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Abstract

Stability for Traveling Waves

Joshua Lytle

Department of Mathematics

Master of Science

In this work we present some of the general theory of shock waves and their stability prop-
erties. We examine the concepts of nonlinear stability and spectral stability, noting that for
certain classes of equations the study of nonlinear stability is reduced to the analysis of the
spectra of the linearized eigenvalue problem. A useful tool in the study of spectral stability
is the Evans function, an analytic function whose zeros correspond to the eigenvalues of the
linearized eigenvalue problem. We discuss techniques for numerical Evans function compu-
tation that ensure analyticity, allowing standard winding number arguments and rootfinding
methods to be used to locate eigenvalues. The Evans function is then used to study the
spectra of the high Lewis number combustion system, tracking eigenvalues in the right-half
plane.
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Chapter 1. Introduction

In this work we discuss traveling waves and their stability properties. A traveling wave is a

solution to the evolution equation

ut = f(u, ux, uxx, . . .) (1.1)

that takes the form u(x, t) = û(x− st), where s is the speed of the traveling wave.

Traveling waves occur frequently in nature, in a variety of settings. Interesting problems

can be found in fluid flow, gas dynamics, combustion, and population dynamics, to name

a few. A classic example of a traveling wave in fluid dynamics is a soliton, a phenomenon

discovered by John Russell in 1834 in connection with his work on canal boats. He noted that

when a canal boat suddenly stopped moving, a water wave in the form of a pulse continued

down the canal with a constant speed, preserving its form.

Figure 1.1: Re-creation in 1995 of John Russel’s initial sighting of a soliton on the Union
Canal, Edinburgh.
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A traveling wave solution û of (1.1) may reflect a phenomena that persists. Alternately,

the solution may only exist as a transition between states and consequently be observed only

infrequently if at all. Mathematically, a traveling wave solution is said to be stable if small

perturbations/disturbances of the wave do not alter its form as it continues to evolve. In

cases where stability of the physical phenomenon is well known, verification of mathematical

stability is an important way of testing the mathematical model.

Stability of a traveling wave may be studied by analyzing the spectrum of the operator

linearized about the traveling wave. Indeed, it has been shown by Zumbrun and collaborators

[32, 14, 26, 25] that for certain subclasses of (1.1) spectral stability of the linearized operator

implies nonlinear stability.

To study spectral stability we introduce the Evans function, a function whose zeros

correspond to eigenvalues of the linearized operator. The Evans function is analytic in the

right-half plane, allowing us to use standard rootfinding techniques to locate eigenvalues.

Energy estimates are often used to find a bounded subset of the right-half plane containing

the relevant eigenvalues. A winding number of zero for a contour about the bounded region

indicates spectral stability. For those systems that do become spectrally unstable in some

parameter regime, we would like to know exactly when and how the instability occurs. We

can do this by creating bifurcation diagrams of eigenvalues as they cross into the right-half

plane.

1.1 Traveling waves

Consider the class of evolution equations

ut + f(u)x − (B(u)ux)x + (C(u)uxx)x +Q(u) = 0 (1.2)
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where x ∈ R, u, f ∈ Rn, and B,C,Q ∈ Rn×n are sufficiently smooth. The function f(u)x is

the flux or convection/advection of u, (B(u)ux)x the diffusion of u, (C(u)uxx)x the dispersion

term, and Q(u) the reaction term.

Substituting the ansatz u(x, t) = û(x−st) into (1.2) shows that a traveling wave solution

is a solution of

(f ′(u)− s)u′ − (B(u)u′)
′
+ (C(u)u′′)

′
+Q(u) = 0 (1.3)

with the necessary boundary conditions. Equivalently, we may view a traveling wave solution

as a stationary solution of (1.2) in the moving frame (x− st, t); that is, we transform (1.2)

by (x, t)→ (x− st, t) to obtain the equation

ut = F(u) = − (f ′(u)− s)ux + (B(u)ux)x − (C(u)uxx)x −Q(u), (1.4)

of which û is a stationary solution.

We look for traveling wave solutions with asymptotic boundary conditions; that is, solu-

tions û satisfying û(±∞) = u±, û(n)(±∞) = 0 for n ≥ 1. For a nontrivial traveling wave û, if

u+ = u− the wave is called a pulse; otherwise it is called a wave front or a shock layer, and is

said to have amplitude |u+− u−|. Because our traveling wave solutions have asymptotically

constant end-states, showing existence of a traveling wave is equivalent to finding an orbit

connecting the two end-states in some appropriate phase space.

Example 1.1. A prototypical nonlinear advection diffusion equation is Burgers equation,

given by

ut + uux = νuxx, ν > 0. (1.5)

Using dimensional analysis we find that the scaling (x, t) → (x
ν
, t
ν
) removes dependence on

3



ν, so we can assume ν = 1.

Transforming to the moving frame (x, t)→ (x− st, t), our equation becomes

ut − sux + uux = uxx. (1.6)

In this setting a traveling wave solution û is a steady-state solution, satisfying ût = 0. Thus

our profile ode is

− su′ +
(
u2

2

)′
= u′′. (1.7)

By integrating from −∞ to x, we obtain

− s(u− u−) +
u2 − u2

−

2
= u′. (1.8)

As x→∞ we find that

− s(u+ − u−) +
u2

+ − u2
−

2
= 0,

so that the Rankine-Hugoniot condition is s = u++u−
2

.

From (1.8) û may be solved analytically, obtaining

{û(x− st+ δ)}δ∈R =

{
s− a tanh

(
a(x− st+ δ)

2

)}
δ∈R

, a =
u− − u+

2
,

as a manifold of solutions to (1.6). See Figures 1.2 and 1.3.
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Figure 1.2: Wave profiles for Burgers equation with end-states u− = 8 and u+ = 0. On the
left is the solution corresponding to ν = 1; on the right is the solution for ν = 5.

Figure 1.3: Wave profiles for Burgers equation graphed in state space. The end-states u− = 8
and u+ = 0 correspond to rest points. The lower curve corresponds to the profile for ν = 1,
with the upper curve corresponding to ν = 5.

5



1.2 Numerical solution of the traveling wave profile

Consider an asymptotically constant traveling wave solution u(x, t) = û(x − st) of (1.1).

A traveling wave û must be a solution of the following two-point boundary value problem,

defined on an infinite domain:

−sux = f(u, ux, uxx, . . .),

u(±∞) = u±,

u(n)(±∞) = 0, n ≥ 1.

(1.9)

A solution of (1.9) corresponds to a connecting orbit between equilibrium points in phase

space, with fronts and pulses corresponding to heteroclinic and homoclinic orbits, respec-

tively. Various mathematical tools, including Lyapunov functions, asymptotic ode methods,

and topological methods, may be used to determine existence of solutions. Here we give a

general description of their numerical solution. Wave profiles in this work have been nu-

merically calculated in Matlab with the aid of bvp6c, a function employing sixth-order

collocation; see [12].

Numerically solving for the wave profile is often a very difficult problem. For example,

note the infinite domain (−∞,∞). Since the domain of a traveling wave is the entire real

line, and computers cannot solve on an infinite domain, we must numerically solve on a

finite domain [−L,L] where L is large enough to capture the behavior of the traveling wave.

Likewise, if L is too large other numerical problems can occur. We note that even when

solving a particular system, as parameters vary the traveling wave may exhibit very different

properties, necessitating careful inspection of the numerical domain for various parameter

regimes.

Since our boundary value problem is autonomous, a connecting orbit between two equi-

librium points is invariant in x, and thus corresponds to a 1-dimensional manifold of solutions

{û(x+ δ)}δ∈R. We refer to this as the translational invariance of the traveling wave. Numer-
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ically, care must be taken to appropriately specify a particular solution û(x).

We begin by writing (1.9) as a first-order system

u′ = f(u), u ∈ Rn,

u(±∞) = u±. (1.10)

Let X−S , X
−
U be the stable/unstable eigenspaces of df(u−), X+

S , X
+
U the stable/unstable

eigenspaces of df(u+), and Π−S ,Π
−
U ,Π

+
S ,Π

+
U their corresponding eigenprojections. As x →

−∞ a traveling wave solution û must approach u− along the unstable manifold of u−. Sim-

ilarly, as x → +∞ û must approach u+ along the stable manifold of u+. In the numerical

solver, these (projective) conditions become

Π−S (u(−L)− u−) = 0, Π+
U(u(+L)− u+) = 0,

requiring the solution û to approach u− orthogonal to the stable manifold of u−, and to

approach u+ orthogonal to the unstable manifold of u+.

Since an orbit in phase space corresponds to a manifold of solutions {û(x + δ)}δ∈R, we

give the solver a phase condition l · u(0) = α to determine a specific solution û. To avoid

solving the boundary value problem with a condition in the middle of the domain [−L,L],

we double the dimension of the system to 2n and add n matching conditions. This allows

us to solve for both halves of the profile on the domain [−L, 0].

Numerically solving for the wave profile is often very difficult. There may appear to

be too many boundary conditions to enforce. Sometimes this may be handled by adding

constant variables to the bvp. For example, when the speed of the wave is not known, adding

s′ = 0 to the system of odes may be necessary. We note that often the projective conditions

depend on the wave speed, and so must be updated continuously in the numerical solver.

A boundary value problem also requires an initial guess for the profile. For simple profiles
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a guess using the tanh function may be sufficient. In general, however, as parameters vary

the solution û(x) becomes more complex and difficult to solve, and a decent initial guess

becomes harder to obtain. In this case continuation becomes a very useful tool: to obtain

wave profiles across some range of parameters, cross the parameter regime stepwise, using a

solution at one step as an initial guess for the next.

Example 1.2. Recall equation (1.7), of which the wave profile for Burgers equation is a

solution:

−su′ + uu′ = u′′.

We begin by writing (1.7) as a first order system y′ = f(y) where y1 = u, y2 = u′ :

 y1

y2


′

=

 y2

y2(y1 − s)

 .
This system has projective conditions y1(−L) = u−, y1(L) = u+.

To solve for the full profile on [−L, 0], we let z(x) = y(−x). We then double the dimension

of our system to get 

y1

y2

z1

z2



′

=



y2

y2(y1 − s)

−z2

z2(s− z1)


,

with corresponding projective conditions

y1(−L) = u−, z1(−L) = u+,

a phase condition

y1(0) =
u− + u+

2
,
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and matching condition

z1(0) = y1(0).
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Figure 1.4: The wave profile for Burgers equation solved numerically on [−15, 0]. After
solving numerically, the lower solution z(x) is flipped onto [0, 15].

Example 1.3. Consider Slemrod’s model for 1-dimensional isentropic gas dynamics with

capillarity:

vt − ux = 0,

ut + p(v)x =
(ux
v

)
x
− dvxxx.

(1.11)

Here v is the specific volume, u is velocity in Lagrangian coordinates, p(v) is the pressure

law for an ideal gas (so p′(v) < 0 and p′′(v) > 0), and d ≥ 0 is capillarity strength.

We look for a traveling wave solution (u, v)(x, t) = (û, v̂)(x − st) with asymptotically

constant end states (û, v̂)(±∞) = (u±, v±). By translating to the moving frame (x, t) →

(x− st, t) our system becomes

vt − svx − ux = 0,

ut − sux + p(v)x =
(ux
v

)
x
− dvxxx.

(1.12)
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By rescaling (x, t, u)→ (−sx, s2t,−u/s) we obtain

vt + vx − ux = 0,

ut + ux + ap(v)x =
(ux
v

)
x
− dvxxx,

(1.13)

where a = 1/s2. This simplifies to a single ode for v:

v′ + ap(v)′ =

(
v′

v

)′
− dv′′′. (1.14)

Integrating from −∞ to x gives

v − v− + a(p(v)− p(v−)) =
v′

v
− dv′′ (1.15)

as our profile ode. We then find a by letting x → ∞, obtaining the Rankine-Hugoniot

condition

a = − v+ − v−
p(v+)− p(v−)

.

Without loss of generality we can assume 0 < v+ < v−. Also, after rescaling we may

assume that v− = 1; see [4, 15, 16]. We will assume a gas law of the form p(v) = v−γ, γ ≥ 1.

Let y1 = v, y2 = v′. Then written as a first order system y′ = f(y) we have

 y1

y2


′

=

 y2

1
d
[y2/y1 + (1− y1) + a(1− y−γ1 )]

 . (1.16)

Checking df(v−) and df(v+) we find one projective condition at x = +∞.

To solve for the full profile on [−L, 0] we let z(x) = y(−x), allowing us to solve the system

 y

z


′

=

 f(y)

−f(z)

 (1.17)
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with one projective condition, two matching conditions

y1(0) = z1(0), (1.18)

y2(0) = z2(0), (1.19)

and one phase condition

y1(0) =
v− + v+

2
.

As capillarity strength d increases, the wave becomes highly oscillatory; see Figures 1.5

and 1.6. This system is a good example of when continuation could be helpful.

Figure 1.5: The wave profile for Slemrod’s capillarity model, also shown in state space. Here
capillarity strength is d = 2.

1.3 Stability for traveling waves

First we note that a traveling wave solution û of (1.2) is a stationary solution of (1.4), that is,

F(û) = 0. Let X be a suitable Banach space, and A ⊂ X an admissible set of perturbations.

11



Figure 1.6: The wave profile for Slemrod’s capillarity model, with capillarity strength d = 60.

The Cauchy problem we wish to consider for (1.4) is to find solutions u(x, t) of

ut = F(u),

u(x, 0) = û(x) + v(x, 0), v(x, 0) ∈ A, (1.20)

for perturbations v ∈ A .

A fundamental question concerning traveling wave solutions is the following: Will the

perturbation u(x) of a traveling wave solution û(x) converge to (some translate of) û as

t→∞, or will it evolve into something else? This question motivates the following definition:

Definition 1.4. We say that a stationary solution û of (1.4) is asymptotically orbitally

stable with respect to the set of perturbations A if u(·, t) → û(x + δ) for some δ as t → ∞

whenever u(x, 0) − û(x) = v(x, 0) ∈ A. We may use interchangeably the terms asymptotic

orbital stability and nonlinear stability.

In general spectral stability of the wave profile is a weaker condition than nonlinear

stability, however for certain classes of equations spectral stability has been shown to imply

nonlinear stability; see [32, 14, 26, 25].

12



To obtain the eigenvalue problem, we linearize

ut = −(f ′(u)− s)ux + (B(u)ux)x − (C(u)uxx)x −Q(u)

about the stationary solution û, getting

λv = Lv := −(A(û)v)x + (B(û)vx)x − (C(û)vxx)x −Q′(û)v (1.21)

where A(û)v = (f ′(û−B′(û)ûx + C ′(û)ûxx − s)v.

Definition 1.5. For the linear operator L (1.21), the

(i) spectrum σ(L) of L is the set of all λ ∈ C where L− λI is not invertible.

(ii) point spectrum σp(L) of L is the set of all isolated eigenvalues of L with finite multi-

plicity.

(iii) essential spectrum σe(L) of L is the spectrum of Lminus the point spectrum: σ(L)\σp(L).

Definition 1.6. The operator L in 1.21 is spectrally stable if its spectrum does not extend

into the closed deleted right half plane
∑

+ = {λ ∈ C\{0} : Re(λ) ≥ 0}.

A formal argument that spectral stability may be used to determine nonlinear stability

goes as follows: We linearize (1.4) about û, obtaining

ut = F (u) = F (û) + dF (û)v +Q(v),

where Q(v) = O(|v|2). Any initial state u can be written as u = û + v, where v is a

13



perturbation of û. Then we obtain

(û+ v)t = F (û) + dF (û)v +Q(v),

vt = dF (û)v +Q(v),

= Lv +Q(v),

vt − Lv = Q,

e−Ltvt − e−LtLv = e−LtQ,∫ t

0

(
e−Ltv(s)

)′
ds =

∫ t

0

e−LsQ(s)ds,

e−Ltv(t)− v0 =

∫ t

0

e−LsQ(s)ds,

v(t) = eLtv0 + eLt
∫ t

0

e−LsQ(s)ds,

= eLtv0 +

∫ t

0

eL(t−s)Q(s)ds.

Since v is small and Q ∼ O(v2),
∫ t

0
eL(t−s)Q(s)ds is negligible and v ≈ eLtv0.

We note that 0 is always an eigenvalue of L, and is associated with the translational

invariance of the traveling wave. Thus the linearized operator L always has a nontrivial

spectrum.

Lemma 1.7 (Sattinger [27]). The derivative of û is an eigenfunction of L with eigenvalue

0.

Proof. By translational invariance of the traveling wave, F(û(x + δ)) = 0 for each δ ∈ R.

Then d
dδ

(F(û(x+ δ)) |δ=0 = dF(û)û′ = 0, so û′ is an eigenvector of L = dF(û) with

eigenvalue 0.

To prove spectral stability of L it is necessary to show that the essential spectrum and

the point spectrum of L do not intersect the closed deleted right-half plane
∑

+. In the next

two sections we will deal with the essential and point spectrums separately, giving some of

14



the most pertinent results.

1.3.1 Essential spectrum. The following result is very useful in dealing with the es-

sential spectrum of L:

Theorem 1.8 (Henry [13]). The essential spectrum of L in (1.21) is sharply bounded to the

left of

σe(L+) ∪ σe(L−), (1.22)

where L± correspond to the operators obtained by linearizing about the constant solutions

û = u±, respectively.

Proof. We note that linearization about u± yields

vt = L±v = −A±vx +B±vxx − C±vxxx −D±v, (1.23)

where A± = A(u±), . . . , D± = D(u±) are constant matrices. Then σ(L±) = σe(L±) since

constant coefficient linear operators do not have a point spectrum. We use the Fourier

transform to make a formal argument concerning σe(L±).

Now

(L̂− λI)−1v = (−iξA± − ξ2B± + iξ3C± −D± − λI)−1v (1.24)

where ξ ∈ R. We note that invertibility of L−λI is lost whenever −iξA±− ξ2B±+ iξ3C±−

D± − λI is singular, so that

λ ∈ σ(L±) iff λ ∈ σ(−iξA± − ξ2B± + iξ3C± −D±) (1.25)

for some ξ ∈ R. Thus we have 2n curves λ±j corresponding to the eigenvalues of the right-

15



hand side, giving

σe(L+) ∪ σe(L−) =
⋃
j

λ+
j (ξ) ∪

⋃
j

λ−j (ξ). (1.26)

Thus, we may use the structure of A±, B±, C±, and D± to obtain sharp bounds on the

essential spectrum of L. This gives us a way to see if σe(L) intersects the closed right half

plane
∑

+.

1.3.2 Point spectrum. The problem of obtaining bounds on the point spectrum of L

is generally much harder than dealing with the essential spectrum. Energy estimates have

proven to be a useful tool in many instances, although their application is often not obvious

or intuitive.

One of the difficulties associated with obtaining uniform bounds stems from the presence

of 0 in the point spectrum of L. For the reactionless equation (1.21) (Q(u) = 0), the eigen-

value problem may instead be viewed in integrated coordinates. Specifically, by integrating

both sides of

λv = Lv = −(A(û)v)x + (B(û)vx)x − (C(û)vxx)x (1.27)

from −∞ to x, and substituting w =
∫ x
−∞ v, we obtain the integrated operator

λw = Lw := −A(û)w′ +B(û)w′′ − C(û)w′′′. (1.28)

The following result is very useful.

Lemma 1.9. The point spectrum of L is the same as L, excluding λ = 0.

Proof. Suppose λv = Lv with λ 6= 0. Integrating both sides from −∞ to x and substituting
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w =
∫ x
−∞ v yields λw = Lw. Since

λw(+∞) = −
∫ ∞
−∞

(Av)′ +

∫ ∞
−∞

(Bv′)′ −
∫ ∞
−∞

(Cv′′)′ = 0,

we note that w(n) decays to 0 for n = 0, 1, . . . . Thus w is an admissible eigenvector and

σ(L)\{0} ⊂ σ(L).

Now suppose λw = Lw, λ 6= 0. Differentiating yields

λw′ = −(Aw′)′ + (Bw′′)′ − (Cw′′′)′,

making w′ an eigenvalue of L. Thus σp(L)\{0} = σp(L)\{0}.

Example 1.10. Consider again Burgers equation

ut + uux = uxx.

A traveling wave solution û of Burgers equation is a steady state solution of

ut − sux + uux = uxx. (1.29)

We let u = û+ v. Substituting into (1.29), we obtain

ût + vt − sûx − svx + ûûx + vûx + ûvx + vvx = ûxx + vxx.

Since vvx is considered to be small and ût − sûx + ûûx = ûxx, we get

vt − svx + ûxv + ûvx = vxx.
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We can write this as vt = Lv where L is the differential operator given by

Lv = svx − ûxv − ûvx + vxx,

= svx − (ûv)x + vxx.

(1.30)

Integrating both sides of 1.30 from −∞ to x and substituting w =
∫ x
−∞ v yields

λw = (s− û)w′ + w′′ (1.31)

as our eigenvalue problem in integrated coordinates.

Example 1.11. We will use an energy estimate to show stability for Burgers equation.

Multiplying both sides of 1.31 by w and integrating over the real line, we obtain

λ

∫
R
|w|2 =

∫
R
(s− û)ww′ +

∫
R
ww′′.

Integration by parts gives

∫
R
ww′′ = ww′|∞−∞ −

∫
R
|w′|2,

= −
∫

R
|w′′|2, (1.32)

so that

λ

∫
R
|w|2 =

∫
R
(s− û)ww′ −

∫
R
|w′|2. (1.33)

Integrating (s− û)ww′ by parts gives

∫
R
(s− û)ww′ = (s− û)ww|∞−∞ −

∫
R
(s− ûw′w +

∫
R
wwû′, (1.34)
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so that

Real(λ)

∫
R
|w|2 = 1/2

∫
R
|w|2û′ −

∫
R
|w′|2 < 0 (1.35)

since û′ < 0. Thus Real(λ) < 0.

Example 1.12. Here we find a bound on the essential spectrum of the eigenvalue problem

for Burgers,

vt = −((û− s)v)x + vxx.

Taking the Fourier transform of the eigenvalue problem linearized about u±, we see that the

essential spectrum must be to the left of the curves given by

λ = −i(u± − s)ξ − ξ2, (1.36)

= ±iu− − u+

2
ξ − ξ2, ξ ∈ R. (1.37)

These curves define a parabola in the left half of the complex plane that touches the origin

at ξ = 0.

A similar proof can be used to show spectral stability for the general scalar conservation

law

ut + f(u)x = (b(u)ux)x;

see [18] for further examples of energy estimates.

1.4 The Evans function

Consider again the eigenvalue problem

λv = Lv = dF(û)v. (1.38)
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After bounding the essential spectrum of L, we use the Evans function to analyze eigenvalues

to the right of the essential spectrum.

We define the Evans function as the Wronskian of decaying solutions of (1.38). The

Evans function is analytic to the right of the essential spectrum, with roots corresponding

exactly with the eigenvalues of L in both location and multiplicity; see [1] .

We write the eigenvalue problem (1.38) as a first-order system

λW ′ = A(x, λ)W, W ∈ Cn, ′ =
d

dx
. (1.39)

We note that eigenvalues of (1.38) are values of λ with an associated nontrivial solution W

of (1.39), satisfying W (±∞) = 0. We also note that A(x, λ) is asymptotically constant in x

since û is. Thus we can consider the constant coefficient matrices A±(λ) = limx→±∞A(x, λ).

An eigenvector W of (1.38) must approach the origin along the unstable manifold U−(λ)

of A−(λ), and the stable manifold S+(λ) of A+(λ). We will assume consistent splitting of

A(x, λ); i.e., the dimensions of U−(λ) and S+(λ) are k and n− k, respectively, for some k.

Suppose r−1 (λ), . . . , r−k (λ) and r+
k+1(λ), . . . , r+

n (λ) are analytically varying bases for U−(λ)

and S+(λ), respectively. Let W−
i (λ) be the solution of 1.39 where W−

i (λ) → 0 along r−i (λ)

as x→ −∞. We define W+
i (λ) similarly. We then define the Evans function by

D(λ) := det(W−
1 (λ) . . .W−

k (λ),W+
k+1(λ) . . .W+

n (λ))
∣∣
x=0

. (1.40)

We note that D(λ) = 0 iff W−
1 (λ), . . . ,W−

k (λ),W+
k+1(λ) . . . ,W+

n (λ) are linearly depen-

dent. In this case we have an eigenvector W living on both U−(λ) and S+(λ). We remark

that analyticity of D(λ) depends on finding analytically varying bases for U−(λ) and S+(λ).

The Evans function is rarely solved analytically, and then only for simple systems; for

example, the Evans function for Burgers equation is found analytically in [3]. In practice

D(λ) is computed numerically by integrating U−(λ) and S+(λ) from ±∞ to 0.
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Chapter 2. Evans function computation

Numerical computation of the Evans function has essentially two basic parts. First, bases for

U−(λ) and S+(λ) must be computed. These bases must vary analytically in λ. The second

component is the integration of U−(λ) and S+(λ) from ±∞ to 0. If both parts are done

accurately, D(λ) will be analytic, allowing us to employ standard winding number arguments

and rootfinding techniques to locate and track eigenvalues.

In this chapter we consider several common difficulties associated with the numerical

implementation of the Evans function. We will discuss the compound matrix method and

the polar coordinate method [17] as solutions to the problem of integration; see [31, 17, 3]

for further details. A standard result due to Kato [21] will be given, from which we will find

analytically varying eigenprojections.

2.1 Compound matrix method

Consider again the first-order, linear boundary value problem

W ′ = A(x, λ)W, W ∈ Cn, ′ =
d

dx
,

W (±∞) = 0, (2.1)

whose nontrivial solutions (λ,W (λ)) correspond to eigenpairs of L. In this section we will

lift (2.1) into the exterior product space ∧k(Cn).

First we recall that ∧k(Cn) is the space of finite sums of k-forms of elements of Cn, with

the k-forms being multilinear and alternating. We note that it is quite easy to obtain a basis

for ∧k(Cn): if {e1, . . . , en} is a basis for Cn, then {ej1 ∧ . . .∧ ejk , 1 ≤ j1 < j2 < . . . < jk ≤ n}

is a basis for ∧k(Cn). Thus ∧k(Cn) is a
(
n
k

)
dimensional space; see [7] for details on this

21



space.

Given vectors x1, . . . , xk in Cn, if x1, . . . , xk are linearly independent then x1 ∧ . . . ∧ xk

becomes a k-form representing the span of x1, . . . , xk as a point in ∧k(Cn). In particular, the

k-dimensional unstable eigenspace of A−(λ) becomes a single vector in ∧k(Cn). The lifted

problem is given by

W ′ = A(k)W, W = w1 ∧ . . . ∧ wk ∈ R(n
k), (2.2)

where

A(k) ◦W = (Aw1) ∧ w2 ∧ . . . ∧ wk +

w1 ∧ (Aw2) ∧ . . . ∧ wk + . . .

w1 ∧ w1 ∧ . . . ∧ (Awk). (2.3)

Let {r−j }kj=1 and {r+
j }nj=k+1 be the right eigenvectors of A−(λ) and A+(λ) respectively,

spanning U− and S+. Let {µ−j }kj=1 and {µ+
j }nj=k+1 be their corresponding eigenvalues. Then

the unstable manifold U−(x) of A−(λ) may be represented as a wedge product

U−(x) = W−
1 (x) ∧ . . . ∧W−

k (x), with W−
j satisfying

W−
j
′

= A(x, λ)W−
j ,

W−
j (x) ≈ eµ

−
j xr−j , x << 0. (2.4)

Similarly the stable manifold S+(x) of A+(λ) may be represented as a wedge product

S+(x) = W+
k+1(x) ∧ . . . ∧W+

n (x) in ∧n−k(Cn), with W+
j satisfying

W+
j
′

= A(x, λ)W+
j ,

W+
j (x) ≈ eµ

+
j xr+

j , x >> 0. (2.5)

22



We note the isomorphism

U−(x) ∧ S+(x) = W−
1 (x) ∧ . . . ∧W−

k (x) ∧W+
k+1(x) ∧ . . . ∧W+

n (x), (2.6)

≈ det
[
W−

1 (x) . . .W−
k (x),W+

k+1(x) . . .W+
n (x)

]
, (2.7)

The Evans function is then defined as

D(λ) = U−(x) ∧ S+(x)
∣∣
x=0

,

and is analytic in λ if {r±j (λ)} vary analytically.

There are several numerical difficulties associated with the Evans function that must

be addressed. First we note that the manifolds U−, S+ must be found by integrating from

x = ±∞ to x = 0. It is numerically difficult to resolve growth on different modes. Numerical

(and round-off) error tends to accumulate on the largest growth mode. For example, when

n = 4, k = 2 suppose there are growth modes µ−1 > µ−2 > 0 at x = −∞. Integrating W−
2 (x)

from −∞ to 0, error accumulates so that W−
2 (x) becomes aW−

1 (x) + bW−
2 (x). To obtain

accurate results the step size of the integration must decrease, causing computation to slow.

By lifting the eigenvalue problem into the exterior product space Λk(Cn), the manifold

U− becomes a k-product W−
1 ∧ . . .∧W−

k , an eigenvector of the lifted problem corresponding

to its largest mode. In this way the compound matrix method provides accurate multi-mode

resolution.

Lemma 2.1. Suppose (µ1, r1), . . . , (µk, rk) are eigenpairs of A. Then r1 ∧ . . . ∧ rk is an

eigenvector of A(k) with eigenvalue µ1 + . . .+ µk.
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Proof.

A(k) ◦ (r1 ∧ . . . ∧ rk) = (Ar1) ∧ r2 ∧ . . . ∧ rk +

r1 ∧ (Ar2) ∧ . . . ∧ rk + . . .

r1 ∧ r2 ∧ . . . ∧ (Ark),

= (µ1r1) ∧ . . . ∧ rk + . . .

r1 ∧ . . . ∧ (µkrk),

= (µ1 + . . .+ µk)r1 ∧ r2 ∧ . . . ∧ rk.

Corollary 2.2. Suppose µ1, . . . , µk are the largest eigenvalues of A. Then µ1 + . . . + µk is

the largest eigenvalue of A(k).

2.2 Polar coordinate method

Note that an exterior product Λ ∈ Λk(Cn) has coordinates in an
(
n
k

)
dimensional space, while

the matrix of factors of Λ is in an n × k dimensional space. The polar coordinate method

reduces the dimension of the space we are solving in by representing the exterior product

by a “radius” and “angle”, (γ,Ω), where γ ∈ C and Ω ∈ Cn×k is an orthonormal matrix

spanning the factors of Λ.

Let [λ1| . . . |λk] be the matrix of factors of Λ, and let Ω = [ω1| . . . |ωk]. Then for each
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j = 1, . . . , k we have λj = Ωαj =
∑k

t=1 αtjwt, so that [λ1| . . . |λk] = Ωα. Then

Λ =

(
k∑

t1=1

α1t1wt1

)
∧ . . . ∧

(
k∑

tk=1

α1tkwtk

)
, (2.8)

=
k∑

t1=1

. . .

k∑
tk=1

(α1t1 · · ·α1tk)wt1 ∧ . . . ∧ wtk , (2.9)

=
∑

(t1,...,tk)∈P

(α1t1 · · ·α1tk)wt1 ∧ . . . ∧ wtk , (2.10)

where P is the set of all permutations of (1, . . . , k). These last equalities follow since exterior

products are multilinear and alternating.

Additionally, since exterior products are alternating we have

Λ =
∑

(t1,...,tk)∈P

sgn(t1, . . . , tk)(α1t1 · · ·α1tk)w1 ∧ . . . ∧ wk, (2.11)

= det(α)w1 ∧ . . . ∧ wk. (2.12)

Let W− be the unstable manifold of A−(λ) and W+ the stable manifold of A+(λ). Then

we can find α±,Ω± such that

W− = Ω−α−, det(α−) = γ−,

W+ = Ω+α+, det(α+) = γ+.

Then the Evans function is

D(λ) = det(W−
1 , . . . ,W

−
k ,W

+
k+1, . . .W

+
n )
∣∣
x=0

,

= γ+γ− det(Ω−,Ω+)
∣∣
x=0

.
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2.2.1 Continuous orthogonalization. SupposeW (x) = Ω(x)α(x) whereW (x),Ω(x) ∈

Cn×k and Ω is orthonormal. Applying W ′ = A(x, λ)W , we obtain

Ω′(x)α(x) + Ω(x)α′(x) = A(x, λ)Ω(x)α(x).

By letting B(x) = α′α−1(x), we get the following system of equations for α,Ω:

Ω′(x) = A(x, λ)Ω(x)− Ω(x)B(x),

α′(x) = B(x)α(x).

(2.13)

We note that the dimension of this new system is greater than the original; thus we

expect additional conditions on the ode to arise from the orthogonality condition Ω∗Ω = Ik×k.

Specifically, we have

0 = I ′ = (Ω∗Ω)′ = (Ω∗)′Ω + Ω∗Ω′,

= (Ω∗A∗ −B∗Ω∗)Ω + Ω∗(AΩ− ΩB),

= Ω∗(A∗ + A)Ω−B∗Ω∗Ω− Ω∗ΩB,

= Ω∗(A∗ + A)Ω−B∗ −B. (2.14)

Thus Ω∗(A∗ +A)Ω−B∗ −B = 0 is a necessary condition for orthogonality. To see that

this is sufficient when (2.13) is initialized with Ω∗0Ω0 = I, note that (Ω∗Ω)′ = 0 implies that

Ω∗Ω is constant. Thus Ω∗(x)Ω(x) = Ω∗0Ω0 = Ik×k.

We note that various choices of B have been used, notably in Drury’s method (B =

Ω∗AΩ) and Davey’s method (B = (Ω∗Ω)−1Ω∗AΩ). Drury’s method can also be derived by

setting Ω∗Ω′ = 0, so that the change in Ω is orthogonal to the space spanned by Ω.

Substituting B = Ω∗AΩ in (2.13), in polar coordinates our system becomes
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Ω′ = (I − ΩΩ∗)AΩ,

γ′ = trace(Ω∗AΩ)γ.

(2.15)

2.3 The method of Kato

Suppose P (λ) is an analytic projection. We would like to be able to find an analytically

varying basis R(λ) for the range of P (λ). By standard linear ode theory, the initial value

problem

R′ = P ′R,

R(λ0) = R0,

(2.16)

has a unique solution that exists throughout the simply connected domain D. The solution

R(λ) of the (2.16) can then be found numerically.

Proposition 2.3. The unique solution R of (2.16) satisfies

(i) PR = R,

(ii) PR′ = 0,

(iii) R′ = (P ′P − PP ′)R.

Proof.

(1)

(PR−R)′ = P ′R + PR′ −R′,

= P ′R + PP ′R− P ′R,

= PP ′R− PP ′PR,

= −PP ′(PR−R).
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Since (PR−R)(λ0) = P0R0 −R0 = 0, by uniqueness of solutions PR−R = 0.

(2) PR′ = PP ′R = PP ′PR = 0.

(3) R′ = P ′R = P ′PR = (P ′ − PP ′)R = (P ′P − PP ′)R.
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Chapter 3. Rootfinding

3.1 Method of moments

3.1.1 Motivation. Suppose f : G → C is analytic on a region G ⊂ C with roots

z1, . . . , zn. Then g(z) = (z− z1) · . . . · (z− zn) and f(z) have the same roots in G. Note that

g(z) = zn − (z1 + . . .+ zn)zn−1 + . . .+ (−1)n(z1 · . . . · zn),

= zn −K1z
n−1 + . . .+ (−1)nKn,

where Kj is the jth order elementary symmetric polynomial in z1, . . . , zn. By finding

K1, . . . Kn, we can rootfind using g(z), rather than a more difficult function f(z).

3.1.2 Derivation of moments. Let f : G → C by analytic in a region G ⊂ C. Let Γ

be a simple closed positively oriented contour in G with f nonzero on Γ. Let z1, . . . , zn be

the n distinct roots of f in Γ, c ∈ C with c 6= zj ∀j, and p = 0, 1, 2, . . .. Then

Mp(f ; c) :=
1

2πi

∮
(z − c)pf ′(z)

f(z)
dz =

n∑
j=1

mj(zj − c)p (3.1)

where mj is the multiplicity of zj.

Proof. We require only a brief generalization of the proof of the argument principle. Since

f is analytic, for a zero zj of f in Γ we have

f(z) = h(z)(z − zj)mj ,
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where h is analytic at zj and h(zj) 6= 0. Then in a neighborhood of zj

g(z) =
(z − c)pf ′(z)

f(z)
=

(z − c)p[h′(z)(z − zj)mj +mjh(z)(z − zj)mj−1]

h(z)(z − zj)mj
,

=
(z − c)ph′(z)

h(z)
+
mj(z − c)p

z − zj
.

Since h is analytic and nonzero at zj, we have Res(g; zj) = mj(zj − c)p. Then Cauchy’s

residue theorem gives the result.

We note that M0(0) = z0
0 + . . . + z0

n = n is the number of roots of f in Γ; similarly

µ = M1(0)/M0(0) is the center of mass of the roots, while M2(µ)/M0(0) is their variance.

3.1.3 Using the moments of f . For an analytic function f , M0(0) = n may be used to

determine the number of roots of f inside Γ. Then using Newton’s formula, we can obtain

constants K1, . . . , Kn using the moments

M1(0) = z1 + . . .+ zn, (3.2)

M2(0) = z2
1 + . . .+ z2

n, (3.3)

...

Mn(0) = zn1 + . . .+ znn . (3.4)

For example, when M0(0) = 2 (f has two roots in Γ) then M1(0) = K1 and M2(0) =

z2
1 + z2

2 = M1(0)2− 2K2. Then g(z) = (z− z1)(z− z2) = z2−K1z+K2, allowing us to easily

solve for the roots of f .

We note that for n > 4 the roots z1, . . . , zn must be found numerically, since there

is no closed form solution for the roots of g(z). In practice polynomial rootfinding is ill-

conditioned, so we typically use this method where n is small.
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3.2 Computing the moments of f

3.2.1 Simpsons method. Using a degree two Lagrange interpolant through the points

zj, zj+1, zj+2, the integral of a function g(z) may be approximated by

∫ zj+2

zj

g(z) dz ≈ a(z − zj+1)(z − zj+2) + b(z − zj)(z − zj+2) + c(z − zj)(z − zj+1) dz,

where a, b, and c are given by

a =
g(zj)

(zj − zj+1)(zj − zj+2)
,

b =
g(zj+1)

(zj+1 − zj)(zj+1 − zj+2)
,

c =
g(zj+2)

(zj+2 − zj)(zj+2 − zj+1)
.

This may be further simplified to

∫ zj+2

zj

g(z) dz ≈
z3
j+2 − z3

j

3
(a+ b+ c)

−
z3
j+2 − z2

j

2
(a(zj+1 + zj+2) + b(zj + zj+2) + c(zj + zj+1))

+(zj+2 − zj)(azj+1zj+2 + bzjzj+2 + czjzj+1).

To compute Mp(c) on a contour C, we let g(z) = (z − c)pf ′(z)/f(z) where f ′(z) is

approximated with some difference method (usually centered difference).

3.2.2 Application of the fast fourier transform. Let γ(t) = z0 + re2πit, t ∈ [0, 1]. So

γ is a simple closed positively oriented contour. Then γ−1(t) = γ(1 − t) = z0 + re2πi(1−t) =

z0 + re−2πit, t ∈ [0, 1] and d
dt
γ−1(t) = −2πrie−2πit. Then the pth moment of f about 0 with
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respect to γ is given by

Mp(0) =
1

2πi

∮
γ

zp
f ′(z)

f(z)
dz = − 1

2πi

∮
γ−1

zp
f ′(z)

f(z)
dz,

= − 1

2πi

∫ 1

0

(z0 + re−2πit)p
f ′ ◦ γ−1

f ◦ γ−1
(t)(−2πri)e−2πitdt,

= r

∫ 1

0

(
p∑

k=0

(
p

k

)
zk0 (re−2πit)p−k

)
f ′ ◦ γ−1

f ◦ γ−1
(t)e−2πitdt,

= rp+1

∫ 1

0

(
p∑

k=0

(
p

k

)
(z0/r)

ke−2πi(p−k)t

)
f ′ ◦ γ−1

f ◦ γ−1
(t)e−2πitdt,

= rp+1

∫ 1

0

(
p∑

k=0

(
p

k

)
(z0/r)

ke−2πi(p−k+1)t

)
f ′ ◦ γ−1

f ◦ γ−1
(t)dt,

= rp+1

p∑
k=0

(
p

k

)
(z0/r)

k

(∫ 1

0

f ′ ◦ γ−1

f ◦ γ−1
(t)e−2πi(p−k+1)tdt

)
.

Let x be a vector with

x(j) =

(
f ′ ◦ γ−1

f ◦ γ−1

)(
j − 1

2N

)
, j = 1, . . . , 2N .

Then the left endpoint approximation of

∫ 1

0

f ′ ◦ γ−1

f ◦ γ−1
(t)e−2πi(p−k+1)tdt

is

2−N
2N∑
j=1

x(j)e−2πi(p−k+1)(j−1)2−N

= 2−NX[p− k + 2],
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where X is the discrete fourier transform of x. Thus the left endpoint approximation of

Mp(0) is

rp+12−N
p∑

k=0

(
p

k

)
(z0/r)

kX[p− k + 2].

Also note that since γ is a close contour, the left endpoint, right endpoint, and trapezoidal

approximations are the same.

3.2.3 Computing M0(0). Suppose f is an analytic function, and nonzero on a contour

C. If f(C) does not intersect the branch cut of log(z), then
∫
C
f ′(z)
f(z)

dz = log (f(z1)) −

log (f(z0)) where z0 is the initial point of C and z1 the terminal point.

If f(C) does pass through the branch cut of log(z), then
∫
C
f ′(z)
f(z)

dz can be approximated

by integrating over subcontours Cj where f(Cj) does not intersect the branch cut of log(z).

As the images f(Cj) approach the branch cut, the sum of their integrals tends toward∫
C
f ′(z)
f(z)

dz.

Since log(z) = log |z|+i arg(z), computing
∫
C
f ′(z)
f(z)

dz is essentially a matter of determining

how often, and with what orientation, f(C) crosses the branch cut. For example, suppose

f(z) = (z− 1 + i)(z− 1− i) and a contour C is given by 2e2πit, t ∈ [0, 1]. Then f(C) crosses

the branch cut twice in the counterclockwise direction, so that
∫
C
f ′/f = 2πi+ 2πi, so that

M0(0) = 2; see Figure 3.1.

3.3 A bisection method

The algorithm for computing the winding number W0(0) =
∫
C
f ′/f is more accurate and

efficient than using integration. Once an eigenvalue’s general location is known, a form of

the bisection method can be used to get additional accuracy. Essentially W0(0) is computed

for rectangular regions, which are further subdivided to obtain the required accuracy.
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Figure 3.1: Example of a winding number calculation.
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Chapter 4. Application: high Lewis number

4.1 The combustion model

We consider a model describing the combustion of a premixed fuel in one dimension. We

assume that no heat is lost. In nondimensional coordinates the model is given by the equa-

tions.

ut = uxx + yΩ(u),

yt = εyxx − βyΩ(u),

(4.1)

Here u = u(x, t) is the scaled temperature and y = y(x, t) is the concentration of the fuel.

This model describes a reaction which we assume begins at the ambient temperature,

u = 0, with the reaction rate given by

Ω(u) =


e−1/u for u > 0

0 otherwise.

The parameter ε is the inverse Lewis number, representing the ratio of fuel diffusitivity

to heat diffusitivity. The limiting case ε = 0 characterizes combustion of solids, while an

appropriate value of ε > 0 characterizes gaseous combustion. The other parameter β > 0

represents the exothermicity of the system, the ratio of the activation energy to the heat of

the reaction. In this chapter we will conduct a numerical study of the stability properties of

traveling wave solutions of (4.1) as β varies.
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We seek traveling wave solutions

u(x, t) = û(x− st),

y(x, t) = ŷ(x− st),
(4.2)

with wave speed s > 0 and asymptotically constant end states (û, ŷ)(±∞) = (u±, y±) where

(u−, y−) = (1/β, 0) and (u+, y+) = (0, 1). We note that at (u, y) = (0, 1) the fuel is at

ambient temperature and has been untouched, while the state (u, y) = (1/β, 0) describes the

system with maximal heat and the fuel completely burned.

It has been shown that there is a unique wave speed s > 0 such that (4.1) has a nontrivial

solution connecting the end-states exponentially. For ε = 0 existence and uniqueness has

been shown in [6, 29], and for ε ∈ (0, 1) in [2, 5, 20] . For 0 < ε� 1 existence and uniqueness

has also been shown using geometric singular perturbation theory; see [19, 23, 8, 2, 10]. It

is also known that the traveling wave û, ŷ satisfies û, ŷ, ŷ′ > 0 > û′ for all x; see [24, 28, 22].

The wave profile has been numerically solved in [30]. See [9] for further background on this

system.

4.2 Numerical solution of the wave profile

To find traveling waves (û, ŷ) we make the coordinate change (x, t)→ (x− st, t) = (x, t) and

look for steady state solutions of (dropping the bar notation)

ut − sux = uxx + yΩ(u),

yt − syx = εyxx − βyΩ(u).

(4.3)
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Thus û, ŷ are solutions of the ordinary differential equations

u′′ + su′ + yΩ(u) = 0,

εy′′ + sy′ − βyΩ(u) = 0.

(4.4)

We can write this as the first-order system



y1

y2

y3

y4



′

=



y2

−sy2 − y3Ω(y1)

y4

1
ε
(−sy4 + βy3Ω(y1))


, (4.5)

where [y1, y2, y3, y4]
T = [u, u′, y, y′]T , and the new boundary conditions are



y1

y2

y3

y4


(−∞) =



1
β

0

0

0


,



y1

y2

y3

y4


(+∞) =



0

0

1

0


.

(4.6)

Analyzing the Jacobian of the system at y− reveals a one-dimensional unstable manifold, a

one-dimensional stable manifold, and a two-dimensional centered manifold. We are looking

for solutions with exponential decay; thus we obtain a total of three projective conditions

at x = −∞. Similarly, at y+ there is a two-dimensional unstable manifold and a two-

dimensional centered manifold, giving two projective conditions at x =∞. We also require

a phase condition at x = 0. Since the number of conditions must equal the dimension of the
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ode, we look for further simplify the system.

4.2.1 Reducing the dimension of the system. Consider again the ode (4.4). Multi-

plying the first equation by β and adding the second equation, we get

βu′′ + βsu′ + εy′′ + sy′ = 0. (4.7)

Integrating from −∞ to x, we get the conserved quantity

βu′ + βs(u− u−) + εy′ + s(y − y−) = 0,

βu′ + βs(u− 1/β) + εy′ + s(y − 0) = 0,

βu′ + βsu+ εy′ + sy = s.

(4.8)

Note that our conserved quantity can be expressed as

y3 =
1

s
[s− βsy1 − βy2 − εy4] . (4.9)

Let z1 = y1, z2 = y2, z3 = y4. Then we get


z1

z2

y3


′

=


z2

−sz2 − 1
s

[s− βsz1 − βz2 − εz3] Ω(z1)

1
ε
(−sz3 + β

s
[s− βsz1 − βz2 − εz3] Ω(z1))

 , (4.10)
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with 
z1

z2

z3

 (−∞) =


1/β

0

0

 ,

z1

z2

z3

 (+∞) =


0

0

0

 .
(4.11)

We write this as z′ = F (z).

4.2.2 Finding the projective conditions. For x = ±∞, we can simplify dF to

dF (z) =


0 1 0

βΩ(z1) −s+ βΩ(z1)/s εΩ(z1)/s

−β2Ω(z1)/ε −β2Ω(z1)/(εs) −s/ε− βΩ(z1)/s

 , (4.12)

and we get

dF− =


0 1 0

βe−β −s+ βe−β/s εe−β/s

−β2e−β/ε −β2e−β/(εs) −s/ε− βe−β/s

 , (4.13)

dF+ =


0 1 0

0 −s 0

0 0 −s/ε

 . (4.14)

For this new system z′ = F (z), at z− there is a one-dimensional unstable manifold and a

39



two-dimensional stable manifold, giving two projective conditions at x = −∞. At z+ there

is a one-dimensional centered manifold and a two-dimensional stable manifold, giving two

projective conditions at x = +∞. We then add a phase condition to determine a unique

solution for the system. We then double the dimension of the system to solve on the domain

[0,∞), and add three matching conditions. Since the wave speed s > 0 is unknown, we add

a constant variable to our system to solve for s. This gives us a seven-dimensional system

with seven boundary conditions.

This gives us two projective conditions at −∞ and one projective condition at +∞,

giving a total of three projective conditions. Note that there are three matching conditions,

and one phase condition, for a total of seven boundary conditions.
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Figure 4.1: Traveling wave solutions û and ŷ. Note that û′(x) < 0 and ŷ′(x) > 0 for all x.

4.3 Evans function computation

In this section we use the Evans function study the unstable eigenvalues of L. The Evans

function D(λ) is analytic to the right of the essential spectrum and is defined as the Wron-

skian of decaying solutions of the eigenvalue equation for the linearized operator. While the
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Evans function is generally too complex to compute explicitly, it can readily be computed

numerically, even for large systems.

Since the Evans function is analytic in the right-half plane, we can numerically compute the

winding number there. This method allows us to systematically detect the roots of D(λ) = 0

within (and hence the eigenvalues of our system). As a result, we can produce bifurcation

diagrams observing the onset of instability. This was done first by Evans and Feroe and has

since been applied to other systems.

It has been shown analytically [11] that for τ ∼ O(1) and β � 1, a Hopf bifurcation

occurs with two complex eigenvalues traveling into the right-half plane. For τ = .1 the Evans

function was used to analyze the spectrum of L. Numerically, as β was increased the wave

front was seen to move from stability to instability at β = 7.026.

We begin by writing the eigenvalue problem as a first-order system W ′ = A(x, λ)W ,

where

A(x, λ) =



0 1 0 0

λ+ ŷû−2e−1/û −s −e−1/û 0

0 0 0 1

β
ε
v̂û−2e−1/û 0 1

ε
(λ+ βe−1/û) − s

ε


, W =



p1

q1

p2

q2


, ′ =

d

dx
,

and Ωû(û) = e−1/û/û2. We note that eigenvalues correspond to nontrivial solutions W (x)

satisfying the boundary conditions W (±∞) = 0. We also note that A(x, λ) is asymptotically

constant in x, since û is. Thus at each end-state, W (x) must satisfy the constant-coefficient

system

W ′ = A±(λ)W.

Solutions satisfying the boundary condition W (±∞) = 0 must arise from the unstable

manifold W−
1 ∧ W−

2 at x = −∞ and the stable manifold W+
3 ∧ W+

4 at x = ∞. Thus,

eigenvalues of L correspond to values of λ where these manifolds intersect, the manifolds
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intersecting exactly when D(λ) := det(W−
1 W

−
2 W

+
3 W

+
4 )|x=0 is zero.

The unstable/stable modes of W−
1 ∧W−

2 and W+
3 ∧W+

4 can cause numerical instabilities

in the shooting scheme. It has been shown that by rescaling W and shooting in centered

coordinates, good numerical results can be obtained. To rescale W , we let W (x) = eµ
−xV (x)

where µ− is the growth mode associated with W−
1 ∧W−

2 . We then integrate using the ode

V ′(x) = (A(x, λ)− µ−I)V (x). We rescale W similarly at x = +∞.

To ensure analytically varying Evans function output, the initial data V (−L) and Ṽ (L)

must be chosen analytically. Instead of using eigenvectors as a basis for the unstable/stable

manifolds, the method of Kato allows us to find analytically varying spectral projectors.

4.4 Rootfinding for D(λ)

Rootfinding for the Evans function was done using the method of moments. Generally, for a

function f analytic inside and on a simple closed positively oriented curve Γ, if f is nonzero

on Γ and z1, . . . , zn are the roots of f(z) inside Γ, then the pth moment of f about z∗ is given

by

Mp(z
∗) =

1

2πi

∮
(z − z∗)pf ′(z)

f(z)
=

n∑
k=1

(zk − z∗)p.

Specifically, M0(0) gives the number of roots inside Γ while M1(0) gives the sum of roots.

For τ = .1, β = 7.026, two eigenvalues cross the imaginary axis into the right half-plane at

±6.8i × 10−4. Since D(λ) is analytic in the right half-plane, the eigenvalues were tracked

using the method of moments. By taking successive small circular contours about the indi-

vidual eigenvalues and regulating the relative error in the output, approximating M1(0) with

simpsons rule gives a reasonable estimation of the eigenvalues. At β = 10.232 the eigenvalues

combine to form an eigenvalue of multiplicity two on the real axis, then split along the reals.

They then travel toward the origin along the real line.
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Figure 4.2: The path of the eigenvalues λ± in the complex plane, crossing the imaginary axis
at β = 7.026 and joining on the real axis when β = 10.232.
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Figure 4.3: Real part of the eigenvalues for β ∈ [7.026, 14.1].
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Figure 4.4: Imaginary part of the eigenvalues for β ∈ [7.026, 14.1].
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