the definitions for upper and lower box dimensions. Recall that the definition of upper

box dimension is

dimB(K) = lim sup
ε→0

log(N(ε,K))

− log(ε)
.

Since N (n, ε) measures the number of balls required to cover K each having radius ελ−n, we

can also write the box dimension in terms of these quantities as follows:

dimB(K) =
log(N (n, ε))

− log(ελ−n)
=

log(N (n, ε))

− log(ε) + n log(λ)
=

log(N (n,ε))
n

− log(ε)
n

+ log(λ)
.

We then know that

dimB(K) = lim
ε→0

lim sup
n→∞

log(N (n,ε))
n

− log(ε)
n

+ log(λ)

= lim
ε→0

lim supn→∞
log(N (n,ε))

n

log(λ)

=
limε→0 lim supn→∞

log(N (n,ε))
n

log(λ)

≤ 2htop(fA|K)

log(λ)
,

which establishes an upper bound for the box dimension.
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On the other hand, we have the following lemma, which will aid in obtaining a lower

bound for the box dimension:

Lemma 4.3. For sufficiently large n (depending only on λ), N (n, ε) ≥ rsep(2n− 1, ε).

Proof. Let S be a maximal (2n − 1, ε)-separated set for K. Let U be the set f−nA (Bn(x, ε))

for some point x. Suppose there are two points y, z ∈ U ∩ S. By construction of Bn(x, ε),

this means that both y and z remain within ε distance of x for 2n− 1 iterations of fA. Then

in the set U , it must be that the distance between x and y is less than ελ−(2n−1) and that

the distance between x and z is less than ελ−(2n−1). For sufficiently large n, λ−(2n−1) is less

than 1/2, and so by the triangle inequality, we get that y and z are within ε of each other,

violating the assumption that S was (2n− 1, ε)-separated. Hence, each set U can contain at

most one point of S.

We now finish the proof of Theorem 4.1. Lemma 4.3 allows us to compute

htop(fA|K) = lim
ε→0

(
lim inf
n→∞

log(rsep(2n− 1, ε))

2n− 1

)
≤ lim

ε→0
lim inf
n→∞

log(N (n, ε))

2n− 1

for sufficiently large n. This again results in

2htop(fA|K) ≤ lim
ε→0

lim inf
n→∞

log(N (n, ε))

n− 1
2

= lim
ε→0

lim inf
n→∞

log(N (n, ε))

n

37



when both sides are multiplied by 2. We then compute the inner box dimension to be

dimb(K) = lim
ε→0

lim inf
n→∞

log(N (n,ε))
n

− log(ε)
n

+ n−1
n

log(λ)

= lim
ε→0

lim infn→∞
log(N (n,ε))

n

log(λ)

=
limε→0 lim infn→∞

log(N (n,ε))
n

log(λ)

≥ 2htop(fA|K)

log(λ)
,

which establishes the lower bound for the box dimension and completes the proof.

As an example, consider again the mapping fA where A is the matrix

A =

1 1

1 0

 .
Using the Markov partition in the example from earlier, we obtain the transition matrix

TA =


0 1 0

2 0 1

1 0 0

 ,

and by removing R3, we end up with a smaller transition matrix

T ∗A =

0 1

2 0

 .
Some rudimentary linear algebra tells us that the eigenvalues (hence entropy) of T ∗A are the

same as the eigenvalues of the upper-left 2 × 2 block of TA and zero. In fact, in order to

compute the transition matrix given by removing one rectangle, we simply remove the row
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and column corresponding to that rectangle. Additionally, we can then remove any rectangle

whose column in the transition matrix contains all zeros (as there are no points whose orbits

fall into such a rectangle) or whose row in the transition matrix contains all zeros (as the

orbit of any such point has nowhere to go). Repeating this eventually yields a smaller matrix

with the same non-zero eigenvalues.

For verification, we compare this result against our estimate of the dimension we obtained

in the previous chapter. We find that the eigenvalues of T ∗A are ±
√

2, so λ = log(
√

2), and

we obtain 2 log(
√

2)/ log(ϕ) = log(2)/ log(ϕ) as the box dimension.

If the same partition is used for the matrix A2 and the same rectangle is removed, the

entropy obtained is 4 and the value of λ is ϕ2. Hence, the dimension of the ΛR3 in Figure

4.3 is the same as in Figure 4.2, namely log(2)/ log(ϕ).

Remark: A result by Pesin (see [16], Theorem 22.2) gives the Hausdorff dimension of

a locally maximal hyperbolic invariant set in terms of the entropy and the expanding and

contracting constants of the map.

Theorem 4.4 (Pesin). For a locally maximal hyperbolic set Λ of a C1+α diffeomorphism

which is both u- and s-conformal and topologically mixing, we have

dimH(Λ) = dimb(Λ) = dimB(Λ) = t(u) + t(s)

where t(u) and t(s) are the unique roots of Bowen’s equations

PΛ(−t log |a(u)|) = 0, PΛ(t log |a(s)|) = 0
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respectively and can be computed by the formulae

t(u) =
hK(u)(f)∫

Λ
log |a(u)|(x)|dK(u)(x)

,

t(s) = − hK(s)(f)∫
Λ

log |a(s)|(x)|dK(s)(x)
,

where K is the unique equilibrium measure corresponding to the function −t(u) log |a(u)(x)|

on Λ.

We refer the reader to the background chapter to review the definitions of conformality

and Bowen’s equation. In the context of two-dimensional hyperbolic toral automorphisms,

a(u)(x) is the absolute value of the eigenvalue λ with modulus greater than one, and a(s) is

| 1
λ
|. Further, the measure K(u)(f) is ergodic, so the value of the denominator is precisely

log(λ), just as in Theorem 4.1. Moreover, the measure K will be determined by taking the

supremum over all invariant measures µ of the function

hµ(f)− t log(λ)

for fixed t. For two-dimensional hyperbolic toral automorphisms, this is precisely the measure

corresponding to the topological entropy of the system. Hence, we obtain that the Hausdorff

dimension of the sets ΛU is precisely

t(u) + t(s) =
htop(fA|ΛU

)

log(λ)
− htop(fA|ΛU

)

log( 1
λ
)

=
htop(fA|ΛU

)

log(λ)
+
htop(fA|ΛU

)

log(λ)

=
2htop(fA|ΛU

)

log λ
,

which is equal to the box dimension computed above.
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An additional result by Palis and Viana (see [21]) shows that if Λ is a locally maximal

hyperbolic set of a C1 surface diffeomorphism with stable and unstable dimension equal to 1,

then there is a neighborhood U of f so that the Hausdorff dimension of Λ varies continuously

as f varies within U . Mañe (see [22]) strengthened this result by showing that if r ≥ 2 and

f is a Cr surface diffeomorphism, then the dimension varies in a Cr−1 fashion.

Remark: It was necessary to modify Theorem 1.2 in [20] as the original theorem gives a

crude general upper bound. As stated by Fathi, the theorem is as follows:

Theorem 4.5. (Fathi) Let K be a compact subset of the manifold M . Suppose that K is

hyperbolic for the C1 diffeomorphism f . Define

λ = max

[
lim
n→∞

1

n
log

(
max
x∈K
||Txfn|Es||

)
, lim
n→∞

1

n
log

(
max
x∈K
||Txf−n|Eu||

)]
,

then we have:

dimH(K) ≤ dimB(K) ≤ −2htop(f |K)

λ
.

(Note here that λ corresponds to the logarithm of the eigenvalue of modulus smaller than

one in the case of hyperbolic toral automorphism in two dimensions.) To demonstrate that

equality does not necessarily hold, let A again be the matrix

A =

1 1

1 0

 ,
let O be the 2 × 2 zero matrix, and consider the hyperbolic toral automorphism on T4 be

given by the block matrix

B =

A O

O An


for arbitrary n ∈ N. Then the value of λ (as presented in Fathi’s theorem) is 1/ϕ. Let K the
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subset T2×{[0]} of T4, where [0] is the projection of the origin in R2 onto the 2-torus. Note

that this set is unaffected by the An submatrix of B. Further, this set is certainly invariant

under fB and has box dimension 2. However, by Fathi’s argument, the box dimension of

this set is bounded above by

−2htop(fB|K)

λ
=

2 log(ϕn)

log(ϕ)
= 2n.

As n is arbitrary, this quantity can be made as large as desired.

4.3 Two Theorems from Lind

The following two theorems are due to Lind (see [23], Section 5). The first gives the change

in the spectral radius of a matrix in terms of the change in an entry of that matrix.

Theorem 4.6. Let A = [aij] be a real square matrix with simple eigenvalue λ and corre-

sponding left eigenvector v and right eigenvector w. Then

[
∂λ

∂aij

]
=
wv

vw
.

Note that the right side of this expression is actually a matrix. The change in λ resulting

by a small change in the ij entry of A is given by the ij entry of wv/vw.

In terms of the transition matrices used with the Markov partitions for hyperbolic toral

automorphisms, we know that w and v have all positive entries, so we get that the spectral

radius (hence entropy) increases as the aij entry increases, and the spectral radius decreases

as aij decreases. Applying this enables us to estimate the dimension of ΛU for arbitrary open

sets U .
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Theorem 4.7. Let T represent a transition matrix for a subshift of finite type with λ the

eigenvalue of maximum modulus. Let σT represent the subshift of finite type defined by T .

Let B be a T -admissible word, and σT<B> represent the subshift of finite type defined by T

where the word B does not occur. If k is the length of B, then there are constants c and d

so that

cλ−k < htop(σT )− htop(σT<B>) < dλ−k.

As Markov partitions are refined in T2, the resulting smaller rectangles can be coded by

words of increasing length, using words in terms of the original partition. As such, we obtain

the following corollary:

Corollary 4.8. Let U1 ⊃ U2 ⊃ U3... where each Ui is the interior of a rectangle in some

refinement of a Markov partition, then the dimension of the sets ΛU1 ,ΛU2 ,ΛU3 ... approaches

2.

4.4 Dimension from Arbitrary Holes

As an example, consider letting U be a small circular hole around the point (1/2, 1/2), and

let

A =

1 1

1 0

 .
Consider the Markov partition of 355 rectangles given in Figure 4.4. Here, the darker colored

rectangles are entirely contained within the circle U , and the lighter colored rectangles are

rectangles that overlap U . Using a computer program, we can compute two different box

dimensions: the box dimension resulting from removing all of the shaded rectangles and the

box dimension resulting from removing only the darker shaded rectangles. In Figure 4.4, the

two entropies are given by log(1.481631) and log(1.568985) respectively. This gives the box
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Figure 4.4: An example of using a Markov partition to approximate a small circular hole.

dimension of ΛU between 1.634 and 1.872.

This estimate can be sharpened by refining the partition. In Figure 4.5, we refine to get a

Markov partition containing 2439 rectangles. Here, the entropies are given by log(1.535355)

and log(1.557403), yielding the box dimension between 1.782 and 1.841.

Continuing to refine the partitions, we can expect to converge to the box dimension. (A

further refinement of 4.5 was attempted, but the computer ran out of memory.) In par-

ticular, since the refinements give better and better approximations to U , we can get an
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Figure 4.5: A refinement of the Markov partition from Figure 4.4.

45



arbitrarily accurate estimate of the entropy of fA on ΛU , and, as a consequence, the box

dimension. This is similar to the result by Lind in [23] in section 5 Theorem 3, in which

the difference in entropy of a symbolic system with a word removed is computed, and shown

to be exponentially decreasing in the length of the removed word. Further, this technique

of moving from rectangles to arbitrary holes is analogous to one used in a series of papers

by Chernov, Markarian, and Troubetzkoy (see for example [24] and [25]). In this series of

papers, the authors consider ergodic measures for Anosov systems with holes. They are able

to show rates of convergence to a fixed measure in terms of the size and placement of the

holes on the manifold, as well as the particular map chosen.

Numerically, we have evidence for exponential convergence of the lower and upper en-

tropy estimates to some fixed quantity as the Markov partition continues to be refined. This

would then result in being able to compute the box dimension of the set ΛU for arbitrary

U . A combinatorial variation on Lind’s theorem (Theorem 4.7) should give this analytically.

Specifically, we need to demonstrate that the number of rectangles needed to approximate

the open set U grows at such a rate so that the exponential decay of the entropy is still the

dominating term in the limit. Time did not allow for this analysis to be performed.
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Appendix A. MATLAB Source Code

This is the MATLAB source code for program used to obtain the adjacency matrices for

the examples of hyperbolic toral automorphisms. Some minor modifications to this program

were used to draw all the images and make all the computations in this document.

%Helps to determine adjacency matrices for Markov partitions

%Inputs:

% res: size of lattice

% A: matrix to iterate

% lens: Lengths of lines to draw Markov partitions

% lpowr: lower power of iteration of Markov partition

% upowr: upper power of iteration of Markov partition

%Output:

% adjmat: The adjacency matrix of 1 iteration of the map

function adjmat = HTAadj(res,A,lens,lpowr,upowr)

%Define a matrix of colors for the drawings:

cvec = [1 0 0;

0 1 0;

0 0 1;

1 1 0;

0 1 1;
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1 0 1;

.5 0 0;

0 .5 0;

0 0 .5;

.5 .5 0;

0 .5 .5;

.5 0 .5];

%first, draw the partition

disp(’Drawing Partition Boundary’);

pause(.1);

[V D] = eig(A);

lensl = zeros(2);

lensu = zeros(2);

lensl(1,:) = lens(1,:) * abs(D(1,1))^lpowr;

lensl(2,:) = lens(2,:) * abs(D(2,2))^lpowr;

lensu(1,:) = lens(1,:) * abs(D(1,1))^upowr;

lensu(2,:) = lens(2,:) * abs(D(2,2))^upowr;

points = zeros(1,2);

points = [points; getPoints(res,A,lensl)];

points = [points; getPoints(res,A,lensu)];

clf;

plot(points(:,1),points(:,2),’.’,’Color’,[0 0 0]);
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axis square;

%next, determine what the partition on the grid will look like

disp(’Defining rectangles’);

pause(.1);

[pgrid, rect] = getPartition(res,points);

%draw this partition

disp(’Coloring Rectangles’);

pause(.1);

for s = 1:rect

ptsofcolor = 0;

for i=1:res

for j=1:res

if(pgrid(i,j)==s)

ptsofcolor = ptsofcolor + 1;

end;

end;

end;

pts = zeros(ptsofcolor,2);

idx = 1;

for i=1:res

for j=1:res

if(pgrid(i,j)==s)

pts(idx,:) = [i-1,j-1];
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idx = idx + 1;

end;

end;

end;

colr = mod(s,size(cvec,1));

if(colr == 0)

colr = size(cvec,1);

end;

hold on;

plot(pts(:,1),pts(:,2),’.’,’Color’,cvec(colr,:));

end;

%Put the black points on over top

plot(points(:,1),points(:,2),’.’,’Color’,[0 0 0]);

%Next, determine the adjacency matrix

adjmat = zeros(1);

pgrid2 = pgrid;

disp(’Determining adjacency matrix’);

pause(.1);

for i=0:res-1

for j=0:res-1

p1 = pgrid(i+1,j+1);

x = A*[i;j];

x = mod(x,res);

p2 = pgrid(x(1)+1,x(2)+1);
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if(p1 * p2 ~= 0)

adjmat(p1,p2) = 1;

end;

pgrid2(i+1,j+1) = pgrid(x(1)+1,x(2)+1);

end;

end;

disp(adjmat);

%Put the black points on over top

plot(points(:,1),points(:,2),’.’,’Color’,[0 0 0]);

axis square;

function points = getPoints(res,A,lens)

%Inputs: As parent function

%Outputs: The points that give the Markov partition lines drawn

points = [0 0];

[V,D] = eig(A);

eval1 = V(:,1)’;

eval2 = V(:,2)’;

eval1 = eval1 / norm(eval1);

eval2 = eval2 / norm(eval2);

for t=lens(1,1):min(1/res, .001):lens(1,2)
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points = [points; t*eval1];

end;

for t=lens(2,1):min(1/res, .001):lens(2,2)

points = [points; t*eval2];

end;

points = mod(points * res, res);

points = [points; 0 res; res res; res 0];

return;

function [pgrid, rect] = getPartition(res, points)

%Inputs:

% res: As in parent function

% points: A list of points that are black on the map

%Outputs:

% pgrid: A res-by-res matrix of integers determining which partition each point

% is in, with the convention that the point at (x,y) corresponds to the

% index (x+1, y+1) in the matrix

% rects: the total number of rectangles in the partition

%This is the automated version of the function that will make searching for

%rectangles by hand obsolete

pgrid = zeros(res);

%first, black out all the relevant points (along the boundary of

52



%rectangles)

for i = 1:size(points, 1)

x = points(i,1);

y = points(i,2);

xhigh = mod(ceil(x), res);

xlow = mod(floor(x), res);

yhigh = mod(ceil(y), res);

ylow = mod(floor(y), res);

pgrid(xlow+1, ylow+1) = -1;

if(xhigh <= res)

pgrid(xhigh+1, ylow+1) = -1;

end;

if(yhigh <= res)

pgrid(xlow+1, yhigh+1) = -1;

end;

if(xhigh <= res && yhigh <= res)

pgrid(xhigh+1, yhigh+1) = -1;

end;

end;

%systematically iterate over each point and floodfill

rect = 0;

for i=1:res

for j=1:res

if(pgrid(i,j)==0)

rect = rect + 1;
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pgrid(i,j) = rect;

pgrid = floodfill(pgrid,rect);

end;

end;

end;

%clear out the -1 points (set them to zero)

for i=1:res

for j=1:res

if(pgrid(i,j)==-1)

pgrid(i,j) = 0;

end;

end;

end;

return;

function ngrid = floodfill(pgrid,colr)

%Inputs:

% pgrid: the grid from getPartition

% colr: the number of the color to iteratively floodfill

%Outputs:

% ngrid: a grid that is floodfilled based on a given color

%Idea: Use least fixed-point algorithm to floodfill the rectangle

changed = 1;
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res = size(pgrid,1);

ngrid = pgrid;

while(changed == 1)

changed = 0; %reset at the start of each loop

for i=1:res

for j=1:res

%if colr found, check neighbors and change as needed

if(ngrid(i,j)==colr)

left = i-1;

if(left == 0);

left = res;

end;

right = i+1;

if(right == res+1)

right = 1;

end;

up = j + 1;

if(up == res+1)

up = 1;

end;

down = j - 1;

if(down == 0)

down = res;

end;

if(ngrid(i,up) == 0)

ngrid(i,up) = colr;
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changed = 1;

end;

if(ngrid(i,down) == 0)

ngrid(i,down) = colr;

changed = 1;

end;

if(ngrid(left,j) == 0)

ngrid(left,j) = colr;

changed = 1;

end;

if(ngrid(right,j) == 0)

ngrid(right,j) = colr;

changed = 1;

end;

end; %done changing color

end; %iterate over j coordinate

end; %iterate over i coordinate

end; %end fixed point iteration
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