
Brigham Young University
BYU ScholarsArchive

Theses and Dissertations

2019-07-01

Developing Understanding of the Chain Rule,
Implicit Differentiation, and Related Rates:
Towards a Hypothetical Learning Trajectory
Rooted in Nested Multivariation
Haley Paige Jeppson
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Jeppson, Haley Paige, "Developing Understanding of the Chain Rule, Implicit Differentiation, and Related Rates: Towards a
Hypothetical Learning Trajectory Rooted in Nested Multivariation" (2019). Theses and Dissertations. 7529.
https://scholarsarchive.byu.edu/etd/7529

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7529&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/?utm_source=scholarsarchive.byu.edu%2Fetd%2F7529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F7529&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/7529?utm_source=scholarsarchive.byu.edu%2Fetd%2F7529&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Developing Understanding of the Chain Rule, Implicit Differentiation, and Related Rates: 

Towards a Hypothetical Learning Trajectory Rooted in Nested Multivariation 

Haley Paige Jeppson 

A thesis submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of 

Master of Arts 

Steven R. Jones, Chair 
Steve R. Williams 
Blake E. Peterson 

Department of Mathematics Education 

Brigham Young University 

Copyright  2019 Haley Paige Jeppson 

All Rights Reserved 



ABSTRACT 

Developing Understanding of the Chain Rule, Implicit Differentiation, and Related Rates: 
Towards a Hypothetical Learning Trajectory Rooted in Nested Multivariation 

Haley Paige Jeppson 
Department of Mathematics Education, BYU 

Master of Arts 

There is an overemphasis on procedures and manipulation of symbols in calculus and not 
enough emphasis on conceptual understanding of the subject. Specifically, students struggle to 
understand and correctly apply concepts in calculus such as the chain rule, implicit 
differentiation, and related rates. Students can learn mathematics more deeply when they make 
connections between different mathematical ideas. I have hypothesized that students can make 
powerful connections between the chain rule, implicit differentiation, and related rates through 
the mathematical concept of nested multivariation. Based on this hypothesis, I created a 
hypothetical learning trajectory (HLT) rooted in nested multivariation for students to develop an 
understanding of these three concepts. In this study, I explore my HLT through a small-scale 
teaching experiment with individual first-semester calculus students using tasks based on the 
HLT. 

Based on the teaching experiment, nested multivariational reasoning proved to be critical in 
understanding how the variables within a function composition change together and in 
developing intuition and understanding for the multiplicative nature of the chain rule. Later, 
nested multivariational reasoning was mostly important in recognizing the existence of a nested 
relationship and the need to use the chain rule in differentiation. Overall, through the HLT, 
students gained a connected and conceptual understanding for the chain rule, implicit 
differentiation, and related rates. I also discuss how the HLT might be adjusted and improved 
for future use. 

Keywords: calculus, chain rule, implicit differentiation, related rates, multivariation, 
covariation, hypothetical learning trajectory 
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CHAPTER ONE: INTRODUCTION 

Rationale 

Emphasis on Procedures in Calculus 

Conceptual understanding of concepts in calculus like function, covariation, infinity, 

limit, derivative, and integral is often lacking in calculus students (Byerley, Hatfield, & 

Thompson, 2012; Davis & Vinner, 1986; Jones, 2015; Kolar & Cadez, 2012; Oehrtman, 2009). 

Additionally, it has been reported that students struggle to solve, interpret, and apply calculus 

problems (Martin, 2000; McDermott, Rosenquist, & van Zee, 1987). Selden, Selden, and Mason 

(1994) found that calculus students struggle to apply calculus creatively in nonroutine problems. 

The authors found this was true even for calculus students who received an A or B grade in the 

class and performed well on tests of the knowledge base of relevant calculus skills. This is 

problematic as calculus concepts are relevant, not only in various sectors of mathematics, but 

also in a variety of other disciplines including engineering, business, economics, psychology, 

computer science, biology, chemistry, and other natural sciences. About 71% of students 

enrolled in calculus are studying engineering, biological sciences, and physical and computer 

sciences (Bressoud, Carlson, Mesa, & Rasmussen, 2013). Yet, students may not have a strong 

enough understanding of calculus to know how to powerfully apply calculus concepts in their 

respective fields. 

Students struggle to understand and appreciate calculus concepts could, in part, be related 

to the fact that calculus students, whether secondary or in college, are placing too much emphasis 

on procedures and manipulation of symbols without conceptual understanding (Tall, 1992; 

Ferrini-Mundy & Gaudard, 1992; Rasmussen & Marrongelle, 2014; White & Mesa, 2014). For 

example, White and Mitchelmore (1996) conducted a study exploring first year college students’ 
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conceptual knowledge in introductory calculus. The authors provided 24 hours of concept-based 

calculus instruction to students who had already learned calculus in high school. The authors 

collected post-instruction student responses and found that students’ performance with rates of 

change, an important concept for derivatives, in complex situations was weak. The authors found 

that the students treated “variables… as symbols to be manipulated rather than as quantities to be 

related” (p. 79). They found that many of the students’ difficulties generally came from their 

“manipulation focus” (p. 88), where the students focused on which procedure to apply and didn’t 

attend to the meaning of the symbols with which they were working. 

Coinciding with students’ focus on procedures, textbooks also place a lot of emphasis on 

procedures when introducing different concepts in calculus. For example, Stewart (2016), which 

is by far the most commonly used textbook in the United States, introduces the chain rule as a 

procedure and does not provide opportunities for the student to explore why the chain rule works 

or why it makes sense, thereby gaining a deeper, conceptual understanding. The author begins 

the section by simply stating the rule: if you have a composition of functions 𝑓𝑓 ∘ 𝑔𝑔, “the 

derivative of the composite function 𝑓𝑓 ∘ 𝑔𝑔 is the product of the derivatives of 𝑓𝑓and 𝑔𝑔” (p. 198). 

Although the textbook does provide a short explanation of some intuition behind the chain rule, 

there are no problems or examples to really help students discover or understand this for 

themselves. Instead, the book proceeds to provide a multitude of examples and homework 

problems that require students to practice using the rule rather than explore why it works or 

makes sense. Stewart (2016) gives a formal proof at the end of the chapter for why the rule 

works, but it is a purely symbolic explanation; there is no meaningful context to help the students 

develop intuition for the rule before it is abstracted. 
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An overemphasis on procedures in calculus can be problematic. Overemphasizing 

procedures and calculations can make it hard for students to make sense of mathematics, 

remember what they learn, and apply it appropriately in the future (NRC, 2001; Pesek & 

Kirshner, 2000; Skemp, 2006; Thompson, Philipp, Thompson, & Boyd, 1994). It is possible that 

calculus students, who are focusing on procedures (Tall, 1992; Ferrini-Mundy & Gaudard, 1992; 

Rasmussen & Marrongelle, 2014; White & Mesa, 2014) and meaningless manipulation of 

symbols (White and Mitchelmore, 1996) may never gain the conceptual understanding they 

could have potentially gained if they focused on gaining a conceptual understanding from the 

beginning. Pesek and Kirshner (2000) studied two groups of students: one group received 

instruction focused only on conceptual understanding and the other group first received 

instruction focused mathematical procedures and then received instruction focused on conceptual 

understanding. They found that the first group of students, who received only instruction focused 

on conceptual understanding, outperformed the other group. 

I am not arguing that procedures are bad. A complete understanding of a mathematical 

concept includes an interplay of both procedural and conceptual understanding (NRC, 2001; 

Pettersson and Scheja, 2008). Pettersson and Scheja explain that focusing solely on the 

procedural aspects of a concept might delay a more conceptual understanding, yet they point out 

that a complete understanding of a mathematical concept includes both a conceptual and 

procedural component. 

Connections Between Mathematical Concepts 

Another part of gaining a solid conceptual understanding of mathematics is to make 

connections among and between various mathematical concepts. Schoenfeld (1988) says, 

“thinking mathematically consists not only of mastering various facts and procedures, but also in 
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understanding connections among them” (p. 164). Additionally, some researchers claim that the 

degree of our understanding of mathematics can be determined by the number and strength of 

connections we make to other mathematical knowledge (Brownell, 1935; Hiebert & Carpenter, 

1992; Hiebert et al., 1997). In looking at the typical calculus curriculum for concepts that could 

be taught more conceptually and connectedly, I became more interested in the chain rule, 

implicit differentiation and related rates. As a calculus student, tutor, and teaching assistant I 

have seen how students often struggle to understand these three concepts and fail to see how they 

are related. Research has also shown that students struggle to understand these concepts (Cottrill, 

1999; Infante, 2007). 

Although researchers have begun to explore way in which the chain rule, related rates, 

and implicit differentiation are related to one another (Clark et al., 1997; Cottrill, 1999; Infante, 

2007; Martin, 2000), they tend to examine these concepts in isolation and they have not 

conducted a serious investigation into how these concepts could be taught in a way that connects 

them together. Cottrill (1999) says that the chain rule is the underlying concept of implicit 

differentiation and related rates. To me, the chain rule, implicit differentiation, and related rates 

are different applications of the same underlying concept: nested multivariation. Later, in 

Chapter 3, I more deeply describe my conceptual framework for nested multivariation. In my 

study, I explore the question of whether or not nested multivariation can be used as a construct to 

help students understand the connectedness of these three concepts. 
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CHAPTER TWO: LITERATURE REVIEW 

 My study deals with the chain rule, implicit differentiation, and related rates. In this 

chapter, I present the limited research that has been done in these three areas. The use of 

meaningful contexts is central to the tasks I have created based on the HLT, so I also discuss 

what research has said about the importance of using meaningful contexts to explore 

mathematics. Lastly, the concept of infinitesimals is also central to the HLT and so I end by 

discussing what research says about infinitesimals and how they can be a useful conceptual tool 

for students in understanding calculus. 

Research on Related Rates 

Austin, Barry, and Berman (2000) describe the history behind related rates problems in 

first-year calculus. The authors explain that even back in the early 19th century, Rev. William 

Ritchie (1836) noticed that students struggled to understand and recognize the power of calculus. 

He attempted to reform the way calculus was taught by being one of the first to include related 

rates problems in his text. He did this in order to help calculus become more accessible and 

powerful to the “ordinary, non-university student” (p. 3). Related rates problems can potentially 

be a great way for students to experience mathematical reasoning. For example, they create a 

way for students to model meaningful contexts, use calculus to better understand that model, and 

evaluate and interpret their results in a meaningful way. 

Although related rates problems can potentially be a great way for students to experience 

the power of calculus, students struggle to understand or solve related rates problems (Infante, 

2007; Martin, 2000). 

In his textbook, when Stewart (2016) introduces related rates, he says “the procedure is 

to find an equation that relates the two quantities and then use the Chain Rule to differentiate 
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both sides with respect to time” (p. 245, emphasis added). He then provides step-by-step 

instructions for the students to follow as they attempt to solve related rates type problems. He 

states it as if it is a simple “procedure”, yet students continue to struggle to conceptualize and 

solve these problems (Infante, 2007; Martin 2000). 

My study builds on Infante’s (2007) dissertation exploring student understanding of 

related rates problems. In her study, she interviewed mathematicians and conducted a teaching 

experiment with first-semester calculus students in order to better understand the processes and 

cognitive constructions necessary to solve related rates problems. Infante (2007) and White & 

Mitchelmore (1996) have identified students’ inadequate (and generally procedural) 

understanding of the chain rule as one of the major obstacles in a student's ability to solve related 

rates problems. 

Infante (2007) found that it is especially difficult for students to recognize the implicit 

variable of time within related rates problems. She found that using a dynamic computer 

program, which illustrated the related rates problems the students were working through, helped 

students to recognize the implicit variable of time and apply the chain rule. She also found that if 

students used the chain rule in a related rates problem, it became a way for them to create a delta 

equation (see Chapter 4 for more details on a “delta equation”), which helped them to better see 

the relationship between the given and unknown rates in the problem. Visualizing this 

relationship in the equation ultimately helped them to successfully solve the related rates 

problem. In other words, she found that the chain rule was a main factor for solving a related 

rates problem. 

In Chapter 4, I more thoroughly explain exactly how my study builds on and extends 

Infante’s dissertational work. 
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Research on the Chain Rule and Implicit Differentiation 

 In general, students struggle to understand and appropriately use the chain rule (Clark et 

al., 1997; Cottrill, 1999; Infante, 2007). Cottrill (1999) explains that in current pedagogical 

practices, there is not a visual representation of the chain rule, which may contribute to students’ 

inability to conceptualize and successfully use the chain rule. 

Speer and Kung (2016) explain that research on implicit differentiation is basically 

missing from mathematics education research. In response to this observation, Mirin and Zazkis 

(2019) presented a conceptual basis for differentiating an equation, in an effort to make implicit 

differentiation more explicitly defined. They explain that when performing implicit 

differentiation, it is important to clearly define any implicit functions and then recognize that the 

two functions set equal to one another in an equation may only be equal to one another on a 

restricted domain. They explain that only once it is clear that the two functions are equal to each 

other can one understand why their derivatives, with respect to the chosen independent variable, 

are also equal to each other. They explain that the legitimacy of taking the derivative of both 

sides of the equation is nontrivial for and remains unclear to some calculus students. Jones 

(2017) found that students in his study often thought that implicit differentiation must be 

required for all applied derivatives.  

Stewart’s (2016) textbook primarily presents both the chain rule and implicit 

differentiation as procedures and steps rather than providing students with opportunities to 

understand these ideas. For example, he does not help students to conceptually understand why 

implicit differentiation works. Instead, he only provides a few examples that help students to 

understand when and why they might use implicit differentiation. For the most part, he explains 



 
 
 

8 

that when faced with an implicit equation, one simply chooses which variable will be 

independent and then applies the chain rule to find the derivative. 

Using Meaningful Contexts 

My study makes use of meaningful contexts through which students can build 

understandings for the chain rule and implicit differentiation. My work builds off Infante’s 

(2007) findings, but my study is different than hers in that I observe whether and how students 

might develop meanings for the chain rule and implicit differentiation through meaningful 

contexts. In her study, Infante revisited the chain rule in the second teaching episode, after her 

students had already learned the rule in their individual classes. She hoped that this would help 

them to ultimately conceptualize and solve related rates problems. In my study, instead of 

conducting a teaching experiment where students relearn the chain rule, I explore how students 

might develop understandings of the chain rule through meaningful contexts. When I use the 

term meaningful contexts, I mean contexts that allow the students to visualize or use intuition to 

make sense of the mathematics. 

Dienes (2006) explains that students must first experience mathematics in order to 

understand or make mental constructions of abstract mathematical concepts. That is, a student 

must form mental images of mathematical ideas so that when she/he abstracts that idea, the 

student understands what the abstraction means and why it works the way it does. Exploring 

mathematics through meaningful contexts can help students form mental images for abstract 

mathematical concepts like those found in calculus. 

Schwalbach and Dosemagen (2000) looked at the practice of one high school teacher 

who provided students with the opportunity to explore calculus and experience mathematics 

through meaningful contexts. They found that these students explained the processes they were 
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using to solve calculus problems. They also found that these students were able to explain their 

reasoning in multiple ways (e.g. numerically, algebraically, graphically, and verbally) and they 

made significant connections between concepts in physics and calculus. 

Other researchers make a call for educators to give more importance to context and visual 

images in helping students to understand challenging mathematical concepts, like those in 

calculus (Dray & Manogue, 2005; Redish, 2005; Weber, Tallman, Byerly, & Thompson, 2012). 

Dray and Manogue (2005), a mathematician and physicist respectively, emphasize the 

importance of context. They explain that “the mathematics we teach tends to be about formal 

manipulation of symbols according to well-defined rules, whereas the mathematics we use 

always has a context” (p. 3). They have seen many students struggle to apply mathematics and 

suggest that we use more contextually rich problems in our teaching. 

Using Infinitesimals 

 The HLT that I have constructed relies on a conception of infinitesimals by interpreting a 

derivative dy/dx as representing how many times as large the change in y is than an infinitesimal 

change in x. Although there is a historical debate about whether or not the idea of infinitesimals 

is mathematically rigorous, researchers have argued that infinitesimals are robust and viable and 

that using infinitesimals is conceptually beneficial for students (Dray & Manogue, 2010; Ely, 

2010; Ely, 2017; Jones, 2015). Ely (2010) demonstrates that although infinitesimal quantities are 

nonstandard, they could be used to “build a cognitive structure as powerful and consistent as the 

standard conceptual structure of the real number line” (p. 120). He explains that for more than a 

century, Leibniz’ conceptions of infinitesimals were used in coherent, powerful systems of 

mathematical thought. 
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 The concept of infinitesimals is complex, and students may have varying and complex 

ways of thinking about them. For this study, I encourage students to think of an infinitesimal as a 

very small, or infinitely small, quantity. I want to emphasize that when taking the limit of the 

difference quotient in finding a derivative, the change in the independent never collapses to 0 

(see Oehrtman, 2009 for more on “collapsing”). Instead, there always remains a very small, 

infinitesimal amount of the quantity within the tiny change. 
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CHAPTER THREE: CONCEPTUAL AND THEORETICAL FRAMEWORK 

My study makes use of two frameworks: a conceptual framework for the concept under 

investigation and a theoretical framework for how I think students might come to understand that 

concept and its applications. In this section, I describe both my conceptual framework for nested 

multivariation and my theoretical framework for hypothetical learning trajectories. I end the 

section by describing the hypothetical learning trajectory I developed for this study that is rooted 

in nested multivariation. 

Nested Multivariation 

As I thought more about the way that covariation plays into the chain rule, implicit 

differentiation, and related rates, and discussed these ideas with my advisor, I began to be more 

convinced that these concepts are connected. My advisor and I began to hypothesize that the 

concept that underlies these three concepts is Jones’ (2018) “nested multivariation.” 

In this section, I describe the results of the conceptual analysis I conducted for nested 

multivariation and how I see it being the concept that underlies these three concepts. I first 

describe and define nested multivariation. Then, I describe how I see the chain rule, implicit 

differentiation, and related rates as being different applications of the nested multivariation 

concept. I end by describing the framework for the mental actions students might go through as 

they employ nested multivariational reasoning. For brevity, I refer to nested multivariation, the 

conceptual structure, as NM and nested multivariational reasoning, the reasoning about that 

structure, as NMR. 

Infante (2007) explains that covariational reasoning is important in helping students to 

understand and solve related rates. Specifically, she explains that what appears to be the most 

important aspect of the chain rule that helps students to solve related rates problems is the ability 
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to coordinate relationships in the amount of change. She explains that when students coordinate 

relationships in amounts of change, they understand the multiplicative nature of the chain rule 

(i.e. for (𝑔𝑔(𝑥𝑥)), 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

). 

Nested multivariation (NM) is a specific extension of covariation. There has been a lot of 

focus in mathematics education research on covariation (e.g. Carlson, Jacobs, Coe, Larsen, & 

Hsu, 2002; Moore, Paoletti, & Musgrave, 2013; Moore Stevens Paoletti, & Hobson, 2016; 

Oehrtman, Carlson, & Thompson, 2008; Thompson, 1994). Covariational reasoning deals with 

students’ understanding of and ability to coordinate the change between two related quantities. 

Not that the term “quantity” refers to a numeric value, but it usually implies a measurable quality 

of an object (Thompson, 1994), as compared to a decontextualized numeric value. Because it is 

useful within mathematics to think of both quantities and decontextualized numbers, I use 

“variable” as a generic umbrella term for both quantity and decontextualized number. Jones’ 

(2018) framework extends the idea of covariation to the idea of “multivariation,” which is the 

coordination of multiple variables that are related to one another. In his paper, he identifies four 

distinct types of multivariation which he refers to as independent multivariation, dependent 

multivariation, nested multivariation, and vector multivariation. 

I see nested multivariation (NM) as the concept that underlies the chain rule, implicit 

differentiation, and related rates. As Jones (2018) explains, NM refers to the way in which one 

might conceptualize the change in relationships between variables in a function composition 

structure. The term “nested” refers to the function composition and the term “multivariation” 

refers to the coordination of the changes of more than two variables. To better understand nested 

multivariation, consider the function composition 𝑓𝑓�𝑔𝑔(𝑥𝑥)�. One can use covariational reasoning 

to think about the way in which changes in x affect changes in g. Similarly, one can use 
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covariational reasoning to conceptualize the way that changes in g affect changes in f. However, 

nested multivariational reasoning occurs as soon as one considers all three of these variables (𝑥𝑥, 

𝑓𝑓, and 𝑔𝑔) at once or conceptualizes the way that all three of these variables change together. 

In a function composition such as 𝑓𝑓�𝑔𝑔(𝑥𝑥)�, it is possible to conceptualize direct, two-

variable covariation, between x and f, or it is possible to conceptualize three-variable 

multivariation, between x, f, and g. Thus, Jones (2018) points out that the difference between 

covariation and multivariation is not inherently dependent on the structure of a function or a 

given context. Instead, the difference between covariation and multivariation is in how one 

conceptualizes the changes taking place. For example, consider the function 𝑓𝑓(𝑔𝑔(𝑥𝑥)) = esin (𝑑𝑑).  

Covariational reasoning is imagining how 𝑥𝑥 and 𝑓𝑓 change directly with each other. NMR, on the 

other hand, is imagining how x, g, and f change directly with each other. In my example, it would 

be imagining that as 𝑥𝑥 increases, from say 0 to 𝜋𝜋
6
,  𝑔𝑔 = sin(𝑥𝑥) increases from 0 to 1

2
, and then 

𝑓𝑓 = esin (𝑑𝑑) simultaneously increases from 1 to √𝑒𝑒. Generally, NMR is imagining how the 

independent variable causes changes in a second variable which in turn causes changes in a third 

variable and continues to affect as many variables as exist in the function composition structure. 

One can also use NMR to conceptualize the way in which three quantities in a nested 

relationship in real-world context vary simultaneously together. Consider, for example, a car 

driving from one place to another. NMR might involve imagining the way in which time 

increases and causes a simultaneous increase in the total distance traveled which also causes a 

simultaneous increase in the total gallons of gas burned. 

The Chain Rule as an Application of NM 

The chain rule says that given a function 𝑓𝑓(𝑔𝑔(𝑥𝑥)), 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. This multiplicative 

nature of the chain rule (Infante, 2007) is the product of NM by conceptualizing the way that x 
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affects g, and how g affects f simultaneously. For example, suppose g changes 2 times as fast as 

x (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = 2), meaning that for every small (or infinitesimal) change of x, the corresponding change 

in g is two times as large. Suppose also that f changes 3 times as fast as g (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 3), meaning that 

for every small (or infinitesimal) change of g, the corresponding change in f is three times as 

large. Thus, this means that for every small (or infinitesimal) change of x, the corresponding 

change in f is 3 ∙ 2 = 6 times as large (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 = 6). 

I see the resultant product (i.e. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  3 ∙ 2 = 6), or the multiplicative nature of the 

chain rule, as encompassing NM because it represents how the changes of the three variables 

within the function composition are affecting each other simultaneously within the product. That 

is, the multiplicative nature of the chain rule is the result of employing NMR to understand the 

meaning of the derivative of a composition of functions. Note that throughout the paper, I also 

use the term “multiplicative nature of the chain rule” to describe the result of NM in taking the 

derivative of a composition of functions. 

Thompson (1994) explains the concept of rate and the difference between an additive and 

a multiplicative comparison. He says that when comparing two quantities additively, the result is 

a difference and that when comparing two quantities multiplicatively, the result is a ratio. He 

explains that when students are comparing multiplicatively, they could be comparing one of two 

ways: the first is to compare the two quantities (e.g. 3:2) and the second is to compare one 

quantity measure in units of the other (e.g. 1.5:1), or to create a unit rate. In this study, I 

primarily make sense of the chain rule and derivatives in general using the second, unit rate 

conception. For example, if 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1.5 miles/hr., this means that for a small (infinitesimal) change 

in x, the change in y is 1.5 times as large. Although the derivative occurs at one moment, for an 
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infinitesimal change in x, and this derivative may not be constant for larger and different changes 

in x, the derivative could be conceptualized as being equal to a rate of 1.5 miles for every 1-hour 

unit. 

Implicit Differentiation as an Application of NM 

Before proceeding, let me define what I mean by an explicit and an implicit function. In 

my definitions, I am only concerned with functions of one variable. An explicit function is one in 

which the dependent variable is explicitly defined in terms of its independent variable. For 

example, the dependent quantity is isolated and on one side of an equation and is set equal to 

some rule composed of the independent quantity (e.g. 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 1). To have an implicit 

function, it is necessary to first have an equation that defines a relationship between two 

variables, but where one of the variables is not explicitly written as a function of the other. Also, 

one of the variables needs to be identified as an “input” variable and the other as the “output” 

variable, such as thinking of y as a function of x, y(x), or x as a function of y, x(y). In order to 

conceptualize one variable as a function of another, it may be necessary to restrict the domain or 

range so that every input value maps to exactly one output value (e.g. 𝑥𝑥2 + [𝑦𝑦(𝑥𝑥)]2 = 9, 0 ≤

y ≤ 3). I define implicit differentiation to be the act of differentiating an implicit function. 

I see NM as being the underlying concept for implicit differentiation. For example, 

consider the equation for a circle: 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2. Suppose we want to know how y changes with 

respect to x, or we want to find dy/dx. In differentiating both sides of the equation with respect to 

x, one must first recognize that y can be conceptualized as an implicit function of x, perhaps on a 

restricted domain of x(–3 ≤ x ≤ 3) and range for y (0 ≤ y ≤ 3). Once y is conceptualized as an 

implicit function of x, then one can conceptualize 𝑥𝑥2 + 𝑦𝑦2 and 𝑟𝑟2 as being two different but 

equal functions which implies that their derivatives must also be equal. 
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I recognize that when conceptualizing the derivative of an implicit function, one could 

employ NMR at one time in the derivative process and employ covariational reasoning at another 

time in the derivative process. For example, in reasoning through the differentiation of the left 

side of the equation (𝑥𝑥2 + 𝑦𝑦2), and recognizing that the derivative of a sum is equal to the sum 

of derivatives, one can consider the derivative of the 𝑥𝑥2 part, the 𝑦𝑦2 part separately. As for the 

right side of the equation (𝑟𝑟2), it can be conceptualized as a simple constant function of x. To 

make sense of the derivative of the 𝑥𝑥2 part with respect to x, one may employ covariational 

reasoning to think about the way 𝑥𝑥2 covaries with x. Similarly, to make sense of the derivative of 

the 𝑟𝑟2 part of the implicit equation, one may employ covariational reasoning to think about the 

way r2 does not change as x changes. NMR occurs when making sense of the 𝑦𝑦2 part of the 

implicit equation with respect to x. That is, one must recognize that 𝑦𝑦2 is an implicit composition 

of functions (i.e. [𝑦𝑦(𝑥𝑥)]2) and conceptualize the way that 𝑦𝑦2 varies with x which entails 

conceptualizing the way x affects y, and consequently the way that y affects 𝑦𝑦2. Through NM, it 

becomes apparent that in order to take the derivative of 𝑦𝑦2 (i.e. [𝑦𝑦(𝑥𝑥)]2), the multiplicative 

nature of the chain rule is required. That is, 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑦𝑦2) = 2𝑦𝑦 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  and the derivative of the entire 

implicit function with respect to x is 2x + 2𝑦𝑦 ∙ 𝑦𝑦′ = 0. 

I see implicit differentiation as a more generalized application of NMR because it is 

possible to conceptualize any one of the variables in an implicit equation as being the 

independent variable and thus take the derivative with respect to that chosen independent 

variable. For example, if we consider again the equation for a circle, 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2, one can use 

NMR to understand what it means to take the derivative of the implicit function with respect to x, 

as explained in the previous paragraph, or with respect to y. In taking the derivative with respect 

to y, NMR is used to recognize x as an implicit function of y and conceptualizing the way that the 
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changes in y affect the changes in x and consequently how the changes in x affect 𝑥𝑥2. Thus, 

NMR is recognizing the 𝑥𝑥2 part of the function as an implicit composition of functions (i.e. 

[𝑥𝑥(𝑦𝑦)]2). 

Related Rates as an Application of NM 

Before proceeding, I define a “function of an implicit variable” as a variable that can be 

inferred to be a function of some other variable that is not explicitly present in the equation. For 

example, in the equation 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2, if x and y are both functions of time, t, then x(t) and y(t) 

can be thought of as functions of an implicit variable and the original equation can be 

conceptualized as [𝑥𝑥(𝑡𝑡)]2 + [𝑦𝑦(𝑡𝑡)]2 = 𝑟𝑟2. Note that an “implicit function” is not the same thing 

as a “function of an implicit variable.” Implicit functions are those in which one variable present 

in the equation is conceptualized as a function of the other variable present in the equation. 

Functions of an implicit variable are those in which a present variable is conceptualized as a 

function of a variable that is not present in the equation. Related rates problems involve finding a 

rate when another, related, rate is known. Related rates require differentiation of an equation 

with function(s) of an implicit variable, which is often in typical calculus problems. Notice that 

the word “implicit” appears in both of the terms “implicit function” (as defined in the previous 

section) and “function of an implicit variable.” This is important because although both terms 

and situations are slightly different, they both involve implicit, or hidden functions that are 

inferred based on the context. This is another way in which I see implicit differentiation and 

related rates as being connected to one another. 

Related rates are also connected to both the chain rule and implicit differentiation through 

NM. I see related rates problems as simply applying NM in meaningful contexts. Infante (2007) 

says that “related rates problems require the student to investigate the relationship(s) between 
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two or more changing quantities, one of which is unknown and needs to be found” (p. 23). I 

agree with Infante, except that related rates problems require students to investigate relationships 

with more than two changing quantities. Investigating the relationships between just two 

quantities in a meaningful context would be classified as an applied derivative, according to my 

interpretation. For example, investigating the relationship between time elapsed in seconds and 

calories burned for a person’s workout one day. Related rates problems are different in that they 

typically involve some sort of composition of functions, often with an implicitly-defined 

variable, meaning there are more than two changing variables. It is true that solving related rates 

problems draws on a variety of mathematical knowledge, like geometry and variable (Infante, 

2007). However, in order to ultimately solve a related rates problem, the multiplicative nature of 

the chain rule must be applied. NMR is interpreting and understanding the ways in which the 

changes in different variables in a related rates problem affect the changes in the other variables 

and leads to understanding how or why to apply the chain rule in order to solve the problem. 

To understand how NM can help make sense of how or why to apply the chain rule or 

implicit differentiation in order to ultimately solve a related rates problem, consider the 

following related rates problem in Figure 1: y represents the distance between the school and the 

base of the ladder, x represents the height of the top of the ladder from the ground, and the ladder 

itself forms the hypotenuse of the right triangle and is 25 feet long. There are two ways in which 

to make sense of and solve this problem. 

The first way to use NM to make sense of this problem is to consider the way in which 

the different variables affect one another. In this context, as time changes, the length of y 

increases. Subsequently, as the length of y increases, the length of x decreases (the student in the 

problem is falling to the ground). That is, NMR is recognizing that the following function 
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composition of functions exists: 𝑥𝑥(𝑦𝑦(𝑡𝑡)). In order to find the rate that x is changing with respect 

to time (i.e. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

), we can take the derivative of this composition of functions with respect to time: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  (i.e. 𝑥𝑥′ = 𝑥𝑥′(𝑦𝑦) ∙ 𝑦𝑦′(𝑡𝑡)). We know that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑦𝑦′(𝑡𝑡) = 2.  In order to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, we need 

to find an equation for x in terms of y. Through calculation, we can also determine how fast x 

changes with t, dx/dt, leading ultimately to the equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. In sum, NMR is directly 

involved in this context because of how t affects y, which in turn affects x. 

 

A student is painting the high school and standing at the top of a 25-ft. ladder that sits 

perfectly against the wall. He is horrified to discover that the ladder begins to slide away 

from the base of the school at a constant rate of 2 ft./second. At what rate is the top of the 

ladder carrying him toward the ground when the base of the ladder is 16 feet away from 

the school? 

 

 

 

 

Figure 1. Typical ladder-sliding related rates problem. 

The previous explanation shows how NM is connected to related rates through a function 

composition perspective, essentially involving the same concept behind the chain rule. Related 

rates problems may also involve implicit functions, meaning it would involve NM through the 

implicit differentiation perspective. For example, through the Pythagorean Theorem, x and y can 

be related to one another with 𝑥𝑥2 + 𝑦𝑦2 = 252. However, unlike implicit differentiation involving 

25 ft. 
x 

y 
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dy/dx or dx/dy, this time we have a “hidden” implicit variable time and we want to know 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, or 

the rate at which the top of the ladder is approaching the ground with respect to time. I believe 

NM is foundation for conceptualizing both x and y changing with time and that with the 𝑥𝑥2 and 

with 𝑦𝑦2 parts of the equation are compositions of functions with time as the independent 

variable: 𝑥𝑥(𝑡𝑡)2 + 𝑦𝑦(𝑡𝑡)2 = 252. By differentiating both sides of the equation with respect to time, 

we get 2𝑥𝑥 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 2𝑦𝑦 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. In sum, NMR leads to recognizing that x and y are functions of the 

implicit variable of time and is used to make sense of the derived equation (2𝑥𝑥 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 2𝑦𝑦 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0).  

Mental Actions of NMR 

In this section, I describe what the mental actions might look like for NM. I created a 

conceptual framework (see Table 1) for possible mental actions of NMR using a combination of 

Jones’ (2018) framework for NMR mental actions, that he extended from Carlson et al.’s (2002) 

framework for covariation, and an extension of Thompson and Carlson’s (2017) framework for 

mental actions of covariational reasoning. 

Jones (2018) explains that in extending covariational reasoning to NM, each 

corresponding NM mental action involves “chained reasoning” (p. 6). Chained reasoning refers 

to the conceptualization of how, within a composition of functions structure, changes in the 

independent variable affect changes in the next outer variable within the composition. Changes 

in one variable in the composition of functions in turn affect changes in the next outer variable in 

the composition and so on and so forth in a sequence of variables, from the innermost variable to 

the outermost variable. 

I initially tried creating my conceptual framework by only extending ideas from 

Thompson and Carlson’s (2017) (newer) covariational reasoning framework to NMR, but there 

were aspects of the (older) framework (Carlson et al., 2002) that I still felt were relevant and I 
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anticipated seeing in my interviews in the form of NMR. Although I describe this framework in 

hierarchal levels, it is possible that some mental actions, which in the framework hypothetically 

come “before” others in students’ reasoning, might actually exhibit themselves in a different 

order in students’ reasoning. 

Table 1 

NMR Mental Action Framework 

NMR Mental Action Level Description 
NM Relationship (RE) Recognize the existence of a composition of functions. 

Recognize independent and dependent relationships 
within the composition of functions. 

NM Pre-Coordination (PC) Conceptualize that given a composition of functions, 
changes in the independent variable will cause changes in 
the second variable which will cause changes in the third 
variable and so on. 

NM Increase/Decrease (ID) Given a composition of functions, coordinate the change 
in the independent variable with whether the second 
variable increases or decreases and coordinating whether 
increases or decreases in the second correspond with 
increases or decreases in the third, and so on. 

NM Coordination of Values 
(CV) 

Given a composition of functions, coordinate values of 
the independent variable with corresponding values in the 
second and third variables and so on, creating sets of 
values. 

NM Amount (AMT) Given a composition of functions, coordinate how much 
each variable increases or decreases.  

NM Chunky Continuous (CC) Given a composition of functions, coordinate how much 
each variable increases or decreases for successive 
intervals in the independent variable. 

NM Smooth Continuous (SC) Given a composition of functions, envision changes in all 
of the variables smoothly, continuously, and 
simultaneously. 

 

Consider the composition of functions,  𝑓𝑓(𝑔𝑔(𝑥𝑥)) = esin (𝑑𝑑), to illustrate this framework.  

The first mental action for NMR is “NM Relationship” (RE). Although Jones (2018) uses 

the term “relationship” in his hypothetical NMR mental action framework, my use of the term 

“relationship” is slightly different. Here, someone sees the function 𝑓𝑓(𝑔𝑔(𝑥𝑥)) = esin (𝑑𝑑), and 
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recognizes the existence of a function composition. She/he understands that given such a 

function, f is dependent on g and g is dependent on x. Here, a person recognizes the dependent 

relationship, but she/he does not explicitly think about, or talk about, the changes in the value of 

x that will cause changes in the value of g which will, in turn, cause changes in the value of f. 

Someone employing this mental action may say, “f depends on g which depends on x” or “given 

an x, you will have a sin(x) value and a corresponding esin (𝑑𝑑) value.” 

The second mental action for NMR is “NM Pre-Coordination” (PC), which is an 

extension of Thompson and Carlson’s (2017) framework and is similar to Jones’ (2017) 

description of “relationship.” Here, a person envisions the three variables in a function 

composition changing, but asynchronously. She/he recognizes that, given a composition of 

functions f(g(x)), x can change which will cause changes in g which will causes changes in f. For 

example, someone employing this mental action might say, “as x changes, there will be changes 

in the value of sin(x) and corresponding changes in the value of esin (𝑑𝑑).”  

The third mental action is analogous to Thompson and Carlson’s (2017) “Gross 

Coordination of Values” and Jones’ (2018) “Increase/Decrease.” Similarly, I refer to this mental 

action as “NM Increase/Decrease” (ID). Jones (2018) explains the second mental action level of 

NM, increase/decrease, “may consist of coordinating the change in the first variable with 

whether the second variable increases or decreases and coordinating whether increases or 

decreases in the second correspond with increases or decreases in the third, and so on” (p. 7) In 

our example, the increase/decrease mental action level of NM might be imagining that as x 

increases, sin(𝑥𝑥) increases and then decreases and increases again, which would then make it so 

that esin (𝑑𝑑) increases and decreases, but between different values. Here, the person is still 

conceptualizing these increases or decreases asynchronously. 
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The fourth mental action extends from Thompson and Carlson’s framework and is “NM 

Coordination of Values” (CV). Here, there is coordination of values in one variable (x) with 

values of the other variables (g, or sin(x) and f, or esin(𝑑𝑑)), resulting in sets of values. For 

example, someone employing this mental action is tracking values of x as it changes (𝑥𝑥 =

0, 𝜋𝜋
6

, 𝜋𝜋
4

, 𝜋𝜋
3

, 𝜋𝜋
2
) and then tracking corresponding values of sin(x) (sin(𝑥𝑥) = 0, 1

2
, √2
2

, √3
2

, 1) and then 

tracking corresponding values of 𝑒𝑒sin (𝑑𝑑)  �1, 𝑒𝑒
1
2, 𝑒𝑒

√2
2 , 𝑒𝑒

√3
2 , 𝑒𝑒�. Here, there is no conceptualizing of 

the sizes of the changes between the values but simply mentally keeping track of the 

corresponding values. 

The fifth mental action is an extension of Carlson et al.’s (2002) original framework and 

is termed “amount” in Jones’ (2017) framework: “NM Amount” (AMT). Here, there is 

coordination of how much each variable in the composition of functions increases or decreases. 

In our example, this mental action level might consist of imagining that as x increases, from say 

0 to 𝜋𝜋
6
, imagining sin(𝑥𝑥) increasing from 0 to 1

2
, and then esin (𝑑𝑑) consequently also 

simultaneously increases from 1 to √𝑒𝑒. 

The sixth mental action is extended from Thompson and Carlson’s (2017) framework and 

is called “NM Chunky Continuous” (CC). This mental action is similar to the previous mental 

action (AMT) but extends that reasoning to successive intervals. For example, someone 

employing this mental action might think about x increasing from 0 to 𝜋𝜋
6
, then from 𝜋𝜋

6
 to 𝜋𝜋

4
, and 

then from 𝜋𝜋
4
 to 𝜋𝜋

3
, all the while coordinating the corresponding changes in sin(x) and esin (𝑑𝑑). As 

stated earlier, nested multivariational reasoning occurs as soon as one considers all three of these 

variables (𝑥𝑥, 𝑓𝑓, and 𝑔𝑔) at once or conceptualizes the way that all three of these variables change 

together. 
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The seventh, and last, hypothetical NMR mental action is also extended from Thompson 

and Carlson’s (2017) framework and is called “NM Smooth Continuous” (SC). Here, someone 

envisions increases or decreases in the independent variable’s value as happening simultaneously 

with changes in the other variable’s values in the composition of functions as happening 

simultaneously. These changes are happening smoothly, and simultaneously. In our example, 

someone may think about x increasing and sin(x) simultaneously oscillating between -1 and 1 

and esin (𝑑𝑑) oscillating between 1
𝑒𝑒
 and e. 

Carlson et al.’s (2002) framework progresses to conceptualizing changing rates of 

change; how the rate of change itself varies. In my thesis, I only focus on the first three mental 

action levels as applied to NM. Future research might explore how NM extends to 

conceptualizing changing rates of change in the contexts of chain rule, implicit differentiation, 

and related rates. 

Hypothetical Learning Trajectory 

 Because of my approach to the concept of chain rule, implicit differentiation, and related 

rates, this study is focused on how students may come to develop understanding for these 

concepts through the common underlying concept of NM. For my study, I have created a 

hypothetical learning trajectory (Simon, 1995) rooted in NM for how students might develop an 

understanding of these concepts. Simon (1995) explains that a hypothetical learning trajectory 

(HLT) is made up of three components: “the learning goal that defines the direction, the learning 

activities, and the hypothetical learning process – a prediction of how the students’ thinking and 

understanding will evolve in the context of the learning activities” (p. 136). 

Infante (2007) created an HLT that is focused on helping students solve related rates 

problems by developing a deeper understanding of average rate of change and instantaneous rate 
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of change and revisiting and rebuilding a deeper understanding of the chain rule. The HLT I have 

constructed builds on and extends Infante’s HLT but is different in that it hopefully leads to the 

students’ own development of the multiplicative nature of the chain rule through NMR. The HLT 

that Infante constructs assumes that students have already learned the chain rule, while the HLT I 

have constructed assumes that students have never been exposed to the chain rule, implicit 

differentiation, or related rates. I conducted a small-scale teaching experiment based on tasks 

intended to support the development of the schemes in the HLT.  

 Steffe and D’Ambrosio (1995) point out that Simon’s (1995) descriptions of HLTs and 

mathematical learning is primarily in terms of the concepts and operations of the teacher. They 

wonder if “Simon intends to go further and explain the mathematics of his students and 

mathematical learning in terms of the students’ schemes of action and operations” (p. 153). My 

study is focused on exploring how students might develop an understanding of the chain rule, 

implicit differentiation, and related rates. I am not focused on the knowledge and processes of a 

teacher in reaction to these student understandings. Thus, I use an HLT as a tool for better 

understanding and exploring how students develop schemes for these three calculus concepts. 

I explore the possibility of an HLT rooted in NM for developing understandings for the 

chain rule, implicit differentiation, and related rates. I am not claiming that this proposed HLT is 

the only way, or necessarily the correct way, for a student to develop understandings for these 

three concepts. However, I hypothesize that this HLT is a possible way for a student to develop 

powerful understandings of these three concepts were she/he to have them. 

The way in which I constructed and explored this HLT is similar to how Weber and Thompson 

(2014) did in their study. Weber and Thompson first conducted a conceptual analysis for 

students’ images of graphs and used this to inform their construction of an HLT for how students 
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might extend their understanding of graphs of one-variable functions to graphs of two-variable 

functions. In describing their HLT, they listed the sequence of mental actions through which 

students might go to visualize the graphs for two-variable functions. I too performed a 

conceptual analysis for NM (see Nested Multivariation in Chapter 3) and used findings from 

pilot studies to inform the construction of an HLT for developing understanding of the chain 

rule, implicit differentiation, and related rates. My HLT consists of learning goals, learning 

activities and key questions, both of which were informed by a conceptual analysis for NM. The 

learning goals also describe a hypothetical learning process through which the students might go 

to develop conceptual and connected understandings for the chain rule, implicit differentiation, 

and related rates. 

The HLT Rooted in NM 

The HLT I created for the teaching experiment consists of learning goals, learning 

activities, and key questions. Table 2 describes the learning goals I hypothesized might help the 

student develop a deep and connected understanding of these three concepts. It is categorized 

into five main stages, each having a major learning goal. Each stage is subdivided into smaller 

sub-goals intended to reach the overall goal for that stage. The HLT is based on all I had learned 

in thought experiments, conversations with my advisor, extensions from Infante’s (2007) 

dissertation, and pilot interviews. Later, in my methods section, I explain in detail how Infante’s 

(2007) dissertation and the pilot interviews helped inform the creation of the HLT. 

In this section, I present the learning activities and key questions of the HLT and explain 

how they are intended to help the student reach the learning goals of the HLT. I do not discuss all 

of the questions and discussion points in the full interview protocol because not all of them are 

fundamental to the HLT. That is, some questions and discussion points were intended to help 
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students re-think about the meaning of derivatives, functions, and compositions of functions so 

that I could assess whether or not students had some fundamental understandings for developing 

understanding for the chain rule, implicit differentiation, and related rates. Additionally, some 

questions were intended to help me better understand how students were using NMR as they 

progressed through the HLT. In order to see the entire interview protocol, including those 

additional questions and discussion points, see the Appendix. In this section, I also explain how 

the learning activities and key questions came from the conceptual analysis I conducted for NM 

(see Nested Multivariation in Chapter 3). 
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Table 2 

The Hypothetical Learning Trajectory Learning Goals 

Stage Description of Goal 
Stage 1 Develop the multiplicative nature of the chain rule. 

 
1a Given a function composition f(g(x)) that models a meaningful context, interpret df/dx 

as how many times as large the change in f is than an infinitesimal change in x. 
1b Given a function composition f(g(x)) that models a meaningful context, interpret df/dg 

as how many times as large the change in f is than an infinitesimal change in g. 
1c Given a function composition f(g(x)) that models a meaningful context, interpret dg/dx 

as how many times as large the change in g is than an infinitesimal change in x. 
1d Given a function composition f(g(x)) that models a meaningful context, conceptualize 

how changes in x affect changes in the other two variables simultaneously. 
1e Given a function composition f(g(x)) that models a meaningful context, and after 

finding specific values of dg/dx and df/dg, construct that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at a specific point. 
Stage 2 Generalize the chain rule and gain procedural fluency. 

 
2a Continue to construct the multiplicative nature of the chain rule with specific examples. 
2b Formalize the chain rule for any function composition f(g(x)). 
2c Practice the chain rule with different compositions of functions to gain procedural 

fluency with its application. 
Stage 3 Develop the idea of variables being functions of the implicit variable of time and 

recognize subsequent existence of compositions of functions. 
3a When variables change with time, conceptualize them as functions of time and represent 

them accordingly (e.g. if r changes with time, it can be conceptualized and written as 
r(t)). 

3b NMR is used in recognizing the need to use the chain rule in related rates problems 
where quantities can be conceptualized as functions of the implicit variable of time, 
creating subsequent compositions of functions. 

Stage 4 Develop the idea of implicit functions in an equation and recognize subsequent 
existence of compositions of functions. 

4a Given an equation with variables x and y, one can conceptualize y as an implicit 
function of x or x as an implicit function of y. These implicit functions can be 
represented accordingly (e.g. y(x) or x(y)). 

4b Given equations with implicit functions, and subsequent compositions of functions, 
recognize the need for the chain rule in taking the derivative with respect to either 
implicit independent variable. 

Stage 5 Extend all of these ideas to more complicated implicit differentiation and related 
rates contexts. 

5a Gain procedural fluency with more complicated implicit differentiation problems.  
5b Within equations that model more complicated related rates contexts, recognize 

functions of the implicit variable of time and subsequent compositions of functions and 
the need for the chain rule in taking the derivative of the equation with respect to time. 
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Stage 1: Develop the Multiplicative Nature of the Chain Rule 

After discussing with the student, the meaning of the derivative in general and how to 

interpret it multiplicatively (see The Chain Rule as an Application of NM in Chapter 3), I 

introduce the “Chocolate Context” (see Figure 2). 

 
Let’s say you make $9/hr. at your job and that you’re OBSESSED with chocolate. 
You want to spend every penny that you make on chocolate. You can buy .15 lbs. of 
chocolate per dollar. Let us, for now, ignore tithing, taxes, etc. 
 
𝐷𝐷(ℎ) = 9ℎ and  
𝑐𝑐(𝐷𝐷) = .15𝐷𝐷 
 
Where D is dollars, h is hours you have worked, and c is amount of chocolate (lbs.) 

 
Figure 2. The chocolate context. 

 
I then ask the students the following key questions for this context: 

• What is the value of dD/dh? 

• What is the meaning of dD/dh in our context? What are the units of dD/dh? 

• What is the value of dc/dD? 

• What is the meaning of dc/dD in our context? What are the units of dc/dD? 

• What would be the meaning of c(D(h))? 

• How does hours worked affect the amount of chocolate you can buy? 

• If we could find dc/dh, what would that mean in our context? 

• What is the value of dc/dh? How do you know? 

This Chocolate Context consists of simple and continuous linear functions so that the 

students can focus on the meaning of the derivatives and not get confused by messy calculations 

of differentiation. The first four questions are intended to help the student reach the sub-goals of 
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1a and 1b in Stage 1. That is, the questions encourage the student to interpret the “outside” and 

“inside” derivatives of c(D(h)) multiplicatively. If the student does not initially interpret it 

multiplicatively, I ask her/him what the derivative tells us if there is a small change in h or a 

small change in D, thus encouraging her/him to think about how many times as large the change 

in the output is than the input within the derivative, thus covering sub-goals 1a and 1b in this 

stage of the HLT. I ask the student what the units of the derivatives are so they can remember the 

meaning of the derivatives they are interpreting within the context.  

Asking the student what the meaning of the composition of functions is and how the 

hours worked affects the amount of chocolate one can buy is intended to help her/him employ 

NMR, thus beginning to develop the multiplicative nature of the chain rule. The fifth and sixth 

key question are meant to elicit RE or PC NMR mental actions, which involve recognizing the 

independent and dependent relationships within the composition of functions and/or 

conceptualizing how a change in the independent variable will cause changes in the second and 

third variables. In so doing, these questions are meant to help the student reach sub-goal 1d. 

The second to last question is meant to help the student to reach the sub-goal of 1c and 

interpret the overall derivative of the composition of functions multiplicatively. Again, if the 

student does not initially interpret the derivative multiplicatively, I ask her/him what the 

derivative tells us if there is a small change in h. The last question is intended to help the student 

reach sub-goal of 1e in Stage 1 of the HLT by encouraging her/him to think about how they 

might find dc/dh, potentially considering using the “inside” and “outside” derivatives to find the 

derivative of the entire composition of functions at a specific point. This simple Chocolate 

Context, which involves only linear functions, is intended to create a non-complex place where a 

student can begin to coordinate how much each variable increases or decreases within the 
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derivative (AMT in the NMR mental action framework), thus beginning to develop the 

multiplicative nature of the chain rule and reach the sub-goal 1e during this stage. 

Next, I introduce the “Carnival Context” (see Figure 3). 

 

The following graphs show two functions, f and g. The input of function g is temperature 
in degrees Fahrenheit and the output is the expected attendance at a neighborhood 
carnival. The input of function f is number of people attending the carnival and the output 
is the expected revenue earned by the carnival. 

  
 

Figure 3. Carnival context (Carlson, 2016, p. 71). 

I then ask the student the following key questions for this context: 

• If we calculated dg/dx, what would that mean in our context? What would be the 

units of dg/dx? 

• If we calculated df/dg, what would that mean in our context? What would be the 

units of dg/dx? 

• What does the function f(g(x)) mean to you in this context? 

• How would you describe the way in which temperature (x) affects revenue (f)? 
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• If we calculated df/dx, what would that mean in our context? What would be the 

units of df/dx? 

• How does df/dx relate to f(g(x))? How does this relate to your description of how 

temperature (x) affects revenue (f)? 

This Carnival Context and the accompanying questions are meant to help students reach 

the sub-goals of this stage of the HLT in a similar way to the Chocolate context but is different in 

that it is only a graphical representation with no equations or quantities for the derivatives. Thus, 

this context elicits a more theoretical interpretation and provides an opportunity for the student to 

connect their graphical understanding of derivatives to NMR and to their development of the 

multiplicative nature of the chain rule. 

The first two key questions are meant to help the student reach sub-goals 1a and 1b, but 

more theoretically and within a graphical context. Again, if the student does not interpret the 

derivative multiplicatively, I ask her/him what the derivative tells us about small changes in the 

independent variable. The next two questions are intended to help the student employ NMR and 

consider the way in which the variables within the composition of functions are related to and 

change with one another, thus intending to help her/him reach sub-goal 1d. The last two 

questions are intended to help the student interpret the overall derivative or reach sub-goal 1c. 

The last question, specifically, is intended to help the student connect that df/dx is the derivative 

of the composition of functions and the only way to find that is to simultaneously consider df/dg 

and dg/dx, thus employing NMR. 

Next, I introduce the “Running Context” (see Figure 4), where the graphs are supposed to 

model the student’s hypothetical run. 

 



 
 
 

33 

                  

 

Figure 4. Running context. 

I then ask the students the following key questions: 

• Say right at 15 minutes, dD/dt is .1 (or 1/10). What is the meaning of dD/dt=1/10 

in our context? 

• Say at that moment, you have gone 1.5 miles, and so dc/dD at that moment (or at 

1.5 miles) is 100. What is the meaning of dc/dD=100 in our context? 

• What would c(D(t)) mean in this context? How does times elapsed affect calories 

burned? 

• What would the derivative of that function, or dc/dt mean in our context? 

• How can you use what you know to find dc/dt? Explain your thinking. 

• Say right at 25 minutes, you are running .12 miles/minute, and you are burning 

110 calorie/mile. How could you use that information to find dc/dt at that 

moment? How do you know? 

• In general, if you wanted to find dc/dt, how could you use dD/dt (or miles per 

minute) and dc/dD (calories per mile) at any given moment/location in order to 

find dc/dt (calories per minute) at that moment? How do you know? 
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This Running Context is meant to build on the previous two contexts by utilizing graphs 

as well as given quantities for the derivatives. The student is given the derivatives at two 

different points on the graph so that she/he can begin to recognize patterns and generalize her/his 

thinking. Also, it is simple to calculate dc/dt when dD/dt=.1 (or 1/10) and dc/dD=100: A student 

may find dc/dt by coordinating 1/10 (1 mile per 10 minutes) and 100 (100 calories per 1 mile) 

and see that because the 1’s in the two fractions represent the same quantity, and 100 calories 

must correlate with 10 minutes. Thus, by giving the student .12 and 110 for dD/dt and dc/dD 

respectively, it forces her/him to stretch their thinking a little bit further and encourages them to 

develop the multiplicative nature of the chain rule by coordinating amounts of change in the 

variables, or by using AMT in the NMR mental action framework. 

In a similar way as the Chocolate and Carnival contexts, the first two key questions are 

intended to help the student reach sub-goals 1a and 1b. Also, the third question is intended to 

elicit NMR and help the student reach sub-goal 1d. The fourth question is meant to help the 

student reach sub-goal 1c. The last three questions are meant to encourage the student to reach 

sub-goal 1e by developing the multiplicative nature of the chain rule at two specific points and 

then generalizing that to any specific point. 

Stage 2: Generalize the Chain Rule and Gain Procedural Fluency 

Next, I introduce the “Running Context with Equations” (see Figure 5). 

Let’s say in a perfect world, you run at a constant rate of .1 miles/minute. That is, let 
 
𝐷𝐷(𝑡𝑡) = .1𝑡𝑡 and  
𝑐𝑐(𝐷𝐷) = 20𝐷𝐷2 + 40𝐷𝐷  
 
Where t is time in minutes, D is distance traveled in miles, and c is calories burned. 

 

Figure 5. Running context with equations. 
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I explain that we’re going to calculate some of her/his running rates right at 20 minutes, 

but first, we’re going to calculate how far she/he has gone at 20 minutes. I ask the student the 

following key questions. The answers to questions marked with an asterisk are the ones that I 

write on a separate sheet of paper so that the student can recognize patterns in their thinking and 

work and ultimately generalize the chain rule. I explain why I re-write the students responses on 

a separate sheet of paper in the Pilot Studies section in Chapter 4 (see Figure 11): 

• How far have you traveled at 20 minutes? 

• *What is an equation for dD/dt? 

• What is dD/dt at 20 minutes? How do you know? 

• *What is an equation for dc/dD? 

• What is dc/dD at that same moment? How do you know? 

I remind the student that our ultimate goal is to be able to find dc/dt which is the 

derivative of c(D(t)). 

• *What is an equation for c(D(t))? 

• What is dc/dt at 20 minutes? 

These first seven questions are intended to help the student reach the first sub-goals in 

Stage 2 of the HLT by continuing to construct the multiplicative nature of the chain rule within 

specific examples. Here, the student begins to understand that she/he can find the derivatives at a 

specific point using the given equations. I then ask the next two questions: 

• *How can you use what you have found so far to write a general equation that 

will give you dc/dt at any time t? How do you know? 

• *What is an equation for dc/dt in terms of only t (instead of D and t)? 
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After the student answers these questions, I point out to her/him what she/he has found is 

the derivative of the composition of functions they created. These last two questions are meant to 

help the student construct the multiplicative nature of the chain rule at a point and at any point, 

with a general equation, thus reaching sub-goal 2a in this stage of the HLT. The purpose of the 

last question is to help the student generalize the chain rule by being able to see the derivative of 

the “outside” and “inside” functions from the original composition of functions directly. 

Otherwise, there would be two variables in the derivative when the original function had only 

one independent variable. 

 Next, I introduce the “Dash from the Incredibles Context” (see Figure 6). 

 

Say that now, you are “Dash” from The Incredibles, and you are running at an incredible 
pace. 
𝐷𝐷(𝑡𝑡) = 2𝑑𝑑 and  
𝑐𝑐(𝐷𝐷) = D3 

 
Figure 6. Dash from the Incredibles context. 

 
I then ask the student the following key questions: 

• How far have you traveled at 5 minutes? 

• *What is an equation for dD/dt? 

• What is dD/dt at 5 minutes? 

• *What is an equation for dc/dD? 

• What is dc/dD at that same moment? 

• *What is an equation for c(D(t))? 

• What is dc/dt at 5 minutes? 
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• *How can you use what you have found so far to write a general equation for 

dc/dt? 

• *What is an equation for dc/dt in terms of only t (instead of D and t)? 

After the student has answered all of the questions, I point out to her/him that they have 

found the derivative of the composition of functions they created. These questions are structured 

the same as the Running Context with Equations and have the same purpose. 

Once I re-write all of their answers to the questions with an asterisk, I box the two 

equation for the compositions of function and their corresponding derivatives. I then ask the 

students the following questions: 

• What patterns do you notice? Why does it all make sense? 

• Given any function for c(D(t)), what is dc/dt? 

As I explain in the Pilot Studies section in Chapter 4, in order to help the student think 

about the chain rule in a slightly different way and generalize it to any composition of functions, 

I found that by my re-writing down their conclusions about the multiplicative nature of the chain 

rule from the Running Context, or the answers to the questions marked with an asterisk, that they 

had a more organized and consolidated picture of their thinking from which they could more 

easily generalize the chain rule. That is, the student can shift her/his thinking from 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 to 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. If the student can begin to shift her/his thinking in this way, she/he begins to reach 

the sub-goal 2b for Stage 2 of the HLT by generalizing the chain rule for any function 

composition. 

Next, I have the student try to use the chain rule to solve the following problems: 

• Let 𝑔𝑔(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(𝑥𝑥)) Just so you know, the derivative of sin(x) is cos(x). Do you 

have a hypothesis of what the derivative of this function might be? 
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• Let ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥2). What would be the derivative of this composition of 

functions? In other words, what is 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

? 

• Let 𝑗𝑗(𝑥𝑥) = [sin(𝑥𝑥)]2. What would be the derivative of this composition of 

functions? In other words, what is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

? 

• Say you have a general composition of functions f(g(x)). Can you write a rule for 

how you could find the derivative of a composition of functions? 

The first three questions are meant to help the student begin to practice the chain rule 

with different compositions of functions to gain procedural fluency with its application, thus 

reaching sub-goal 2c of this Stage in the HLT. The last question is meant to more completely 

generalize the chain rule for any function composition and help the student solidify everything 

she/he learned in the first two stages of the HLT. 

Stage 3: Develop the Idea of Variables Being Functions of the Implicit Variable of Time 

and Recognize Subsequent Existence of Compositions of Functions 

Next, I introduce the “Snowman Context” (see Figure 7).  
 

The body of a snowman is in the shape of a sphere whose radius is melting at a rate of .25 
ft./hr. Assuming the body stays spherical, how fast is the volume changing when the 
radius is equal to 2 ft.? Remember that for a sphere, 𝑉𝑉 = 4

3
𝜋𝜋𝑟𝑟3. 

 
Figure 7. The snowman context. 

 
After having the student draw a picture of the situation and make note of both what we 

know and what we are looking for, I ask the student what things are changing with time. I then 

explain that we can write those as functions of time. I write V as V(t) and r as r(t) and I explain 

that we can write the variables in this way to help us remember that they are changing with time. 

By talking about this with the student, I help her/him to understand that when variables change 
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with time, they can be conceptualized as functions, thus reaching the sub-goal 3a in Stage 2. I 

then ask the student if it is fair to write 𝑉𝑉(𝑡𝑡) = 4
3
𝜋𝜋[𝑟𝑟(𝑡𝑡)]3. By discussing with them this new 

equation, the student becomes one step closer to sub-goal 3b in Stage 3 of the HLT by 

conceptualizing V and r as functions of the implicit variable of time, creating a subsequent 

composition of functions. I then ask the student the following key questions: 

• What are we trying to find? How can you represent it as a derivative? 

• The radius of the snowman is melting at a rate of .25 ft./hr. How can you 

represent that as a derivative? 

If the student writes dr/dt=.25 ft./hr., I know that they are not thinking about how the 

snowman melting implies a negative change and so the derivative should actually be negative. 

Thus, I ask the student, “if the snowman’s body was growing at a rate of .25 ft./hr., would you 

represent that as a derivative?” 

I finish by asking the student: 

• How does [𝑟𝑟(𝑡𝑡)]3 relate to what we have been doing before? 

• How can we find dV/dt? 

The first of these last two questions helps the student to officially reach sub-goal 3b in 

this stage of the HLT by recognizing the hidden composition of functions that exists in the 

equation. By so doing, the student is employing RE in the NMR mental action framework by 

recognizing the nested relationship and thus the need to use the chain rule when differentiating 

the equation. The last question is meant to guide the student to solve the problem by using all of 

the knowledge that she/he has built so far. 
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Stage 4: Develop the Idea of Implicit Functions in an Equation and Recognize Subsequent 

Existence of Compositions of Functions 

First, I explain the difference between explicit and implicit equations with some 

examples (see the Appendix for details). Then, I introduce implicit differentiation to the student 

(see Figure 8).  

 

 

 

 

 

 

 

 

 

The area of the square with side length x subtract the area of the square with side length y 
must always be 1. That is, 𝑥𝑥2 − 𝑦𝑦2 = 1 or the blue area will always be equal to 1. The 
question we will attempt to answer is: As x changes, by how much does y have to 
change? 

 
Figure 8. Introduction of implicit differentiation. 

Next, I explain that we’re going to say that y is an implicit function of x and re-write the 

equation as 𝑥𝑥2 − [𝑦𝑦(𝑥𝑥)]2 = 1. By so doing, the student is beginning to see how when y is a 

function of x it can be represented accordingly, which is sub-goal 4a in the HLT. I then ask the 

student following key questions: 

• Can you write what we are trying to find as a derivative? 

• How does [𝑦𝑦(𝑥𝑥)]2 relate to what we have been discussing over the past 

interviews? 

y 

x 
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• As x changes, by how much does the blue area have to change? In other words, 

what is 𝑑𝑑[𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎]
𝑑𝑑𝑑𝑑

? 

The first question is meant to help focus the student on the purpose of the problem and 

encourage her/him to continue to interpret the meaning of derivatives. The second question is 

meant to help the student begin to reach sub-goal 4b by recognizing the nested relationship (RE 

of the NMR mental action framework) and thus the need to use the chain rule in differentiation. 

Then, I explain that if  d[blue area]
dx

 = 0 and [blue area] = x2 + [y(x)]2, that implies that 

d(x2−[y(x)]2)
dx

 = 0. After the student answers the third question and explains that as x changes, the 

blue area does not change I remind the student that we are trying to find how y changes with x, or 

dy/dx. I explain that in their calculus class, the student should have learned that the derivative of 

a sum or difference is equal to the sum or difference of the derivative. That is, I explain that  

d(x2−[y(x)]2)
dx

 is equal to d(x2)
dx

− d [y(x)]2

dx
, which means that d(x2)

dx
− d [y(x)]2

dx
= 0. I then ask the 

following key questions: 

• What is the difference between 𝑑𝑑(𝑑𝑑2)
𝑑𝑑𝑑𝑑

 and 𝑑𝑑 [𝑑𝑑(𝑑𝑑)]2

𝑑𝑑𝑑𝑑
? 

• What is the derivative of each of these? 

The first question is meant to elicit NMR by encouraging the student to recognize the 

nested relationship and thus the need to use the chain rule in differentiation. That is, the first 

question is meant to further help the student to reach sub-goal 4b. The second question is meant 

to solidify the student’s understanding of sub-goal 4b by actually using the chain rule in 

differentiating the equation. I end by asking, “What question are we trying to answer?” and 

“How can we use this information to answer it?” If the student struggles to solve for dy/dx, I 
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explain that since we know that y is an implicit function of x, we can re-write the equation as 

2x − 2y ∙ dy
dx

= 0. 

Then, in order to help student think not only about y as an implicit function of x, but also 

about x being an implicit function of y, I ask the student to take the same original equation and 

answer the question, “if y changes by some amount, how much will x change? In other words, 

what is the derivative of x with respect to y? They go through the entire process again, re-

solidifying their understanding of sub-goals 4a and 4b. 

I end this stage of the HLT with one more implicit differentiation problem to help the 

student further solidify their understanding of Stage 4 in the HLT. I give them the following 

question: If 𝑥𝑥2 +  [𝑓𝑓(𝑥𝑥)]3 = 9 and 𝑓𝑓(1) = 2, find  𝑓𝑓′(1). 

Stage 5: Extend All of These Ideas to More Complicated Implicit Differentiation and 

Related Rates Contexts 

Next, I introduce the “Shuttle Launch Context” (see Figure 9). 

A camera is filming a shuttle launch and needs to stay focused on the shuttle by 
increasing the angle as the shuttle ascends.  The camera is 2 miles from the launch-pad.  
If the shuttle is traveling vertically at 0.2 miles/second, how fast should the angle be 
increasing when the shuttle is 3 miles above the ground?

 
Figure 9. The shuttle launch context. 
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I first have the students draw a picture of the situation and make note of the things that 

they know as well as what they are looking for. I then ask them the following key questions: 

• What are we looking for? Can you represent it as a derivative? 

• What does it mean for the shuttle to be traveling vertically at .2 miles/second? 

Can you represent that as a derivative? (Labeling your picture may help in doing 

this) 

• What are the quantities that change with time? 

• Can you relate those quantities with an equation? 

• Can you represent the quantities that are changing with time as functionss of 

time? 

The first two questions are intended to help the student focus on the goal of the problem 

as well as provide her/him with an opportunity to practice interpreting derivatives. The last three 

questions are meant to help the student to model the problem and recognize functions of the 

implicit variable of time, hopefully taking one step towards recognizing subsequent compositions 

of functions and the need to use the chain rule and towards reaching sub-goal 5b of Stage 5 in the 

HLT. 

If the student struggles, I remind her/him what we had done before with the Snowman 

Context. That is, we re-wrote r as r(t) to help us remember that it is a function of time. I then ask, 

“How can you find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

? " And “What is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

? " 

I then give the student a more complex implicit differentiation problem, and I see what 

they can do on their own without any probing questions. However, if the students get stuck, 

depending on their needs, I ask them different questions to help move them forward. The 

problem I give them to solve is: Let �𝑥𝑥 + 𝑦𝑦 = 𝑥𝑥4 + 𝑦𝑦4. Find dy/dx or y’. This problem provides 



 
 
 

44 

an opportunity for the student to reach sub-goal 5a and gain procedural fluency with a more 

complicated implicit differentiation problem (see Figure 10). 

Lastly, if there is time, I give the students the “Airplane Context” (see Figure 10). 
A plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly 
over a radar station. Find the rate at which the distance from the plane to the station is 
increasing when it is 2 mi away from the station. 

 
Figure 10. The airplane context. 

 
Similarly, by this point, I do not ask the student any specific questions. I simply see what 

they can do with the problem and if they get stuck, I ask them questions according to their needs. 

Purpose of My Study and Research Questions 

In order to explore the HLT rooted in NM, I conducted a small-scale teaching experiment 

with four first-semester calculus students. Typically, the chain rule and implicit differentiation 

are first taught as procedures and then applied to related rates problems. The nature of my HLT 

is distinct in that it aims to help students develop conceptual understanding of the chain rule 

through meaningful contexts, similar to those used with related rates problems, and then continue 

to help them build on this understanding to develop conceptual understanding for implicit 

differentiation and related rates problems. Overall, my teaching experiment was guided by the 

following three research questions: 

1. How was nested multivariation used as the first-semester calculus students progressed 

through the HLT? 

2. What kind of understandings did the first-semester calculus students develop for these 

three concepts within each major stage of the HLT?  

3. Where in the teaching experiment did students struggle in a way that suggested a needed 

revision to the HLT? 
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CHAPTER FOUR: METHODS 

In my study, I explored students’ cognitive processes in developing understandings for 

the chain rule, implicit differentiation, and related rates. Because I studied processes, qualitative 

methods were appropriate for this study (Maxwell, 2013). I created an HLT rooted in NM for 

developing an understanding for these three calculus concepts. In order to explore the viability of 

this HLT, I conducted small-scale teaching experiment using tasks intended to support 

development of the schemes in the HLT. 

I conducted a series of pilot studies to help me create and refine my HLT as well as more 

effectively critique Infante’s (2007) study to find where it needs extension. In this section, I first 

describe my pilot studies and how the pilot study results affected the creation of an HLT rooted 

in NM. Next, I describe how my pilot studies helped me to identify places in Infante’s study that 

need extension and how this relates to the HLT. I end this section by outlining the resultant HLT 

and the methodology for the teaching experiment and analysis of the data for this study. 

The Pilot Studies 

The pilot studies that I conducted were invaluable in the development of the HLT rooted 

in NM. Once I had my initial ideas for an HLT sketched out, I went through an iterative cycle 

where I created learning activities, tested them, and edited them according to my experiences. It 

was only after I solidified the learning activities and processes through which students might go 

that I was able to identify and articulate the learning goals for the HLT. Creating and refining the 

learning activities helped me better understand what the goals might be and through what 

processes a student might go to develop connected understandings for these three concepts. In 

this section, I describe the important parts of this iterative process in creating my HLT. 
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The first draft of my pilot study only consisted of learning activities and questions 

intended to help a student develop the multiplicative nature of the chain rule. Developing the 

multiplicative nature of the chain rule was the most laborious part of my creation of the HLT. 

Once I better established how a student might develop the chain rule, I was able to work on the 

parts of the HLT more focused on implicit differentiation and related rates. The first draft was 

created through thought experiments and conversations with my advisor. In this first draft, I did 

not yet have explicit learning goals because I was simply exploring what learning activities 

might help a student develop the multiplicative nature of the chain rule her/his self. 

The first draft consisted of the “Running Context” (see The HLT Rooted in NM in 

Chapter 3) and a “Square Context” where the students explored the relationship between 

quantities that describe a square changing with time. I incorporated the Square Context because I 

knew that in order for the students to eventually generalize the chain rule to any composition of 

functions, the students needed to explore the chain rule with equations for compositions of 

functions and corresponding derivative equations, as opposed to only derivatives at a point. The 

equations for the square context were 𝐴𝐴 = 𝑙𝑙2 and 𝑙𝑙 = 2𝑡𝑡, where A is the area of the square in 

square inches, l is the length of the side of the square in inches, and t is time elapsed in seconds. 

To explore this first draft, I interviewed one mathematics education graduate student and 

one undergraduate business student. In interviewing them, I found that the composition of 

functions, A(l(t)), and the corresponding derivatives for this context were too simple for a student 

to clearly recognize a pattern, or the multiplicative nature of the chain rule, by looking at the 

original composition and its corresponding derivative. Thus, I changed the HLT to continue to 

explore the Running Context but add equations, resulting in the “Running Context with 
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Equations” (see the HLT Rooted in NM in Chapter 3). Throughout this first exploration, the key 

questions were very similar to those in the final HLT. I only tweaked the order of the questions. 

After testing out this first draft, I felt that the HLT needed to begin with an even simpler 

context than the Running Context so that a student might have an additional opportunity to use 

intuition to develop the multiplicative nature of the chain rule which might help her/him to 

generalize it to equations when they got to the Running Context with Equations. Thus, I added 

the “Gumball Context,” which was exactly the same as the “Chocolate Context” (see The HLT 

Rooted in NM in Chapter 3) except with different numbers and with number of gumballs instead 

of lbs. of chocolate per dollar. Again, the questions were very similar to the questions in the final 

HLT. 

Testing out this second draft of the HLT on another mathematics education graduate 

student helped me realize that number of gumballs is a discrete quantity and although it didn’t 

obviously affect a student’s ability to develop the multiplicative nature of the chain rule, I 

realized that differentiating gumballs as a function of hours worked was mathematically 

incorrect. Thus, I changed number of gumballs, a discrete quantity, to lbs. of chocolate, a 

continuously changing quantity. 

The second thing that testing out this second draft of the HLT helped me realize is that in 

order for a student to generalize the chain rule to any composition of functions, it is important to 

re-write the student’s conclusions about the multiplicative nature of the chain rule from previous 

learning activities on a separate sheet of paper so that she/he can more clearly recognize patterns 

in their reasoning. That is, after the Chocolate Context and the Running Context, a student begins 

to see that for different compositions of functions 𝑓𝑓�𝑔𝑔(𝑥𝑥)�, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. She/he begins to 

understand that given the “outside” and “inside” derivatives, they can find the overall derivative 
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by multiplying them together. However, in order to generalize the chain rule, slightly different 

thinking is required: in order to find the overall derivative, she/he needs to find the “outside” and 

“inside” derivatives and multiply them together. That is, she/he needs to realize that given a 

composition of functions 𝑓𝑓�𝑔𝑔(𝑥𝑥)�, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

In order to help a student to think about the chain rule in this slightly different way and 

generalize it to any composition of functions, I found that by my re-writing her/his conclusions 

about the multiplicative nature of the chain rule from the Running Context, they had a more 

organized and consolidated picture of their thinking from which they could more easily 

generalize the chain rule. For the Running Context, after two times of being given the values for 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and being asked to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, I have the student calculate the equations for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 by 

using the equations for D(𝑡𝑡) and 𝑐𝑐(𝐷𝐷). Then, I prompt her/him to use two derivative equations to 

find the equation for 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. I have the student do this twice, with two different sets of equations for 

D(𝑡𝑡) and 𝑐𝑐(𝐷𝐷), and then I re-write their conclusions, as well as the equation they created for 

𝑐𝑐�𝐷𝐷(𝑡𝑡)�, on a separate sheet of paper (see Figure 11). Then, after their conclusions are more 

clearly laid out for them, I ask them how they might find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 given any equation for 𝑐𝑐�𝐷𝐷(𝑡𝑡)�. This 

allows for the students to change their thinking from 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  to  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

In my pilot studies, before I re-wrote the student’s conclusions about the multiplicative 

nature of the chain rule on a separate sheet of paper, their work and their thinking was scattered 

across many different sheets of paper and it was difficult for them to know which parts to focus 

on in order to generalize the multiplicative nature of the chain rule. By making this simple 

adjustment, the student had an easier time seeing patterns in their reasoning and generalizing the 

chain rule to any composition of functions. 
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Figure 11. The re-written page of Student B’s work so that he could generalize the chain rule. 

After testing out this draft of the HLT, I also realized that students tend to come into the 

interviews with a lacking knowledge of compositions of functions. Thus, I added the “Carnival 

Context” (see The HLT Rooted in NM in Chapter 3) to give a student one more opportunity to 

employ NMR and develop the multiplicative nature of the chain rule. However, what makes the 

Carnival Context unique is that it is purely graphical and there are no equations or quantities 

given. I felt that by incorporating this graphical context, students were given an opportunity to 
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build on their previous knowledge of derivatives and compositions of functions and how they 

relate to graphs. 

Once I developed the learning activities for developing the multiplicative nature of the 

chain rule, I added some simple derivative of compositions of functions to the learning activities 

to give students the opportunity to gain some procedural fluency with the chain rule. My advisor 

and I then brainstormed together about how to introduce implicit differentiation and related rates. 

We knew that we wanted to incorporate a visual context in the development of implicit 

differentiation, because implicit differentiation tends to be taught in such an abstract way. Thus, 

we developed introducing implicit differentiation through the changing blue square (see The 

HLT Rooted in NM in Chapter 3). The questions we developed to ask with this introduction of 

implicit differentiation are the same as the final draft of the HLT. We also decided to pick two 

interesting related rates problems that my advisor had created for his own calculus class and use 

the next set of pilots as a way to explore what questions I might ask to help the students develop 

understanding for implicit differentiation and related rates. 

I explored this version of the HLT with three calculus students who were in my lab at the 

time and volunteered to pilot with me. These pilots helped me understand how important it is to 

help students interpret the meaning of a derivative in meaningful contexts. Specifically, I 

realized that helping the students in my pilot studies to interpret the meaning of Leibniz’ notation 

(i.e. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  ) in meaningful contexts helped them eventually use NMR to coordinate relationships in 

the amount of change (Infante, 2007) and develop the multiplicative nature of the chain rule. For 

example, I had my students interpret 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 3 𝑐𝑐𝑐𝑐/𝑠𝑠 as meaning that at the specific moment, the 

change in r is 3 times as large as the small, infinitesimal, change in units of time. In the pilot 

studies, I realized that if students were unable to interpret the meaning of a derivative by 
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coordinating the change in two quantities, they were unable to coordinate relationships in 

amounts of change in more than two quantities (NMR). Conversely, in the pilot studies, I found 

that when students were able to interpret derivatives by coordinating the change in two 

quantities, they were able to employ NMR to ultimately develop the multiplicative nature of the 

chain rule themselves. 

In these pilots with three calculus students in my lab, I saw that after they developed the 

multiplicative nature of the chain rule, they later recognized that for a function composition, such 

as 𝑓𝑓(𝑔𝑔(𝑥𝑥)), 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  that the dg’s can “divide out” or “cancel out” (e.g. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

⋅ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

). Here, students use the idea of infinitesimals or thinking that “dg” represents an 

infinitely small amount of the variable “g.” Recognizing that the dg’s divide out helped students 

to be surer of their intuition and ideas about the multiplicative nature of the chain rule that they 

had developed so far. If we give dg the intuitive meaning of being a small change in g, then it is 

important to note that dividing out the dg’s is accurate inasmuch as dg does not equal 0. I realize 

that there is a deeper intricacy in the rigorous mathematical proof to account for what df/dg and 

dg/dx mean in accordance to the formal definition, and to incorporate the case 𝑑𝑑𝑔𝑔 = 0, but the 

intuition of dividing out the dg’s does agree with the formal mathematics otherwise. 

These pilots also helped me to realize the importance of focusing on NM throughout the 

entire interview. When I was just beginning to create my interview protocol and conduct pilot 

studies, I asked students questions to guide them toward the multiplicative nature of the chain 

rule, but they did not recognize where my questions were taking them. In the beginning, the 

students did not grasp the main idea that was connecting all of their work and thinking and 

towards the end of their interview, they did not realize that a function composition had anything 

to do with what we had explored so far. I realized that from the beginning, I needed to focus on 
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NM by asking them to create a composition of functions to model the meaningful context of the 

task and then ask them how changes in the independent variable affect changes in the outermost 

variable of the function. By doing so, the students consistently employed NMR and recognized 

the theme of the teaching experiment. 

In the pilots with the three calculus students, I did not have enough time to get to related 

rates problems. So, I decided to take what I learned from them and test the HLT on one more 

first-semester calculus student during summer semester, to whom I will refer as the “July 

Student,” and I made final adjustments to the HLT. Before interviewing him, I took the latest 

version of the learning activities for the HLT and drafted learning goals. At this point, the 

learning activities and questions were nearly identical to the final draft, except for I did not yet 

have clear questions to ask for the related rates problems. 

My pilot study with the July Student helped me to realize places in the interview protocol 

where I needed to scaffold student thinking a little bit more. For example, after the July Student 

developed understanding of the multiplicative nature of the chain rule, I immediately had him try 

to practice the chain rule by differentiating the function ℎ(𝑥𝑥) = sin(𝑥𝑥2) with respect to x. He had 

some difficulty identifying which functions were the “inside” and “outside” functions. Part of 

this difficulty came from his discomfort with trigonometric functions. I simply told him that the 

derivative of 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) is 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥). I knew, because of the timing of my study with students enrolled 

in first-semester calculus, they too would not have learned derivative rules for trigonometric 

functions, and they might also be uncomfortable practicing the chain rule on such a composition 

of functions. Thus, I decided to precede that problem with the problem of differentiating 𝑔𝑔(𝑥𝑥) =

sin(𝑓𝑓(𝑥𝑥)), so that the students could more easily identify the “inside” and “outside” functions as 
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well as get some practice using the new trigonometric differentiation rule I taught them. Then, I 

thought students could transition to differentiating ℎ(𝑥𝑥) = sin(𝑥𝑥2) with respect to x more easily. 

I realized that the July Student also might have benefited from one more practice problem 

to develop procedural fluency of the chain rule, so I added the problem of differentiating 𝑗𝑗(𝑥𝑥) =

[sin(𝑥𝑥)]2 to give the students more practice during the interviews. I also figured that changing 

sin(𝑥𝑥) from the “outside” function in g(x) and h(x) to the “inside” function in j(x) would stretch 

the students just enough, while still being accessible to their current understanding. 

My pilot study with the July Student also helped me realize that adjusting the original 

wording of the “Snowman Context” (see Figure 12) might help future students in the study more 

smoothly connect what they had learned about the multiplicative nature of the chain rule to this 

simple related rates context. With the July Student, the Snowman Context was originally worded 

as seen in Figure 12. 

The body of a snowman is in the shape of a sphere and is melting at a rate of 2 𝑑𝑑𝑑𝑑3

ℎ𝑎𝑎
. How 

fast is the radius changing when the body is 3 ft. in radius (assuming that the body stays 
spherical)? 

 
Figure 12. Original wording of snowman context. 

 
The July Student struggled more than I anticipated with this problem. I realized that until 

that point, we had used NMR to think about how changes in the independent variable creates 

changes in the second variable which creates changes in the third variable, going from the inside 

out in a composition of functions. With the problem written as seen above, it was difficult for the 

July Student to conceptualize time causing changes in the volume, causing changes in the radius. 

Especially with the equation modeling the problem: 𝑉𝑉(𝑡𝑡) = 4
3
𝜋𝜋𝑟𝑟(𝑡𝑡)3. The July Student struggled 

to understand how to move forward in solving the problem because he didn’t know if he needed 
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to solve for r(t) in terms of V(t) or if he could solve the problem as was, which was written as a 

composition of functions V(r(t)). Thus, to avoid this unnecessary difficulty, I adjusted the 

problem to provide the rate of change of the radius with respect to time and prompted the student 

to find the rate of change of the volume with respect to time (see “Snowman Context” in The 

HLT Rooted in NM in Chapter 3). That way, the equation for V(t) in terms of r(t) more easily 

supported the NMR that the students had employed until that point. 

Additionally, the July Student helped me understand that in order to help a student solve 

the related rates problems, I needed to encourage her/him to draw a picture of the problem and 

label what she/he knows and doesn’t know. That way, the student has time to explicitly digest 

the context, what quantities are involved, and their goal in solving the problem. I also realized 

that I needed to ask the student which quantities were changing with time so that they knew 

which quantities to relate in an equation and I could encourage them interpret those quantities as 

functions of time. Then, the student can recognize the hidden composition of functions in their 

equation that models the problem and correctly differentiate the equation with respect to time. 

After better understanding what questions to ask for the related rates problems, I added the last 

two goals to the learning goals of the HLT (see The HLT Rooted in NM in Chapter 3). 

After the adjustments I made to the HLT based on all of the pilot interviews, I felt 

confident about conducting the study. 

Building on and Extending Infante’s Research 

My study builds on and extends Infante’s (2007) research. In this section, I explain the 

interplay between my pilot studies and Infante’s work during the process of creating my HLT. 

There are four main ways in which my study extends her research: by exploring (1) how students 

develop and not just understand the multiplicative nature of the chain rule, as opposed to only 
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how they understand it at a given point in time, (2) how students develop interrelated meanings 

for these concepts, rather than simply applying a procedure to related rates, (3) how students 

understand role of time, and (4) how students can think more deeply about the given context.  

First, I conducted a teaching experiment to explore an HLT for students to not just 

understand, but also develop the multiplicative nature of the chain rule themselves. In order to 

help Infante’s (2007) students understand and solve related rates problems, she first revisited the 

chain rule with them, attempting to help them understand the multiplicative nature of the chain 

rule. In my study however, the students had not yet been exposed to the chain rule, implicit 

differentiation, or related rates problems. I focused on having students develop the multiplicative 

nature of the chain rule themselves and then generalize that to other problems. 

In order for Infante (2007) to help the students in her experiment develop a more 

conceptual understanding of the chain rule, after they had already learned it in their class, Infante 

(2007) introduced a related rates problem of a ball being thrown into a lake (see Figure 13). 

In the very first drafts of the learning activities for the HLT, before I tested it in any 

pilots, I use this ball thrown into a lake related rates problem to bring out the multiplicative 

nature of the chain rule. However, I realized that I wanted to develop this same idea through an  

 

A ball is thrown into a lake, creating a circular ripple that travels outward at a speed of 3 

cm per second. How fast is the area of the circular ripple growing with respect to time? 

Figure 13. A ball thrown into a lake related rates context (Infante, 2007, p. 180). 

even simpler related rates problem, where students could really develop the multiplicative nature 

of the chain rule themselves. I realized that I needed to scaffold the students much more than 

Infante had because the students I interviewed had not yet learned the chain rule. Additionally, I 
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realized that this problem required the symbol 𝜋𝜋. Dorko and Speer (2015) showed that 

sometimes students subconsciously perceive 𝜋𝜋 as a unit instead of as a constant or an irrational 

number. I did not want the symbol 𝜋𝜋 to be a distraction from NM and the big ideas that I wanted 

to develop with the students, thus I decided not to use this problem altogether. 

Second, I hypothesized that my proposed HLT would allow students to develop deeper 

connections between related rates problems, the chain rule, and implicit differentiation. All of the 

students in Infante’s study learned to create a delta equation in order to relate the changes in the 

quantities in the related rates context in order to eventually take the derivative to solve the 

problem. To better understand delta equation, consider again the ladder problem from Chapter 3.  

The delta equation that could model this particular problem is ∆𝑑𝑑
∆𝑑𝑑

= ∆𝑑𝑑
∆𝑑𝑑
∙ ∆𝑑𝑑
∆𝑑𝑑

.  Infante 

(2007) explains that “the ‘delta equation’ [is] a statement of the chain rule as it [applies] to the 

problem at hand” (p. 255). That is, this delta equation represents the way in which the variables 

of the function composition x(y(t)) change together. However, the delta equation shows how 

finite changes in each of the quantities affect one another, whereas instantaneous changes would 

be represented by the equation 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, which comes from taking the derivative of the 

composition of functions with respect to t. 

The delta equation that could model this particular problem is related to the first of two 

ways to make sense of this problem (as discussed in Chapter 3). That is, the first way to make 

sense of this problem is to recognize that the composition of functions 𝑥𝑥(𝑦𝑦(𝑡𝑡)) exists, and 

recognize that in order to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 one can take the derivative of the composition of functions with 

respect to time. This first way of making sense of the problem is employing RE from the NMR 

mental action framework (Chapter 3). Later in Infante’s teaching experiment, when students 

were asked to describe how they might teach a friend how to solve related rates problems, they 
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responded with the phrase “draw a delta equation” (p. 255). She explains that drawing a delta 

equation was perhaps a strictly procedural part of the process as a result of the chain rule 

discussions. She said that she believes this understanding is related to their understanding of 

function composition, yet she said they never used the term composition and so there was no 

evidence to justify this belief. If, in creating a delta equation, a student recognizes the existence 

of a composition of functions and the way in which the variables within multivary, then she/he is 

also employing RE from the NMR mental action framework (Chapter 3). However, if a student 

has not employed RE, it is possible that she or he is just reproducing a procedure. 

As a teaching assistant for a first-semester calculus class, I saw one of my students create 

a delta equation, even though this method was never formally taught. Intrigued, I asked her why 

the delta equation made sense to her or from where the delta equation came. She could not 

answer my question. She simply said it was a method she had learned and memorized when she 

took math in a different country. So, although creating a delta equation might be a good way for 

students to be able to solve the related rates problem, it is possible that students do not fully 

understand why the delta equation works or that it comes from the derivative of a composition of 

functions. 

I hypothesized that the HLT rooted in NM leaves the related rates problem solving 

process open for a student to apply the multiplicative nature of the chain rule themselves in 

whatever way makes most sense to her/him. I am not claiming that any one method is superior or 

that learning to create a delta equation is disadvantageous. However, I do think that a student’s 

understanding of the multiplicative nature of the chain rule should support whichever method is 

most comfortable and intuitive to her/him. 
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The third way my proposed HLT builds on Infante’s (2007) study is by encouraging 

students to explicitly consider all of the changing quantities within a given problem and thus 

recognize and understand the role of time. Infante explains that her students struggled to develop 

an understanding of the role of time in related rates problems. She says it was especially difficult 

for her students to recognize that a variable was a function of time when it was not explicitly 

written as a function of time (e.g. x(t)). However, through my thought experiments and pilot 

studies, I came to believe that a focus on NM naturally invites students to consider time because 

they must cognize all of the changing quantities within a given context and think about how they 

change together when employing NMR. 

The fourth way that my study builds on and extends Infante’s (2007) study is by 

exploring how students can more deeply think about the given context. Infante (2007) explains 

that when a mathematician solves a related rates problem, she/he consistently refers back to the 

diagram that models the problem. In her study, she found that although referring back to a 

diagram was very important to the mathematicians’ problem-solving process, students rarely 

referred back to the diagram they had created when trying to understand and solve a related rates 

problem. She explains that students were not adept in recognizing the way in which their 

diagram could help them to conceptualize and solve related rates problems. I think this is part of 

a larger issue of simply thinking deeply about the context. I hypothesized that an HLT rooted in 

NM would help students to actively consider the way in which the different variables affect each 

other in a related rates problem. 

The Teaching Experiment 

The final interview protocol (see the Appendix) consists of a set of scaffolded learning 

activities meant to accomplish the goals in each stage of the HLT rooted in NM. 
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In my study, the tasks introduce the concepts of the chain rule, implicit differentiation, 

and related rates in a different order than they are typically taught in first-semester calculus. 

Typically, in a first-semester calculus class, students are first taught the chain rule and implicit 

differentiation separately and as memorized procedures. Then, related rates problems are later 

introduced as a way to apply the chain rule in meaningful contexts (Stewart, 2018). Differently, 

the learning activities in the HLT of this study begin with meaningful context where students can 

develop and make sense of the multiplicative nature of the chain rule. Then, students generalize 

the chain rule to abstract compositions of functions. Next, students explore implicit 

differentiation through a meaningful context and then generalize those ideas to more abstract 

implicit functions. Lastly, students extend their understanding of the multiplicative nature of the 

chain rule to more complicated related rates and implicit differentiation problems.  

The teaching experiment consisted of four, 50-minute interviews with four first-semester 

calculus students. The teaching experiment was done one-one-one with each student, so that I 

could follow that student and adapt accordingly. Doing this study with individual students 

creates limitations, in that I have not examined the HLT in a full classroom. However, these one-

on-one interviews were critical in testing assumptions within the HLT, in observing how the 

students’ understanding developed, and in identifying places where the students struggled more 

than anticipated. Based on this small-scale teaching experiment, many parts of the HLT were 

validated, but in a few instances, revisions to the HLT were seen as necessary. One result of this 

study was the creation of a finalized HLT (see Chapter 6) which is now ready for a full-scale 

implementation in a regular classroom setting.  

Due to my pilot studies, I came to realize that in this study it would be important for 

students to already have certain base understandings, including an ability to interpret derivatives 
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in meaningful contexts and a solid understanding of multiplicative comparisons in general. I also 

knew it would be better to have students who were willing to freely talk their thinking during the 

tasks, because I needed to examine their understanding carefully. Thus, in order to ensure I had 

students who met these characteristics, I conducted the first 50-minute interview as a screening 

interview with six students. These students were recruited from a group of volunteers from a 

first-semester calculus class. Based on these interviews, I selected four students who seemed to 

have the strongest base understanding of derivatives and multiplicative comparisons and were 

also willing to talk about their thinking. I continued with those four students for the three other 

50-minute interviews. 

In order to explore the viability of the HLT, these students had not yet been exposed to 

the chain rule, implicit differentiation, or related rates in their classes. These students had, 

however, seen the limit definition for the derivative, explored derivatives as slopes, and learned 

the power-rule for taking derivatives of polynomials. I only selected students who had never 

taken calculus before the semester they were enrolled, whether in high school or college. All of 

the students received monetary compensation for their time. 

I had certain material in the interview protocol (see Appendix) I aimed to cover by the 

end of each interview, yet I was flexible about how much material I covered in each interview 

depending on the needs and understanding of each individual student. For the first interview, I 

aimed to help the student interpret derivatives in meaningful contexts and begin Stage 1 of the 

HLT by beginning to develop understandings for the multiplicative nature of the chain rule. By 

the end of the second interview, I aimed to finish both Stage 1 and Stage 2 of the HLT by 

developing understanding for the multiplicative nature of the chain rule, generalizing the chain 

rule for any composition of functions, and gaining procedural fluency with it. By the end of the 
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third interview, I aimed to finish Stage 3 and Stage 4 of the HLT by developing the idea of 

variables being implicit functions of time and the idea implicit functions, recognizing subsequent 

existence of compositions of functions. By the end of the fourth and last interview, I wanted to 

get as far as I could with each student in Stage 5 of the HLT by helping the students to explore 

more complicated related rates and implicit differentiation problems. I asked the questions in the 

interview protocol at a pace according to the students’ needs. I asked additional questions 

throughout in order to clarify the students’ thinking and guide them towards the learning goals of 

the HLT. After each interview, if any of the participants had special needs, I adjusted the 

interview protocol accordingly. 

Analysis 

My analysis was founded on Braun and Clarke’s (2006) framework for phases of 

thematic analysis. However, I modified the phases of their thematic analysis framework in order 

to better help me answer my research questions. My analysis consisted of five general phases: 1) 

familiarized myself with the data, 2) generated initial codes for the data, 3) reviewed codes and 

searched for themes across and differences between the students’ data, 4) defined themes and 

outlined results, and 5) produced the report. 

First, I familiarized myself with the data. During this phase, I simultaneously transcribed 

and broke up the transcript into “idea units” (Jacobs & Morita, 2002; Sherin & van Es, 2009). An 

idea unit is a segment in which one particular idea is discussed at one point in time. Because my 

interview protocol consists of very specific questions that scaffold the students’ thinking, most 

responses to each question counted as one idea unit. However, there were times when a student 

discussed multiple ideas within a response to a single question, in which case that response was 

broken up into multiple idea units as appropriate. One idea unit sometimes contained responses 
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to the original question in the interview protocol as well as any follow-up or clarifying questions 

that involved the same idea. If a student came back to the same idea they had discussed earlier, I 

counted it as a new idea unit because they were at different points in time. During this phase, I 

made note of any initial impressions I had about how the students were using NMR, what 

understandings they were developing through the HLT, and places where students struggled that 

suggested a needed revision to the HLT. 

Second, I generated initial codes for the data. In order to answer my first research 

question, about how students used NMR throughout the HLT, I coded the data according to the 

NMR mental action framework (see Chapter 3), also remaining open for any other types of NMR 

mental actions that did not fit in the original framework. However, I did not find different NMR 

mental actions that were not previously anticipated in the framework. I was the only one to code 

my data and so in order to ensure internal consistency when I coded, I created a key for each 

code where I clearly defined what constituted receiving each code with specific indicators. As I 

realized certain idea units fit, or didn’t fit, the pre-existing codes, I kept track of that in my key 

for the codes.  

During this phase, in order to answer my second research question and identify 

understandings students developed as they progressed through the HLT, I identified all of the 

units of data related to the different learning goals and sub-goals in the HLT. I marked units that 

evidenced the student reaching the learning goal as well as units that suggested the student had 

an incorrect understanding within the learning goal. 

During this second phase, in order to answer my third research question, I identified 

places where students struggled to understand the learning goals of the HLT or move forward 
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through the associated tasks. In addition to identifying these places, I began to take notes of how 

I might revise the HLT in the future to address the students’ struggles. 

For the third phase in my analysis, I reviewed codes and searched for themes across and 

differences between the students’ data. I went through all of the data a second time and double-

checked that my codes were consistent and fit the key for the pre-existing NMR codes across all 

four students. I went through each student’s data, one at a time, and searched for themes in the 

way that they used, or didn’t use NMR, in their progression through the HLT. 

Next, I broke each student’s data into the different stages of the HLT and re-examined the 

data, marking any additional pieces of data that exhibited the student’s understanding of the 

learning goals and sub-goals of the HLT. For example, I marked anytime they expressed a 

meaning for something or explained why something works. When they were giving an 

explanation, I also marked the different ideas that were in that explanation. I also looked for 

additional pieces of data that suggested the student either had an incorrect understanding of the 

learning goals and sub-goals or was inhibited in reaching the goals of the HLT. I identified and 

recorded specific parts of their understanding that seemed to be linked to these inhibitions. 

Lastly, based on what I found for students’ use, or non-use, of NMR and understandings 

of these concepts, I repeatedly marked specific places that needed to be addressed in the 

interview protocol and HLT for each individual student; places where there seemed to be 

something missing or something that could be adjusted to help students more easily move 

through the HLT and develop understandings for these concepts. 

For the fourth phase in my analysis, I more clearly defined themes and differences 

between the students and outlined the results. After searching for themes one student at a time, I 

searched for and clearly defined themes across and differences between the four students’ NMR 
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throughout the HLT. For each student, I looked at the entirety of pieces of data that were linked 

to their understanding of the learning goals and sub-goals of the HLT. For each sub-goal, I 

characterized the student as either having a “complete”, “incomplete”, or “missing 

understanding” of that sub-goal. I characterized the student as having a complete understanding 

if they had multiple units of data that suggested they understood that sub-goal. I characterized the 

student as having an incomplete understanding if they had some evidence of reaching the 

learning sub-goal but they also had some evidence of misunderstanding of or continual 

inhibitions in reaching the sub-goal. I characterized the student as having a missing 

understanding if there was no evidence the student understood the learning sub-goal. Lastly, after 

looking at places in the HLT that needed to be addressed for each student, I more clearly defined 

places where all of the students struggled which suggested a needed revision to the HLT. 

In the fifth phase in my analysis, I used the outline I had created in the previous phase to 

produce a report of the results. Here, I selected idea unit extracts that demonstrated and helped 

clarify the results. I tried to include extracts that helped tell the students’ stories more vividly. In 

producing the report, I tried to clearly answer all three of my research questions. During this 

phase, I also wrote the discussion where I related the results back to existing research and 

discussed ideas for future research. 

Limitations 

 There are three limitations I address in this section. The first is my bias that nested 

multivariation is indeed the mathematical concept underlying the chain rule, implicit 

differentiation, and related rates. The second is my solo role in coding the data and my effort to 

maintain internal consistency. The third is the generalizability of this small-scale teaching 
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experiment to full-sized classrooms. The fourth is that I selected students who seemed to have a 

strong base understanding of derivatives. 

 First, my biases about nested multivariation and the chain rule, implicit differentiation, 

and related rates are fundamental to my study. I have stated clearly that I see nested 

multivariation as being the underlying mathematical concept of the chain rule, implicit 

differentiation, and related rates. The HLT that I constructed for coming to understand these 

three concepts is necessarily influenced by this bias. I am not claiming that my belief about 

nested multivariation is necessarily true and I am not claiming that this HLT is the right or only 

way that a student might develop understandings for these concepts. Instead, I am exploring the 

possibilities of nested multivariation being the underlying mathematical concept of these three 

concepts and the viability of such an HLT. It is possible that other researchers might believe or 

find that these three concepts are more fundamentally related in some other way or that there 

exists a stronger HLT for coming to understand these concepts in more than a procedural way. 

Second, there are limitations in using solo-analysis. To answer my first research question, 

the specific NMR mental action codes simply helped me identify NMR when I may have 

otherwise missed it. It turned out that the specific NMR codes weren’t as important as identifying 

NMR in general. Nevertheless, in order to ensure internal consistency when I coded, I created a 

key for each code where I clearly defined what constituted receiving each code with specific 

indicators. As I realized certain idea units fit, or didn’t fit, the pre-existing codes, I kept track of 

that in my key for the codes. Additionally, in answering my second research question, I have 

provided many excerpts in the results from the students to help illustrate my conclusions. In this 

way, the reader becomes a co-validator with me as I invite her/him to challenge or critique my 

findings based on the data shown from the students.  
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 Third, this study will provide insights into the cognitive processes of only a few 

individual students at one university. As such, my study is preliminary to a more large-scale and 

generalizable study in the future. With only a few students in my sample, I used purposeful 

selection (Maxwell, 2013) to recruit students with the characteristic of having base 

understandings of derivatives and multiplicative comparisons as well as being willing to talk 

about their thinking. Due to my sample size, I am unable to sufficiently vary other characteristics 

such as gender, major, and general interests, which might affect the viability of the proposed 

HLT. A larger-scale teaching experiment is needed to gather results that are more generalizable 

to calculus students at large. Although my study is not generalizable, it has done much in terms 

of providing deeper insights into the cognitive processes of a few students, which appeared to 

validate several aspects of the HLT and identify remaining issues to address. 

Fourth, as I explained in my methods section, I conducted a screening interview with six 

students. I selected four students who seemed to have the strongest base understanding of 

derivatives and multiplicative comparisons. This potentially could have been a limitation to my 

study because I only explored the HLT with stronger students and my results could have been 

limited to students with the same base understandings of derivatives and multiplicative 

comparisons. However, as I discuss in my results, one of the students (Student D) ended up 

having a weak understanding of derivatives. That is, he often got them confused with average 

rates of change. This did cause him to struggle to move forward in the HLT and caused me to 

believe that it is important that students have a strong understanding of the meaning of the 

derivative before attempting to develop understandings for the chain rule, implicit 

differentiation, and related rates through the proposed HLT. 
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CHAPTER FIVE: RESULTS 

 In this section, I use the analysis of my data to answer my three research questions. 

Throughout this section, I reference the different learning activities and contexts that I used 

in the HLT. To see these learning activities and contexts in their entirety, please see either the 

HLT Rooted in NM in Chapter 3 or the Appendix. 

Use of Nested Multivariational Reasoning 

 My first research question is: How was nested multivariation used as the first-semester 

calculus students progressed through the HLT? In this section, I explain how students employed 

NMR in developing understanding of the chain rule, in developing understanding of implicit 

differentiation, and in developing understanding of related rates problems. Overall, I saw much 

more explicit NMR in developing understanding for the chain rule and then the students tended 

to use that foundational understanding as they applied the chain rule to developing understanding 

of implicit differentiation and related rates problems. 

Nested Multivariational Reasoning in Developing the Chain Rule 

 I first describe some general trends in the use of NMR in the data for the four students in 

developing understanding of the chain rule, and then I provide some specific examples to 

illustrate what this NMR looked like in the interviews. Throughout this section, I refer to the 

NMR mental action framework which can be found in the Nested Multivariation section in 

Chapter 3. 

Overall, the four students tended to focus on how all three variables were related to one 

another in a function composition before they focused on how all three variables changed 

together. Towards the beginning, students often employed RE, where they thought about the 

ways in which the variables in the function composition are related to and depend on one 



 
 
 

68 

another. Some students employed PC, where they wouldn’t just think about how the quantities 

were related to and depend on one another, but they would consider the fact that as one variable 

changes, it causes changes in the other two variables in a chain reaction. 

The most explicit and crucial use of NMR was in developing understanding of the 

multiplicative nature of the chain rule. All of the students employed AMT, where students 

coordinated amounts of change with the three variables in the function composition, in order to 

make sense of the multiplicative nature of the chain rule. They explicitly used AMT in making 

sense of the multiplicative nature of the chain rule when looking at the rates of change of the 

variables at one specific moment within different meaningful context. Once they made sense of 

the multiplicative nature of the chain rule within different moments in multiple examples, the 

students extended that idea to the derivatives as a function; they used this understanding to 

generalize chain rule to any composition of functions. Following this initial development of the 

chain rule, once the students built procedural fluency with it, the students tended to only use RE 

to recognize the existence of a composition of functions, or nested relationship, thus recognizing 

that they needed to use the chain rule in order to take the derivative of the composition of 

functions. 

 I now discuss specific examples to illustrate these more general themes I identified in the 

data. 

First, all students exhibited RE at some point in their development of the chain rule. In 

the beginning, most students tended to rely on RE to recognize the way in which the variables in 

the composition of functions are related and depend on each other. For example, when asked 

how the variables in the composition of functions in the Chocolate Context (see Appendix) were 

related to one another, Student A replied, “The chocolate is dependent on the amount of dollars 
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which is dependent on the hours.” Later on, I asked this same student what the units of the output 

of the composition of functions would be. Because she had thought about the way in which the 

variables were related to one another, she replied, “It wouldn’t be very pretty, but it would be 

like lbs. per dollar per hour.” 

 Here, she recognized the nested relationship but incorrectly understood how the variables 

in the composition of functions actually relate to one another. To deal with this, she calculated 

the value of 𝑐𝑐�𝐷𝐷(3)�. She eventually realized that the unit of the output is only lbs. of chocolate. 

This realization helped prepare her to more correctly understand the derivative of the 

composition of functions and the meaning of said derivative. 

 Student C also struggled to understand the units of the output of the function of a 

composition of functions. In the Carnival Context, where the composition of functions was 

created with the temperature, attendance, and revenue of a carnival, when asked what the units of 

the output of the composition of functions would be, Student C said, “So, this would be the 

amount of money that we would make depending on what temperature it is. So, it would be 

dollars per Fahrenheit.” Afterwards, when this same student was asked how the variables were 

related to one another in the composition of he replied, “The amount of money we would make 

for the amount of people that came for [pause] that depends on I guess the temperature at that 

point.” 

 Here, it is interesting that the student did not first think about the independent variable 

and then how the other two variables relate in a chain reaction. Similar to Student A, it wasn’t 

until we did a specific example where he calculated the value of f(g(45)) that he finally 

understood the units of the output of the composition of functions and was thus prepared to make 

sense of the meaning of the derivative of the composition of functions. 
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 As stated earlier, all students used AMT in order to understand the multiplicative nature 

of the chain rule. They coordinated the amount of change between the variables within a specific 

moment in multiple contexts in order to reason about the multiplicative nature of the chain rule. 

 For example, some students thought about how to coordinate the amounts in the different 

rates by thinking about how they could get a common amount to compare. In the Chocolate 

Context, Student D immediately realized that in order to get the derivative of the composition of 

functions, or the lbs. of chocolate per hour, he could multiply the two other derivatives. I asked 

him why it made sense to multiply the other two derivatives: 

Student D: You would just multiply this one [pointing to 𝑑𝑑𝐷𝐷/𝑑𝑑𝑡𝑡, or 9 dollars per hour] 

and that one [pointing to 𝑑𝑑𝑐𝑐/𝑑𝑑𝐷𝐷, 15 lbs. per dollar] together. Um, I see it as a ratio. Um, 

so I have $9 per 1 hour and I also have 15 lbs. or .15 lbs. sorry, [laughs] for every one 

dollar. And so, I see this relationship right here where for every hour I work, I have $9 

and for every $9 that I have, it would be as simple as just multiplying this here 

[referencing 𝑑𝑑𝑐𝑐/𝑑𝑑𝐷𝐷, or .15 lbs. per dollar] by 9 to figure out how that is. And in order to 

keep the ratio the same you would have to multiply both sides by 9 [pointing to both the 

numerator and denominator of 𝑑𝑑𝑐𝑐/𝑑𝑑𝐷𝐷] and so you would end up with 9 times .15 lbs. 

 In this specific problem it is true that both of these rates are constant over time in the 

given context; this is a simple situation with simple derivatives. Because both of the rates are 

constant, he can correctly say that for every given hour he works, he would make $9 more and 

could buy 9 × .15 lbs. more of chocolate. This cannot always be said for more complicated 

situations where the rate is not constant. In fact, some students would even use this same type of 

wording (e.g. “for every” or “for any”) even though the amount, or rate, to which they were 

referring only applied for that specific moment. However, it still helped the students to reason 
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through and understand the meaning of the rate at the moment of interest. For example, as 

recorded above, Student D realized that .15 lbs. per $1 is equivalent to 1.35 lbs. per $9. Thus, 

like Student D, the other students coordinated the amounts of change with the different variables 

in order to make sense of the multiplicative nature of the chain rule. 

 A couple of students made sense of the multiplicative nature of the chain rule through 

seeing how the units “canceled out” in order to get the desired units for the derivative they were 

trying to find. For example, in the Running Context when the students were told to pretend that 

at one moment, they are running .1 miles per minute and burning 100 calories per mile. They are 

then asked to find the derivative of c(D(t)), or the calories per minute. At this point in the 

interview, Student B reasoned through how to find this derivative: 

Student B: …because each mile we are going to burn 100 calories, but if we are .1 per 

minute, then I just, I need to multiply them in order to get calories per minute. So, I am 

running .1 miles per minute and every mile I am burning 100, but if I would like to know 

what is actually my calories per minute, I need to multiply again [pause] to get rid of the 

miles and then get the calories per minute. 

 This may not be a deep understanding of the multiplicative nature of the chain rule, yet it 

still helped the students to feel that their intuition was correct because they got an answer that 

made sense within the context. Similarly, Dorko & Speer (2015) explain that understanding units 

can be very important for deeper understanding of mathematical concepts. 

 Later on, students used this understanding of the multiplicative nature of the chain rule to 

generalize it to any composition of functions. Eventually, the students only used NMR to 

recognize a nested relationship and thus recognize the need to use the chain rule in 
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differentiating of a composition of functions. In this way, students were employing reasoning 

based on RE, even if it had become more automatic to them by this point. 

 In trying to gain procedural fluency of the chain rule with different functional examples, 

a couple of the students struggled to identify the “inner-most” function and the “outer-most” 

function. In doing so, they incorrectly applied the chain rule. For example, when invited to find 

the derivative of the function ℎ(𝑥𝑥) = [sin(𝑥𝑥)]2, Student B said that ℎ′(𝑥𝑥) = 1 ∙ 2cos (𝑥𝑥) . Below 

are his words as he was finding the derivative: 

Student B: Ok so j(x) equals [pause] the inside is going to be 1 times [pause] this is going 

to be 2 times 1 times cos(x), so then if I multiply that it is going to be 2 times 2 cos(x). 

That is what I am guessing. 

PI: So, at first you wrote 1, where did that come from? 

Student B: From this x [pointing to x, the independent variable]. 

PI: And then why did you put 2 here and then cos(x) here? 

Student B: Because I brought [pause] So I, first I analyzed the inside, so the derivative of 

the x is 1 and then the derivative of the entire thing is cos(x), and then this is affecting 

both of them, so then I decided to take the derivative of that one, of the entire function 

[using the power rule to bring down the 2, but incorrectly applying the chain rule], so it is 

going to be two times the entire thing. So that’s how [pause] I treated it as a power 

function at the end like the whole thing. 

It seems that his struggles in correctly taking the derivative of h(x) come more from his 

weak understanding of functions and function compositions in general than they do from a lack 

of NMR. Eventually, I re-wrote the problem as ℎ(𝑥𝑥) = [j(x)]2. He correctly found that ℎ′(𝑥𝑥) =

2𝑗𝑗(𝑥𝑥) ∙ 𝑗𝑗′(𝑥𝑥). After writing h’(x) in this general form, he extended his thinking to the original 
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problem and correctly find ℎ′(𝑥𝑥). Although he struggled to correctly apply his NMR when the 

specific function example was originally presented, it seems like he used RE to correctly 

recognize the need to take the derivative of the inside function times the derivative of the outside 

function when given a more general representation of that function.  

In summary, most students initially used RE to initially understand how the variables 

were related to one another in the function composition. Then, all four students used AMT to 

make sense of the multiplicative nature of the chain rule when finding the derivative of a 

composition of functions at a specific time with given rates at that time. Once they built 

understanding of the chain rule and generalized it to derivatives as functions and to general 

compositions of functions, they relied on RE to simply recognize the existence of a nested 

relationship and the subsequent need to employ the chain rule in finding the derivative. 

Nested Multivariational Reasoning in Developing Implicit Differentiation 

I first describe some general trends in the use of NMR in the data for the four students in 

developing understanding of implicit differentiation, and then I provide some specific examples 

to illustrate what this NMR looked like in the interviews. 

In developing understanding of implicit differentiation, there were overall fewer 

instances of NMR than there were in developing understanding of the chain rule. Once students 

used NMR to build intuition for the multiplicative nature of the chain rule and developed 

procedural fluency with it, they relied on their existing understanding of the chain rule, and 

concomitant NMR, in making sense of implicit differentiation. That is, they weren’t explicitly 

exhibiting NMR because they weren’t unpacking it anymore, but they were using knowledge 

based on previous NMR. There were a few instances of NMR during the students’ development 

of their understanding of implicit differentiation, and they all consisted of RE. RE was the 
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mental action that came up because once students recognized the nested relationship, they 

jumped straight to the other NM knowledge they had built without unpacking it and reasoning 

about it every time. 

When recognizing an implicit function of one variable in terms of another, all four 

students used RE in recognizing subsequent compositions of functions, or nested relationships. 

Once they recognized an implicit nested relationship within an equation, they correctly applied 

the chain rule to that nested relationship when employing implicit differentiation. 

For example, when first introduced to implicit differentiation through the equation 𝑥𝑥2 −

𝑦𝑦2 = 1, I talked to each of the students about how fast y changes as x  changes, or find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, we 

can think about the fact that y is dependent on x, or y is an implicit function of x. Then, we re-

wrote the equation as 𝑥𝑥2 − [𝑦𝑦(𝑥𝑥)]2 = 1 to help the students remember the implicit function y(x). 

When I asked the students how this new equation relates to what they had previously learned 

about the chain rule, they all mentioned that a composition of functions existed or there was a 

need to take the derivative of the inside times the derivative of the outside. 

For example, when I asked Student A how this new equation relates to what we had 

learned previously, she said, “… you could take the derivative of this [referencing 𝑦𝑦(𝑥𝑥)] and 

multiply it to the derivative of this [referencing 𝑥𝑥2 − [𝑦𝑦(𝑥𝑥)]2] to get the derivative of the whole 

thing.” Although she was incorrect in thinking that the “outside” function was the entire left side 

of the equation, instead of just the [𝑦𝑦(𝑥𝑥)]2 part, she recognized a nested relationship and the need 

for the chain rule. It seems as though her not understanding what specifically was the “outside” 

function comes from her lack of exposure to non-explicit equations. After talking more together 

about taking the derivative of the equation with respect to x, she came to understand that we can 
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take the derivative of 𝑥𝑥2 with respect to x, and then subtract the derivative of [𝑦𝑦(𝑥𝑥)]2 with 

respect to x. 

In conclusion, all four students exhibited RE in the development of their understanding of 

implicit differentiation by recognizing the existence of an implicit nested relationship and the 

subsequent need to use the chain rule in taking the derivative of the equation. 

Nested Multivariational Reasoning in Developing Related Rates 

I first describe some general trends in the use of NMR in the data for the four students in 

developing understanding of related rates, and then I provide some specific examples to illustrate 

what their NMR looked like for related rates. 

Compared to their exploration of implicit differentiation, there were both more instances 

of NMR and greater diversity in those instances in students’ development of their understanding 

of related rates. The students used four NMR mental actions in making sense of related rates. 

First, similar to implicit differentiation, the most common NMR was RE, which all four students 

in the study employed in making sense of related rates problems. Just as with implicit 

differentiation, the students used RE to recognize a nested relationship and the subsequent need 

to use the chain rule in taking a derivative. Second, two students employed PC three times and a 

third student employed PC six times in their exploration of related rates. They used PC by 

recognizing the fact that the three variables in the composition of functions change together in a 

chained relationship which helped them eventually realize the need to use the chain rule when 

taking the derivative of the equation that modeled the problem. Third, two students employed ID 

one time in making sense of how the quantities in the situation were increasing and/or decreasing 

together in a chained relationship which helped move them closer to creating an equation to 

model the problem. Fourth, two students employed AMT one to two times in coordinating 
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changes of the quantities in the nested relationship while actually taking the derivative at the 

moment of interest. 

I now provide specific examples to illustrate how students used the first three NMR 

mental actions. I do not provide an example of how the two students used AMT because they 

used it in the same way they did to originally makes sense of the multiplicative nature of the 

chain rule. 

First, just as with the chain rule and implicit differentiation, the most common NMR 

mental action students used was RE in recognizing the existence of a nested relationship and the 

subsequent need to use the chain rule in differentiating a composition of functions. For example, 

when asked to summarize her thinking after completing the Snowman Context, Student A said, 

“What we’re looking for is as time changes how does the volume change. Because the volume is 

a function of time. And so, the volume is actually a function of the radius which is a function of 

time.” 

Sometimes, in solving the related rates problems, students would forget to use the chain 

rule because they failed to use RE. For example, Student A had made this mistake. Later on, 

when I asked her to review the mistake and explain why it was incorrect, she said, “Oh, I thought 

this was the derivative, but this is like theta [pause] theta prime. So, you can take the derivative 

of what’s inside the parentheses and then the derivative of what’s outside the parentheses with 

the tangent.” Here, she corrected her mistake by employing RE and recognizing the function of 

the implicit variable time and subsequent nested relationship. 

Second, the three students, who used PC, used the mental action similar to how they used 

RE; by recognizing an existing nested relationship and thus the need to use the chain rule. 

However, PC was slightly more advanced because students were not just recognizing a nested 
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relationship, but they were also considering the fact that the variables within the nested 

relationship change together in a chained relationship. For example, while working on the 

Snowman Context, I asked Student C which quantities in the situation were changing with time 

and he replied, “So, the volume is changing with time which makes [um] the radius also change 

with time.” This helped the student recognize the function of the implicit variable time within the 

equation 𝑉𝑉 = 4
3
𝜋𝜋𝑟𝑟3, that modeled the situation. That is, it helped the student understand the 

equation as 𝑉𝑉(𝑡𝑡) = 4
3
𝜋𝜋𝑟𝑟3(𝑡𝑡), making the function of the implicit variable of time explicit, which 

ultimately helped him to correctly take the derivative and solve the problem. When I asked this 

same student to reflect on his solving and understanding the problem, he exhibited PC again by 

saying, “…I knew that the volume changes with r as the radius changes and the radius changes 

with time. So, we made this chain rule thing.” It should be known that afterwards, we talked 

about how the equation as written did not technically constitute a “chain rule thing,” but instead 

a composition of functions, and we used the chain rule to take the derivative of that composition 

of functions. 

Third, unlike the students’ use of RE and PC, the two students who used ID did not use it 

to directly help them apply the chain rule to the related rates problems. Instead, these two 

students seemed to rely on ID to simply think about how the quantities were increasing and/or 

decreasing together in order to better understand the problem in general. ID seemed to help these 

two students to visualize the problem and better grasp how the different quantities in the problem 

were changing with time. Although this didn’t seem to directly help them correctly take the 

derivative of the equation that modeled the situation, it did help them to understand the problem 

in a way that they could start to understand how they might use the given derivative to find the 

derivative of interest. That is, it helped the students to better understand which quantities they 
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might need to use in creating an equation to model the problem in the first place, thus getting one 

step closer to actually taking the derivative and solving the problem. 

For example, Student D was struggling to create an equation to model the Shuttle Launch 

Context. At one point, he knew that he was supposed to relate 𝜃𝜃, the angle measure between the 

ground and the camera’s view to the shuttle, to d, the vertical distance from the ground to the 

shuttle in miles. When asked how he might relate these two variables he wrote (see Figure 5): 

 

Figure 5. Student D creating a proportion in an effort to model the Shuttle Launch Context. 

Then, he and I talked about this ratio that he formed in an effort to relate 𝜃𝜃 and d: 

Student D: I am not comfortable with that answer. 

PI: What does the 3
2
𝑑𝑑 represent? 

Student D:  It’s a poor guess [um] this is a poor guess because I just took a ratio that I 

knew would be happening at one point in time and just said, “alright well I will make it 

so that it will be 3/2 of the distance for any given distance per second.” Which is, like I 

said, a bad guess, because it is more of like a generalization of how things should be 

changing. When in reality, I can see how at the very beginning, the camera angle has to 
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change super-fast, and then as it gets higher and higher [using his hands to model the 

rocket’s distance from the ground increasing], you can just see that it is slowing down. 

Here, we can see that although he first provided a “poor guess,” it was through his ID 

mental action that he made sense of why his guess was incorrect for relating 𝜃𝜃 and d. That is, by 

thinking about how the angle increased with time which was dependent on how the vertical 

distance changed with time, he realized that the speed of the angle changing would not be a 

constant ratio. He realized that it would not be constant because he visualized how 𝜃𝜃 and d 

increased together and he realized that over time, the speed of the angle of the camera from the 

ground decelerates as the shuttle’s distance from the ground increases. So, by employing ID he 

understood why his thinking was incorrect and move forward towards correctly modeling the 

situation and solving the problem. 

This NMR seemed to be an effective way to address the common mistake that students 

make in plugging in values for variables too early in equations modeling related rates contexts. 

Doing so encourages students to treat variables as constants and incorrectly conclude that their 

derivative is “0” when trying to solve related rates problems. Thus, asking questions to 

encourage NMR might help students to address this common mistake and understand that when 

variables are changing in the context, they will affect the derivative and so values should not be 

plugged in for those variables until after the derivative was calculated. 

Because I am trying to answer how NMR was, or was not, used in developing 

understanding of related rates, it should be noted that the last student I interviewed, Student D, 

struggled the very most with related rates problems. By the end of the last interview, we were 

unable to finish the second related rates problem, the Shuttle Launch Context, and he was not 

making much progress. It seemed he struggled so much because of his discomfort with functions 
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in general and with coming up with his own equation to model a related rates context. However, 

it should be noted that, of all the students, he is also the student that exhibited the very least 

amount of NMR in exploring related rates. During their exploration of related rates, Student A 

and student C had 9 idea units with NMR and Student B had 19. Differently, during his 

exploration of related rates, Student D only had 3 instances of NMR. Although I cannot be sure, 

it does seem like he was not reasoning more about the quantities in the nested relationships in the 

Shuttle Launch Context, or employing more NMR, he was unable to move forward towards 

correctly modeling the context and solving the problem. Yet, his struggles could also be 

stemmed from his lack of understanding of function in general because that seemed to be a 

theme throughout his interviews. Nevertheless, the other three students finished the Shuttle 

Launch Context and they all employed more NMR than him. 

In conclusion, the most common NMR mental action that was used in the students’ 

exploration of related rates was RE in recognizing the nested relationship and thus recognizing 

the need to use the chain rule in taking the derivative by recognizing the composition of function 

structure. PC was used a few times to recognize the need to use the chain rule in taking the 

derivative. If ID was used, it was used in making sense of how the quantities in the context 

increased and/or decreased together in a chained relationship to better understand how to 

correctly model the context with an equation. If AMT was used, it was to coordinate changes of 

the quantities in the nested relationship while actually taking the derivative at the moment of 

interest; similar to how all the students used AMT in first developing the multiplicative nature of 

the chain rule. 
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Understandings for the Chain Rule, Implicit Differentiation, and Related Rates 

In the previous section, I explained how students used NMR in developing understanding 

for the chain rule, implicit differentiation, and related rates. In this section, I shift to focus on my 

second research question: What kind of understandings did the first-semester calculus students 

develop for these three concepts within each major stage of the HLT? I describe the evidence of 

“complete,” “incomplete,” or “missing” understanding for sub-goal in each stage of the HLT 

(see the Analysis section in Chapter 4 for more details). 

First Stage of HLT 

The first stage of the HLT was focused on developing intuition for the multiplicative 

nature of the chain rule. During this stage, all four students first employed NMR to conceptualize 

how changes in the independent variable cause changes in the sequence of variables in the 

composition of functions, from the independent to the outermost dependent variable. The 

students also exhibited understanding of how to interpret the different rates that exist within a 

composition of functions. Given values for different rates in each context, they correctly 

interpreted the rates as comparisons between pieces of the independent and dependent variable. 

For example, for the Chocolate Context, I asked Student D to calculate the derivative of 

D (dollars) with respect to h (hours worked at a job). He found that dD/dh=9. We discussed the 

meaning of his answer: 

PI: What is the meaning of 9 in our context? 

Student D: Because the derivative is basically the slope of that point, it means that at that 

certain point, of which we took the derivative of, so 9, the slope is 9. 

PI: What does the slope mean in our context? 
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Student D: It means the change of h and x…if you go one more to the right or to the left 

you are increasing by 9 or decreasing by 9. 

PI: What would be the units? 

Student D: $9 per hour. 

 Later on, I asked him to calculate the derivative of c (lbs. of chocolate one can buy) with 

respect to D (dollars). He found that dc/dD=.15 lbs. per dollar. I asked him to explain the 

meaning of dc/dD = .15, and he said, “…for every dollar that I have… I would be able to get 

.15.” 

 These two examples illustrate typical thinking for all of the students during the beginning 

stage of the HLT. The students correctly identified the units of the derivative and described the 

meaning of the derivative by comparing the dependent and independent quantities. However, 

Student D was unique because from the beginning, he struggled to understand the difference 

between the derivative and an average rate of change for a function between two values. A few 

times, when I asked him to calculate the derivative at a point, he found two points nearby and 

calculated the slope, finding the average rate of change. At these points, we would pause, and I 

would explain to him the difference between average rate of change and derivative; that the 

average rate of change is a way to estimate the slope at one point, but the derivative is the exact 

slope or rate of change at one point. He began to understand the difference, but his lack of 

understanding of the difference between derivatives and average rate of change, along with his 

lack of NMR towards the end of the interviews, proved to make his progress through the HLT 

more difficult.  

All four students gained at least two different understandings for the multiplicative nature 

of the chain rule. The first understanding that all students exhibited during at least one of the 
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tasks during this first stage in the HLT was reasoning about how the quantities of the given unit 

rates change together. For example, Student A developed intuition behind the multiplicative 

nature of the chain rule with the Chocolate Context. I introduced the problem to her, where she 

was hypothetically making $9/hr. at her job and wanted to spend every penny on chocolate 

costing .15 lbs./dollar. I asked her how she could use these two rates to find how much chocolate 

she could buy per hour of work. She explained: 

Student A: “…Well you would multiply the $9 by the .15, and that would give you over 

one hour how much chocolate per hour. 

PI: Why did you say multiply? 

Student A: …so you know that you get .15 lbs. per every [pause] per every dollar. But 

you can’t go from pounds to hours because there is a medium ground you have to hit first 

before you can get to that… this would just symbolize 1/9 of an hour [pointing to the .15 

lbs./dollar], and then you would multiply it by 9 so it would give you, for the full hour, 

how much. 

Here, she realized that in this chained relationship, dollars were the “medium ground” to 

get from lbs. of chocolate to hrs. of work. She reasoned that in order to get the rate of lbs. of 

chocolate per hrs. of work, she could multiply the rates, using the medium ground of dollars to 

relate the two rates to each other. Similar to Student A, all of the students exhibited similar 

reasoning in making sense of the multiplicative nature of the chain rule. 

After exploring different examples, a second way in which all of the students 

strengthened their understanding of the multiplicative nature of the chain rule was through the 

units in the multiplication. Student A related this canceling of units to “unit analysis” that she 

had learned in her chemistry experience and Student D called it “dimensional analysis.” For 
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example, when Student A was working on the Running Context, where the students were 

hypothetically running .1 miles/minute and burning 100 calories/mile, she explained that, “We 

know that .1 mile is equal to one minute [writes down the rates she knows with units]. So that 

would like cancel out the units and give you calories over minutes, so you multiply 100 calories 

by .1 mile.” Based on both Student A and Student D’s other comments and coordination of the 

amounts of change within the composition of functions, I did not see this cancellation of units as 

a procedure of “drawing lines through things that are the same on the top and bottom of the 

fraction.” Instead, both of the students talked about the quantities that they were coordinating and 

this connection to their previous experience with unit and dimensional analysis helped strengthen 

their understanding of the multiplicative nature of the chain rule. 

A third way in which two of the four students developed understanding of the 

multiplicative nature of the chain rule was by recognizing that the infinitesimal values in the two 

derivatives would cancel out in order to get the desired derivative. For example, when talking 

about the Running Context, Student D explained “I know that the derivative of c is equal to dc 

over dD, and I know that the derivative of D is equal to dD over dt. And so right off the bat, I can 

see how a certain aspect will cancel, leaving me with the desired terms.” Here, the student is 

coordinating the amounts of change within the composition of functions, but the amounts are 

infinitesimal. 

In summary, all of the students exhibited a lot of evidence for achieving the learning sub-

goals for the first stage of the HLT by correctly interpreting the different rates within a 

composition of functions, using NMR within compositions of functions, and constructing the 

multiplicative nature of the chain rule (see Table 3). Although Student D was successful in 
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reaching these learning sub-goals, it was not without struggle because of his lack of 

understanding of the derivative and how it is different from average rate of change. 

Table 3 

Summary of Evidence Students Achieved Learning Sub-goals of First Stage of HLT 

Learning sub-goals Complete Incomplete Missing 
1a) Given a function 
composition f(g(x)), 
interpret df/dx 

A, B, C, D   

1b) Given a function 
composition f(g(x)), 
interpret df/dg 

A, B, C, D   

1c) Given a function 
composition f(g(x)), 
interpret dg/dx 

A, B, C, D   

1d) Given a function 
composition f(g(x)), 
use NMR 

A, B, C, D   

1e) Construct that for 
f(g(x)), 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at a 
point 

A, B, C, D   

 

Second Stage of HLT 

The second stage of the HLT was focused on generalizing the chain rule and gaining 

procedural fluency with it. After strengthening their understanding of the chain rule with 

derivatives at specific points, most of the four students smoothly extended that understanding to 

taking the derivative of general compositions of functions. For example, in the Running Context, 

when the students were no longer given the two rates at a specific point, but were instead asked 

to calculate dD/dt and dc/dD as functions, they all eventually realized that they would multiply 

the two functions for dD/dt and dc/dD to find dc/dt. During this part of the interview, I re-

recorded their own conclusions from the Running Context and finding the derivative of the 

composition of functions using general derivative functions for dD/dt and dc/dD. I re-recorded 
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their own conclusions on a separate piece of paper (see Figure 14 for an example of how I did 

this with Student A) so that the students could more easily see patterns in what they had explored 

with general derivative functions and generalize that to any composition of functions. 

 

Figure 14. Student A’s conclusions within the running context. 

In the bottom half of Figure 14, Student A pointed out that 2𝑑𝑑 ∙ ln (2) came from dD/dt, 

and 3(2𝑑𝑑)2 came from dc/dD. Thus, I wrote down dD/dt and dc/dD below each part she 

referenced. She then said, “if you took the derivative of c(D(t)), you would get this number 

[pointing to the resulting product].” Through her work and this comment, we see that she found 

the derivative of c(D(t)) and understood why the derivative was what it was. This helped her to 

understand the patterns in her work and allowed her to ultimately generalize the chain rule to any 

composition of functions (see Figure 15). 
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Figure 15. Student A’s generalization of the chain rule. 

 Like Student A, all of the students eventually recognized the patterns in what they had 

done in the previous examples and generalized the chain rule. However, Student B demonstrated 

some incorrect conclusions about the chain rule; conclusions which proved to make his 

understanding of related rates more difficult later on. After generalizing the chain rule, he 

reflected on his experience: 

Student B: If they [teacher or textbook presumably] ask me ok, so we know that we want 

to know the acceleration and the position, but they don’t give me the velocity and then I 

just get lost because I don’t make that connection. But now, plugging these a function 

inside a function I can make the relation is like ok, so position has velocity as a 

derivative, and the derivative of velocity is going to be acceleration, so in between that, 

there is I can say that the entire thing, the function itself can be combined, position and 

acceleration and I can find derivatives. 

Although Student B demonstrated understanding of the chain rule before this comment, 

his words signaled that he had made some incorrect generalizations about the chain rule. It seems 

as though he had concluded that anytime there were three variables that were related to one 

another, they could automatically be placed into a composition of functions and the chain rule 

could be used to find a missing rate. This demonstrated his lack of understanding of 

compositions of functions in general. Later, in discussing student understandings in Stage 5 of 

the HLT, I explain the repercussions of this incorrect conclusion in his solving of related rates 
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problems, as well as what I did to help him address this misunderstanding and move forward in 

the HLT. 

Additionally, although Student C eventually generalized the chain rule, he struggled the 

most to transition from the simpler chain rule examples, where the values of the derivatives were 

given at specific points, to general derivative functions. The following is his reflection on the 

process: 

Student C: “This took me a little bit. I think this took me way long… it does make 

sense… that the derivative of the inside times the derivative of the outside gives me the 

derivative of the entire thing, because that’s, I feel like, that’s basically what I was doing 

earlier with I guess less complex [pause] It made more sense with just numbers because I 

had like units to cancel out…but like when it just became variables I wasn’t sure if I 

understood that you know? Well enough. But now, I understand more. 

Not only did Student C feel uncomfortable with “variables” and general function 

representations of derivatives, but he also felt uncomfortable with trigonometric functions which 

made it difficult for him to differentiate between the “inside” and “outside” functions within a 

composition. In fact, given ℎ(𝑥𝑥) = sin (𝑥𝑥2), he said that he saw h(x) as “one thing” and he 

explained that he didn’t recognize h(x) as a composition of functions at all. In order to help him 

recognize it as a composition of functions, I compared it to the previous problem, where he 

found the derivative of 𝑔𝑔(𝑥𝑥) = sin (𝑓𝑓(𝑥𝑥)) and I explained that 𝑥𝑥2 in h(x) could be thought of as 

f(x) in g(x). Additionally, we talked about how, given an x value, in order to calculate an output 

for h(x), he would first need to square that x value and then plug it into the sine function. I 

explained how this two-step process implied the existence of a composition of functions. This, 
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along with other conversations, helped him recognize compositions of functions and ultimately 

gain more procedural fluency in performing the chain rule.  

In the tasks aimed at helping the students gain more procedural fluency with the chain 

rule, the other three students were challenged, but with some work, became more comfortable 

with it. Most of them made a few mistakes along the way, but after we compared their efforts to 

their previous developments of the chain rule, the students quickly identified their mistakes and 

became more fluent in applying the chain rule to various, abstract functions. 

 In summary, Student A, C, and D demonstrated multiple pieces of evidence in achieving 

the first two sub-goals of the second stage of the HLT. Student B correctly generalized the chain 

rule but made some incorrect conclusions about when one can use the chain rule and about 

compositions of functions in general. All but Student C showed multiple pieces of evidence in 

achieving the third sub-goal of the second stage of the HLT in developing procedural fluency of 

the chain rule. Student C exhibited some procedural fluency, but his discomfort with general 

function representations of derivatives and trigonometric functions in general slightly inhibited 

him. See Table 4 for a summary of these results. 

Table 4 

Summary of Evidence Students Achieved Learning Sub-goals of Second Stage of HLT 

Learning sub-goals Complete Incomplete Missing 
2a) Continue 
constructing 
multiplicative nature 
of chain rule 

A, B, C, D   

2b) Generalize the 
chain rule to any 
composition of 
functions 

A, C, D B  

2c) Procedural fluency 
of the chain rule 

A, B, D C  



 
 
 

90 

Third Stage of HLT 

The third stage of the HLT was aimed at developing the idea of variables being functions 

of the implicit variable of time and recognizing subsequent existence of compositions of 

functions. During this stage, and given related rates problems in general, it proved very 

important for students to identify, in the problem, what derivative was given and what derivative 

they were trying to find. This helped the students to remember their goal and ultimately solve the 

problem. After doing so, the students identified which quantities in the given situation changed 

with time and could therefore be conceptualized as functions of time. For example, in the 

Snowman Context, Student D explained, “the two things that are changing with time is the radius 

and the volume. Because in order to find out volume you have to know radius.” We talked about 

how because these quantities are changing with time, they can be conceptualized as functions of 

time. I then prompted the students to relate these quantities that are changing with time. 

At this point in the HLT, Student C understood that V could related to r through 𝑉𝑉 =

4
3
𝜋𝜋𝑟𝑟3, and he understood that this same equation could be conceptualized as 𝑉𝑉(𝑡𝑡) = 4

3
𝜋𝜋[𝑟𝑟(𝑡𝑡)]3, 

but he did not understand how he could get from the equation that gives the value of volume for 

any value of radius to the actual rate of change of the volume. He identified the given rate, 

𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

, and the rate that he was trying to find, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. In order to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, he recognized that he could 

multiply 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

 by 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

, creating a sort of “delta equations” (Infante, 2007), 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

. In this way, 

he reached the second sub-goal in the third stage of the HLT, recognizing the need for the chain 

rule. He used this delta equation to solve the problem by finding  𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

 and multiplying it to the 

given value of 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

. Afterwards, I explained to him that we could have also solved the problem by 
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taking the derivative of V with respect to t, and he seemed to make the connection between the 

equation relating V and r to the equation relating 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

 and 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

. 

Similarly, Student D was struggling to understand how he could use the equation for 

volume in terms of radius or in terms of time to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. Having recognized the given rate, 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

, he 

also figured that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

 , creating a delta equation like Student C. However, unlike Student 

C, Student D’s lack of understanding of the derivative made it difficult for him to use the delta 

equation to solve the problem. When I originally asked him how he might find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, he responded 

by saying, “I definitely would like to plot a whole bunch of points in order to do that.” This 

comment suggests that he leans towards graphically calculating a derivative, which in this case 

would be impossible to calculate exactly. The comment also suggests he does not yet fully 

understand the tools he has learned in class for finding derivatives in general: the limit definition 

or derivative rules. As stated earlier in the first stage of the HLT, Student D often demonstrated 

that he did not know the difference between a derivative and an average rate of change. In an 

effort to solve the problem by using the delta equation, he tried to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

 by simply plugging in 

2 for r into the equation 𝑉𝑉 = 4
3
𝜋𝜋𝑟𝑟3. We paused and talked again about both the meaning of the 

derivative and how we can find it; either through the limit definition or the derivative rules he 

had learned in class. 

Instead of going back to the delta equation and correctly calculating 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

, we talked about 

the original equation that modeled the context: 𝑉𝑉(𝑡𝑡) = 4
3
𝜋𝜋[𝑟𝑟(𝑡𝑡)]3. I asked him how he might 

take the derivative of this equation and he responded with the power rule, getting 𝑉𝑉(𝑡𝑡) =

4
3

3𝜋𝜋[𝑟𝑟(𝑡𝑡)]2. This demonstrated that he did not recognize the nested relationship and the 
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subsequent need to use the chain rule to solve the problem. I then pointed out to him the 

existence of a composition of functions and he continued to struggle to differentiate the equation 

because of the constants multiplied to the front. I simplified the problem for him, removing 4
3
𝜋𝜋 

momentarily, leaving 𝑉𝑉(𝑡𝑡) = [𝑟𝑟(𝑡𝑡)]3. Eventually, with some help, he correctly took the 

derivative and solved the problem. 

Student D recognized the way in which the chain rule could help solve the problem by 

creating a delta equation. However, partly because I drew his focus back to the original equation, 

he did not end up using the delta equation to solve the problem. He also did not use NMR to 

recognize the existence of a composition of functions and the subsequent need to use the chain 

rule in the original equation that modeled the context. I was the one to point out the existence of 

a composition of functions in that equation. It might have been more effective and helpful had I 

prompted him with questions encouraging him to use NMR to recognize the need for the chain 

rule. However, I simply pointed it out to him, most likely out of impatience more than anything. 

With help he eventually solved the problem. 

After creating an equation that related volume, radius, and time, both Student A and 

Student B recognized the existence of an implicit composition of functions and thus, the need to 

use the chain rule in taking the derivative. For example, at that point in the interview, Student A 

pointed to the [𝑟𝑟(𝑡𝑡)] part of the equation and explained that we needed to take the “derivative of 

what is inside and then what is outside.” Student B did likewise. This recognition is necessarily 

what helped them solve the problem and begin to develop understanding for related rates. 

Overall, the students began to develop understandings for simple related rates problems 

by recognizing that when quantities change with time, they can be conceptualized as functions of 

time. Both Student C and Student D created a “delta equation,” recognizing the need for the 
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chain rule. However, Student D could not solve the problem himself because of his lack of 

understanding of derivatives in general. He also did not show evidence of recognizing the need 

for the chain rule in the equation for volume in terms of time that modeled the context. On the 

other hand, Student A and Student B did recognize the existence of a function of the implicit 

variable time in that equation and they used what they previously learned about the chain rule to 

solve the problem. In this way, all of the Students exhibited multiple pieces of evidence for 

reaching the first learning sub-goal in the third stage of the HLT, but only Student A, Student B, 

and Student C exhibited evidence for the second learning sub-goal. Student D only demonstrated 

incomplete evidence through his creation of the delta equation. A summary of these findings is in 

Table 5. 

Table 5 

Summary of Evidence Students Achieved Learning Sub-goals of Third Stage of HLT 

Learning sub-goals Complete Incomplete Missing 
3a) Conceptualize 
variables that change 
with time as functions 
of time 

A, B, C, D   

3b) Use NMR to 
recognize the need for 
the chain rule 

A, B, C D  

 

Fourth Stage of HLT 

The fourth stage of the HLT was focused on developing the idea of implicit functions of 

other existing variables in an equation and recognizing subsequent existence of compositions of 

functions. This stage generally went well for all of the students as they understood that one can 

conceptualize any of the variables in an equation as being an implicit function of another one of 

the variables and they recognized the subsequent existence of a composition of functions. 

However, for Student A, at the beginning of this stage in the HLT, even before exploring the 
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meaning and implication of an implicit function of y in terms of x in the given equation, 

inconsistencies and holes in her understanding of the derivative revealed themselves. 

For example, despite Student A’s ability to interpret the meaning of the derivative when 

given the corresponding symbolic representation earlier on in the HLT, during this stage, she was 

unable to provide the symbolic representation when given a conceptual definition of a derivative. 

For example, when first introduced to implicit differentiation, she was given 𝑥𝑥2 − 𝑦𝑦2 = 1 and 

the following prompt: “The question we will attempt to answer is: as x changes, by how much 

does y have to change?” I asked her how we might write what we are trying to find as a 

derivative. She responded, “the derivative of that would be [pause] dx/dy maybe?” Thus, it 

appeared she did not understand that dy/dx would actually represent how fast y changes with 

changes in x. We reviewed that with infinitesimal changes in the independent variable, the 

derivative tells us how the dependent variable changes in response. When we did the next 

problem, which is the same context but now trying to find the derivative of x with respect to y, 

she demonstrated that she better understood the symbolic representations of derivatives by 

saying, “…we are taking dx over dy instead of dy over dx. So, we are looking for as y changes 

how much does x change.” 

After addressing Student A’s understanding of the derivative, she built her understanding 

of implicit differentiation by recognizing the existence of implicit, or hidden compositions of 

functions, within the equations, thus making connections to her existing knowledge about the 

chain rule. For example, in finding dy/dx for the equation 𝑥𝑥2 − 𝑦𝑦2 = 1, one can think of y as 

being a function of x and can conceptualize the equation as being 𝑥𝑥2 − [𝑦𝑦(𝑥𝑥)]2 = 1. When 

Student A visualized the equation in this way, she commented, pointing to the [𝑦𝑦(𝑥𝑥)]2 part of the 

equation, that “you can take the derivative of [the inside function] and multiply it by the 
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derivative of [the outside function] in order to find the derivative of the whole thing.” All of the 

students made similar comments, recognizing the existence of hidden compositions of functions 

and building connections between their existing knowledge of the chain rule and their experience 

with implicit differentiation. All of the students did same thing, differentiating the x with respect 

to y instead. 

Along with the other students, Student B conceptualized y as a function of x. When I 

pointed to the [𝑦𝑦(𝑥𝑥)]2 part of the equation, he mentioned “that is a function within a function.” 

However, he did not initially apply the chain rule as he should have when he took the derivative 

of the equation. He said that “he guessed” the derivative of 𝑥𝑥2 − [𝑦𝑦(𝑥𝑥)]2 = 1, with respect to x, 

is 2𝑥𝑥 − 2[𝑦𝑦(𝑥𝑥)] = 0. I do not think that this mistake came from a lack of understanding of the 

chain rule. Instead, I think that he had simply forgotten how to take the derivative of a 

composition of functions because it had been a couple of days since the last interview and, after 

prompting him, he looked back at his previous work and eventually fixed his mistake. 

During this part of the interview, Student C expressed discomfort with “y(x)” 

representing y as a function of x. It is not conventional in mathematics to use “y” as the name of 

a function. Traditionally, “y” is used to represent the output variable of a function and “f” is used 

as the function name for function notation. I wanted to use “y” as the name of the function so 

that the students could remember that y is equivalent to y(x). For the purposes of the interviews, 

the only difference between y and y(x) is that y(x) is emphasizing the implicit function 

relationship to x, and y is not. This did not apparently bother the other students, and in the end, it 

didn’t seem to inhibit Student C’s understanding of implicit differentiation. When I had 

originally suggested that we write y as y(x) to remind us of the implicit functional relationship, 

Student C said, “It is kind of weird for me to see this [pointing to y(x)]. But [pause] I have never 
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seen y as a function of x. Usually, it is like this version [pointing to the original problem], like 

y=x or f(x)… I haven’t seen this, but it does make sense.” Oppositely, Student D preferred the 

y(x) notation to f(x). In the next problem, (If 𝑥𝑥2 + [𝑓𝑓(𝑥𝑥)]3 = 9, and f(1) = 2, find f’(1)), he 

eventually changed [f(x)] to be written as y(x). He said that with the f(x) there, “it is confusing” 

and he “likes things in x’s, y’s, and z’s.” Despite Student C’s discomfort, he and all of the other 

students successfully conceptualized implicit functions and represented them accordingly. 

In summary, all of the students showed ample evidence of conceptualizing implicit 

functions and representing them accordingly. All of the students also recognized hidden 

composition of functions and the subsequent need to use the chain rule in differentiating the 

equation. A summary of the results is found in Table 6. 

Table 6 

Summary of Evidence Students Achieved Learning Sub-goals of Fourth Stage of HLT 

Learning sub-goals Complete Incomplete Missing 
4a) Conceptualize 
implicit functions 

A, B, C, D   

4b) Given equations 
with implicit 
functions, and 
subsequent 
compositions, 
recognize need for 
chain rule 

A, B, C, D   

 

Fifth Stage of HLT 

The fifth and final stage of the HLT was focused on extending all of the students’ 

previous ideas to more complicated implicit differentiation and related rates contexts. In gaining 

procedural fluency of implicit differentiation, all of the students solved a more abstract implicit 

differentiation problem (#13 in the Appendix) with little help from me. All of the students solved 

the problem smoothly without any inhibitions. Student A was the only one who had time to solve 
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one more implicit differentiation problem (#15 in the Appendix) in the final interview. One 

interesting part of Student A’s understanding of implicit differentiation revealed itself when she 

solved this problem (See Figure 16). 

 

Figure 16. Student A’s initial steps in solving #15 in the tasks based on the HLT. 

The first thing she did in order to find dy/dx was subtract 𝑥𝑥4 + 𝑦𝑦4 from both sides of the 

equation so that she had a constant 0 on one side of the equation. This isn’t necessarily wrong, 

and she still correctly solved the problem, yet it seemed as though she was limited in her 

understanding of implicit differentiation. That is, because all of the implicit differentiation 

examples in the tasks were set equal to a constant, she may have felt that the only way to solve 

an implicit differentiation problem was by setting the equation equal to a constant. The other 

students did not have enough time in the interviews to attempt this particular implicit 

differentiation problem, so I am not sure they made the same generalization. However, because 

the students were only exposed to these types of equations, becoming the prototype for them in 

their exploration of implicit differentiation, it is likely they did make this same generalization. 

Because Student A appeared limited in her understanding of implicit differentiation, thinking 

that it can only work with equations set equal to a constant, and I do not have any evidence that 

the rest of the students did not also have this limited understanding, I concluded that there is only 
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incomplete evidence that the students achieved the first learning sub-goal of the fifth stage of the 

HLT in gaining procedural fluency with implicit differentiation. 

Similarly, in the students’ exploration of related rates problems later on, all of them did 

not seem to realize that they could take the derivative of the entire equation, that modeled the 

context, with respect to time. Many of them tried solving for one variable or tried to create 

explicit equations with one variable in terms of the other. This is not necessarily incorrect, but it 

did make solving the related rates problem much more difficult and exhibited their limited 

perception of the possibilities of derivative-taking and the idea that one can take the derivative of 

an entire equation, no matter how it is arranged or re-arranged, with respect to some variable. 

For example, all of the students struggled to realize that they did not need to create an 

explicit equation in the Shuttle Launch Context. In the Shuttle Launch Context (see #14 in 

Appendix), a camera is filming a shuttle launch and needs to stay focused on the shuttle. The 

camera is 2 miles from the launch-pad and the shuttle is traveling vertically at .2 miles/second. 

The students are to find how fast the angle from the ground and the camera’s line of sight should 

be increasing when the shuttle is 3 miles above the ground. Like the rest of the students, Student 

C created the equation sin(𝜃𝜃) = 𝑑𝑑
√13

, where 𝜃𝜃 represents the angle of the camera between the 

ground and its line of sight to the shuttle, and D represents the shuttle’s vertical distance from the 

ground in miles. He, along with all of the other students, then tried to solve for 𝜃𝜃, so that it was 

by itself and in terms of D.  Although this procedure is not incorrect, it does make taking the 

derivative much more complicated. 

I wanted the students to understand that they could take the derivative of the equation, as 

was, with respect to time because it makes taking the derivative much less tedious. When the 
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students tried to solve for 𝜃𝜃, I simply explained to them that their thinking wasn’t incorrect but 

that it would make solving the problem much more difficult. 

Reflecting on his experience, Student C explained that he felt like his biggest problem 

was that he wasn’t focusing on relationships. He said, “it’s a lot easier… for me it’s like just this 

thing alone with the t’s in it [referencing an explicit equation]. I’m just like I don’t know how if I 

can take it [the derivative] in relation to time, but that’s exactly what we just did I guess.” His 

comments, along with the other students’ discomfort with non-explicit equations, makes me 

wonder if we focus too much on explicit functions and equations in students’ pre-calculus 

experience. 

After understanding she did not need to solve explicitly for 𝜃𝜃, Student A not only realized 

there was a hidden composition of functions, within the equation, but she also created the 

explicit composition of functions. Because the shuttle was moving at a constant rate of .2 

miles/second, she realized that b, the distance of the shuttle from the ground, could be written as 

the function of time t: 𝑏𝑏(𝑡𝑡) = .2𝑡𝑡. This equation helped her remember b was a function of time. 

Then, in the equation, tan(𝜃𝜃) = (𝑏𝑏
2
), where 𝜃𝜃 is the angle between the ground and the line of 

sight from the camera to the shuttle, she replaced b with the function of time, writing 

tan(𝜃𝜃(𝑡𝑡)) = (.2𝑑𝑑
2

). From here, she more directly found d𝜃𝜃/dt. 

Student B did not have as much success initially with the Shuttle Launch Context. His 

lack of understanding of compositions of functions and his subsequent incorrect generalization of 

the chain rule made his being able to solve this related rates problem more difficult. Based on 

what we had done in previous interviews, he knew he wanted to create a composition of 

functions, but he wasn’t sure how. In trying to create an equation to model the situation, he 

explained that the velocity of the shuttle will affect the shuttle’s distance above the ground which 
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will affect the angle of the camera between the ground and its line of sight to the shuttle. Thus, 

he hypothesized that 𝑐𝑐(𝑠𝑠(𝑣𝑣)), where c=angle of the camera between the ground and the line of 

sight to the shuttle in degrees, s=vertical distance of shuttle from the ground in miles, and 

v=velocity of shuttle in mi/sec, could be a composition of functions to model the situation. 

Although the velocity of the shuttle will affect the vertical distance of the shuttle above the 

ground which will affect the angle of the camera, these variables cannot correctly be composed 

in this way. First, in this situation, the velocity is constant, and so given the velocity is .2 mi/sec, 

one cannot know how far the shuttle has traveled without considering time. Additionally, even if 

the velocity was not constant in this situation, it is unlikely that each velocity quantity would 

map to a unique shuttle distance output to create a function. 

In order to help him reevaluate his understanding of compositions of functions, and 

ultimately help him move forward in the HLT, we used NMR. We talked about how, if we could 

compose those variables in the way he did, changes in the velocity need to determine changes in 

the shuttle’s distances which, in turn, need to determine changes in the angle of the camera. We 

stepped away from the shuttle example for a moment, and we had the following conversation: 

PI: If you are driving in your car and all you know is that your velocity has changed from 

50 mph to 60 mph, do you know how much your distance has changed? 

Student B: No, because I don’t know the acceleration. [pause] So, I think I know where 

you are going with the distance with this kind of function [pointing to 𝑐𝑐(𝑠𝑠(𝑣𝑣))]. Because 

yeah, in this case, the velocity is the same, it is not going to affect anything. It is going to 

remain the same. That’s why we should talk about the time. If the velocity is constant, 

then the time is going to determine the distance, because the velocity’s not changing. 
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Here, Student B finally began to understand the constraints for a composition of functions 

and why we need to think about time. Later on, we talked more about which quantities were 

changing with time in this situation and we created an equation to relate them. With some more 

guidance, he eventually took the derivative of the equation with respect to time and solved the 

problem. At the end of interviews, he reflected on his experience: 

Student B: I feel like the most difficult part for me is to understand a composition of 

functions, like a function inside another one and inside another and inside another one. 

Like sometimes I see these [pointing at a composition of functions], “oh yeah 

[mumbling] I can take the derivative of that one,” but then there is another one inside that 

and then another one inside that. And that is, I think, a concept that is hard for me to 

understand or to recognize right at the beginning. 

Prior to this comment, although he had before recognized that one of the variables in the 

problem at hand was changing with time, and we had represented that variable as a function of 

time, he still did not apply the chain rule as he had. Earlier, he did gain a good intuition for the 

multiplicative nature of the chain rule, but it seems that in his application of it, he was hindered 

by his lack of understanding of compositions of functions: how they work and how to recognize 

them. Thus, understanding of function and function composition proves to be a necessary 

precursor for developing understanding for these concepts. 

During this last phase in the HLT, although the students realized which two variables in 

the context were functions of the implicit variable of time, they struggled to create a useful 

equation to relate the two variables and model the context. For example, in the Airplane Context 

(#16 in Appendix), Student A knew that she needed to find a way to relate x, the horizontal 

distance of the plane from the radar station, and d. When asked why she thought to relate d and x, 
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she said, “because if you can find the relationship between x and d, then you can use them to find 

what dd/dt is.” She proceeded to move in the right direction for finding this relationship when 

she said, “So, x relates to d as [pause] kind of like the Pythagorean theorem.” However, she 

laughed at her own suggestion in seeming insecurity and moved away from the idea. When I 

asked her again how she might relate x and d, she wrote down the equation in Figure 8: 

 

Figure 8: Student A’s original equation to model the radar and plane problem. 

When I asked Student A why she set these equal to one another, setting equal the rate of 

change of the airplane’s horizontal distance and then the rate of change of the direct distance 

from the airplane to the radar station, she laughed and said, “it sounded good” and was unable to 

give a coherent justification; it seemed as if she was just guessing. In an effort to connect what 

she was doing to what she had previously learned with the chain rule, she then created the 

equation 2 = 𝑑𝑑(𝑥𝑥(𝑡𝑡)), because she knew that she was interested in the time when the direct 

distance, d, was equal to 2 miles and that d would change as x changed and that x was also a 

function of t. When she tried to take the derivative, she realized that she could not solve for dd/dt 

and ultimately solve the problem. 

Finally, I reviewed with her what she did in the Shuttle Launch Context, in relating 𝜃𝜃 and 

d through the tangent function and suggested to her that she go back to her original idea of the 

Pythagorean theorem. She did, and with some more discussion and prompting, successfully 

solved the problem, recognizing that even within the equation 𝑑𝑑2 − 𝑥𝑥2 = 1, d and x were both 
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functions of t and she could take the derivative of the function as was with respect to time. 

Afterwards, she remarked that the problem “was not as hard as it seemed.” 

Overall, during this stage, it became clear that students may have had too narrow 

experience with implicit differentiation, where the only implicit differentiation problems they 

solved involved equations that were set equal to a constant. Because of this, I concluded there 

was incomplete evidence that all of the students achieved the first learning sub-goal in the fifth 

stage of the HLT. As far as the second learning sub-goal, all of the students exhibited evidence 

for recognizing functions of the implicit variable of time and subsequent existence of 

compositions of functions. However, this does not imply that students did not struggle with 

modeling and ultimately solving the related rates problems. All of the students struggled to 

create an equation to model the different, more difficult, related rates contexts. In the Shuttle 

Launch Context, they seemed to think that they needed to solve for 𝜃𝜃 explicitly, which was not 

wrong but would have made solving the problem much more difficult. Student B’s lack of 

understanding of compositions of functions greatly inhibited him from correctly modeling the 

Shuttle Launch Context.  Despite the students’ difficulties in solving the related rates problems, 

they still exhibited that they understood how the variables changed together and solved the 

problems. For a summary of these results, see Table 7. 
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Table 7 

Summary of Evidence Students Achieved Learning Sub-goals of Fifth Stage of HLT 

Learning sub-goals Complete Incomplete Missing 
5a) Gain procedural 
fluency with more 
complicated implicit 
differentiation 
problems 

 A, B, C, D  

5b) Within equations 
that model more 
complicated related 
rates contexts, 
recognize functions of 
the implicit variable of 
time and subsequent 
composition of 
functions 

A, B, C, D   

 

Areas of Student Difficulty Suggesting a Need to Revise the HLT 

In the previous two sections, I presented my results for how I saw NMR being used and 

what types of understandings were developed as students progressed through the HLT. I now 

build on these results by identifying specific areas of student difficulty that would suggest a 

needed revision to the HLT. As I do, I insert a brief discussion of how the HLT might be 

changed in response to that specific difficulty. These changes are then put together into a revised 

HLT in the next chapter. 

 The first stage of the HLT was focused on developing intuition for the multiplicative 

nature of the chain rule. This stage went well as all of the students exhibited multiple pieces of 

evidence for achieving all of the learning sub-goals. There were not any areas of student 

difficulty suggesting a need to revise the HLT in this stage. 

The second stage of the HLT was focused on generalizing the chain rule and gaining 

procedural fluency with it. Students also did fairly well in developing deeper understanding of 
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the chain rule during this stage of the HLT. However, it became clear that students’ struggles 

with generalizing the chain rule and gaining procedural fluency with it came from their weak 

understanding of functions and function composition. A couple of them struggled to recognize 

the “inside” and “outside” functions within a composition of functions. It should be noted that in 

order to successfully develop understanding and procedural fluency of the chain rule, students 

should have prerequisite understanding of functions and function compositions. That is, students 

should have conceptual understanding and procedural fluency with all different types of 

functions, including trigonometric functions, with which students in the study seemed to be 

particularly uncomfortable. They should also understand what it means to compose two 

functions, that the range of the “inside” function is equal to the domain of the “outside” function. 

I hypothesize that by adding a sub-goal to the second stage of the HLT for students to 

practice simply identifying “inside” and “outside” functions within more abstract examples as 

well as in a few related rates contexts might help the students to become more comfortable with 

compositions of functions, gain procedural fluency of the chain rule, and solve related rates 

problems later in the HLT. I am not suggesting that students start to actually solve the related 

rates problems yet, but simply identify the “inside” and “outside” functions within equations that 

model such contexts. I also note that based on the data, not having a conceptual understanding of 

compositions of functions before beginning the HLT makes building understanding for these 

concepts very difficult. Thus, helping students build a conceptual understanding of compositions 

of functions in their secondary mathematics and algebra experience is important if students are to 

develop conceptual understanding for the concepts explored in this HLT. Additionally, although 

students should have a conceptual understanding of compositions of functions before the HLT, I 

did not want to add this sub-goal to the beginning of Stage 1 because I did not want students to 
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get into a procedural mindset from the beginning of identifying “inside” and “outside” functions 

within compositions of functions. Instead, by having the additional sub-goal here, they hopefully 

build a conceptual understanding for chain rule and practice this identification of “inside” and 

“outside” functions in order to gain more procedural fluency with the chain rule and efficiency in 

solving implicit differentiation and related rates problems. 

The third stage of the HLT was aimed at developing the idea of variables being functions 

of the implicit variable time and recognizing subsequent existence of compositions of functions. 

This stage in the HLT went well as students began to apply their understanding of the chain rule 

to simple related rates contexts. Students were comfortable with conceptualizing variables, that 

change with time, as functions of time and recognizing hidden compositions of functions within 

the equation that modeled the context. This allowed them to recognize the need to use the chain 

rule in differentiating the equation with respect to time and ultimately solve the problem. There 

is not anything that needs to be addressed in this stage of the HLT. 

The fourth stage of the HLT was focused on developing the idea of implicit functions and 

subsequent existence of hidden compositions of functions. Not in this stage, but in the fifth stage 

of the HLT, for implicit differentiation, there was no evidence that students realized they could 

differentiate both sides of an equation unless it was set equal to a constant. Similarly, in the more 

complicated related rates problems, students continually tried to solve for one variable explicitly 

in terms of the other variable. Overall, it seems like students did not understand how or why they 

could differentiate both sides of an equation with respect to a chosen variable or with respect to 

time. This lack of understanding did not become apparent until the fifth stage of the HLT, but I 

concluded that the fourth stage of the HLT needs to be addressed in order to better prepare 
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students to successfully move forward in the fifth stage of the HLT. I propose three ways to 

address this issue in the fourth stage of the HLT. 

First, according to Mirin and Zazkis (2019), students struggle to understand exactly why 

one can take the derivative of both sides of an equation with respect to some chosen variable. 

Mirin and Zazkis suggest that it may be helpful to explicitly help students understand that one 

can conceptualize either side of the equation as a function and consider where those functions are 

equal. Where those functions are equal, there too will their derivatives be equal. This is not 

something that I made explicit with my students in the interviews and this was not a part of my 

original HLT. It may be important to edit the HLT to include the learning sub-goals of 1) 

conceptualizing both sides of an equation as different functions, but equal within a certain 

domain and range and 2) recognizing that where two functions are equal, their derivatives must 

also be equal.  

Second, it became clear from Student A’s experience that students may have incorrectly 

assumed that implicit differentiation only works with equations that have the two variables on 

one side of the equation and a constant on the other side of the equation. Thus, it is important to 

incorporate learning activities during this stage in the HLT that involve different, non-

prototypical equations, so that students gain a better and more diverse understanding of implicit 

differentiation. This incorrect generalization may be addressed through different, non-

prototypical examples during the suggested additional learning sub-goals described in the 

previous paragraph.  

Third, by the end of the interviews, it became clear that students had experience 

conceptualizing functions of the implicit variable of time given a simple related rates context 

with a simple composition of functions (e.g. 𝑉𝑉(𝑡𝑡) = 4
3
𝜋𝜋[𝑟𝑟(𝑡𝑡)]3 and they had experience 
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conceptualizing simple implicit functions (e.g. 𝑥𝑥2 + [𝑦𝑦(𝑥𝑥)]2 = 1). However, they did not 

experience conceptualizing functions of the implicit variable of time with more complicated 

functions (e.g. cos�𝑥𝑥(𝑡𝑡)� + [𝑥𝑥(𝑡𝑡)]3 = [𝑦𝑦(𝑡𝑡)]2). This may also be part of the reason that students 

struggled to recognize their ability to differentiate both sides of an equation in more complicated 

related rates contexts. Like in the Shuttle Launch Context where all of the students tried to solve 

the equation explicitly for 𝜃𝜃, students often felt they needed to solve the equation so that one 

variable was written as an explicit function of the other variable. This reasoning is not incorrect, 

but it inhibited their ability to solve the problem or, at the very least, made it much more difficult 

than it needed to be. Thus, in order to help students better prepare for the fifth stage of the HLT, 

there should be an additional sub-goal in the fourth stage of the HLT where students 

conceptualize that given any equation with functions of an implicit variable, usually time, the 

derivative of both sides of that equation, with respect to the implicit variable, is also equal. By 

including this mental action, students are more prepared to solve more complicated related rates 

problems in the future as they will be more comfortable with differentiating the equation that 

models the context as is. They will not feel the need to solve for one variable in terms of another 

which can make the related rates problem more difficult than needs be for the student. 

The fifth and final stage of the HLT was focused on extending all of the students’ 

previous ideas to more complicated implicit differentiation and related rates contexts. During this 

stage, Student A demonstrated that she only felt comfortable solving implicit differentiation 

problems when the equation had a constant on one side. Additionally, during the more 

complicated related rates problems, all the students struggled to 1) create an equation to model 

the context, and 2) use that equation to find the derivative of interest. Infante (2007) also found 

that students in her study struggled to create an equation to model related rates contexts. 
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In order to address Student A’s, and most likely all of the student’s, narrow 

understanding of implicit differentiation, different and non-prototypical equations should be used 

in the exploration of implicit differentiation during the fourth stage of the HLT. Additionally, in 

the fourth stage of the HLT, the additional sub-goal of explicitly helping students understand the 

validity of differentiating both sides of an equation with implicit functions may also help deepen 

students understanding of implicit differentiation. As for the students’ struggles with related 

rates, the additional sub-goals in the fourth stage may help students better understand how they 

can use the equation that models the context to find the derivative of interest and solve the 

related rates problem. However, it seems to be a more fundamental understanding to help 

students create that equation in the first place. The ability to mathematical model should be 

developed well before the ideas of this HLT are explored and developed. 
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CHAPTER SIX: DISCUSSION 

 In this discussion, I summarize the answers to each of my research questions, provide a 

revised HLT, connect my study to existing research, and discuss questions for future research. 

Summarized Answers to Research Questions 

My first research question is: How was nested multivariation used as the first-semester 

calculus students progressed through the HLT? In the beginning, students used NMR to 

understand the ways in which the variables in the function composition were related to and 

depended on one another. In order to develop intuition for the multiplicative nature of the chain 

rule, they first thought about the different rates within the function composition at a point and 

reasoned about how the quantities changed together, coordinating amounts of change. 

Coordinating amounts of change naturally led them to develop the multiplicative nature of the 

chain rule. They used this base understanding and observed patterns in the multiple examples 

they explored in order to generalize the chain rule. From that point on, NMR was mostly 

important in recognizing the existence of a nested relationship and the subsequent need of the 

chain rule in differentiation. It also proved important for students to use NMR to reason about 

how the quantities changed together within related rates contexts so they could move towards 

creating an equation to model the context.  

My second research question is: What kind of understandings did the first-semester 

calculus students develop for these three concepts within each major stage of the HLT? During 

the first stage of the HLT, the students interpreted the meaning of the different rates within a 

composition of functions and developed intuition for the multiplicative nature of the chain rule. 

They developed intuition for the multiplicative nature of the chain rule by reasoning about how 

the quantities of the given unit rates change together and by using dimensional analysis. Some of 
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the students also recognized that the infinitesimal values in the two derivatives would cancel out 

in order to get the desired derivative. During the second stage of the HLT, the students 

generalized the chain rule and gained procedural fluency with it. Most of the students smoothly 

extended that understanding to taking the derivative of general compositions of functions. Here, 

Student B made incorrect conclusions about the chain rule, generalizing it to situations beyond 

proper compositions of functions; I addressed this with him during the fifth stage of the HLT. 

Student C struggled to transition from derivatives at specific points to general derivative 

functions, mostly because of his discomfort with variables and general representations of 

derivatives. By the end, Student C felt more comfortable working with these more abstract 

representations. 

The third stage of the HLT was aimed at developing the idea of variables being functions 

of the implicit variable of time and recognizing subsequent existence of compositions of 

functions. Here, it proved important for students to recognize what derivative was given in the 

problem and what derivative they were trying to find. Doing so helped them to stay focused on 

the goal of the problem and ultimately solve it. Students conceptualized which quantities were 

changing with time and then conceptualized them as functions of time. This helped them to 

recognize an implicit, or hidden, composition of functions and eventually differentiate the 

equation that modeled the problem and find the rate of interest. 

The fourth stage was focused on developing the idea of implicit functions of other 

existing variables in an equation and recognizing subsequent existence of compositions of 

functions. Here, Student C expressed discomfort with the non-traditional y(x) (representing y as a 

function of x) and x(y) (representing x as a function of y) function notation. The other students 

didn’t express discomfort with that notation and Student D even preferred it. However, as this is 
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different from mathematical convention, it might be worth changing the interview protocol so 

that these functions are represented with traditional function notation (f(x) or g(y)). This is 

something that may need to be explored more in future research. Nevertheless, all of the students 

eventually conceptualized implicit functions and corresponding compositions of functions that 

required the chain rule when differentiating them. 

The fifth and final stage of the HLT was focused on extending all of the students’ 

previous ideas to more complicated implicit differentiation and related rates contexts. Here, 

Student A seemed to think that implicit differentiation could only be performed with equations 

that had constants on one side, because those were the only examples to which she was exposed 

in the interview protocol. It is possible that the other students made the same assumption. 

However, all of the students exhibited some evidence for gaining procedural fluency of implicit 

differentiation. Student B struggled to move forward in this stage because of his incorrect 

conclusion about generalizing the chain rule to situations beyond proper compositions of 

functions. During the last interview, I helped him better understand necessary stipulations for 

compositions of functions and how the variables within are related to one another which helped 

him move forward. During this stage, many of the students struggled to create equations to 

model the context within the more complicated related rates problem. They were also 

uncomfortable with differentiating the equation as was and often wanted to solve for one variable 

explicitly in terms of the others. Nevertheless, all of the students exhibited evidence for 

achieving the second learning sub-goal of this stage and recognized functions of the implicit 

variable of time and subsequent compositions of functions. 

My third research question is: Where in the teaching experiment did students struggle in a 

way that suggested a needed revision to the HLT? In the first stage of the HLT, all of the 
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students gained intuition for the multiplicative nature of the chain rule. There were not any areas 

of student difficult, in this stage that suggested a need to revise the HLT. 

In the second stage of the HLT, students’ struggle to generalize the chain rule and gain 

procedural fluency with it came from both their lack of understanding of functions and function 

composition. Understanding of functions and function compositions proved to be a necessary 

prerequisite knowledge for the HLT. Nevertheless, students specifically struggled to recognize 

the “inside” and “outside” functions within a composition of functions, during this stage and 

later in the HLT in their exploration of related rates. Thus, I hypothesize that it might be useful to 

add a sub-goal to this stage for students to gain fluency with identifying “inside” and “outside” 

functions within both abstract examples as well as related rates contexts. 

During the third stage of the HLT, students were comfortable with conceptualizing 

variables, that change with time, as functions of time and recognizing hidden compositions of 

functions within the equation that modeled the context. There were not any student struggles that 

suggested a need to revise the HLT during this stage. 

During the fourth stage of the HLT, it became clear that students need to understand why 

they can differentiate both sides of an equation with respect to some chosen variable. Thus, it 

may be important to include the learning sub-goals of 1) conceptualizing both sides of an 

equation as different functions, but equal within a certain domain and range and 2) recognizing 

that where two functions are equal, their derivatives must also be equal. To help students during 

the fifth and last stage of the HLT, it may also be important to add a learning sub-goal to the 

HLT that helps students understand why differentiating both sides of an equation is valid when 

there are functions of an implicit variable involved. Additionally, something to be adjusted in the 

learning activities is to make sure than non-prototypical equations are used in exploration of 



 
 
 

114 

implicit differentiation. That is, students should not only be exposed to equations that have only 

a constant on one side of the equal sign. 

The students’ struggles during Stage 5 of the HLT may be addressed with the suggested 

changes to the HLT in Stage 4. However, the students’ struggles to create an equation to model 

the related rates context suggests that students need more experience with mathematical 

modeling well before they enter calculus. Redish (2005) says that in our traditional approach to 

mathematics, we often provide students with ready-made models of the real world and we may 

be “exasperated – or even irritated – if they focus on details that we know to be irrelevant” (p. 7). 

He explains that we rarely ask students to interpret their results or evaluate whether or not their 

initial model is adequate. He also explains that at introductory levels, we test students on “one-

step recognition, giving ‘cues’ so we don’t require our students to recognize deep structures” (p. 

7). His comments highlight the fact that we too often give our students ready-made models of 

contexts and we don’t allow them enough opportunities to struggle and create a mathematical 

model themselves. This may be something that needs to change in our pre-calculus mathematics 

teaching if we expect students to really understand related rates problems and apply these same 

ideas in other meaningful contexts. 

Revised HLT 

The revised HLT based on the answer to my third research question is found in Table 8. 

The changes made to the original HLT are marked with an asterisk. Note that although the 

additional sub-goals 4b and 4d appear similar, they are slightly different in that the first deals 

with implicit functions and the second deals with functions of an implicit variable (see the 

Nested Multivariation section in Chapter 3 for the difference between these terms). 
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Table 8 

Revised Hypothetical Learning Trajectory 

Stage Description of Goal 
Stage 1 Develop the multiplicative nature of the chain rule. 

 
1a Given a function composition f(g(x)) that models a meaningful context, interpret df/dx as how many 

times as large the change in f is than an infinitesimal change in x. 
1b Given a function composition f(g(x)) that models a meaningful context, interpret df/dg as how many 

times as large the change in f is than an infinitesimal change in g. 
1c Given a function composition f(g(x)) that models a meaningful context, interpret dg/dx as how many 

times as large the change in g is than an infinitesimal change in x. 
1d Given a function composition f(g(x)) that models a meaningful context, conceptualize how changes 

in x affect changes in the other two variables simultaneously. 
1e Given a function composition f(g(x)) that models a meaningful context, and after finding specific 

values of dg/dx and df/dg, construct that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 at a specific point. 
Stage 2 Generalize the chain rule and gain procedural fluency. 

 
2a Continue to construct the multiplicative nature of the chain rule with specific examples. 
2b Generalize the chain rule for any function composition f(g(x). 
2c Practice the chain rule with different compositions of functions to gain procedural fluency with its 

application. 
*2d *Gain procedural fluency in identifying the “inside” and “outside” functions within compositions of 

functions; both abstract and within related rates contexts 
Stage 3 Develop the idea of variables being functions of the implicit variable of time and recognize 

subsequent existence of compositions of functions. 
3a When variables change with time, conceptualize them as functions of time and represent them 

accordingly (e.g. if r changes with time, it can be conceptualized and written as r(t)). 
3b NMR is used in recognizing the need to use the chain rule in related rates problems where quantities 

can be conceptualized as functions of the implicit variable of time, with subsequent compositions of 
functions. 

Stage 4 Develop the idea of implicit functions in an equation and recognize subsequent existence of 
compositions of functions. 

4a Given an equation with variables x and y, one can conceptualize y as an implicit function of x or x as 
an implicit function of y. These implicit functions can be represented accordingly (e.g. y(x) or x(y)). 

*4b * Conceptualize both sides of an equation as different functions, but equal within a certain domain 
and range and recognize that where two functions are equal, their derivatives must also be equal. 

4c Given equations with implicit functions, and subsequent compositions of functions, recognize the 
need for the chain rule in taking the derivative with respect to either implicit independent variable. 

*4d *Given an equation with functions of an implicit variable, conceptualize both sides of an equation as 
different functions, but equal within a certain domain and range and recognize that where the two 
functions are equal, their derivatives must also be equal. 

Stage 5 Extend all of these ideas to more complicated implicit differentiation and related rates contexts. 
 

5a Gain procedural fluency with more complicated implicit differentiation problems.  
5b Within equations that model more complicated related rates contexts, recognize functions of the 

implicit variable of time and subsequent compositions of functions and the need for the chain rule in 
taking the derivative of the equation with respect to time. 
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Connections to Existing Research 

Typically, in calculus there is too much emphasis placed on procedures and manipulation 

of symbols without conceptual understanding (Tall, 1992; Ferrini-Mundy & Gaudard, 1992; 

Rasmussen & Marrongelle, 2014; White & Mesa, 2014; White & Mitchelmore, 1996). Through 

the tasks based on the HLT, the students gained a deeper understanding of these ideas than they 

might have in a typical calculus class. The tasks and the HLT focused on meaning; meaning of 

derivatives, the multiplicative nature of the chain rule, implicit functions, and functions of 

implicit variables. At the end of the fourth interview, I asked Student A if there was anything she 

wanted to share about her experience. She said, “It was fun. It was more interesting…it’s like 

made me think about it a lot more in depth than I normally would have. And it was good because 

it made me try and figure things out instead of just saying, ‘Google, what’s the answer?’” In my 

experience as a calculus T.A., I have noticed that many students immediately turn to websites 

like Google or Slader to complete their homework because they do not understand the meaning 

of the material in their calculus class; they are focused on finding the right procedure to solve the 

problem and complete their homework. My hope is that my proposed HLT and associated tasks 

can provide information and guidance for researchers and teachers hoping to help calculus 

students gain a more conceptual understanding of the chain rule, implicit differentiation, and 

related rates. 

Although researchers have hinted to the way in which the chain rule, implicit 

differentiation, and related rates are related to one another (Clark et al., 1997; Cottrill, 1999; 

Infante, 2007; Martin, 2000), the research tends to examine these concepts in isolation and has 

not conducted a serious investigation into how these concepts could be taught in a way that 

connects them together. My research is unique in asserting that not only are these concepts 
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related, but they share the same underlying mathematical concept: nested multivariation. From 

the data, and from the students’ use of NMR in their exploration of all three concepts, it seems 

that these concepts can be founded on NM. However, there are some aspects of implicit 

differentiation and related rates that require other foundational mathematical ideas, such as 

functions and mathematical modeling. 

In general, students struggle to understand and appropriately use the chain rule (Clark et 

al., 1997; Cottrill, 1999; Infante, 2007). From the data, students used NMR to develop powerful 

understanding of the multiplicative nature of the chain rule. They were only inhibited in their 

generalization and procedural fluency of it because they lacked in understanding functions and 

function compositions. 

Oehrtman, Carlson, and Thompson (2008) explain that it is extremely important for 

students to understand functions in order to understand calculus, and there have been repeated 

calls for school curricula to place greater emphasis on functions (NCTM, 1934, 1989, 2000). My 

research adds to this body of research that demonstrates the importance for understanding of 

functions. The students in my study struggled to generalize and gain procedural fluency with the 

chain rule because of their lack of understanding of functions and function composition. 

Additionally, Student B struggled with related rates problems because he did not understand the 

stipulations for composing functions and the fact that the range of the “inner” function needs to 

be equal to the domain of the “outer” function. Students need opportunities to gain a better 

understanding of functions and function compositions in order to understand the chain rule, 

implicit differentiation, and related rates. 

Speer and Kung (2016) explain that research on implicit differentiation is largely 

“missing” from mathematics education research. This study adds to research important 
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information about how students can better understand implicit differentiation. Mirin and Zazkis 

(2019) argue that understanding why one can differentiate both sides of an equation is nontrivial 

for students. In the data, I saw that students indeed struggled to understand the viability of 

differentiating both sides of an equation. Thus, it was important to adjust the HLT accordingly to 

help students understand why differentiating both sides of an equation with respect to a chosen 

variable is valid mathematically. 

According to Austin, Barry, and Berman (2000), Ritchie (1836) introduced related rates 

problems into his text in an effort to help students to understand and recognize the power of 

calculus. In his textbook, Stewart (2016) introduces related rates with a step-by-step procedure 

for students to follow in order to be able to solve the problems. Nevertheless, students have 

struggled to understand or solve related rates problems (Infante, 2007; Martin, 2000). I believe 

that the HLT I have created provides a way for students to more fully understand related rates 

and experience the power of calculus. At the end of the last interview, Student C said, “in my 

experience [pause] like traditional math… I have number and I try to plug it in, and I try to plug 

in as much as I can until I can’t plug it in anymore. But this one [referencing the related rates 

problem] … we are given things, but less plugging and more like there’s relationships that exist 

and try to figure out like an equation that makes the relationship…we try to establish a 

relationship.” Here, Student C explains that in his experience with related rates problems in the 

interviews, he did not see the problem as a set of steps to follow, or things to “plug in,” but 

instead as a way to think about and model the relationships that exist within the context. 

Although there is a historical debate about whether or not the idea of infinitesimals is 

mathematically rigorous, researchers have argued that infinitesimals are robust and viable and 

that using infinitesimals is conceptually beneficial for students (Dray & Manogue, 2010; Ely, 
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2010; Ely, 2017; Jones, 2015). My research adds to these researchers by showing how a focus on 

infinitesimals can help students to develop understanding of the multiplicative nature of the 

chain rule and extend that idea to implicit differentiation and related rates. 

Lastly, as stated earlier, my study builds on Infante’s (2007) dissertation. First, In 

Infante’s study, she revisited the chain rule with her students, hoping that by helping them to 

better understand the chain rule that they had already learned, they would be more prepared to 

solve related rates problems. Instead of revisiting the already learned chain rule, my study 

explores what it might look like for students to develop a good understanding of the chain rule 

from the beginning. Second, in her study, all of the students created a delta equation to solve the 

related rates problem. She admits that this was perhaps a strictly procedural part of the process as 

a result of the chain rule discussions. In my study, students developed intuition for the 

multiplicative nature of the chain rule, and they were not limited to creating a delta equation to 

solve related rates problems. They approached the related rates problems with whatever method 

was most comfortable to her/him. Third, Infante (2007) found that students struggled to 

recognize functions of the implicit variable of time. This was an extremely important aspect of 

my HLT: by helping students think about which variables were changing with time and 

conceptualize those as functions of time, they rarely forgot about the variable of time. Fourth, 

Infante (2007) explains that unlike mathematicians, the students in her study did not think about 

the variables in the equations that modeled the related rates contexts as representations of 

varying quantities. She said that the students also did not “spontaneously reference their diagram 

once it was drawn and labeled” (p. 248). In my study, I found that for every related rates 

problem, each student consistently referred back to the diagram in an effort to make better sense 

of the problem. Students A, B, and C continued to use NMR in their exploration of related rates 
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which allowed them to view the variables in both their diagram and equations as fundamentally 

representing varying quantities. 

Questions for Future Research 

 My study opens up questions for future research. First, I have explored the HLT with 

only four first-semester calculus students. Although this provides deeper insights into the 

cognitive processes of a few students, my study is not generalizable. It would be beneficial to 

take the revised HLT from my study, edit the tasks accordingly, and explore it again with a few 

first-semester calculus students in order to gain more deep understandings of the processes of a 

few students. It would also be beneficial to take the revised HLT and edit the tasks to practically 

fit into a calculus curriculum. Then, one could explore the usefulness of the HLT with more 

students in an entire-class setting and gain more generalizable results. Questions that could be 

explored include 1) “What might be a practical lesson plan based on the HLT for a first-semester 

calculus classroom?”, 2) “What understandings do students in a class using this lesson develop 

for these three concepts?”, and 3) “How do students use NMR in the lesson and throughout the 

rest of their experience in the course?” 

 I recognize that my proposed HLT may not be the only or the best way to develop 

conceptual understanding of the chain rule, implicit differentiation, and related rates. Other 

research could explore what other HLT’s may exist for these three concepts. Additionally, in an 

effort to help students make deeper connections between the concepts, thus gaining a better 

understanding (Brownell, 1935; Hiebert & Carpenter, 1992; Hiebert et al., 1997), researchers 

could explore other ways in which these three concepts may be related. One could explore the 

question, “What other concepts are related to the chain rule, implicit differentiation, and related 

rates through NMR?” 
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My study proposes a conceptual framework for NM. One could take that framework and 

explore the different proposed mental action levels in one-on-one interviews with calculus 

students. Through questions about the way in which quantities change together in function 

compositions, researchers could explore the questions “How do calculus students exhibit NMR?” 

and “What mental action levels are present?” Additionally, my conceptual framework does not 

progress to mental actions students might employ in conceptualizing changing rates of change, or 

how the rate of change itself varies. Future research might explore how NM extends to 

conceptualizing changing rates of change. Future research could also explore how students might 

conceptualize changing rates of change within the contexts of the chain rule, implicit 

differentiation, and related rates. 

 I mentioned in my results that some students found the notation of y(x), as opposed to 

f(x), for y as a function of x as non-traditional but useful. However, Student C was uncomfortable 

with using y(x) because it is non-traditional, and he was not used to seeing it in his mathematics 

classes. Other research could explore the usefulness of using y(x) as opposed to f(x) in helping 

students to remember with which variables they are working. 

 I invite both researchers and teachers to use this HLT in their research or classrooms in 

order to learn more about how we can help calculus students to develop deep and conceptual 

understanding of the chain rule, implicit differentiation, and related rates. Much more research 

needs to be done to explore how to help students make better connections; not just between the 

concepts explored in this study but also between other calculus concepts. 
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APPENDIX: FINAL INTERVIEW PROTOCOL AND LEARNING ACTIVITIES 

First Interview 

Leibniz’ notation 

How do you interpret the symbol dy/dx? 

Make sure they understand the following as it is crucial for the rest of the interview: In calculus, 

we often use the notation dy/dx to mean the derivative (or the slope) of y with respect to x. The 

little “d” comes from ∆. For example, you may remember that ∆𝑑𝑑
∆𝑑𝑑

 is the slope of a line, where ∆𝑦𝑦 

and ∆𝑥𝑥 just mean a piece of y and a piece of x respectively. dy and dx are both also pieces of y 

and x respectively but they are very, very small pieces; infinitely small pieces or “infinitesimal 

pieces”.  When we take the limit of the slope ∆𝑑𝑑
∆𝑑𝑑

 as ∆𝑥𝑥 (which is originally finite) goes to 0, we 

are left with infinitesimal pieces of x and y, dx and dy. Say that at some point on a function, we 

have dy/dx = 3/1. This means that, right near that point, as x increases, y increases by 3 times as 

much. Or for example, if dy/dx=60 mph, that means that at that moment, the derivative, or the 

ratio of the tiny bit of y and tiny bit of x is equivalent to 60 miles per hour. 

Chocolate Context 

Given to student: 

1. Let’s say you make $9/hr. at your job and that you’re OBSESSED with chocolate. You 

want to spend every penny that you make on chocolate. You can buy .15 lbs. of chocolate 

per dollar. Let us, for now, ignore tithing, taxes, etc. 

𝐷𝐷(ℎ) = 9ℎ and  

𝑐𝑐(𝐷𝐷) = .15𝐷𝐷 

Where D is dollars, h is hours you have worked, and c is amount of chocolate (lbs.). 

Interview Questions: 

b. How do you interpret what each of these equations in our context? 

c. What is the value of dD/dh? 

d. What is the meaning of dD/dh in our context? What are the units of dD/dh? 

e. How is this different than D(h)? 

f. What is the value dc/dD? 

g. What is the meaning of dc/dD in our context? What are the units of dg/dD? 

h. How is this different than c(D)? 
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i. What would be the meaning of c(D(h))? 

j. How does hours worked affect the amount of chocolate you can buy? 

k. If we could find dc/dh what would that mean in our context? What would be the units of 

dc/dh? 

l. How does this relate to the original function composition c(D(h)) and how h affects c? 

m. What is the value of dc/dh? How do you know? 

Carnival Context 

Have the students read and interpret the prompt. 

Given to the student: 

2. The following graphs show two functions, f and g. The input of function g is temperature 

in degrees Fahrenheit and the output is the expected attendance at a neighborhood 

carnival. The input of function f is number of people attending the carnival and the output 

is the expected revenue earned by the carnival. 

 
Figure 17. Carnival context (Carlson, 2016, p. 71). 

Interview Questions: 

a. If we calculated dg/dx, what would that mean in our context? What would be the units of 

dg/dx? 

b. If we calculated df/dg, what would that mean in our context? What would be the units of 

dg/dx? 

c. What does the function f(g(x)) mean to you in this context? 

d. How would you describe the way in which temperature (x) affects revenue (f)? 

e. If we calculated df/dx, what would that mean in our context? What would be the units of 

df/dx? 
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f. How does df/dx relate to f(g(x))? 

g. How does this relate to your description of how temperature (x) affects revenue (f)? 

Running Context 

Given to the student: 

3.    

       
 

Interview Questions: 

a. Say right at 15 minutes, dD/dt is .1 (or 1/10). What is the meaning of dD/dt=1/10 in our 

context? 

b. What are the units of dD/dt? 

c. Say at that moment, you have traveled 1.5 miles, and so dc/dD at that moment (or at 1.5 

miles) is 100. What is the meaning of dc/dD=100 in our context? 

d. What are the units of dc/dD? 

e. What would c(d(t)) mean in this context? How does time elapsed affect calories burned? 

f. What would the derivative of that composition of function, or dc/dt mean in our context? 

If the student is struggling, rephrase the question as: What would be the meaning of the 

derivative of calories with respect to time? 

g. Say right at 15 minutes, you are running .1 miles/minute, and at that same moment, you 

are burning 100 calories/mile. How could you use this information to find dc/dt? If the 

student is struggling, rephrase the question as: “How could you use this information to 

find the derivative of calories with respect to time?” 

h. Explain your thinking. 

i. Will you burn 10 Cal/min the entire time? Why or why not? 
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j. Say right at 25 minutes, you are running .12 miles/minute, and you are burning 110 

Cal/mile. How would you use that information to find dc/dt at that moment? How do you 

know? 

k. In general, if you wanted to find dc/dt, how could you use dD/dt (or miles per minute) 

and dc/dD (calories per mile) at any given moment/location in order to find dc/dt 

(calories per minute) at that moment? How do you know? 

l. Is there anything else you would like to add before ending the interview? 

Second Interview 

Running Context with Equations 

An asterix (*) marks ideas that we will re-record on a separate sheet of paper for her/his 

reference. 

Given to the student: 

4. Let’s say in a perfect world, you run at a constant rate of .1 miles/minute. That is, let 

𝐷𝐷(𝑡𝑡) = .1𝑡𝑡 and  

𝑐𝑐(𝐷𝐷) = 20𝐷𝐷2 + 40𝐷𝐷  

Where t is time in minutes, D is distance traveled in miles, and c is calories burned. 

Interview Questions: 

We’re going to calculate some of your rates right at 20 minutes. But first, let’s figure out exactly 

how far you have gone at 20 minutes. 

a. How far have you traveled at 20 minutes? (2 miles) 

b. *What is an equation for dD/dt? 

c. What is dD/dt at 20 minutes? How do you know? 

d. *What is an equation for dc/dD? 

e. What is dc/dD at that same moment? How do you know? 

Our ultimate goal is to be able to find dc/dt which is the derivative of c(D(t)). So first, 

f. *What is an equation for c(D(t))? 

g. How does time affect calories burned? 

h. So, if you know that at 20 minutes, you are traveling .1 miles/minute and you are burning 

120 Cal/mile, what is dc/dt at 20 minutes? 

i. *How can you use what you have found so far to write a general equation that will give 

you dc/dt at any time t? How do you know? 
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j. *What is an equation for dc/dt in terms of only t (instead of D and t)?  

Point out to the student that what they have found is the derivative of the composition of 

functions they created in 4f.  

Dash from the Incredibles Context 

Given to student: 

5. Say that now, you are “Dash” from The Incredibles, and you are running at an incredible 

pace. 

𝐷𝐷(𝑡𝑡) = 2𝑑𝑑 and  

𝑐𝑐(𝐷𝐷) = D3 

Interview Questions: 

Now we are interested in your rates at 5 minutes. 

a. But first, how far have you traveled at 5 minutes? (5, 32) 

b. *What is an equation for dD/dt?  

c. What is dD/dt at 5 minutes? 

d. *What is an equation for dc/dD? 

e. What is dc/dD at that same moment? 

f. *What is an equation for c(D(t))? 

g. Say we want to find the derivative of this, or the dc/dt at 5 minutes. You are traveling 

22.18 miles/minute and you are burning 3072 Cal/mile, what is dc/dt at 5 minutes? 

h. *How can you use what you have found so far to write a general equation for dc/dt? 

i. *What is an equation for dc/dt in terms of only t? (instead of D and t?) 

Point out to the student that what they have found is the derivative of the composition of 

functions they created in 5f.  

Generalize the Chain Rule 

Look at the separate piece of paper and box the two equations for the composition of functions 

and their corresponding derivatives. 

• What patterns do you notice? Why does that make sense? 

• How does the pattern you found relate to the way we talked about how the independent 

variable affects the outermost function? 

• Given any function for c(D(t)), what is dc/dt? 

Given to student: 
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6. Let 𝑔𝑔(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(𝑥𝑥)) Just so you know, the derivative of sin(x) is cos(x). Do you have a 

hypothesis of what the derivative of this function might be? 

7. Let ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥2). What would be the derivative of this composition of functions? In 

other words, what is 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

? 

8. Let 𝑗𝑗(𝑥𝑥) = [sin(𝑥𝑥)]2. What would be the derivative of this composition of functions? In 

other words, what is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

? 

9. Say you have a general composition of functions f(g(x)). Can you write a rule for how 

you could find the derivative of a composition of functions? 

Interview Questions: 

a. Why would this make sense? 

b. Is there anything else you would like to add before ending the interview? 

Third Interview 

Snowman Context 

Given to student: 

10. The body of a snowman is in the shape of a sphere whose radius is melting at a rate of .25 

ft./hr. Assuming the body stays spherical, how fast is the volume changing when the 

radius is equal to 2 ft.? Remember that for a sphere, 𝑉𝑉 = 4
3
𝜋𝜋𝑟𝑟3. 

Interview Questions: 

a. Draw a picture of the situation, make note of the things we know as well as what we 

are looking for. 

b. What are the things that are changing with time? Let’s go ahead and write V(t) and 

r(t) to help us remember. So, we can say 𝑉𝑉(𝑡𝑡) = 4
3
𝜋𝜋[𝑟𝑟(𝑡𝑡)]3. Is that fair? 

c. What is that we’re looking for? 

d. How would you represent that as a derivative? 

e. What does it mean for the radius of the snowman to be melting at a rate of .25 ft./hr.? 

Can you represent that as a derivative? 

If they write dr/dt=.25 ft./hr. ask: Say the snowman’s body was growing at a rate of 

.25ft/hr. How would you represent that as a derivative? 

f. How does [𝑟𝑟(𝑡𝑡)]3relate to what we have been doing before? 

g. How can we find dV/dt? 
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h. Interpret your answer. What are the units for dV/dt? 

i. Is there anything else you would like to add before ending the interview? 

Implicit Differentiation Exploration 

Introduce the difference between explicit and implicit equations with examples: 

Explicit function of y in terms of x: 𝑦𝑦 = 𝑥𝑥2 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) 

Equations where y can implicitly be a function of x or x can implicitly be a function of y: 

𝑥𝑥2 + 𝑦𝑦2 = 9, 5 = 𝑥𝑥𝑦𝑦 + 𝑦𝑦2 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦) 

Explain that with implicit functions we can see every point on a graph. Pull up these equations 

on desmos, and explain that these two equations, when graphed, wouldn’t normally pass the 

“vertical line test” but they can be useful in displaying all the different ways that x and y relate 

to one another in the equation. Explain also that sometimes it is impossible to solve for y 

explicitly in terms of x, like with the second equation. 

Given to student: 

11.  

 

 

 

 

 

 

 

The area of the square with side length x subtract the area of the square with side length y must 

always be 1. That is, 𝑥𝑥2 − 𝑦𝑦2 = 1 or the blue area will always be equal to 1. The question we 

will attempt to answer is: As x changes, by how much does y have to change? 

Interview Questions: 

We’re going to say that y is an implicit function of x and re-write the equation as  

𝑥𝑥2 − [𝑦𝑦(𝑥𝑥)]2 = 1. 

a. Can you write what we are trying to find as a derivative? 

b. How does [𝑦𝑦(𝑥𝑥)]2 relate to what we have been discussing over the past interviews? 

c. As x changes, by how much does the blue area have to change? In other words, what is 
𝑑𝑑[𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎]

𝑑𝑑𝑑𝑑
 ? 

y 

x 
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If  𝑑𝑑[𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 𝑎𝑎𝑎𝑎𝑒𝑒𝑎𝑎]
𝑑𝑑𝑑𝑑

 = 0 and [𝑏𝑏𝑙𝑙𝑏𝑏𝑒𝑒 𝑎𝑎𝑟𝑟𝑒𝑒𝑎𝑎] = 𝑥𝑥2 + [𝑦𝑦(𝑥𝑥)]2, that implies that 𝑑𝑑(𝑑𝑑2−[𝑑𝑑(𝑑𝑑)]2)
𝑑𝑑𝑑𝑑

 = 0. We 

now know that as x changes, the blue area does not change. But remember, we are trying to 

find how y changes with x, or dy/dx. We have learned in calculus that the derivative of a sum 

or difference is equal to the sum or difference of the derivative. So, for example, we know 

that  𝑑𝑑(𝑑𝑑2−[𝑑𝑑(𝑑𝑑)]2)
𝑑𝑑𝑑𝑑

 is equal to 𝑑𝑑(𝑑𝑑2)
𝑑𝑑𝑑𝑑

− 𝑑𝑑 [𝑑𝑑(𝑑𝑑)]2

𝑑𝑑𝑑𝑑
. This means that 𝑑𝑑(𝑑𝑑2)

𝑑𝑑𝑑𝑑
− 𝑑𝑑 [𝑑𝑑(𝑑𝑑)]2

𝑑𝑑𝑑𝑑
= 0. 

d. What is the difference between 𝑑𝑑(𝑑𝑑2)
𝑑𝑑𝑑𝑑

 and 𝑑𝑑 [𝑑𝑑(𝑑𝑑)]2

𝑑𝑑𝑑𝑑
? 

e. How does x affection the 𝑦𝑦2 term? Or the 𝑦𝑦(𝑥𝑥)2 term? 

f. Earlier, when we did the “Dash” running situation, we said that 𝐶𝐶�𝐷𝐷(𝑡𝑡)� = (2𝑑𝑑)3, and we 

found that 𝑑𝑑𝑐𝑐/𝑑𝑑𝑡𝑡 =  3(2𝑑𝑑)2 ∙ 2𝑑𝑑ln (2). How does that connect to finding 𝑑𝑑 [𝑑𝑑(𝑑𝑑)]2

𝑑𝑑𝑑𝑑
? 

g. What is the derivative of each of these? 

We see that 2𝑥𝑥 − 2𝑦𝑦(𝑥𝑥) ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. Since we know that y is an implicit function of x I am going 

to re-write this as 2𝑥𝑥 − 2𝑦𝑦 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0. 

h. What question are we trying to answer? How can we use this information to answer it? 

Fourth Interview 

Given to student: 

12. Taking the original equation 𝑥𝑥2 − 𝑦𝑦2 = 1, if y changes by some amount, how much will 

x change? In other words, what is the derivative of x with respect to y? 

Different Implicit Differentiation Problem 

Given to student: 

13. If 𝑥𝑥2 + [𝑓𝑓(𝑥𝑥)]3 = 9 and 𝑓𝑓(1) = 2, find  𝑓𝑓′(1) 

Interview Questions: 

a. How did you think about this problem? 

b. How does this relate to what we have been doing in previous lessons? 

c. Is there anything else you would like to add before ending the interview? 

Shuttle Launch Context 

Given to student: 

14. A camera is filming a shuttle launch and needs to stay focused on the shuttle by 

increasing the angle as the shuttle ascends.  The camera is 2 miles from the launch-pad.  
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If the shuttle is traveling vertically at 0.2 miles/second, how fast should the angle be 

increasing when the shuttle is 3 miles above the ground? 

 
a. Draw a picture of the situation, make note of the things we know as well as what we 

are looking for. 

b. What are we looking for? Can you represent it as a derivative? 

c. What does it mean for the shuttle to be traveling vertically at .2 miles/second? Can 

you write that as a derivative? (Labeling your picture may help in doing this) 

d. What are the quantities that change with time? 

e. Can you relate those quantities with an equation? 

f. Can you represent the quantities that are changing with time as functions of time? 

Before, in the snowman context, we knew that radius was a function of time and so we 

re-wrote the equation with [r(t)] to help us remember that. Do that same thing with 

the equation you have. 

g. How can you find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

? What is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

? 

More Complex Implicit Differentiation 

Given to student: 

15. Let �𝑥𝑥 + 𝑦𝑦 = 𝑥𝑥4 + 𝑦𝑦4. Find dy/dx or y’. 

Airplane Context 

Given to student: 

16. A plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over 

a radar station. Find the rate at which the distance from the plane to the station is increasing 

when it is 2 mi away from the station. 
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