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abstract

Spread Option Pricing with Stochastic Interest Rate

Yi Luo
Department of Mathematics, BYU

Doctor of Philosophy

In this dissertation, we investigate the spread option pricing problem with stochastic
interest rate. First, we will review the basic concept and theories of stochastic calculus, give
an introduction of spread options and provide some examples of spread options in different
markets. We will also review the market efficiency theory, arbitrage and assumptions that
are commonly used in mathematical finance. In Chapter 3, we will review existing spread
pricing models and term-structure models such as Vasicek Mode, and the Heath-Jarrow-
Morton framework. In Chapter 4, we will use the martingale approach to derive a partial
differential equation for the price of the spread option with stochastic interest rate. In
Chapter 5, we will study the spread option numerically. We will conclude this dissertation
with ideas for future research.

Keywords: Spread Option, Stochastic Interest Rate, Vasicek Model, Term Structure, HJM
Frame Work, GMM
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Chapter 1. Introduction

Every transaction in finance can be viewed as buying or selling a risk. For example, when

the bank sells a mortgage to another bank, it is selling the risk that the loan could default,

and the counter party of this transaction is buying the risk of default. The success of an

investment strategy is determined by the amount of the return given a certain level of risk. A

high amount of risk is generally associated with the possibility of high return, and vice versa.

This relationship is one of the most important aspects in forming an investment strategy, so

we need to find a way to effectively manage risk when investing. In order to accomplish this

goal, we first need to achieve an understanding of what risk is in finance.

In finance, there are two types of assets: risk-free assets and risky assets. The risk-free

asset can be defined as the asset with determined future value, such as a government bond.

When we buy a government bond, we have a guarantee that we will receive a series of coupon

payments at fixed future dates until the bond matures. Another example of a risk-free asset

is a savings account since you are guaranteed to get back the initial deposit plus any interest.

A risky asset is an asset that is not risk-free. It has uncertain future value. The source of

the risk comes from this uncertainty. An example of a risky asset is a share of the stock of a

publicly owned company because the movement of the stock price is undetermined. Another

example is when we buy or sell a foreign currency since in this case we expose ourselves to

the risk of movement on the exchange rate.

As mentioned above, the prevalence of risk in finance is so substantial that we need to find

a way of effectively managing it. Risk management includes identifying and assessing risk,

controlling the impact of unfortunate events, and maximizing the realization opportunities.

The purpose of financial mathematics is to identify risk by studying the relationships between

various assets in the financial market. As mentioned before, risks arise from uncertainty, or

more precisely, risks arise from the uncertainty of the dependence structure between market

variables. For instance, stocks can go up and down together since the rise of one stock might

lead to the rise of similar stocks. Markets can go up and down together as well: a crash in
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the US housing market in 2007 lead to the crash of the US stock market, which then lead to

the ongoing global financial crisis. In contrast, markets can also move in opposing directions.

Since the market crash at the end of 2007, the gold market has approximately doubled, with

the price of gold going from 833 dollars per ounce to 1655 per ounce. This shows that if

we can understand how the market variables are correlated, then we can manage risk easily.

Unfortunately, market variables are typically not correlated in a deterministic way. This is

why stochastic methods are a natural choice for modeling the correlation between market

variables.

Two key issues that arise when working to manage risk in finance are how to quantify

the correlation of market variables and how to hedge the risk arising from this correlation.

The connection of these two important issues is the class of derivatives called spread options.

In general, an option is a contract that gives its owner the right to buy or sell an asset at a

fixed price (called the strike price) in the future. A call option gives the owner the right to

buy, and a put option gives the owner the right to sell. A spread option is an option written

on the spread in the price of two underlying assets S1 and S2. The payoff for a call spread

option with strike price K is given as

(S1,T − S2,T −K)+ = max(S1,T − S2,T −K, 0) (1.1)

The two prices processes S1,t and S2,t forming the spread can be referred to as asset prices,

future prices, indexes, yields, or exchange rates. Spread options are mostly traded on the

Over-the-counter market. Exchanges such as the New York Mercantile Exchange (NYMEX)

and Chicago Board of Trade (CBOT) trade on energy and commodity spread options. Other

types of spread options in various markets include the Note Over Bond spread, Treasury Bills-

Eurodollar spread, and Municipal Over Bonds spread in the fixed income market, calendar

spread and crush spread in the commodity market, and spark spread in the energy markets.

Compared to options on a single asset, spread options not only can hedge movement on one

asset, but they also capture the correlations between two assets, or indexes. This allows
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investors to hedge or speculate more risk. Despite the apparent usefulness of spread options

in hedging and speculating, the pricing of such an option is quite difficult. The difficulty

mainly comes from two parts, the first part is what mathematical model to use to describe

the prices of the underlying processes S1,t and S2,t, and the second part is what discount

factor we should use to discount the future payoff.

In his PhD thesis in 1900, Louis Bachelier created a model using Brownian motion to

show the fluctuations in stock prices. He argued that the small change in price over a short

time should be independent of the current value of the price. He also proposed a model for

the price of a stock now known as the arithmetic Brownian motion. His thesis provided a

foundation for many subsequent developments in probability theory and stochastic analysis

for the next 65 years. Several mathematicians including Wiener, Kolmogorov, Doob, and

Ito carried out these developments. In 1965, Paul Samuelson introduced the geometric

Brownian motion model for the price of an asset. In 1973, Black, Scholes, and Merton

adopted Samuelson’s price model and developed the Black-Scholes formula for the price of

the European call option. They also introduced the idea of arbitrage free and risk neutral

pricing.

Following the work of Black, Scholes and Merton, the insight to adapt Bachelier’s arith-

metic Brownian motion was first exploited in a paper by Wilcox. In 1990, Wilcox [1] derived

a closed form formula for spread options by adapting the arithmetic Brownian motion to

the price process for the underlying assets. However, as mentioned in [2], the formula is not

arbitrage-free, and Poitras proposed a two factor model by modeling the two underlying as-

sets separately with arithmetic Brownian motion and then derived a closed form formula for

the spread option. In 1994, Shimko used a double-integral approach involving the geometric

Brownian motion for the asset prices. Even though he did not come up with a closed form

formula, Shimko’s work inspired other researchers to find a way to get a closed form solution.

Under the geometric Brownian motion model, only an exchange option, which is a spread

option with strike price zero, has a closed form solution by using one asset as a numeraire.
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In [3], Margrabe derived a closed form formula with a PDE approach.

In most of the previous work on spread option pricing, the interest rate was assumed

to be constant, which is far from reality. There are many stochastic models for interest

rates, such as Vasicek model, Cox, Ingersoll and Ross model, and Hull-White model. In [4],

Liu and Wang derived a closed form formula for the exchange option when interest rate is

stochastic. In this dissertation, we first derive a partial differential equation for the price of

a call spread option with the stochastic interest rate. We will also study the price from a

numerical standpoint, specifically how the price changes along with different values of the

parameters in the interest rate model. From the numerical results, we will see that under

the stochastic interest rate model, the price decreases as the mean reverting speed increases,

and it increases when the long term mean increases. We will conclude the dissertation with

ideas for future research.
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Chapter 2. Preparation

In this chapter, we will review basic concept and theories of stochastic calculus. We will

also provide some examples of spread options that are traded in different markets. In the

end of the chapter, we will review the effcient market hypothesis, definition of arbitrage and

assumptions in mathematical finance.

2.1 Stochastic Calculus

In this chapter, we will review basic concepts and results on the Brownian motion and Ito

stochastic calculus. We refer readers to [5] and [6] for the details of the proofs and some of

definitions.

2.1.1 The Brownian Motion. First we will define what is a stochastic process:

Definition 2.1. A stochastic process is a parameterized collection of random variables

{Xt}t∈[0,T ]

defined on a probability space (Ω,F , P ).

Note that for each fixed t ∈ [0, T ] we have a random variable Xt(ω), and for a fixed ω ∈ Ω

we have a function that maps t to Xt(ω) which is called a path of Xt. We can also regard

the process as a function of two variables (t, ω)→ X(t, ω). A good example of a stochastic

process is the Brownian motion.

Definition 2.2. A real-valued stochastic process W (t), t ∈ [0, T ] is called a Brownian motion

if

• the process has independent increments for 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ T

• for all t ≥ 0, h > 0, W (t+h)−W (t) is normally distributed with mean 0 and variance

h,
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• the function t→ W (t) is continuous a.s.

We also call a Brownian motion a Wiener processes. Here are some properties of a

Brownian motion

(i) Wt is continuous in t a.s.

(ii) For any interval [a, b] ⊂ [0,∞), Wt is not monotone.

(iii) Wt is not differentiable at any point.

2.1.2 Filtration and Martingale Property. Information is one of the most important

piece in finance. So in mathematic finance, we need some notation for the amount of available

at a time, and we call it a filtration. In mathematical finance, when we use Brownian motion

to describe the ”randomness” of the market or an asset, the information available at time t

is totally determined by the Brownian motion W (t). Thus we use the filtration for Brownian

motion to describe the amount of information.

Definition 2.3. Let (Ω,F ,P) be a probability space, and W (t) be a Brownian motion on

this space. A filtration for the Brownian motion is a collection of σ−algebra {Ft}∞t=0, such

that

(i) Ft ⊂ F for all t.

(ii) For 0 < s < t, we have Fs ⊂ Ft.

(iii) The Brownian motion Wt is adapted to Ft for all t ≥ 0, i.e. Wt is Ft measurable.

(iv) For 0 < s < t, the increment Wt −Ws is independent of Fs.

Properties (ii) and (iii) guarantee that we can get the information at time t by observe

the movement of Brownian motion up to time t. Property (iv) implies that we can not use

the today’s information to predict the feature, which leads to the efficient market hypothesis.
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One of the assumption in financial mathematics is there is no arbitrage in the market.

This implies that investing is a ”fair game”, which means that on average, we are not expected

to have gains or losses. If we translate this into mathematics, we say it is a martingale or

has martingale property. Recall the definition of a martingale:

Definition 2.4. Let (Ω,F ,P) to a probability space, and {Ft} is a filtration for this space

,and Xt is a stochastic process on this space. Xt is call a martingale process, if

(i) Xt is adapted to Ft for all t ≥ 0

(ii) E[|Xt|] <∞ for all t ≥ 0

(iii) For 0 < s < t, we have E[Xt|Fs] = Xs

If we consider Xt as an investment portfolio, then the third property says that with the

information available now (at time s), on average the investor is not going to make any profit

or have any losses in a future time t. Thus if the price process for every asset in the market

is martingale, then there is no arbitrage. To see why, let’s start with a portfolio Xt with zero

initial value, X0 = 0. Since a portfolio is a linear combination of assets, then by the linearly

of conditional expectation, Xt is also a martingale. Thus for any t > 0, we have

E[Xt|F0] = E[Xt] = X0 = 0 (2.1)

and recall that an arbitrage portfolio means that for any t > 0, we have

P(Xt ≥ 0) = 1 and P(Xt > 0) > 0 (2.2)

clearly this will never happen if Xt is martingale.

Theorem 2.5. Brownian motion Wt is a martingale.
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2.1.3 Ito Integral. Suppose we have a model with some random noise


dXt

dt
= a(t,Xt) + b(t,Xt) · ξ

X(0) = x0

(2.3)

Ito considered the case where the noise term ξ = ∆Wt, and Wt is Brownian motion. Then

we have the stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt, (2.4)

a stochastic process Xt is a solution of (2.4) if

Xt = x0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dWs (2.5)

Note that a Brownian motion is nowhere differentiable, so we need to define the term

∫ t

0

b(s,Xs)dWs.

Definition 2.6. Suppose 0 ≤ S ≤ T , let D = D(S, T ) be the class of functions that

f(t, ω) : [0,∞]× Ω→ Rn, (2.6)

satisfy

(i) The function (t, ω)→ f(t, ω) is B × F measurable, where B is the Borel algebra.

(ii) f is adapted to Ft.

(iii) E
[∫ T

S
f(t, ω)2dt

]
<∞.
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A function φ ∈ D is called an elementary function if

φ(t, ω) =
k−1∑
j=1

ej(ω)χ[tj ,tj−1)(t) (2.7)

where ej(ω) is Ftj measurable, and χ[tj ,tj−1)(t) is the indicator function, (in the measure

theory χ is called the characteristic function). Then the Ito integral of elementary

functions is defined as following:

Definition 2.7. Let {S = t1 < t1 < · · · < tk = T} is a partition of the interval [S, T ], then

∫ T

S

φ(s, ω)dWt(ω) =
k−1∑
j=1

ej(ω)(Wsj+1
(ω)−Wtj(ω)) (2.8)

Theorem 2.8. Properties of Ito Integral for elementary function The Ito integral

for elementary function defined as in (2.7), has following properties:

(i) For each t, the Ito integral is Ft-measurable

(ii) Let φ(t) and ψ(t) be two bounded elementary function, and α be a constant, then we

have

α

∫ T

S

φ(t)dWt ±
∫ T

S

ψ(t)dWt =

∫ T

S

αφ(t)± ψ(t)dW1 (2.9)

(iii) Let Xt =
∫ t
S
φ(u)dWu, then, Xt integral is martingale for all t ∈ [S, T ].

(iv) E
[∫ t

S
φ(u)dWu

]
= 0 for all t ∈ [S, T ].

Now we introduce a important result of Ito integral for elementary functions:

Lemma 2.9. (The Ito isometry of Ito integral for elementary functions) If φ(t, ω)

is bounded and elementary then

E

[(∫ T

S

φ(t, ω)dWt(ω)

)2
]

= E

[∫ T

S

φ2(t, ω)dt

]
(2.10)
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Now we can extend this result from elementary functions to all functions in D. It can be

done in the following three steps, for more details please read [5]:

Step 1. Let g ∈ D be bounded and continuous in t. Define

φn =
∑
j

g(tj, ω)χ[tj ,tj+1)(t) (2.11)

Then φn are elementary functions since g ∈ D, and is also bounded. Because g is

continuous in t, then it is uniformly continuous in [S, T ], thus for a given ε, there exists

δ such that when |tj − ti| ≤ δ we have

|g(ti, ω)− g(tj, ω)| ≤ ε. (2.12)

Now we make the interval [tj, tj+1) have length less than δ. Then for all t ∈ [tj, tj+1)

we have ∫ T

S

(g − φn)2dt =
∑
k

∫ tj+1

tj

(g − φn)2dt = ε2(T − S). (2.13)

This implies that for each ω we have
∫ T
S

(g − φn)2dt → 0 as n → ∞, thus by the

bounded convergence theorem we have

E

[∫ T

S

(g − φn)2dt

]
→ 0, as n→∞

Step 2. Let h ∈ D be bounded, |h| ≤M . Let ψn be a continuous function in t, such that

(1) ψn(t) ≥ 0

(2) ψn(t) = 0 for t ≤ − 1
n
, or t ≥ 0

(3)
∫∞
−∞ ψn(t)dt = 1.

Now define

gn(t, ω) =

∫ t

0

ψn(s− t)h(s, ω)ds (2.14)
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then gn is continuous in t and bounded. With the same reasoning as in step 1 we have∫ T
S

(h− gn)2dt→ 0 as n→∞, thus by the bounded convergence theorem we have

E

[∫ T

S

(h− gn)2dt

]
→ 0, as n→∞

Step 3. Let f ∈ D, then define

hn(t, ω) =


−n f(t, ω) < −n

f(t, ω) −n ≤ f(t, ω) ≤ n

n f(t, ω) > n

(2.15)

Then hn ∈ V , and is bounded by |f |, then by the Dominated Convergence Theorem

we have

E

[∫ T

S

(f − hn)2dt

]
→ 0 as n→∞ (2.16)

Now we are ready for the definition of the Ito integral.

Definition 2.10. (The Ito integral) Let f ∈ D(S, T ), Then the Ito integral of f is defined

by ∫ T

S

f(t, ω)dWt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dWt(ω) (2.17)

where {φn} is a sequence of elementary functions such that

E

[∫ T

S

(f − φ)2dt

]
→ 0 as. n→∞. (2.18)

We can choose such a sequence by steps 1-3. Hence, we should have following properties

for the Ito integral with general integrands [5], [6]

Theorem 2.11. Property for Ito integral with general integrands Let f, g ∈ D(0, T ),

and 0 ≤ s < t < r < T , a is a constant, then

(i)
∫ r
s
f(u)dWu =

∫ t
s
f(u)dWu +

∫ r
t
f(u)dWu
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(ii)
∫ t
s
af(u)± g(u)dWt = a

∫ t
s
f(u)dWu ±

∫ t
s
g(u)dWu

(iii)
∫ t
s
f(u)dWu is Ft-measurable

(iv) E
[∫ t

s
f(u)dWu

]
= 0

(v) Let Xt =
∫ t

0
f(u)dWu, then Xt is martingale.

Proof. These properties are true for elementary functions, thus we can use steps 1-3 to obtain

them for f, g ∈ D.

We can also have the Ito isometry for all functions in D as:

Theorem 2.12. (The Ito isometry) For each f ∈ D we have

E

[(∫ T

S

f(t, ω)dWt(ω)

)2
]

= E

[∫ T

S

f 2(t, ω)dt

]
(2.19)

2.1.4 Ito Formula.

Theorem 2.13. (The 1-dimensional Ito formula) Let Xt be a stochastic process given

by

dXt = u(t,Xt)dt+ v(t,Xt)dWt (2.20)

Let g(t, x) ∈ C2([0,∞]× R), then

Yt = g(t,Xt) (2.21)

is a stochastic process and

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2 (2.22)

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt · dt = dt · dWt = dWt · dt = 0, dWt · dWt = dt (2.23)
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Proof. Please refer to [5] for a sketch of the proof.

Note that since Wt is nowhere differentiable, dWt is a just a notation, but with the

meaning of (2.23). I will provide an explanation from [6], first let us look at the quadratic

variation of Brownian motion Wt. Recall the definition of quadratic variation:

Definition 2.14. Let f(t) be a function defined on [0, T ], the quadratic variation of f up

to time T is

[f, f ](T ) = lim
‖Π‖→0

n−1∑
i=0

(f(ti+1)− f(ti))
2 (2.24)

where Π = {0 = t0 < t1 < · · · < tn = T} and ‖Π‖ = maxi=0,1,...,n−1{ti+1 − ti}

We have following theorem in [6] regarding the quadratic variation of Brownian motion

Theorem 2.15. Let Wt be a Brownian motion, then [W,W ](T ) = T for all T ≥ 0 a.s.

Proof. Let Π = {0 = t0 < t1 < · · · < tn = T}, and ‖Π‖ = maxi=0,1,...,n−1{ti+1 − ti}, then let

QΠ :=
n−1∑
i=0

(Wi+1 −Wi)
2 (2.25)

where Wi := Wti . Note that QΠ is a random variable. We have

E[QΠ] =
n−1∑
i=0

E[(Wi+1 −Wi)
2] =

n−1∑
i=0

(ti+1 − ti) = T (2.26)

but this is not enough to say that QΠ → T as ‖Π‖ → 0 a.s. We have to look at the variance
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of QΠ.

V ar(QΠ) =
n−1∑
i=0

V ar((Wi+1 −Wi)
2)

=
n−1∑
i=0

(
E[(Wi+1 −Wi)

4]− (ti+1 − ti)2
)

=
n−1∑
i=0

2(ti+1 − ti)2

≤
n−1∑
i=0

2‖Π‖(ti+1 − ti)

= 2‖Π‖T

(2.27)

and it goes to zero as we refine the partition. Thus we can say that QΠ goes to T a.s.

As remarked in [6], for 0 < T1 < T2, we have [W,W ](T1) = T1 and [W,W ](T2) = T2, thus

we have [W,W ](T2)− [W,W ](T1) = T2−T1. This implies that Brownian motion accumulates

one quadratic variation per unite time and we write dWtdWt = dt to record this fact.

Similarly, we can show that for a partition Π,

lim
‖Π‖→0

n−1∑
i=0

(Wi+1 −Wi)(ti+1 − ti) = 0 (2.28)

and

lim
‖Π‖→0

n−1∑
i=0

(ti+1 − ti)2 = 0 (2.29)

which means that the function f(t) = t accumulates no quadratic variation per unit time

and two functions t and Wt together also accumulate no quadratic variation per unit time,

thus we can record these two facts by dWtdt = dtdt = 0.

The Ito formula also gives:

Theorem 2.16. (Integration by parts) Suppose f(t, ω) is continuous and of bounded
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variation with respect to s ∈ [0, t] for a.a.ω. Then

∫ t

0

f(s)dWs = f(t)Wt −
∫ t

0

Wsdfs. (2.30)

Proof. Let Yt = f(t)Wt, then by Ito formula, we have

d(f(t)Wt) = Wtf
′(t)dt+ f(t)dWt (2.31)

integrate this equation from 0 to t, we will get the desired result.

The Ito formula has a multi-dimensional version:

Theorem 2.17. (Multi-dimensional Ito formula) Let

dXt = u(t,Xt)dt+ v(t,Xt)dWt (2.32)

be an n-dimensional Ito process as above. Let g(t, x) = (g1, · · · , gn) be a C2 map from

[0,∞)× Rn in to Rm, Then Y (t, ω) = g(t,Xt) is an stochastic process and for k = 1, · · · , n

dYk =
∂gk
∂t

(t,Xt)dt+
∂gk
∂xi

(t,Xt)dXi +
1

2

∑
i,j

∂2gk
∂xj∂xj

(t,Xt) · dXidXj (2.33)

We also have the Ito product formula

Theorem 2.18. (Ito product formula) If Xt, Yt are Ito processes, then

d(XtYt) = XtdYt + YtdXt + dXtdYt (2.34)

Proof. Let g(x, y) = x · y, then XtYt = g(Xt, Yt), by the Ito formula we have

d(XtYt) =
∂g

∂Xt

dXt +
∂g

∂Yt
dYt +

1

2

∂2g

∂X2
t

(dXt)
2 +

1

2

∂2g

∂Y 2
t

(dYt)
2 +

∂2g

∂Xt∂Yt
dXtdYt

= YtdXt +XtdYt + 0 + 0 + dXtdYt.

(2.35)
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Therefore

XtdYt = XtYt + YtdXt + dXtdYt

2.2 Spread Option

The word spread is often understood as the difference between the bid and ask prices, but

it is also used for the difference between two indexes, for example: the spread of the prices

of two stocks, the spread of the yields of two Treasury bonds with different maturity, the

spread between prices of feature contracts with different deliver dates. A spread option by

definition is an option written on the difference between the values of two assets. The choices

of two assets is limitless, and can across all types of markets. Most of spread option trading

are done in the over the counter market, and only small amount are traded in an exchange,

energy spreads are traded in The New York Mercantile Exchange (NYMEX) for example

and some commodity spreads are traded in the Chicago Board of Trade (CBOT).

2.2.1 Spread Option Trading in Different Markets. Spread options are traded

mostly in the fixed income markets, and commodity market. In this section, we will give a

brief review on different types of spread options that are traded in each market.

Fixed Income Markets. In the US fixed income market, most traded spread options

are yield spread options. It is an option written on the difference between the yields-to-

maturity of two bonds or so called two debt obligations. The two bonds can have different

maturities, credit risk, etc.

The Note Over Bond spread (NOB for short) is a spread option created by taking opposite

positions in feature contracts of 30-year treasury bonds with positions in feature contracts of

10-year treasury notes. It is studied in [7]. The Treasury Bills - Eurodollar spread option is

written on the difference between the three-month LIBOR and the three-month T-bill interest

rate. The size of the spread is usually in basis points. The 3-month T-bill rate is usually
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considered as a risk-free rate and the LIBOR reflects the credit standing of commercial banks.

An increasing on the spread indicates that the investors are risk-averse. This is an example

of credit spread. The Municipal Over Bonds spread (MOB) is the difference between the

yields of a municipal bond and a treasury bond with the same time-to-maturity.

Commodity Market. In the commodity market, spread options are usually created by

taking long or short positions in forward or feature contracts. They are usually referenced

as futures spread.

A calendar spread refers to an option taking position in two contracts with different

expiration date for the same commodity. An example of calender spread is given in [8], a

spread between the spot and three-month prices of copper on the London Metal Exchange

(LME).

Another example of spread options in Commodity Market is crush spread option. It is

traded on the CBOT. The underlying assets are soybean, soybean oil and soybean meal. It

is created by taking a long position of futures on soybean and taking a short position on

futures of soybean oil and soybean meal. This option indicates the difference between the

cost of a commodity and the combined sales revenue of its finished derivative products, this

is called the gross processing margin. A soybean meal or oil producer can use this option

to hedge the movement on the price of his product and the price of soybeans. This kind of

spread is called product spread.

Oil, gas and electricity are also traded in a commodity market, more specifically, in the

energy market. One of the most traded spread options in energy markets is crack spread.

It is created by simultaneously taking a long position in future contracts in crude oil and

taking short position in its refined petroleum products such as gasoline, heating oil, diesel,

etc. The most popular crack option is called the 3 : 2 : 1 crack option. The option consists

of three crude oil futures, two gasoline futures, and one heating oil future [9].

Similar to the crack spread option, the spark spared option is also another example in the

energy market. The spark spread involves the simultaneous purchase and sale of electricity
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and natural gas futures contracts. The spread is expressed in dollar per mega Watt hour.

Since the price for natural gas is expressed in dollar per British thermal unit (btu), we need

to use the heat rate to convert the units. The heat rate measures how may btu of natural

gas is need to generate one Kilo Watt hour electricity. Let png denote the prices of natural

gas, pe denote the price of electricity and r is the heat rate, then the spread is calculated as:

s = png × r × 1000− pe (2.36)

In [10], a closed formula of the price of such spread option is given under both geometric

brownian motion model and mean-reversion model with strike price is zero.

2.3 Market Efficiency, Arbitrage and Assumptions

In this section, we will review efficient market hypothesis, definition of arbitrage and as-

sumptions in mathematical finance.

2.3.1 Efficient Market Hypothesis. Efficient Market Hypothesis (EMH) gives an as-

sumption on the relation between an asset’s price and the information about that asset. The

general statement of the EMH is: all available information of an asset is already included in

the asset’s price. There are three version of the EMH, the difference among these versions

is what is meant by ”all available information”.

The Strong-form of EMH states that all relevant information including inside informa-

tion is included in the asset’s prices. This assumption is quite extreme and not realistic since

inside trading is prohibited by the SEC.

The Semistrong-form of EMH assets that the asset’s price includes all the public data

of the asset. That includes historical data, if the asset is a stock, the price includes the

earning forecast, quality of management, balance sheet information, etc. The bottom line is

that if an investor can get a piece of information from public resources, then it is already

included in the price.
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The Weak-form of EMH states that all the historical data is included in its price.

This form implies that studying past prices data for an asset and trying to find some kind of

trend is pointless. This form of efficiencies is also refered to as Markov property and financial

mathematics is based on this form of EMH.

2.3.2 Arbitrage. Another fundamental concept in financial mathematics is arbitrage.

The mathematical definition of arbitrage is:

Definition 2.19. Let X(t) be a stochastic process, which represents the value of a portfolio

with X(0) = 0. An arbitrage is that for some time T > 0, we have

P(X(T ) ≥ 0) = 1 and P(X(T ) > 0) > 0 (2.37)

In an arbitrage free market,if two portfolio A and B has same value in any time in the

feature, then they should have same value now. In the next section, we should see how to use

this property of arbitrage free to price a derivative.In financial mathematics, we look for the

price in an arbitrage-free market or the price that will not produce an arbitrage opportunity,

and we call this the arbitrage-free price.

2.3.3 Assumptions in financial mathematics. In financial mathematics, we generally

assume following:

(i) Not moving the market. We usually assume that the trade we made will not move the

market prices of the assets.

(ii) No transaction cost. When we price a derivative, we assume we can trade with no

transaction cost.

(iii) Fraction shares. In financial mathematics, we usually don’t restrict the number of

share of stock or derivative to be integers, but all real numbers. This means that we

are assuming we can sell or buy half share of a stock. One certainly cannot do this,
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but if we trade in terms of millions, then this makes sense.

(iv) Short sell. In the process of developing a hedging strategy, the number of assets in a

portfolio is assumed to be all real numbers, which means we can short sell our assets

at will.
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Chapter 3. Mathematical Modeling

This chapter reviews the existing models to give us a general frame work on the approaches

to the spread option pricing problem. The framework can be broke down into following

steps:

• identify the stochastic model for the price of the two underlying assets

• write down the stochastic model in the risk-neutral measure

• Calculate the expectation of discounted payoff.

In all the models we shall see below, the interest rate is assumed to be constant. This

assumption is far away from reality. The new model we propose in this dissertation allows

the interest rate to be stochastic. In the section 2, we will review the term-structure models

that are used for the stochastic interest rate for this dissertation. In section 3, we will review

the the relation between the short rate model and the HJM framework.

3.1 Existing Models for Pricing Spread Option

In this section, I will review existing models for pricing spread option. Here we consider a

spread option with two underlying assets, their prices are denoted as S1(t), S2(t), which are

two stochastic process adapted to the filtration Ft. We shall focus on pricing a European

call on the spread S1(t) − S2(t) with a strike price K, and maturity T . The payoff of such

an option at maturity T is (S1(T )− S2(T )−K)+.

In order to price a spread option, the first step is to determine the number of independent

sources of uncertainty or randomness thatare in the model. For spread option, it is the spread

on the prices of the two underlying assets. We can either only consider the spread S1(t)−S2(t)

as a signal process, such models are called one-factor model, or consider the prices of two

underlying asset separately, which are called two-factor model.
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3.1.1 One Factor Models. In a one factor model, we consider the spread of two under-

lying prices as a single stochastic process or stochastic factor. This approach, is relatively

simple compare to the two factor models, and only requires one set of historical data for

price and volatility. In addition, one factor models do not require any knowledge of the

correlation of two underlying assets.

Geometric Browinian Motion. The simplest case of one factor model is assume that

the spread St = S1(t)− S2(t) satisfies the Geometric Brownian Motion:

dSt = µStdt+ σStdWt (3.1)

where dWt is the standard Brownian motion. Then we can solve for St get

St = S0 exp

{(
µ− σ2

2

)
t+ σWt

}
(3.2)

In this case, the call spread option can be priced as a European call option using Black-

Scholes formula

V (t) = N(d1)(S1(t)− S2(t))−N(d2)ke−r(T−t) (3.3)

where

d1 =
ln S1(t)−S2(t)

K
+
(
µs + σ2

s

2

)
(T − t)

σ
√
T − t

d2 =
ln S1(t)−S2(t)

K
+
(
µs − σ2

s

2

)
(T − t)

σ
√
T − t

(3.4)

If both underlying assets are tradeable, such as stocks, then we can think of the spread

also as a tradeable asset, thus the parameter µs = r.

In order to calculate the parameter σs. we can use the historical data for each underlying
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asset to get the variance, then using following equation

σs =
√
σ2
S1

+ 2ρσS1σS2 + σ2
S2

(3.5)

This implies that the difference of two correlated lognormal random variables is still lognor-

mal, which is false as pointed in [11].

This model is simple and easy to use. But there are many problems with this model.

They can be found in [12]. The first problem is that under geometric Brownian motion, the

spread can never be negative, yet negative spread do appear in most markets. Second, the

lognormal also suggests that the volatility of the spread is positively related to its absolute

value: the bigger spread is, the greater volatility gets. This is not supported by either

market evidence or experience. Lastly, if one investor try to hedge a short position on a

spread option, under this model, it only requires a single delta hedge strategy on the spread

instead of two different strategies on each underlying asset. As pointed out in [12], this is

clearly not sufficient.

Arithmetic Brownian Motion. In 1990, Wilcox [1] employed arithmetic Brownian

motion to get a closed form formula for spread option. He assumes that the spread satisfies

dSt = αdt+ σdWt (3.6)

Then we have a closed form formula for the price of spread option:

V (t) = e−r(T−t)
[
(St + α(T − t)−K)N(w) + σ

√
T − tn(w)

]
(3.7)

where

w =
St + α(T − t)−K

σ
√
T − t

(3.8)

and N(w) and n(w) represent the CDF and density function for normal distribution.

This model is simple but it has a fatal problem: it is not consistent with the no arbitrage
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condition. This point is mentioned in Poitras’s paper in 1998 [2]. His argument is in the

special case where both assets pay the same constant dividend yield δ, by treating the spread

as one random variable, the price of the spread option V (t, St) should satisfy

∂V

∂t
= rV − (r − δ)∂V

∂x
x− 1

2

∂2V

∂x2
σ2 (3.9)

Now if we differentiate Wilcox’s formula (3.7) with δ = 0, we can see it does not satisfy

the PDE because of the parameter α, which Poitras calls arbitrary parameter. To resolve

this problem, in [2], Poitras imposed the condition α = (r − δ)St. Then the model of the

spread is:

dSt = (r − δ)Stdt+ σdWt (3.10)

this gives us a different formula:

V (t) =
(
Ste
−δ(T−t) −Ke−r(T−t)

)
N(y) + V n(y) (3.11)

where

V = σ

√
e−2δ(T−t) − e−2r(T−t)

2(r − δ)

y =
Ste
−δ(T−t) −Ke−r(T−t)

V

(3.12)

and N(y) and n(y) represent the CDF and density function for the normal distribution.

As mentioned in [12], all one-factor model suffers one problem is that it only provides

single hedging strategy. The solution is that we need two-factor models.

3.1.2 Two-factor Models. In a two factor model, we consider the two underlying assets

separately. The price process of each asset have its own SDE.
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Arithmetic Brownian Motion. In [2], Poitras also proposed a two factor model. The

two underlying assets follow

dSi,t = (r − δi)Si,tdt+ σidWi,t (3.13)

for i = 1, 2. Where r is the interest rate, δi and σi are the dividend yield and volatility for

each asset. Here Wi,t are standard Brownian motion with correlation dW1,tdW2,t = ρdt.

Under this model, the no-arbitrage pricing formula for spread call option is

V (t) = (S1,te
−δ1(T − t)− S2,te

−δ2(T − t)−Ke−r(T−t))N(z) + σn(z) (3.14)

where

ν11 = σ1

(
e−2δ1(T−t) − e−2r(T−t)

2(r − δ1)

)
ν22 = σ2

(
e−2δ2(T−t) − e−2r(T−t)

2(r − δ2)

)
ν12 = ρσ1σ2

(
e−(δ2+δ1)(T−t) − e−2r(T−t)

2(r − δ1 − δ2)

)
σ =

√
σ2

1 + 2ρσ1σ2 + σ2
2

z =
S1,te

−δ1(T − t)− S2,te
−δ2(T − t)−Ke−r(T−t)

σ

(3.15)

Geometric Browinian Motion. A natural way for a two-factor geometric Browinian

motion model would be assume the two assets satisfy

dSi,t = µiSi,tdt+ σiSi,tdWi,t (3.16)

where Wi,t are Brownian motion and dW1,tdW2,t = ρdt. We know Si,t is lognormal and let

f(s1|s2) be the density function of S2,t given S1,t, and f(s2) is the density function of S2,t.
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Then the price of a call option under risk-neutral measure is

V (t) = Ẽ[e−r(T−t)(S1,T − S2,T −K)+]

= e−r(T−t)
∫ ∞
−∞

∫ ∞
−∞

(s1 − s2 −K)+f(s1|s2)f(s2)ds1ds2

= e−r(T−t)
∫ ∞
−∞

∫ ∞
s2+K

(s1 − s2 −K)f(s1|s2)ds1f(s2)ds2

= e−r(T−t)
∫ ∞
−∞

F (s2)f(s2)ds2

(3.17)

where

F (s2) =

∫ ∞
s2+K

[s1 − (s2 +K)]f(s1|s2)ds1 (3.18)

We can consider F (s2) be the price of a call option with underlying asset S1,t with strike

price s2 +K, then we can use Black-Scholes-Merton formula. The solution for the geometric

Browinian motion is given as:

Si,t = Si,0 exp

{
(µi −

1

2
σi)t+ σiWi,t

}
(3.19)

Now define two random variable B1,t and B2,t as

B1,t = W1,t

B2,t =
W2,t√
1− ρ2

− ρW1,t√
1− ρ2

(3.20)

then we have following theorem

Theorem 3.1. Let W1,t and W2,t be two Brownian motion with correlation dW1,tdW2,t = ρdt.

Let B1,t and B2,t be two random variable defined as in (3.20), then they are independent

Brownian motions.

Proof. Since W1,t and W2,t are martingale, then both B1,t and B2,t are also martingale and
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have continuous path. We also have B1,0 = B2,0 = 0. It is easy to check that

dB1,tdB1,t = dW1,tdW1,t = dt

dB2,tdB2,t =
dW2,tdW2,t

1− ρ2
− 2ρdW1,tdW2,t

1− ρ2
+
ρdW1,tdW1,t

1− ρ2
=

1− 2ρ2 + ρ

1− ρ2
dt = dt

dB2,tdB2,t =
ρdt√
1− ρ2

− ρdt√
1− ρ2

= 0

(3.21)

thus by the Levy’s theorem, B1,t, and B2,t are two independent Brownian motions.

Now we can write (3.19) as

S1,t = S1,0 exp

{
(r − 1

2
σ2

1)t+ σ1B1,t

}
S2,t = S2,0 exp

{
(r − 1

2
σ2

2)t+ σ2(ρB1,t +
√

1− ρ2B2,t)

} (3.22)

Now let

α1 = r − 1

2
σ2

1

α2 = r − 1

2
σ2

2

β1 = σ2ρ

β1 = σ2

√
1− ρ2

(3.23)

then the price of a European call options is

V (0) = Ẽ[e−rT (S1,T − S2,T −K)+]

= Ẽ[e−rT (s1,0 exp {α1T + σ1B1,T} − s2,0 exp {α2T + β1B1,T + β2B2,T} −K)+]

= e−rT
∫ ∞
−∞

∫ ∞
−∞

(s1,0 exp {α1T + σ1x1} − s2,0 exp {α2T + β1x1 + β2x2} −K)+f(x1, x2)dx1dx2

(3.24)

where x1 and x2 are two variables for the integration, and f is the joint density function of

independent normally distributed random variables with mean zero and variance T . In this
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case we know the joint density function f(x1, x2) is just the product of the density function

for x1 and x2 since they are independent.

3.2 Existing Term-Structure Models

In this section, we will give a review for the existing term-structure models, specificly the

Vasicek model. This model is one-factor, time homogeneous, meaning that there is only one

random source for the interest rate and the rate only depends on constant coefficients. It is

also called an affine-yield model, because the yield of a zero-coupon bond is assumed to be

an affine function of the interest rate, i.e P (t, T ) = exp{−r(t)C(t, T )− A(t, T )}.

3.2.1 The Vasicek Model. Vasicek[13] assumed that the instantaneous spot rate fol-

lows the Ornstein-Uhlenbeck process:

dr(t) = θ(λ− r(t))dt+ σdWt (3.25)

where θ, λ and σ are constants. The solution of this SDE is given by

r(t) = r(0)e−θt + λ
(
1− e−θt

)
+ σ

∫ t

0

e−θ(t−u)dWu (3.26)

so the rate r(t) is normally distributed with mean and variance given by

E[r(t)] = r(0)e−θt + λ
(
1− e−θt

)
V ar[r(t)] =

σ2

2λ

(
1− e−2θt

) (3.27)

As you can see from the expectation of r(t) as t goes to infinity, the expected rate tends

to λ. So the parameter λ can be regarded as a long term average rate. So in this model

r(t) is mean reverting. The parameter θ is called the mean revering speed, it represents on

average, how fast the interest rate changes with respect to the difference between the interest

28



rate and the long term mean. Vasicek model is the first model to capture the mean reverting

property of interest rate.

Since this is an affine-yield model, then the bond price is given as:

P (t, T ) = exp{−r(t)C(t, T )− A(t, T )} (3.28)

where A(t, T ) and C(t, T ) are

C(t, T ) =
1

λ

(
1− e−λ(T−t)) (3.29)

and

A(t, T ) =

∫ T

t

λθC(s, T )− 1

2
σ2C2(s, T )ds

=

(
θ − σ2

2λ2

)
(T − t− C(t, T )) +

σ2

4λ
C2

(3.30)

The proof and derivation of the bond price can be found in [6].

3.2.2 The Heath-Jarrow-morton Model. The Heath-Jarrow-Morton (HJM) model

models the yield curve in terms of forward rates. A forward rate f(t, T ) is a interest rate

that you can lock at time t to borrow money at later time T . In [6], the author gives a really

good example on forward rates, I will recite it here.

Let T̄ be a fixed time horizon, all the bonds in this example will be mature at or before

T̄ . For 0 ≤ t ≤ T ≤ T̄ , let P (t, T ) denote the price of a bond at time t that matures at time

T with par value 1.

At time t, we can start so-called forward investing by setting up the following portfolio.

Let δ > 0 be small, the portfolio is as follows:

• Short one bond matures at time T .

• Long P (t,T )
P (t,T+δ)

shares of bond matures at T + δ.
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you can see the cost of this portfolio is zero, since the short position generates income P (t, T )

and the long position costs P (t, T ). Now at time T , the investor will need to borrow one

dollar to cover the bond he shorted, and at later time T + δ, he receives Pt,T
P (t,T+δ)

dollars from

the long position. Now the value of the portfolios is

P (t, T )

P (t, T + δ)
− 1egδ (3.31)

where g is the interest rate to borrow at time T . Under the assumption that there is not

arbitrage, we must have

P (t, T )

P (t, T + δ)
− 1egδ = 0 (3.32)

solve for g we get

g = − lnP (t, T + δ)− lnP (t, T )

δ
(3.33)

Note that g is known at time t,i.e. it is Ft-measurable, thus an investor can ”lock in”

this rate at earlier time t. In fact this is the only rate an investor can lock in at time t to

invest or borrow at time T without having arbitrage.

The forward rate at time t for investing at time T is defined as

f(t, T ) = lim
δ→0+

− lnP (t, T + δ)− lnP (t, T )

δ
= −∂P (t, T )

∂T
(3.34)

thus we have following relative between the bond price

P (t, T ) = e−
∫ T
t f(t,s)ds (3.35)

Note that the short interest rate at time t is r(t) = f(t, t).

In the HJM model, assuming the initial forward curve f(0, T ) is known, the forward

curve for a later time t satisfies the SDE

df(t, T ) = α(t, T )dt+ σ(t, T )dWt (3.36)
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or the integral form

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ T

0

σ(s, T )dWs (3.37)

where Wt is Brownian motion, and α(t, T ) and σ(t, T ) is adapted to Ft and satisfies the

conditions in order to have the solution exist. Thus the price of the bond P (t, T ) is given as

P (t, T ) = exp

(∫ T

t

f(0, s)ds+

∫ T

t

∫ t

0

α(u, s)duds+

∫ T

t

∫ t

0

σ(u, s)dWuds

)
(3.38)

by Fubini’s theorem in real analysis and for Ito integral [14], we have

P (t, T ) = exp

(∫ T

t

f(0, s)ds+

∫ T

t

∫ t

0

α(u, s)duds+

∫ T

t

∫ t

0

σ(u, s)dWuds

)
= exp

(∫ T

t

f(0, s)ds+

∫ t

0

∫ T

t

α(u, s)dsdu+

∫ t

0

∫ T

t

σ(u, s)dsdWu

)
= exp

(∫ T

t

f(0, s)ds+

∫ t

0

α∗(t, T )du+

∫ t

0

Σ(t, T )dWu

) (3.39)

where

α∗(t, T ) =

∫ T

t

α(u, s)ds and Σ(t, T ) =

∫ T

t

σ(u, s)ds (3.40)

Recall that the short interest rate is

r(t) = f(t, t) = f(0, t) +

∫ t

0

α(s, t)ds+

∫ T

0

σ(s, t)dWs (3.41)

then we can use this to find the dynamic of f(t, T ) under the risk-neutral measure. By Ito’s

formula and Gironove’ theorem we have the SDE for the forward curve under risk-neutral

measure as

df(t, T ) = σ(t, T )Σ(t, T )dt+ σ(t, T )dW̃t (3.42)
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and the bond price staisfies

dP (t, T ) = r(t)P (t, T )dt− Σ(t, T )P (t, T )dW̃t (3.43)

3.3 HJM and Short Rate Models

When pricing a derivative, the interest rate or short rate model is popular. Short rate models

are HJM models, that’s why we usually call the HJM model a framework. In this section,

we will present the Vasicek model is a HJM model. To do so, we need to choose a volatility

for the forward curve, so that the short rate model results from HJM model is exactly the

same as the original model.

The Vasicek model can be written as

drt = λ(µ− r(t))dt+ σr(t)dW̃t (3.44)

Let α(r(t), t) = λ(µ− r(t)) and β(r(t), t; γ) = σ.

Then by the risk-neutral pricing formula, we know the price of a bond P (t, T ) is given as

P (t, T ) = Ẽ[exp−
∫ T

t

−r(s)ds|Ft] (3.45)

then from (3.35) we have

∫ T

t

f(t, s)ds = − lnP (t, T ) = − ln Ẽ

[
exp−

∫ T

t

−r(s)ds|Ft
]
. (3.46)

By the Markov property of r(t), we know there exists a function g(x, t, T ) such that

g(r(t), t, T ) = − ln Ẽ

[
exp−

∫ T

t

−r(s)ds|Ft
]

(3.47)
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thus we have

f(t, T ) =
∂g

∂T
. (3.48)

Now we can apply Ito formula to f(t, T ) to get

df(t, T ) =

(
∂2g

∂T∂t
+ α(r(t), t)

∂2g

∂T∂x
+

1

2

∂3g

∂T∂x2

)
dt+ β(r(t), t)

∂2g

∂T∂x
dW̃t (3.49)

thus we should choose the forward volatility to be

σ(t, T ) = β(r(t), t)
∂2g

∂T∂x
. (3.50)

From here we know the volatility for the bond price process is given

Σ(t, T ) =

∫ T

t

σ(u, s)ds = β(r(t), t)

∫ T

t

∂2g

∂T∂x
(r(t), t, s)ds = β(r(t), t)

∂g

∂x
(3.51)

In the Vasicek model, since the bond price P (t, T ) is given in (3.28), then we know

∂2g

∂T∂x
(x, t, T ) =

∂C

∂T
(3.52)

and

∂g

∂x
= C(t, T ) (3.53)

From (3.29) and (3.30), we can get the forward volatility for Vasicek Model is

σF (t, T ) = σ exp{−λ(T − t)} (3.54)

and volatility for the bond price is

Σ(t, T ) =

∫ T

t

σ exp{−λ(T − s)}ds =
σ

λ

(
e−λ(T−t) − 1

)
(3.55)
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Chapter 4. Mathematical Analysis of the Model

In this chapter, we will introduce the pricing model with stochastic interest rate. Following

the work of Black, Scholes, Merton and Shreve, we will use the Forward measure to derive a

partial different equation for the price of a call spread option. The PDE has a free boundary.

In the first section, we will review numeraire and change of measure. In section 2, we will see

an example of using EMM to derive a partial differential equation under a constant interest

rate. Following the example, we will derive the partial differential equation for the stochastic

interest rate model.

4.1 Numeraire

A numeraire is an asset of a strictly positive price process. We can see it as a reference of

the value of other assets. Money or dollars is one of the most common used numeraire. It

always has strictly positive value, and we use it to reference how much an asset is worth.

In real market, most assets and securities are quoted in dollars. But the currencies have

time value which implies that the prices in terms of dollar or Yuan may not be consistent

in time. In [15], Vecer pointed out that since a dollar today is worth more than a dollar

tomorrow, the price of an asset in terms of dollar will have an upward drift component that

corresponds to the loss of value of the dollar. Therefore the price process in dollars is not

always martingale. Thus we need to find a new reference or numeraire in option pricing in

order to get an arbitrage-free price.

The money-market account has long served as a numeraire in lots of option pricing

literature, but by no means the only choice. In later chapter, we shall use a zero coupon

bond as a numeraire to simplify derivative valuation. For each numeraire, we associate an

equivalent martingale measure (EMM). This measure is equivalent to the measure we used

to describe the price process before change of numeraire, and under EMM the price process

”discounted” by the numeraire is a martingale.
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Consider a portfolio X that contains assets S0, · · ·Sd, with S0 being the money-market.

Let ∆ = (∆0, . . . ,∆d) be the positions in each asset, then the value of the portfolio is given

by

X(∆, t) =
d∑
i=1

∆iSi(t) (4.1)

In order to have the ability to continuously adjust position in each asset without withdrawals

and injections of funds, we require this portfolio to be self-financing, which is expressed as

dX(∆, t) =
d∑
i=1

∆idSi(t) (4.2)

Let Nt be a numeraire, and let SNi denote the new price based on Nt, S
N
i = Si/N , then as

proved in [16] we have the following Numeraire Invariance Theorem

Theorem 4.1. Self-financing portfolios reman self-financing after a numeraire change.

Let PN denote the EMM associated with Nt, then since SNi (t) is martingale for i =

0, · · · , d, then the price of portfolio based on Nt denoted by XN is also an martingale, i.e.

for t < T , we have

XN(∆, t) = ẼN [XN(∆, T )|Ft] (4.3)

thus we can have the formula

X(∆, t) = Nt ·XN(∆, t)

= Nt · ẼN [XN(∆, T )|Ft]

= Nt · ẼN

[
X(∆, T )

NT

|Ft
]

= ẼN

[
Nt

NT

·X(∆, T )|Ft
]

(4.4)

When we price a derivative,denote its value V (t), if we can create a portfolio X(∆, t)

that replicates the value of the derivative at its expiration, then the value of the derivative

at any time t < T has to equal the value of the portfolio X(∆, t), otherwise there will be an
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arbitrage. If V (t) > X(∆, t) for some t < T , we short the derivative and use the fund to

create the portfolio, and put the extra fund in the bank. At the expiration, the portfolio will

offset the derivative, and our risk free profit is the extra fund plus interest. If the derivative

is worth less than the portfolio, we do the opposite. Thus X(∆, t) is the arbitrage free price

and V (t) = X(∆, t), then (4.4) can be reduced to the following pricing formula

V (t) = ẼN

[
Nt

NT

· V (T )|Ft
]

(4.5)

Now we can use (4.5) to price its value at any time t < T . In a market such that every

derivative can be hedged, we call the market complete. The following theorem in [17] and

[18] answered the question when the market is complete under a EMM,

Theorem 4.2. Fundamental Theorem of Asset Pricing Given a Numraire N , the

following statements hold

(i) A market is complete if and only if every derivative can be hedged

(ii) If there exists an EMM associated with N , then there is no arbitrage opportunity

(iii) The EMM is unique if and only if the market is complete.

We can price a derivative with two different numeraire Nt and Mt, the price V (t) should

be the same under these two numeraire, otherwise there would be arbitrage. Thus we have

the following change of numeraire formula,

ẼN

[
Nt

NT

· V (T )|Ft
]

= ẼM

[
Mt

MT

· V (T )|Ft
]

(4.6)

4.2 Martingale Approaches

In this section, we will use the constant interest rate model as an example, to show how to

use an EMM to derive a partial differential equation for the price of a spread option. In this

example the numeraire is the money market account. Let’s consider the case for a European
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style spread call, the two assets with strike price K and maturity T , and price process of the

two underlying assets satisfying the following SDEs

dS1,t = α1(t)S1,tdt+ σtS1,tdW1,t

dS2,t = α1(t)S2,tdt+ σtS2,tdW2,t

(4.7)

on the probability space (Ω,F ,P), and where αi(t) and σi(t) are adapted processes. Let

W (t) = (W1(t),W1(t)) be a two dimensional Brownian motion and r be the risk-free rate

and here it is assumed to be a constant. Under the measure P, the price process is not

martingale, thus we need to find a new measure such that the discounted price process is

martingale. This can be done with Girsanov theorem.

Following the literature in option pricing, let’s use the money-market account as a nu-

meraire. If we invest one dollar in the money-market at time 0, then the value of that dollar

at time t is ert, where r is the risk-free rate and here is assumed to be a constant. Then

the value of the two assets’ price, discounted by the money-market account, is e−rtSi,t for

i = 1, 2. We want to find a new measure, such that this price process is martingale.

Define θ(t) = (θ1(t), θ2(t)) as

θi(t) =
αi(t)− r
σi(t)

(4.8)

for i = 1, 2, and define two processes as:

Z(t) = exp

{
−
∫ t

0

θ(u) · dW (u)− 1

2

∫ t

0

‖θ(u)‖2du

}
,

W̃ (t) = W (t) +

∫ t

0

θ(u) · du
(4.9)

and a measure P̃ as

P̃(A) =

∫
A

Z(T )dP for all A ∈ F (4.10)

then by the Girsanov theorem [6], the processes W̃ (t) is a two dimensional Brownian motion.

Under the measure P̃, the discounted pricing process e−rtSi,t is a martingale, for i = 1, 2.
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Moreover, we can use Ito formula to get the new SDE for assets’ pricing process

dS1,t = rS1,tdt+ σtS1,tdW̃1,t

dS2,t = rS2,tdt+ σtS2,tdW̃2,t

(4.11)

As you can see under P̃, the expected return for the asset is the risk-free rate, this means

that all the investors do not need to extract premium to invest in risky asset, thus they are

risk-neutral. We call the measure P̃ the risk-neutral measure.

Let V (t) be the price of the call at time t, then V (T ) would be the payoff of this option.

Under the risk-neutral measure, we have following pricing formula:

V (t) = Ẽ[e−r(T−t)V (T )|Ft] (4.12)

then by the iterating condition of the conditional expectation [19], we have for s ≤ t ≤ T ,

Ẽ[e−r(t)V (t)|Fs] = Ẽ[Ẽ[e−r(T )V (T )|Ft]|Fs]

= Ẽ[e−r(T )V (T )|Fs]

= e−rsV (s)

(4.13)

thus the process e−r(t)V (t) is a martingale. By the Feynman-Kac theorem and the Markove

property of solutions of stochastic equations, there exists a function c(t, x, y) such that

c(t, S1,t, S2,t) = V (t) = Ẽ[e−r(T−t)V (T )|Ft] (4.14)

for the details of Feynman-Kac theorem and the Markove property, please read [6] and [5].

Combine (4.13) and (4.14), we know that e−r(t)c(t, S1,t, S2,t) is a martingale. Then by
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Ito’s formula we have

d(e−r(t)c(t, S1,t, S2,t)) = e−r(t)[−rc(t, S1,t, S2,t)dt+ ct(t, S1,t, S2,t)dt+

cS1,t(t, S1,t, S2,t)dS1,t + cS2,t(t, S1,t, S2,t)dS2,t+

cS1,tS1,t(t, S1,t, S2,t)dS1,tdS2,t+

1

2
cS2,tS2,t(t, S1,t, S2,t)(dS2,t)

2+

1

2
cS1,tS1,t(t, S1,t, S2,t)(dS1,t)

2]

(4.15)

now plug (4.11) into (4.15), the drift term of d(e−r(t)c(t, S1,t, S2,t)) is

e−rt
(
−rc+ ct + rS1,tcS1,t + rS2,tcS2,t + σ1σ2S1,tS2,tcS1,tS2,t +

1

2
σ2

1S
2
1,tcS1,tS1,t +

1

2
σ2

2S
2
2,tcS2,tS2,t

)
(4.16)

since e−r(t)c(t, S1,t, S2,t) is martingale, then its drift term is zero, now replace S1,t and S2,t by

the variables, x, y we have following PDE for the price of a spread option

− rc+ ct + rxcx + rycy + σ1σ2xycxy +
1

2
σ2

1x
2cxx +

1

2
σ2

2y
2cyy = 0 (4.17)

with the terminal condition

c(T, x, y) = (x− y −K)+ (4.18)

and boundary conditions

c(t, 0, y) = 0

c(t, x, 0) = cBS(t, x)

lim
x→∞

c(t, x, y) = x

lim
y→∞

c(t, x, y) = 0

(4.19)

where cBS(t, x) is the price of a call option with underlying asset S1,t and same strike price.
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4.3 Martingale Approach when Interest Rate is Stochastic

Assume that under the risk-natural measure, the price process for the two underlying assets

satisfy the following stochastic differential equation:

dS1,t

S1,t

= r(t)dt+ σ1dW̃1,t

dS2,t

S2,t

= r(t)dt+ σ2dW̃2,t

(4.20)

where σ1 and σ2 are volatility for the two underlying assets, which are assumed to be constant

here, and r(t) is the interest rate, which is assumed to satisfy

drt = λ(µ− rt)dt+ σ3r
γ
t dW̃3,t (4.21)

where λ is the speed of mean reversion and µ is the long term mean, σ3 is the volatility for

the interest rate. Here all three parameters are assumed to be constant. In the next chapter,

we will review different methods to estimate these parameters from market data.

The Brownian motion W̃1,t, W̃2,t, and W̃3,t are assumed to have following correlation:

dW̃1,tdW̃2,t = ρ1dt

dW̃1,tdW̃3,t = ρ2dt

dW̃2,tdW̃3,t = ρ3dt

(4.22)

Let V (t) denote the value of a spread call option for the two underlying asset, with strike

price K and expiration date T at time t ≤ T , then

V (T ) = max{S1,T − S2,T −K, 0} (4.23)
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and with the risk-neutral formula, we have

V (t) =
Ẽ[D(T )V (T )|Ft]

D(t)
(4.24)

where D(t) is the discount factor:

D(t) = exp

{
−
∫ t

0

r(u)du

}
(4.25)

We will be following the martingale approach in the previous section to get a partial

differential equation for the price of a call spread option under stochastic interest rate.

4.3.1 Forward Measure. The risk-neutral measure is one of the most used equivalent

martingale measures in mathematical finance, the numeraire is the money market. Forward

measure is another equivalent martingale measure, and it is used when the interest rate is

stochastic. In Shreve’s book [6], he used forward measure to derive a formula for the price

of an option with stochastic interest rate. In this section, I will follow his work, and derive

a partial differential equation for the price of a spread option with stochastic interest rate.

The numeraire for forward measure is the bond with par value 1 with expiration time T ,

namely P (t, T ).

From the change of numeraire formula (4.6), we have:

ẼF [X|F(s)] =
Ẽ[XD(t)P (t, T )|Fs]

D(s)P (s, T )
(4.26)

Let ẼF [·] denote the expectation of a random value under the forward measure. Then
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by the change of measure formula (4.26) we have

V (t) =
Ẽ[D(T )V (T )|Ft]

D(t)

= P (t, T )
Ẽ[D(T )V (T )P (T, T )|Ft]

D(t)P (t, T )

= P (t, T )ẼF [V (T )|Ft]

= P (t, T )ẼF [max{S1,T − S2,T −K, 0}|Ft]

(4.27)

since (S1,t, S2,t, r(t)) is Markov process, then there exists a Borel measurable function f(t, x, y, z)

such that

f(t, S1,t, S2,t, r(t)) = ẼF [max{S1,T − S2,T −K, 0}|Ft] (4.28)

then we have

V (t) = P (t, T )f(S1,t, S2,t, t) (4.29)

and

V (t)

P (t, T )
= f(S1,t, S2,t, t) (4.30)

so if we know the function f , then multiply it by the value of a bond with par value 1 and

maturity T , we should get the price of this option. In order to get a PDE, we still need to

know what process S1,t, S2,t and P (t, T ) satisfy under forward measure.

Let B̃1,t, B̃2,t, B̃3,t be three random process such that

dW̃1,t = dB̃1,t

dW̃2,t = ρ1dB̃1,t +
√

1− ρ2
1dB̃2,t

dW̃3,t = ρ2dB̃1,t +
ρ3 − ρ1ρ2√

1− ρ2
1

dB̃2,t +

√
1− ρ2

2 −
(ρ3 − ρ1ρ2)2

1− ρ2
1

dB̃3,t

(4.31)

then by Levy’s theorem, they are independent Brownian motion under the risk-neutral mea-

sure.
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For simplicity, let

A1 =
ρ3 − ρ1ρ2√

1− ρ2
1

and A2 =

√
1− ρ2

2 −
(ρ3 − ρ1ρ2)2

1− ρ2
1

(4.32)

Since bond is a tradeable asset, then under the risk-neutral measure, the price process

P (t, T ) must have the following SDE:

dP (t, T )

P (t, T )
= r(t)dt+ σPdW̃3,t (4.33)

where σP is the volatility of P (t, T ), it is given in (3.55) for the Vasicek model.

The SDE for S1,t, S2,t, r(t) and P (t, T ) are

dS1,t

S1,t

= r(t)dt+ σ1dB̃1,t

dS2,t

S2,t

= r(t)dt+ σ2ρ1dB̃1,t + σ2

√
1− ρ2

1dB̃2,t

dr(t) = λ(µ− r(t))dt+ σ3ρ2dB̃1,t + σ3A1dB̃2,t + σ3A2dB̃3,t

dPt,T
Pt,T

= r(t)dt+ σPρ2dB̃1,t + σPA1dB̃2,t + σPA2dB̃3,t

(4.34)

Now let’s change the measure by letting

θt = (−σPρ2,−σPA1,−σPA2) (4.35)

we will get new independent Brownian motions as

dB̃F
1,t = −σPρ2dt+ dB̃1,t

dB̃F
2,t = −σPA1dt+ dB̃2,t

dB̃F
3,t = −σPA2dt+ dB̃3,t

(4.36)
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and new SDEs for S1,t, S2,t and r(t)

dS1,t

S1,t

= (r(t) + σ1σPρ2)dt+ σ1dB̃
F
1,t

dS2,t

S2,t

=

(
r(t) + σ2σPρ1ρ2 + σ2σPA1

√
1− ρ2

1

)
dt+ σ2ρ1dB̃

F
1,t + σ2

√
1− ρ2

1dB̃
F
2,t

dr(t) =
[
λ(µ− r(t)) + σ3σBρ

2
2 + σ3σBA

2
1 + σ3σBA

2
2

]
dt+ σ3ρ2dB̃

F
1,t + σ3A1dB̃

F
2,t + σ3A2dB̃

F
3,t

(4.37)

Recall the pricing formula under forward measure

V (t) = P (t, T )ẼF [max{S1,T − S2,T −K, 0}|Ft] (4.38)

and the Borel measurable function f(t, x, y, z), such that

f(t, S1,t, S2,t, r(t)) = ẼF [max{S1,T − S2,T −K, 0}|Ft] =
V (t)

P (t, T )
(4.39)

Applying Ito formula we have

d

(
V (t)

P (t, T )

)
= d(t, f(S1,t, S2,t, r(t))) =ftdt+ fS1,tdS1,t + fS2,tdS2,t + fr(t)dr(t)+

+
1

2
fS1,tS1,t(dS1,t)

2 +
1

2
fS2,tS2,t(dS2,t)

2 +
1

2
fr(t)r(t)(dr(t))

2

+ fS1,tS2,tdS1,tdS2,t + fS1,tr(t)dS1,tdr(t) + fS2,tr(t)dS2,tdr(t)

(4.40)
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where

fS1,tdS1,t = fS1,tS1,t(r(t) + σ1σP )dt+M1

fS2,tdS2,t = fS2,tS2,t(r(t) + σ2σPρ1ρ2 + σ2σPA1

√
1− ρ2

1)dt+M2

fr(t)dr(t) = fr(t)
(
λ(µ− r(t)) + σ3σBρ

2
2 + σ3A

2
1σB − σ3σBA

2
2

)
dt+M3

fS1,tS1,t(dS1,t)
2 = fS1,t,S1,tσ

2
1S

2
1,tdt

fS2,tS2,t(dS2,t)
2 = fS2,t,S2,tσ

2
1S

2
2,tdt

fr(t)r(t)(dr(t))
2 = fr(t)r(t)

(
σ2

3ρ
2
2 + σ2

3A
2
1 + σ3

3A
2
2

)
dt

fS1,tS2,tdS1,tdS2,t = fS1,t,S2,tσ1σ2ρ1dt

fS1,tr(t)dS1,tr(t) = fS1,tr(t)σ1σ3ρ2dt

fS2,tr(t)dS2,tdr(t) = fS2,tr(t)

(
σ2σ3ρ1ρ2 + σ2σ3

√
1− ρ2

1A1

)
dt

(4.41)

where M1, M2 and M3 are the diffusion part. Let

D1 = σ3σBρ
2
2 + σ3A

2
1σB − σ3σBA

2
2

D2 = σ2σPρ1ρ2 + σ2σPA1

√
1− ρ2

1

D3 = σ2
3ρ

2
2 + σ2

3A
2
1 + σ3

3A
2
2

D4 = (σ2σ3ρ1ρ2 + σ2σ3

√
1− ρ2

1A1

(4.42)

then the drift term of d( V (t)
P (t,T )

) is

ft + fr(t)(λ(µ− r(t)) +D1) + fS1,tS1,t(r(t)σ1σBρ2) + fS2,tS2,t(r(t) +D2)

+
1

2
fS1,t,S1,tσ

2
1S

2
1,t +

1

2
fS2,t,S2,tσ

2
1S

2
2,t +

1

2
fr(t)r(t)D3

+ fS1,t,S2,tS1,tS2,tσ1σ2ρ1 + fS1,tr(t)S1,tσ1σ3ρ2 + fS2,tr(t)D4

(4.43)

Note that under forward measure, the ”discounted” price is a martingale, then the drift term

of d( V (t)
P (t,T )

) should be zero. Replace S1,t, S2,t and r(t) by x, y, z in (4.43) and set it equal to
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zero we have the following PDE

0 =ft + fz(λ(µ− z) +D1) + fxxzσ1σBρ2 + fyy(z +D2) +
1

2
fxxσ

2
1x

2 +
1

2
fyyσ

2
1y

2+

1

2
fzzD3 + fxyxyσ1σ2ρ1 + fxzσ1σ3ρ2 + fyzD4

(4.44)

with the terminal condition

f(T, x, y, z) = max(x− y −K, 0); (4.45)

the boundary conditions are

f(t, 0, y, z) = 0

f(t, x, 0, z) = BS(t)

f(t, x, y, 0) = g(x, y)

lim
x→∞

f(t, x, y, z) = x

lim
y→∞

f(t, x, y, z) = 0

lim
z→∞

f(t, x, y, z) = 0

(4.46)

BS(t) is the price of an option with stochastic interest rate and the underlying asset is S1

and the same strike price. There is a closed formula provided in [6], it is given by

BS(t) = S(t)N(d+(t))−KP (t, T )N(d−(t)) (4.47)

where P (t, T ) is the price of a zero-coupon bond with face value one, expires at time T and

the processes d±(t) are given

d±(t) =
1

σ
√
T − t

[
log

ForS(t, T )

K
± 1

2
σ2(T − t)

]
(4.48)

and ForS(t, T ) is the forward price on the asset S.
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Note this PDE has a free boundary, when the interest rate is zero, the price of the option

today should equal the payoff at expiration T , which is unknown at time t. So in order to

calculate the price, we can use the Monte Carlo methods.
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Chapter 5. Numerical Computations

The partial differential equation (4.44) in the previous section 4.3 is hard to solve analytically

and even numerically because of the free boundary condition. In this Chapter, we will study

the price of an spread option numerically using Monte Carlo simulation. In section 1, we

introduce different methods to estimate the parameters in the Vasicek model. In section 2,

we will show the numerical result on how different values of the parameters in the Vasicek

model will change the option price.

5.1 Parameters Estimate

In this section, I will present the Generalized Methods of Moments (GMM) estimation

procedure due to Hansen [20]. The key advantage of GMM is that it requires specification

only of certain moments not the density. We will also present that the two commonly used

estimation methods Ordinary Least Squares (OLS) and Maximum Likelihood Estimation

(MLE) can be viewed as a special case of GMM.

5.1.1 Generalized Methods of Moments. Hansen’s formulation of the estimation

problem is as follows. Let xt be a k × 1 vector of observations at time t, and xt is assumed

to be stationary. Let θ denote the a× 1 vector of unknown parameters are being estimated.

Let h(·, ·) be a r × 1 vector-valued function that maps from Ra × Rk to Rr. Let θ0 denote

the true value of θ and suppose that the function h satisfies the orthogonality conditions [21]

E[h(θ0, wt)] = 0 (5.1)

Let {xt ∈ Rk, t = 1, 2, . . . , T} be the collection of observations of size T , and YT be a Tk× 1

vector with all observations YT := (x1, x2, · · · , xT ). Define a r × 1 vector-valued function

g(·) : Ra → Rr as

g(θ;YT ) =
1

T

T∑
t=1

h(θ, xt) (5.2)
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Note that the vector YT is a parameter for g, not a variable. The idea behind the GMM is

that to find the value of θ that makes the sample moment g(θ, YT ) to be as close as possible

to the true moment zero, let θ̂ denote this estimator. This is the same to find the vector θ

that minimized the quadratic

Q(θ) := g(θ;YT )′WTg(θ, YT ) (5.3)

Here the prime denotes the transpose of the vector. The r × r matrix WT is a positive

semi-definite matrix called the weighting matrix.

If the number of the unknown parameters a is equal to the number of orthogonality

conditions r, then we call this system exactly identified. Then the sample moment function

can be minimized by solving the equation

g(θ, Yt) = 0 (5.4)

If r > a, then we call this system over-identified, and (5.4) cannot hold exactly. That is the

reason we are using the weighting matrix WT . How close is the ith condition to zero totally

depends on how much of the weight is given to this condition.

The estimator θ̂ depends on the weighting matrix WT .The optimal weighting matrix is

given by S−1, and S is the asymptotic variance of the sample mean of h(θ0, wt), it is given

in[20] and [21]:

S = lim
T→∞

T · E[g(θ0, YT )′g(θ0, YT )] (5.5)

then the GMM estimator θ̂ is obtained by minimizing the quadratic

Q(θ) := g(θ;YT )′S−1g(θ, YT ) (5.6)

Note that the description of the optimal weighting matrix is circular, we need to know

S to estimate θ, but we need to know the true value θ0 to get S, BUT if we know θ0 at the
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beginning, there is no point to do all this estimation. To solve this issue, the strategy is as

follows: we get an initial estimation θ̂0 by using the identity matrix as the weighting matrix,

then we use θ̂0 to estimate S by using ST

ST = lim
T→∞

T · E[g(θ̂, YT )′g(θ̂, YT )] (5.7)

then (5.6) is minimized again with S = ST to get a new estimator θ̂1. We keep doing this

iteration until ‖θ̂i − θ̂i+1‖ is less than some tolerance.

We have to make certain assumptions on orthogonality conditions h, the weighting matrix

WT and the parameter space Θ to obtain the asymptotic distribution of the GMM estimator

θ̂, we will not discuss these assumptions here and interested readers are refered to [20] and

[22]. For any weighting matrix, the estimator is consistent, and further assumption such as

1√
T

T∑
t=0

g(θ, xt) −→ N (0, S) (5.8)

the convergence is in distribution. The the GMM estimator has the following standard error:

√
T (θ̂ − θ0) ∼ N (0, VT ) (5.9)

where

VT = (DTS
−1
T D′T )−1 (5.10)

and D′T is the Jacobian matrix of g(θ;YT ) with respect to θ. We will show below that the

OLS and MLE are special cases of GMM.

5.1.2 Ordinary Least Squares. OLS is a method for estimating unknown parameters

by linear regression. Suppose we have the following linear model:

yt = x′tβ + εt (5.11)
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where β is a vector of unknown parameters and xt is a vector of variables.

Suppose we have observations of size T , xt, xt+1 · · · , xt+T−1 and yt, yt+1 · · · , yt+T−1. Let

y =



yt

yt+1

...

yt+T−1


, A =



x′t

x′t+1

...

x′t+T−1


, and ε =



εt

εt+1

...

εt+T−1


(5.12)

then we have a linear system

ε = y − Aβ (5.13)

We need to find an approximation β̂ such that ε is minimized. This is true if and only if the

vector ε is orthogonal to the range of A, this implies that

A′ε = 0 (5.14)

This is equivalently

A′Aβ = A′y (5.15)

then the OLE estimator β̂OLS is given by

β̂OLS = (A′A)−1A′y =

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
(5.16)

Now let’s redo the estimation in the GMM framework. The critical assumption to get

β̂OLS is (5.14), then we can make the moment condition as

E(xtεt) = 0 (5.17)
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which is the same as the true value β0 must satisfy

E[xt(yt − x′tβ0)] = 0 (5.18)

Let wt = (x′t, yt), and θ = β, we can define h(·, ·) as

h(θ, wt) = xt(yt − x′tθ) (5.19)

note here that the number of orthogonality conditions is the same as the number of

unknown parameters, so this is an exactly identified system. Thus the GMM estimator

θ̂GMM can be found by solving

0 = g(θ, YT ) =
1

T

T∑
t=1

xt(yt − x′tθ̂GMM) (5.20)

which gives us

θ̂GMM =

(
T∑
t=1

xtx
′
t

)−1( T∑
t=1

xtyt

)
(5.21)

which is the same as the OLS estimator.

5.1.3 Maximum Likelihood Estimation. Maximum likelihood estimation is another

method of estimating parameters. This method can be applied when the distribution is

known. Suppose f(x|β) is a density function of some distribution with parameters β =

{β1, . . . , βm}, and {x1, · · · , xT} is sample data from observation with that distribution. The

samples are assumed to be i.i.d., then the joint density function will be

f(x1, · · · , xT |β) =
T∏
i=1

f(xi|β) := L(β|x1, · · · , xT ) (5.22)

For each set of parameters β, we will get a density function, which gives us the probability

that the sample event happens, or in other words, the likelihood of the sample events. We
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call the function L the likelihood function, and we want to find the set of parameters that

maximized the likelihood function.

Here f is a density function so β are parameters for f . On the other hand, the likelihood

function will give a set of parameters with each observation, therefore the x1, · · · , xn are

parameters for L. In practice it is often convenient to work with the logarithm of L and

scale it, we call it the average log-likelihood:

l(β|x1, · · · , xT ) =
1

T
lnL(β|x1, · · · , xT ) =

1

n

T∑
i=1

ln f(β)(xi) (5.23)

we need to find the vector β to maximize l(β|x1, · · · , xn), i.e.

β̂mle = max
β

l(β|x1, · · · , xT ) = max
β

1

T

n∑
i=1

ln f(β)(xi). (5.24)

Thus we can get the MLS estimator θ̂MLE by solving the following equation:

N∑
i=1

∂ ln f(β|xi)
∂β

= 0 (5.25)

In the GMM framework, let YT = {x1, · · · , xT}. Suppose that the conditional density of

the tth observation is given as

f(yt|Yt−1; θ) (5.26)

since f is a density function we should have

∫
D
f(yt|Yt−1; θ)dyt = 1 (5.27)

where D denotes the set of all possible values of yt. If we differentiate (5.27) with respect to

θ, we should have ∫
D

∂f(yt|Yt−1; θ)

∂θ
dyt = 0 (5.28)
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We can multiply and divide the integrand by the density f to get

∫
D

∂f(yt|Yt−1; θ)

∂θ

1

f(yt|Yt−1; θ)
f(yt|Yt−1; θ)dyt = 0 (5.29)

which can be written as

∫
D

∂ ln f(yt|Yt−1; θ)

∂θ
f(yt|Yt−1; θ)dyt = 0 (5.30)

Let h(θ, Yt) denote the log of the density function

h(θ, Yt) =
∂ ln f(yt|Yt−1; θ)

∂θ
(5.31)

now if we combine (5.30) and (5.31), we will get

E[h(θ, Yt)|Yt−1] = 0 (5.32)

then with the iteration condition of conditional expectation we should have

E[h(θ, Yt)] = 0 (5.33)

we get the orthogonality condition. The GMM framework suggests using the estimator

θ̂GMM , that is obtained by solving

1

T

T∑
t=1

h(θ, Yt) (5.34)

which is exactly the same conditions as (5.25). Thus MLE is the same as the GMM estimator

based on the orthogonality conditions.

5.1.4 GMM estimation of the Vasicek Model. In this dissertation, we will use the

GMM to estimate the parameters in the Vasicek Model by following the approach in [23]
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and using a Euler form of the model

rt+1 − rt = λθ − λrtδt+ εt+1 (5.35)

where εt+1 = σ(Wt+1 −Wt) is a normally distributed random variable with mean zero and

variance σ2∆t. Then we have the first two moment conditions

E[εt+1] = 0 and E[ε2t+1 − σ2∆t] = 0 (5.36)

Note that the value of rt is independent of εt+1, thus we should have two more moment

conditions

E[εt+1rt] = 0 and E[(ε2t+1 − σ2∆t)rt] = 0 (5.37)

these four conditions are used in [23]. Since Wt is Brownian motion, thus we know the

increments are also independent, then I will add one more moment condition

E[εt+1εt] = 0 (5.38)

then I will define β = (λ, θ, σ) to be the vector of the parameters, wt = (rt−1, rt, rt+1) to be

the vector of the observations and the function h to be

h(θ, wt) =



εt+1

ε2t+1 − σ2∆t

εt+1rt

(ε2t+1 − σ2∆t)rt

εt+1εt


(5.39)

5.1.5 MLE estimation of the Vasicek Model. The solution for the Vasicek Model is

given as

r(t) = r(0)e−θt + λ
(
1− e−θt

)
+ σ

∫ t

0

e−θ(t−u)dWu (5.40)
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we can calculate the distribution of the term σ
∫ t

0
e−θ(t−u)dWu to get it is normally distributed

with mean zero and variance

σ̂2 =
σ2

2λ
(1− e−λt) (5.41)

thus we can rewrite the solution as

r(t) = r(0)e−θt + λ
(
1− e−θt

)
+ σ̂ε (5.42)

where ε ∼ N (0, 1).

Let r(t0), r(t1), . . . , r(tn) be an observation, with time step ∆t. Let ri denote r(ti), then

we have

ri+1 = rie
−θ∆t + λ

(
1− e−θ∆t

)
+ σ̂ε (5.43)

and

σ̂2 =
σ2

2λ
(1− e−λ∆t) (5.44)

then the conditional density function of ri+1 given ri is

f(ri+1|ri;λ, θ, σ̂) =
1√

2πσ̂2
exp

{
−(ri+1 − rie−λ∆t − θ(1− e−λ∆t))2

2σ̂2

}
(5.45)

then the log-likelihood function is

g(ri+1|ri;λ, θ, σ̂) = −n
2

log 2π − n log σ̂ − 1

2σ̂

n−1∑
i=0

(
ri+1 − rie−λ∆t − θ(1− e−λ∆t)

)2
(5.46)

To maximize g(ri+1|ri;λ, θ, σ̂), we take its first partial derivatives with respect to λ, θ, σ̂, set

them equal to zero, then we have the following estimation

λ = − 1

∆t
log

{∑n
i=1 r

2
i − θ

∑n−1
i=0 ri − θ

∑n
i=1 ri + nθ2∑n−1

i=0 r
2
i − 2θ

∑n−1
i=0 ri + nθ2

}
(5.47)

θ =

∑n
i=1 ri

∑n−1
i=0 r

2
i −

∑n−1
i=0 ri

∑n
i=1 r

2
i

n(
∑n−1

i=0 r
2
i −

∑n
i=1 r

2
i )− (

∑n−1
i=0 r

2
i −

∑n−1
i=0 ri

∑n
i=1 ri)

(5.48)
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σ̂2 =

∑n−1
i=0 (ri+1 − rie−λ∆t − θ(1− e−λ∆t))2

n
(5.49)

5.2 Numerical Computation

In this section, we will use Monte Carlo simulation methods to price a spread option with

stochastic interest rate model. The interest rate is assumed to follow the Vasicek model.

Recall the SDE for the price of two underlying assets are

dS1,t

S1,t

= r(t)dt+ σ1dW̃1,t

dS2,t

S2,t

= r(t)dt+ σ2dW̃2,t

(5.50)

and the solutions are given as

S1,t = S1,0 exp

(∫ t

0

r(u)du− 1

2
σ2

1t+ σ1W1,t

)
S2,t = S2,0 exp

(∫ t

0

r(u)du− 1

2
σ2

2t+ σ2W2,t

) (5.51)

where r(t) satisfies

dr(t) = λ(θ − r(t))dt+ σ3dW3,t (5.52)

First, we need to simulate the integral of the interest rate
∫ t

0
r(u)du. We use the Euler

scheme in [24] to discretize the SDE in time for r(t). Let ∆t denote the step size of the

discretization in time, so we have the sample points 0 = t1 < t2 < · · · < tn, then for

j = 1, 2, . . . , n− 1, the scheme is given as

rtj+1
= rtj + λ(θ − rt+j)δt+ σ3r

γ
t+j∆W3,j+1 (5.53)

where

∆W3,j+1 = W3,tj+1
−W3,tj (5.54)
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then use the trapezoid rule to calculate the integral. Figure (5.1) The convergence of the

Monte Carlo methods for the Vasicek Model.
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Figure 5.1: Convergence of Pure Monte Carlo, Vasicek Model
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Table (5.2) shows the full result of the simulation for Vasicek Model.

N=100 N=1000 N=10000
M Price Time Price Time Price Time
10 211.498806 0.457882 129.094167 0.003038 9.887732 0.028902
100 69.304983 0.005625 95.719170 0.031521 63.269905 0.290680
1000 71.376245 0.057146 72.427088 0.286408 71.032658 2.836017
10000 70.219813 0.488674 68.735862 2.871948 70.369001 27.575780
100000 70.472602 5.042892 70.645601 27.937238 70.495426 275.407357
1000000 70.617125 48.046817 70.583438 280.210989 70.560143 2753.550529

Table 5.1: Computation time for Pure Monte Carlo Solution, Vasicek Model

As you can see in the table (5.2) and figure (5.1) , to get the convergence, we need

more than 50000 paths, this is because by the Central Limit Theorem the error of Monte

Carlo simulation with m sample paths has standard deviation σ√
m

, where σ is the true

standard divination, which is usually approximated by the sample standard deviation σn. In

order to improve the error by 0.1 we need 100 more sample paths. This is really costly on

computational time. So in order to reduce the number of sample paths and the computational

time, we can reduce the σn, this is called variance reduction. There are many variance

reduction methods, in this dissertation, we will use the Anti-thetic method in [25]. The idea

of anti-thetic is the following:

Suppose X is a random variable, and let Y = h(X), and we want to estimate θ = E[Y ].

Let {x1, · · · , xm} be a sample path, the pure Monte Carlo method estimator is given by

θ̂pmc =
1

m

m∑
i=1

h(xi) (5.55)

for the anti-thetic method, we also use the antithetic path {−x1, · · · ,−xm}. Let

θ̂1 =
1

m

m∑
i=1

h(xi) (5.56)
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and

θ̂2 =
1

m

m∑
i=1

h(−xi) (5.57)

then the anti-thetic estimation for θ is given as

θ̂anti =
θ̂1 + θ̂2

2
(5.58)

the variance of this estimator is given

V ar(θ̂anti) =
V ar(θ̂1) + V ar(θ̂2) + 2Cov(θ̂1, θ̂2)

4

=
2V ar(θ̂1) + 2Cov(θ̂1, θ̂2)

4

(5.59)

here we use the fact that θ̂1 and θ̂2 have the same distribution, since we just use the thetic

path. Then the variance is reduced due to the fact that the covariance is less than or equal

to the variance. Figure (5.2) and table (5.2) show the simulation results for the anti-thetic

method:
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Figure 5.2: Convergence of Monte Carlo Anti-thetic Method, Vasicek Model

We also used two Taylor-Expansion schemes, Euler scheme and Milstein scheme to sim-

ulate the value of S1,T and S2,T with the anti-thetic method. the Results are shown table

(5.2), (5.2) and figure (5.3), (5.4).
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N=10 N=100 N=1000
M Price Time Price Time Price Time
10 80.418102 0.001467 111.014902 0.012199 56.868863 0.036838
100 75.142338 0.006729 61.013739 0.043828 66.945374 0.416838
1000 69.475202 0.068035 71.224411 0.388719 70.306222 3.686895
10000 70.323580 0.760436 70.467464 3.739498 70.722988 35.146937
100000 70.832241 6.467662 70.698599 36.199116 70.465143 356.198136
1000000 70.538551 60.001175 70.526864 357.789468 70.576108 3585.312342

Table 5.2: Computation time for Monte Carlo Anti-thetic Method, Vasicek Model

N=10 N=100 N=1000
M Price Time Price Time Price Time
10 79.020419 0.001524 97.507355 0.005457 46.604596 0.047006
100 63.889017 0.008355 65.055875 0.044977 67.157119 0.452856
1000 72.284993 0.073500 71.579314 0.472439 71.074498 4.262531
10000 69.045844 0.720953 72.444331 4.288694 71.317078 43.532677
100000 70.504883 6.911399 70.400884 43.431433 70.225730 438.838317
1000000 70.384021 68.836795 70.606029 430.485230 70.398284 4302.645862

Table 5.3: Computation time for Monte Carlo Anti-thetic Method Euler, Vasicek Model

We can see the clear picture in table 5.2. With n = 1000, for each fixed m, we ran the

simulation twice and recorded the difference between the two prices. Table 5.2 shows the

price difference and time needed for each simulation. We can get a better sense that the

Monte Carlo simulation converged very slowly.

N=10 N=100 N=1000
M Price Time Price Time Price Time
10 39.260039 0.001708 67.846614 0.007915 63.552036 0.060463
100 63.166351 0.009483 75.808585 0.056915 60.311508 0.579815
1000 68.630529 0.087046 68.280957 0.566781 70.432008 5.469940
10000 70.017462 0.865116 69.279721 5.532248 70.616620 55.433094
100000 70.301982 8.533419 70.131954 55.981405 70.776102 558.264598
1000000 70.248217 83.993073 70.351437 559.934416 70.506756 5536.634632

Table 5.4: Computation time for Monte Carlo Anti-thetic Method Milstein, Vasicek Model
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Figure 5.3: Convergence of Monte Carlo Anti-thetic Euler, Vasicek Model
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M Error Time (Seconds)
10000 3.067547 3.11
50000 0.676 14.46
250000 0.466846 70.67
1250000 0.050257 352.03
6250000 0.047147 1757.59
31250000 0.027583 8769.58

Table 5.5: Errors for Pure Monte Carlo Simulation with n = 1000
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Figure 5.5: Errors for the Pure Monte Carlo
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Figure 5.7: Time Required for the Pure Monte Carlo

66



Table 5.2 shows that with anti-thetic method, with same number of sample paths, the

price converged faster. Figures (5.10) and (5.11) shows the comparison of the error for the

two methods.

M Error Time (Seconds)
10000 0.835195 4.090361
50000 0.188076 21.093107
250000 0.076690 93.179374
1250000 0.047806 454.945275
6250000 0.006680 2231.995729

Table 5.6: Errors for Monte Carlo Simulation Anti-thetic method with n = 1000
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Figure 5.8: Errors for the Pure Monte Carlo Anti-thetic method
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Figure 5.9: Errors for the Monte Carlo Anti-thetic method
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Note in figure (5.12) and (5.12) that the time required for the simulation for the anti-

thetic methods is longer than the pure Monte Carlo methods, this is due to the fact that we

have to perform the calculation twice. But compared to the significance of the error being

reduced, the increasing of the simulation time can be ignored.
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Figure 5.12: Time Required for the Monte Carlo Anti-thetic Method
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λ Constant Interest Rate Anti-thetic Euler Milstein
0.000000 70.547906 110.464054 110.608279 110.209345
0.600000 70.716412 106.218147 106.025431 106.044925
5.000000 70.702931 92.553106 92.451512 92.394744
10.000000 70.903979 88.165538 88.350379 88.218140
50.000000 70.576363 84.067635 84.053208 84.191751

Table 5.7: Price Compare with Different Values of λ with r0 = 0.0008, θ = 0.0534

One of the natural questions to ask is that under the same parameters, how does the

price in the stochastic interest rate model compare to the constant rate model; the following

tables shows the result. I compared the prices of constant interest rate and stochastic interest

rate, under different market environment by changing the parameters. Table (5.2) shows the

result for different values of the mean reverting speed λ when the initial interest rate is less

than θ, table (5.2) shows the result when initial interest rate is larger than θ. Table (5.2)

shows the result for different values of θ, and Table (5.2) shows the result for the different

values of the volatility of interest rate.

71



λ Constant Interest Rate Anti-thetic Euler Milstein
0.000000 94.515013 129.811666 129.775950 129.663419
0.600000 94.349741 121.442713 120.994013 121.521613
5.000000 94.567394 96.804342 96.910704 97.027675
10.000000 94.261885 90.594437 90.527466 90.409889
50.000000 94.276119 84.542643 84.390976 84.424778

Table 5.8: Price Compare with Different Values of λ with r0 = 0.1, θ = 0.0534

θ Constant Interest Rate Anti-thetic Euler Milstein
0.000500 70.806360 103.339074 103.479492 103.666390
0.050000 71.111960 106.255414 106.105306 105.999706
0.100000 70.870805 108.735652 108.718374 108.247126
0.150000 70.404410 110.934148 110.879887 110.803613
0.500000 70.925689 128.892505 128.750617 128.825463

Table 5.9: Price Compare with Different Values of θ

θ Constant Interest Rate Anti-thetic Euler Milstein
0.050000 70.837975 70.075135 70.008829 69.915111
0.100000 70.907698 66.332668 66.380806 66.349725
0.500000 70.819627 40.522019 40.412696 40.517000
0.900000 71.328635 35.782832 35.679400 35.753569

Table 5.10: Price Compare with Different Values of σ3, r0 = 0.0008

θ Constant Interest Rate Anti-thetic Euler Milstein
0.050000 94.359533 88.109150 88.267598 88.035069
0.100000 94.447854 84.703259 84.520928 84.811073
0.500000 94.483463 59.672619 59.633542 59.641797
0.900000 94.397265 51.354077 51.383000 51.219548

Table 5.11: Price Compare with Different Values of σ3, r0 = 0.1
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λ Constant Interest Rate (0.0534) Anti-thetic Euler Milstein
0.000000 83.029420 110.607722 110.695108 110.483740
0.600000 82.847328 106.235577 106.078435 106.224554
5.000000 83.009157 92.479496 92.361642 92.231534
10.000000 82.950025 88.327809 88.289298 88.174962
50.000000 83.077998 83.996396 84.068368 84.184598

Table 5.12: Price Compare with Different Values of λ with r0 = 0.0008, θ = 0.0534

θ Constant Interest Rate Anti-thetic Euler Milstein
1 70.624326 70.913284 71.057949 70.818340
2 70.809709 70.540870 70.337176 70.642211
3 79.753596 79.877574 79.786341 79.804307
4 88.432774 88.349079 88.541439 88.434559

Table 5.13: Price Compare with Different Values of Correlation

From table (5.2) and table (5.2) we can see the option price decreases as λ increases.

Another interesting phenomenon we can see from these two tables is that, as λ increasing,

the option price tends to converge to a fixed price. This is because when the reverting speed

is getting larger, it would take less time for the interest rate to revert back to the mean. Once

the interest rate is very close to the mean, the randomness will not drive the interest rate

too far away from the mean, so the option price will converge to the price with a constant

rate θ. As you can see in table (5.2), when the interest rate is set to the long term mean

5.34%, the price is around 83 dollars. When the interest rate is stochastic, the option price

converges to a neighborhood of this price as λ increases.

Table (5.2) shows the price is a increasing function of the parameter θ,and Table (5.2),

shows that the price is a decreasing function of the volatility of interest rate. Table (5.2),

shows the difference price with different correlation between the two underlying assets and

interest rate.

Table (5.2), shows the comparison for different trend of interest rate. As shown in the

table, the price of an option in the stochastic interest rate model is more expensive than the

constant rate when the interest rate has the trend to increasing during the life of the option,
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r0 Constant Interest Rate Anti-thetic Euler Milstein
0.1 94.426384 91.732143 91.563931 91.820965
0.03 77.433120 78.293567 78.373583 78.296190

Table 5.14: Price Compare with Trend of Interest rate

and cheaper when the interest rate has the trend to decrease.

Table (5.2) and (5.2) shows the price with different strike price. We can see that the

difference between the price under constant rate model and the stochastic model is small

when the option is deep in the money, and it is increasing as the option is getting closer to

at the money. When the option is at the money, the difference is the greatest. When the

option is way out of the money, since the price is close to zero, the difference is small again.

From this, we know that the stochastic interest rate model would be useful to price an at

the money or close to at the money option.

K Constant Interest Rate Anti-thetic Euler Milstein
100 402.342741 399.867952 399.742870 399.782775
450 95.937442 64.031293 64.029624 64.012802
500 71.062679 37.046974 36.789771 36.804783
650 25.626759 4.174899 4.159539 4.163855
900 3.846759 0.037288 0.036218 0.035022

Table 5.15: Price Compare with Different Strike Price, r0 = 0.0008

Table (5.2) and (5.2) shows the option price with change of the time to maturity. As we

can see under the stochastic interest rate model, the option price is not as sensitive to the

time as the constant rate model.

K Constant Interest Rate Anti-thetic Euler Milstein
100 411.861407 407.118525 407.216287 407.181275
450 122.353716 87.035146 87.041543 86.896878
500 94.307846 55.314789 55.297467 55.415321
650 39.400723 8.895968 8.835930 8.857297
900 7.592258 0.133104 0.129227 0.126691

Table 5.16: Price Compare with Different Strike Price, r0 = 0.1
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T Constant Interest Rate Anti-thetic Euler Milstein
0.1 23.297136 21.641312 21.627673 21.623824
0.3 39.440664 31.737008 31.606571 31.611031
0.5 50.524270 35.264094 35.252750 35.185694
0.7 59.351781 36.288908 36.292419 36.252544
0.9 67.198903 36.753626 36.742444 36.728296

Table 5.17: Price Compare with Different Time to Maturity, r0 = 0.0008

T Constant Interest Rate Anti-thetic Euler Milstein
0.1 25.807930 24.143973 24.084311 24.108108
0.3 46.757322 38.636738 38.668107 38.716564
0.5 62.685391 46.340496 46.294863 46.335020
0.7 76.266826 50.921601 51.040629 50.993977
0.9 88.784190 54.082715 54.107280 54.217679

Table 5.18: Price Compare with Different Time to Maturity, r0 = 0.1

Chapter 6. Conclusion and Future Work

Now we have a better understanding of spread option when the interest rate is stochastic.

Under the risk-neutral model, and using the Forward measure, we have a partial differential

equation for the price with free boundary condition. We can also compute the price numer-

ically by Monte Carlo simulation. From the simulation, we know that the option price is

decreasing function of the interest rate volatility, long term mean and the mean reverting

speed. When the interest rate is increasing during the life of the option, the price under

the stochastic model is cheaper than the price under the constant rate. On the other hand,

when the interest rate is decreasing during the life of the option, constant rate model gives

a cheaper price.

There are many interesting questions for the future research for this model? In this

dissertation, we only used the Vasicek model for the interest rate, which allows the interest

rate to be negative. How will the price change if we adapt a different term structure model

such as the CIR model or Hull-White model. Another question we can ask is under what

market condition, we should use a stochastic interest rate model instead of a constant rate
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model. We see some interesting phenomenon, what are the financial and mathematical

explanation for them?
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Figure 1: Option Price V.S Long Term Mean
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Figure 2: Option Price V.S. Mean Reverting Speed, r0 < θ
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Figure 3: Option Price V.S. Mean Reverting Speed, r0 > θ
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Figure 4: Option Price V.S. σ3, r0 = 0.0008
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Figure 5: Option Price V.S. σ3, r0 = 0.1
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Figure 6: Option Price V.S. Strike Price, r0 = 0.0008
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Figure 7: Option Price V.S. Strike Price, r0 = 0.1
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Figure 8: Option Price V.S. Time to Maturity, r0 = 0.0008
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Figure 9: Option Price V.S. Time to Maturity, r0 = 0.1
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