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ABSTRACT

THE TROPICAL JACOBIAN OF AN ELLIPTIC CURVE IS THE GROUP

S1(Q)

Darryl G. Wade

Department of Mathematics

Master of Science

We establish consistent definitions for divisors, principal divisors, and Jacobians of

a tropical elliptic curve and show that for a tropical elliptic cubic C, the associated

Jacobian (or zero divisor class group) is the group S1(Q).
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1 Introduction

Tropical geometry is a field of math that has been drawing a lot of attention lately.

There is a lack of uniformity in basic definitions, so this thesis aims to lay down

clearly some definitions and results about tropical elliptic curves.

Tropical elliptic curves are the tropical analog of classical elliptic curves. In

this thesis we will give a brief introduction to tropical mathematics, discuss some

definitions in classical algebraic geometry, and define their tropical analogs. Finally

we will prove that the group associated with a non-singular tropical elliptic curve

is isomorphic to the group S1(Q). (Recall that S1(Q) is the additive group of Q

modulo 1.)

2 Background

2.1 Introduction to tropical algebra

We begin by defining the tropical semifield Q to be the set

Q ∪ {∞}

together with the binary operations

x⊕ y := min{x, y};

x� y := x+ y.

We will employ the common notation an = a � a � · · · a = na. (We will omit the

symbol � usually, but it will be clear from context when tropical multiplication

is implied.) This structure satisfies all of the axioms of a field, except for that of

additive inverses (i.e., there is no subtraction), and thus is called a semi-field. [7]
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Remark 2.1. Many other authors have used R = R ∪ {∞} as the base set. This

is acceptable for the results of this paper—every argument works exactly the same.

However, we choose to use Q = Q ∪ {∞}, because the tropical semi-field Q is

algebraically closed as shown by [4]. The reader will note that the graphs contained

herein appear the same whether done using Q or R as our base semi-field. The only

fundamental difference is in the topology.

We may define tropical polynomials similarly to classical polynomials.

Definition 2.2. The function f(x) is a tropical polynomial if

f(x) = anx
n ⊕ · · · ⊕ a1x⊕ a0

for some non-negative n ∈ Z and ai ∈ Q. We call the integer n the degree of the

polynomial.

This polynomial is equivalent to the function

f(x) = min{nx+ an, (n− 1)x+ an−1, . . . , x+ a1, a0}.

Definition 2.3. A tropical polynomial of more than one variable, x1, . . . , xn is a

function with the form

f(x1, . . . , xn) = ad1x
d1 ⊕ · · · ⊕ adk

xdk

where dj ∈ Nn
0 and thus xdj = x

ej,1

1 · · · xej,n
n for some positive integer values ej,i, and

adj
is in Q. The degree of this polynomial is the integer

d = max

{
n∑

i=1

ej,i | j = 1, . . . , k

}
.

The value
n∑

i=1

ej,i is the degree of the jth monomial.

2



Figure 1: Graph of f(x) = x2 ⊕ x⊕ 1.

Definition 2.4. The support of f is defined to be the set supp(f) = {−dj =

(−ej,1, . . . ,−ej,n) | adj
6=∞}.

It is important to point out that f might not be the only polynomial that

gives the corresponding function. For example, we may have f(x) = x2 ⊕ 1 and

g(x) = x2 ⊕ 1x ⊕ 1. These are certainly distinct polynomials, but they both give

the same function, because the value of min{2x, x + 1, 1} is attained by the x + 1

term only when it is also attained by the 2x and 1 terms as well, as seen in Figure

2. [2]

In the classical setting, we define the zero locus of the function, or the set of

points Z(f) = {(x1, . . . , xn) ∈ Cn | f(x1, . . . , xn) = 0} . In the tropical case, the

analogous object is the corner locus of the polynomial. This is defined to be the set

of points (x1, . . . , xn) ∈ Qn for which the minimum (tropical sum) is attained in at

3



Figure 2: Graph of f(x) = x2 ⊕ 1 and g(x) = x2 ⊕ 1x⊕ 1.

least two of the tropical monomials [7]. For example, if f(x) = x2⊕ x⊕ 1, then the

corner locus of f , denoted K(f), is the set

K(f) = {x | 2x = x ≤ 1} ∪ {x | 2x = 1 ≤ x} ∪ {x | x = 1 ≤ 2x}

= {x = 0 ≤ 1} ∪ ∅ ∪ {x = 1 ≤ 2}

Notice that K(f) = {0, 1} is the set of corners of the graph of y = f(x)—hence the

name “corner locus.”

2.2 Tropical affine and projective spaces

In dealing with complex curves we often visualize the curves using the affine real

or complex planes, but to be complete, we must actually handle the curves in the

complex projective plane. This makes curves compact and allows us to count all

intersections correctly. We will briefly discuss the tropical idea of projective space.
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Figure 3: 2-simplex model of TP2(Q).

Classical affine n-space is the set An(C) = Cn = {(z1, . . . , zn) | zi ∈ C}. Anal-

ogously, tropical affine n-space is the set TAn(Q) = Qn = {(x1, . . . , xn) | xi ∈ Q}.

Classical projective n-space is defined as

Pn(C) = (An+1(C) \ {(0, . . . , 0)})/ ∼

where the equivalence relation ∼ is given by (z0, . . . , zn) ∼ (λz0, . . . , λzn) if λ 6= 0.

Since the tropical additive identity is ∞ instead of 0, tropical projective n-space is

the set

TPn(Q) = (TAn+1(Q) \ {(∞, . . . ,∞)})/ ∼

where the equivalence relation ∼ on the points of TAn+1(Q) \ {∞} is given by

(x0, . . . , xn) ∼ (λx0, . . . , λxn) if λ 6=∞.

We can think of this graphically as an n-simplex. For example, TA2(Q) looks

topologically like the triangle, without the lower left edge, while TP2(Q) is the

closure of this (i.e., including the lower edge), seen in figure 3.

When dealing with polynomials in tropical projective space, as in classical pro-
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jective space, we must use homogeneous polynomials. This means that if the polyno-

mial has degree d, then each monomial must have degree d; i.e., if dj = (e0, . . . , en) ∈

supp(f), then
n∑

i=0

ei = d. This ensures that λdf(x) = f(λx) for all points x and

λ 6=∞. Also, we may use the concept of support of f when it is homogeneous.

2.3 Tropical graphs and the tropical corner locus

For a tropical polynomial in two variables

f(x, y) = an,nx
nyn ⊕ an,n−1x

nyn−1 ⊕ · · · ⊕ a1,1xy ⊕ a1,0x⊕ a0,1y ⊕ a0,0,

the graph of z = f(x, y) consists of portions of planes determined by each monomial

(the portion of course determined by the minimum function.) If we then project

the corners (i.e., the edges and vertices) of the graph down to the xy-plane, we have

the graph of the corner locus K(f). For example, below we have the graph [3] and

the corner locus of the function f(x, y) = 4⊕ x⊕ y ⊕ xy ⊕ 5x2 ⊕ 3y2. Notice that

each line segment of the corner locus corresponds to a set of values (x, y) for which

two monomials of f are equal and less than the value of the other monomials. The

vertices coincide with values where three or more monomials are equal and minimal.

Note also that the convex regions bordered by the corner locus correspond to values

where only one monomial attains the minimal value. For example, above y = 4 and

to the right of x = 4 lie the values (x, y) for which 4 is strictly less than each of x,

y, x+ y, 5 + 2x, and 3 + 2y. [7]

2.4 Tropical dual graphs

Each tropical curve f in two affine (or three homogeneous) variables uniquely de-

termines a dual graph, denoted ∆(f). The dual graph is useful to see what possible

6



Figure 4: Graph of z = 4⊕ x⊕ y ⊕ xy ⊕ 5x2 ⊕ 3y2.

Figure 5: The corner locus of f(x, y) = 4⊕ x⊕ y ⊕ xy ⊕ 5x2 ⊕ 3y2.
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Figure 6: The dual graph of f(x, y) = 4⊕ x⊕ y ⊕ xy ⊕ 5x2 ⊕ 3y2.

shapes our curves can attain, so that we may deal with very specific examples in

the proof of our main results. We construct it as described in [7] and [2].

Given a function f(x1, x2) = ad1x
d1 ⊕ · · · ⊕ admx

dm , we construct ∆(f) to be a

graph with vertices taken from the points of supp(f). For every pair of points −di

and −dj in supp(f), we connect them with an edge if and only if there is some point

x = (x1, x2) ∈ Qn for which the monomials adi
xdi and adj

xdj attain the minimum

at (x1, x1); that is to say

ei,1x1 + ei,2x2 + adi
= ej,1x1 + ej,2x2 + adj

< ek,1x1 + ek,2x2 + adk

for all k not equal to i or j. Any point of supp(f) not connected to another by an

edge is disregarded. The example in Figure 6 shows the dual graph corresponding

to the corner locus and graph that we show above in Figures 5 and 4.

Proposition 2.5. Each empty interior region of ∆(f) corresponds to a vertex of

the corner locus K(f), with the number of sides of the region corresponding to the

8



Figure 7: The corner locus of f(x, y) = x2 ⊕ y ⊕ 0 with primitive direction vectors.

valence at the vertex. Each edge of ∆(f) corresponds to a ray or line segment of

K(f) with perpendicular slope.

Proof. Both [7] and [2] show this.

Thus the dual graph describes the combinatorial type of the curve by describing

the slopes of segments and rays and relative positions of vertices, but provides no

information regarding the lengths of segments or the location of vertices of K(f).

Definition 2.6. The weight of a line segment or ray of the corner locus is the lattice

length of the edge of ∆(f) that corresponds to it.

Definition 2.7. The primitive direction vector (or primitive integral vector) of a

ray or segment of the graph or corner locus of a tropical function in two variables at

the vertex V is the vector v = (x1, x2) of shortest length such that xi is an integer,

and such that the ray or segment extends in the same direction from V as v does

from the origin. For example, if f(x, y) = x2 ⊕ y ⊕ 0 is the line with vertex V at

9



Figure 8: The dual graph of f(x, y) = x2 ⊕ y ⊕ 0.

the origin, then the primitive direction vector of the vertical ray is (0, 1); for the

horizontal ray it is (1, 0); and for the diagonal ray it is (−1,−2). See Figure 7.

Proposition 2.8. Every vertex of the corner locus of a tropical function in two

variables satisfies the balancing condition, i.e., if a vertex V has n rays or segments

emanating from it, each with weight wi and primitive direction vector vi, then
n∑

i=1

wivi = 0.

Proof. Both [2] and [6] show this.

For example, we see from the dual graph of f in Figure 8 that the vertical ray

has weight 2, the horizontal has weight 1, and the diagonal has weight 1. So the

sum
3∑

i=1

wivi = 2(0, 1) + 1(1, 0) + 1(−1,−2) = (0, 0), as expected.

Proposition 2.9. The outer edges of the dual graph ∆(f) always bound a convex

region. Also, every connected interior region of ∆(f) is convex.

Proof. This is shown to be a consequence of the balancing condition in [2].

10



3 Tropical elliptic curves

3.1 Cycles

Proposition 3.1. If f is a tropical cubic curve, then ∆(f) has an interior vertex

if and only if K(f) contains a unique cycle, which we will denote C∗(f) or simply

C∗.

Proof. For each interior region R touching the interior vertex v, there is a vertex

of K(f) that is joined by line segments to the vertexes of K(f) corresponding to

the interior regions adjoining R. Since there must be at least three edges touching

v for it to be a vertex, there must be at least three line segments that join to make

the cycle. The cycle is unique simply because there is only one point that can be

an interior vertex of ∆(f).

Definition 3.2. If a tropical curve has a finite unique cycle, then it is called a

tropical elliptic curve.

Each connected component of the closure of the complement of C∗ is called a

tentacle. We note that because of the constraints on the dual graphs of a tropical

elliptic cubic, tentacles may only have certain slopes and relationships with each

other.

Proposition 3.3. The segments and rays of a tentacle may only have slope 0,∞, 1

3
,

±1

2
,
2

3
,±1,

3

2
,±2, or 3.

Proof. The slope of each portion of a tentacle must be perpendicular to the slope of

an edge of the dual graph that does not touch the interior vertex. Thus the slopes

of tentacles are restricted to these.

11



Figure 9: The corner locus of f showing two vertical rays and two diagonal rays

protruding directly from the cycle (left); a tentacle composed of one vertical ray,

one horizontal ray, and a line segment (upper right); and a tentacle composed of

two horizontal rays, one diagonal ray, and two line segments (lower right).
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Figure 10: The dual graph of f above.

For an interesting example, we have the corner locus of f(x, y) = 0 ⊕ x ⊕ y ⊕

2x2 ⊕ 5x3 ⊕ 6y2 ⊕ 13y3 ⊕ 1xy ⊕ 5x2y ⊕ 6xy2, Figure 9, and it’s dual graph, Figure

10. Notice that some tentacles emanate as single rays from the cycle. Some are

composed of short segments and multiple rays heading in different directions. Some

include different rays going in the same direction.

Proposition 3.4. The only possible slopes of cycle sides are 0,∞, 1

2
,±1, and 2.

Proof. Each edge corresponding to a side of the cycle must originate with the interior

point of ∆(f) and extend to a boundary vertex. By Proposition 2.5, the sides of

the cycle must be perpendicular to the edges of ∆(f), so these slopes are the only

possibilities.

There is a special subset of tropical curves that have dual graphs with vertices

lying at (0, 0, 0), (−d, 0, 0), and (0,−d, 0), where d is the degree of the curve. Such

curves are said to have full support.

13



3.2 Transversal intersections and intersection multiplicity

The intersection of two tropical curves C and D is simply the set of values in TA2(Q)

that lie on both C and D. However, using this as in classical algebraic geometry

would result in rays of C and D coinciding without coincident components and

other problems, so we wish to define a more general form of intersection that allows

for analogous tropical theorems, such as Bézout’s theorem, the group law, etc. The

definition will be composed of two types of intersections: transverse intersections, or

those that occur when no vertex of C lies on D, or vice versa; and stable intersections

which take care of the rest.

Sometimes curves intersect transversally at a single point with multiplicity greater

than 1. For example, in the classical setting, f(x, y) = x2 − y intersects with

g(x, y) = y at (0, 0) with multiplicity 2. We will explain how this works in the

tropical case.

Proposition 3.5. For any tropical functions f, g, K(f) ∪K(g) = K(fg).

Proof. This was shown by Aaron Hill and is found in [1].

An important consequence of this is the following.

Proposition 3.6. If C is any curve in TA2(Q) and f and g are tropical functions

in two variables, then C ∩st K(fg) = (C ∩st K(f)) ∪ (C ∩st K(g)) .

Proof. This is an immediate consequence of Proposition 3.5.

In order to count the multiplicity of the intersection of K(f) and K(g) at a

given point, we can look at the dual graph ∆(fg).

14



Figure 11: Corner loci of f(x, y) = x⊕ y ⊕ 1

2
and g(x, y) = x⊕ 2y ⊕ 1

2
, or if taken

together, of fg.

Figure 12: Dual graph ∆(fg).
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Definition 3.7. Let P be an intersection point of K(f) and K(g), where the two

edges meeting have weights m1 and m2, and primitive integer direction vectors

(v1, v2) and (w1, w2), respectively. The intersection multiplicity µP [12] of C and D

at P is the absolute value of

m1m2

∣∣∣∣∣∣
v1 v2 0
w1 w2 0
1 1 1

∣∣∣∣∣∣ .
For example, set f(x, y) = x⊕ y⊕ 1

2
and g(x, y) = x⊕ 2y⊕ 1

2
. The intersection

lies on the horizontal ray of K(f) and the vertical ray of K(g), as in Figure 11.

The dual graph ∆(fg) is Figure 12. The weights m1 and m2 are both 1, since the

corresponding edges have lattice length 1. The primitive direction vectors are (1, 0)

and (0, 1), so the intersection multiplicity at the intersection is

1 · 1

∣∣∣∣∣∣
1 0 0
0 1 0
1 1 1

∣∣∣∣∣∣ = 1.

3.3 Stable Intersection

Finding points of intersection of tropical curves is simple when the intersection

is transverse, but because graphs of tropical functions may intersect along rays,

even without sharing a common component (i.e., sharing a common factor in the

function), we must use a more general idea of intersection called stable intersection.

There is a similar concept in classical intersection theory. For example, if we

have the cubic f(x, y) = (y + x2)(y + 2), and ga(x, y) = y + a, then as a > 0

varies continuously, the intersection Z(f) ∩ Z(ga) also varies continuously, except

at a = 2. When a = 2, the two share a component, and thus intersect at infinitely

many points. But simply by taking the limit of the intersections as a→ 2, we can

tell that there are two special points of intersection for when a = 2, at (−
√

2,−2)

16



Figure 13: Example of classical stable intersection.

and (
√

2,−2). (See the figure below.) These points are the stable intersection of f

and g2, denoted Z(f) ∩st Z(g2).

Extending this idea to the tropical setting, for f, g tropical polynomials, we

define the stable intersection of f and g, denoted K(f)∩stK(g) to be the following:

Definition 3.8. Let f and g be tropical functions in two variables. Then for a

generic v ∈ Q2, K(f) intersects transversally with K(g) + v, as shown in [11]. So

we define the stable intersection of K(f) with K(g) to be the set

K(f) ∩st K(g) = lim
v→0

K(f) ∩ (K(g) + v) ,

counting multiplicities of each point in the set. This limit is shown to be well-defined

in [11] as well.

For example, the corner loci of the lines f(x, y) = x⊕y⊕1 and g(x, y) = x⊕y⊕ 1

2
17



coincide along the diagonal ray. But we see that perturbing K(g) by v = (0, 0.1)

gives us a single transversal intersection. Taking smaller and smaller perturbations

like this will give intersection points that get arbitrarily close to the point

(
1

2
,
1

2

)
,

and so this point is the point of stable intersection.

As in the classical algebraic geometry, a form of Bézout’s Theorem holds, which

helps us know when we’ve found all of our stable intersection points.

Proposition 3.9 (Bézout’s Theorem). If C and D are tropical curves in TPn(Q)

of degrees k and m, respectively, then the number of stable intersection points of

C ∩st D, counting multiplicity, is km.

Proof. This is proved in [8].

3.4 Tropical singularities

Tropical curves can contain points, which just like in the classical case, are called

singularities, that cause problems when computing the group law. Such points must

be identified and then thrown out.

Definition 3.10. A tropical singularity is a point p of the curve C at which at least

one of the following two conditions is met:

1. There is no tropical line which intersects the curve at p with multiplicity one;

2. The point has valence at least four (i.e., there are at least four rays or line

segments emanating from the point p).

Remark 3.11. In the classical setting, there are a few equivalent conditions like the

above ones that all can detect singularities of classical curves. Unfortunately, the

18



(a) K(f) appears to inter-

sect K(g) along the diagonal

ray.

(b) K(f) is perturbed

slightly downwards to show

the single intersection near

(1/2, 1/2).

(c) Similarly perturbing

K(f) up shows the same on

a different ray.

(d) The point of stable inter-

section is (1/2, 1/2).

Figure 14: Example of perturbing a corner locus to find the stable intersection.
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analogous tropical conditions behave badly in general. Luckily for our purposes, the

above mentioned conditions work well for detecting singularities of tropical cubics,

and so we are able to consistently apply them in this thesis.

We can often detect singularities with the help of the dual graph. If ∆(f)

contains a region with more than three sides, as in Figure 20, then the corresponding

vertex will satisfy condition 2., as in Figure 11. If the lattice length of any edge

of the dual graph is more than one, as in Figure 15, then the corresponding ray or

segment of the curve has weight w > 1. Thus when we compute the intersection

multiplicity of any line with that segment it is also greater than 1. Therefore, the

points of this segment or ray satisfy condition 1, as in Figure 11.

Another important example is the following. A cubic may have an infinite cycle

which contains a point at infinity. For example, if h(x, y) = 3⊕ x⊕ y ⊕ (−2)xy ⊕

xy2 ⊕ y2 ⊕ (−1)y3, then ∆(h) is represented in Figure 15 and K(h) is Figure 16.

Proposition 3.12. Any line that intersects an infinite cycle at the infinite point,

must intersect with multiplicity two or more, and therefore, the infinite point of a

cycle is singular.

Proof. The stable intersection of a line with the infinite cycle must be the limit of

the intersections of the curve with a sequence of lines which approach the line at

the infinite point. Since we can find such a sequence of lines that all have vertex

within the cycle, it is clear that there are two intersections of each line on the cycle

each approaching the infinite point. Thus the stable intersection of any line with

this curve at the infinite point must have multiplicity 2 or more.

There is one other special type of point on some tropical elliptic curves that can

cause problems—that is a point at infinity. There is some difficulty in discussing the
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Figure 15: The dual graph of the curve h with an infinite cycle.

intersections of these points, and so we will not deal with them here. In the scope

of this thesis, we will only consider tropical elliptic curves that are non-singular,

(i.e., that don’t contain any points of singularity), and we will only be considering

the points of these curves that have no infinite coordinate, i.e. the finite points of

nonsingular curves.

4 Divisors and the Group Law

4.1 From classical geometry

In classical algebraic geometry, the most general way to prove the group law on

cubic curves is to use divisors and construct the Jacobian. Define a group structure

on the curve in the following way (see [10], or [9].)

Definition 4.1. Set G equal to the free Abelian group on the points of the curve
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Figure 16: Corner locus of the curve h with an infinite cycle. Note that the two

infinite rays extending left intersect at (0,∞,∞) ∈ TP2(Q).

C. The elements of this group are called divisors. So a divisor D is essentially a

formal sum, D =
∑
P∈C

µPP , of points on the curve, where µP is some integer. For

obvious reasons, we will call the integer µP the multiplicity of D at P .

Definition 4.2. The divisor of a polynomial, div f , is the divisor
∑

µPP , where P

ranges over the points of the stable intersection of f and C and µP is the multiplicity

of the intersection at P .

Definition 4.3. The degree of a divisor D is the sum of the multiplicities
∑
P∈C

µP .

Definition 4.4. The subgroup of degree zero divisors of C is denoted Div0(C). A

divisor is called principal if it is the difference of the divisors of two homogeneous

polynomials f and g of same degree; i.e., D = div
f

g
= div f − div g.

We define an equivalence relation on the elements of this group.
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Definition 4.5. Two elements P and Q are linearly equivalent, written P ∼ Q, if

and only if there exists a principal divisor D = div
f

g
= div f − div g such that

D = P −Q.

We define the Jacobian (or divisor class group) as the following quotient.

Definition 4.6. The Jacobian of the curve C is Jac(C) = Div0(C)/ ∼.

4.2 Tropical divisors and linear equivalence

As in the classical setting, we define the concept of tropical divisors, principal

divisors, and the Jacobian.

Definition 4.7. Set Div(C) to be the free Abelian group generated by the finite,

non-singular points of the curve C. A divisor is an element of Div(C), i.e., D =∑
P∈C

µPP where µP is an integer.

Definition 4.8. The sum
∑
P∈C

µP is the degree of the divisor D. The set of degree

zero divisors of C is denoted Div0(C). A tropical divisor D is principal if there

are tropical homogeneous polynomials f and g of the same degree and each is the

product of lines such that D = div f − div g.

Definition 4.9. Two tropical divisors D and D′ are linearly equivalent, written

D ∼ D′, if their difference is a principal divisor, i.e., if there are polynomials f and

g, each of which is the product of n lines for some n ≥ 0, such that D − D′ =

div
f

g
= div f − div g.

Remark 4.10. This definition of tropical principal divisors is different than those

that other authors have suggested. Some authors have suggested including the
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restriction that ∆(f) = ∆(g) [13] [14]. But this definition does not allow the

relation ∼ to be transitive. For example, the transitivity of ∼ on the curve in

Figure 21 will be discussed below. But defining principal divisors as we have, we

get that ∼ is an equivalence relation.

There is another more obvious way to define the equivalence relation. That is to

simply let f and g be homogeneous of the same degree without any extra conditions.

We choose not to work with this definition since it seems that we are left with very

few equivalence classes. Using this definition may in fact give the same result, but

so far it seems that there are too many cases to consider, and most authors seem to

restrict their definitions to be more workable like ours. We also suspect that there

may be a way to show that for any function f of degree n and any curve C there is

a product g =
∏

Li of n lines such that div f = div g. However, without proving

such a conjecture, we are not certain that the results will match ours.

Proposition 4.11. The relation ∼ is an equivalence relation.

Proof. Clearly, D − D = div
f

f
for any polynomial f , so ∼ is reflexive. Also, if

D − D′ = div f − div g, then D′ − D = div g − div f , so D ∼ D′ if and only if

D′ ∼ D; thus ∼ is symmetric.

Lemma 4.12. The divisor of the product of two functions is the sum of the divisors

of each funciton, i.e., div fg = div f + div g.

Proof. This follows from the definition of div f and Proposition 3.6.

If f and g are products of m lines and h and k are products of n lines such

that D − D′ = div f − div g and D′ − D′′ = div h − div k, then D − D′′ =

(D−D′) + (D′ −D′′) = div f − div g + div h− div k = div fh− div gk = div
fh

gk
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is principal. Therefore D ∼ D′′, and ∼ is transitive. Thus ∼ is an equivalence

relation.

Corollary 4.13. R ∼ S and R + P ∼ S +Q implies that P ∼ Q.

Proof. If div
f

g
= R− S and div

h

k
= S +Q−R− P , then

div
fh

gk
= R− S + S +Q−R− P = Q− P

so that P ∼ Q.

Using this definition for ∼, we can define the tropical Jacobian.

Definition 4.14. The tropical Jacobian of a curve C is Jac(C) = Div0(C)/ ∼.

The following theorem is the main result of this paper.

Theorem 4.15. If C is a nonsingular tropical elliptic curve, then Jac(C) is iso-

morphic to the group of rational points of S1, which we will call S.

To prove this theorem, we must prove a few lemmas. We will show that the

curve is reduced to the cycle by showing that all points on a tentacle are equivalent,

and that distinct points on the cycle are not equivalent to one another. We will

also define the group operation and the isomorphism to S. [12] [13] [14]

5 Proof of the tropical group law

5.1 Tentacles

Lemma 5.1. If P,Q are points of the same tentacle T of C, then P ∼ Q.
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First we will distinguish types of tentacles so that we may treat the proof me-

thodically.

Definition 5.2. An upper-right tentacle is one that emanates from the cycle at an

angle in [0, 90) degrees. A left tentacle is one that emanates from the cycle at an

angle in [90, 225) degrees. A lower tentacle is one that emanates from the cycle at

an angle in [225, 360) degrees.

So every tentacle may be characterized as either an upper-right, left or lower

tentacle.

Definition 5.3. A side tentacle consists of a ray emanating directly from the cycle,

with no connecting line segments. A corner tentacle is one that is not a side tentacle.

First we must note that we may restrict our examples and proofs to only the

upper-right tentacles. This is because when dealing with a left or lower tentacle,

we may apply a transformation that permutes the projective variables x, y, and z,

then find the appropriate divisors according to the method explained below, and

reverse transform these divisors resulting in what we need to prove the result on

the original curve. [1]

For example, if L is a vertical ray of a curve K(f(x, y)), we can switch the

variables x and y, resulting in K(f(y, x) having the portion L instead manifest as

a horizontal ray. We may then apply the methods below on the horizontal ray, to

find divisors D and D′ that show linear equivalence between given the points on L.

Then by switching the y and x variables back, in both the curve and the divisors,

we get divisors D and D′ that show linear equivalence on the vertical ray L.

Proof of Lemma 5.1. Suppose that P and Q are points on the tentacle T with the

x coordinate of P less than that of Q. (The case where P = Q is trivial.) We will
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consider a portion L (either a ray or line segment) of the tentacle, considering the

cases of L being part of a corner tentacle, or a side tentacle, etc. We shall first

assume that L has positive slope.

If m 6= 1, then we may set f to be the line with vertex at the point P , as

in Figure 17. Set g to be the line that intersects L at Q and P . (Since P and

Q are in general position when the slope m 6= 1, this line is unique.) Then

C ∩st K(f) = div f = 2P + R where R lies on the diagonal ray of K(f). Also,

C ∩st K(g) = div g = P +Q+R. Thus, div
f

g
= P −Q, and P ∼ Q.

If m = 1, as in Figure 18, then choose f to be any line with an stable inter-

section of multiplicity 1 at P , and choose g to the line that intersects L at Q and

has diagonal ray that overlaps that of K(g). Then div f = P + R1 + R2 and

div g = Q+R1 +R2. Thus div
f

g
= P −Q, and P ∼ Q.

Now we consider the ray L with slope m = 0, as in Figure 19. Let us first assume

that L is the topmost ray, i.e., that if the point (x0, y0, 0) ∈ L, then (x0, y, 0) 6∈ C

for all y > y0. Then set δ to be some positive value less than the minimum distance

between tentacles. Let d(·, ·) denote Euclidean distance. Then if d(P,Q) < δ, we

can choose a line f so that K(f) intersects L at P and the vertex of K(f) lies more

than δ below L. Then we may choose the line g so that K(g) intersects L at Q,

and the downward rays of K(f) and K(g) overlap. Then div f = P +R1 +R2 and

div g = Q+R1 +R2. Thus div
f

g
= P −Q, and P ∼ Q.

If d(P,Q) ≥ δ, we may certainly find points P = S1, S2, . . . , Sr = Q ∈ L such

that d(Si, Si+1) < δ, so that P ∼ S2 ∼ · · · ∼ Sr−1 ∼ Q. So since ∼ is transitive,
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Figure 17: The curve C, given by x2 ⊕ y ⊕ xy ⊕ 3x3 ⊕ 4x2y ⊕ 6xy2 ⊕ 9y3 ⊕ 4y2,

showing how to deal with a tentacle ray of slope m 6= 1.
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Figure 18: The curve C given by x⊕ y⊕ xy⊕ 1x2⊕ 1y2⊕ 2x2y⊕ 2xy2⊕ 4x3⊕ 4y3,

showing how to deal with a tentacle ray of slope m = 1.
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Figure 19: The curve C, given by 1⊕x⊕y⊕xy⊕1x2⊕1y2⊕2x2y⊕2xy2⊕4x3⊕4y3,

showing how to deal with a tentacle ray of slope m = 0.
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(a) The dual graph ∆(fh). (b) The dual graph ∆(gk).

Figure 20: The dual graphs for fh and gk are not the same.

P ∼ Q.

Remark 5.4. We can now discuss why adding the restriction to the definition for

linear equivalence that ∆(f) = ∆(g) will result in a counter-example to transitivity.

In Figure 21, we can see that K(fh) is the union of the orange and pink lines, while

K(gk) is the union of the blue and green lines. The dual graphs of fh and gk are

shown in Figure 20. We showed that P ∼ Q using P −Q = div fh− div gk. But

since the duals are different, this could not work with the extra restriction on our

definition.

We apply these methods to each ray or segment of the corner tentacle using

Proposition 4.11 and Corollary 4.13. Thus we can reduce each ray to the point it

emanates from on a segment, then reduce the segment to the point it emanates

from. Thus we have reduced the topmost rays to a point. Then using transitivity

again, we can show linear equivalence for points that lie on rays below these topmost

rays and segments.

We can show that P ∼ Q when T is a side tentacle lying below a corner tentacle
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Figure 21: The curve C, as in Figure 19, showing how to deal with points on the

tentacle that are far away from each other.
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Figure 22: Showing how to deal with a side tentacle that lies below a corner tentacle.

or when L is a ray of the corner tentacle T lying below another ray or line segment

of the corner tentacle T . So suppose that L is the ray of a side tentacle below the

corner tentacle, or that L is a ray of the corner tentacle T that lies below some

other ray or segment of T , and assume that d(P,Q) < δ.

Then we may employ the same method as with the topmost ray to yield polyno-

mials f and g with div f = P+S+R1 and div g = Q+T+R1. Thus P+S ∼ Q+T .

But S ∼ T , so by the corollary we have P ∼ Q. Then again by the transitivity,

the points of this ray are all linearly equivalent to the point that it emanates from.

We may thus inductively collapse each portion of the tentacle down to the point on

the cycle from which it emanates, whether it be a side tentacle or a corner tentacle.
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Thus we see that all points on a given tentacle are linearly equivalent.

Thus given a point P on a tentacle Ti, we see that the divisor P −O ∼ Ti −O,

where Ti represents the point on the cycle where Ti meets C∗. Therefore, we have

the following corollary.

Corollary 5.5. The Jacobian Jac(C) = Div0(C)/ ∼ is isomorphic to the Jacobian

Jac(C∗) = Div0(C∗)/ ∼ of the curve restricted to the cycle.

5.2 Cycles

Now that we know the points of a given tentacle are all equivalent to the intersection

of that tentacle with the cycle, we can treat all intersections f ∩ C as intersections

of f with the cycle C∗. Thus we now turn our attention to the points on C∗.

To begin, we define a special distance function for points on the cycle called the

directed distance, denoted by ρ. Heuristically, we add up the distances along the

counter-clockwise path, call it P , from A to B. However, the distance along a given

side will depend on the slope of that side.

Definition 5.6 (Directed cycle distance). Recall that d(P,Q) denotes the Euclidean

distance between P and Q. Suppose that A and B are points on the cycle C∗. Let

P be the path from A to B along the cycle going counter-clockwise. Let P1, . . . , Pn

be the points on the cycle such that P1 = A, Pn = B, and P2, . . . , Pn−1 are the

vertices of the cycle that the path P touches between A and B, in order. That is,

when traversing the path P from A to B, one starts at P1, then one encounters P2,

then P3, etc. until Pn is reached. For i = 1, . . . , n − 1, set di = d(Pi, Pi+1). If the

absolute value of the slope of the side of the cycle from Pi to Pi+1 is
1

2
or 2, then

set q1 =
√

5; if it is 1, set qi =
√

2; and if it is 0 or infinity, set qi = 1. Then using
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these values for this specific pair of A and B we define the directed cycle distance

ρ(A,B) from A to B to be the sum

ρ(A,B) =
n∑

i=1

di

qi
.

For example, Figure 23 shows the distance from A to B to be the distance from

A to the corner of s1, plus the length of s2, plus the length of s3, plus the distance

from the corner of s4 to B. Thus

ρ(A,B) =
4∑

i=1

di

qi
=

√
2

2
√

2
+

2

1
+

√
2√
2

+
3

2
= 5.

Of course, we may also now define the circumference of the cycle.

Definition 5.7. The circumference c, of the cycle is c = ρ(A,B) +ρ(B,A), for two

distinct points A,B ∈ C∗.

So the circumference of the cycle in Figure 23 is

c = ρ(A,B) + ρ(B,A) = 5 + 6 = 11.

Notice that for any two distinct points A and B, ρ(A,B) = c− ρ(B,A).

Now we will construct a homomorphism from the Jacobian of the curve to S1(Q),

and this will show that no two distinct points of the cycle are linearly equivalent

along the way. We designate some point of C∗ to be the origin and name it O. (Of

course, we could choose a point of a tentacle to be our origin, but after taking the

quotient over the equivalence relation, this is the same as choosing the point where

the tentacle meets the cycle for our origin.) Of the points on the cycle that are

topmost, name the point farthest to the right P . Then define L to be the line with
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Figure 23: Finding ρ(A,B).

Figure 24: An example of how to choose P and Q on the cycle.
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Figure 25: The cycle of 6y3 ⊕ 3y2 ⊕ 4xy2 ⊕ 3x2y ⊕ 2x2 ⊕ 1y ⊕ xy ⊕ x ⊕ 0 with O,

P , and Q labeled.

vertex at P and select Q to be the unique remaining point of the intersection of L

with C∗. (Notice that P chosen in this way must be an intersection of multiplicity 2,

because shifting this line in the x = y direction by ε > 0 results in two intersections–

one on each of the vertical and horizontal rays. That is why there is exactly one

other point of intersection with the cycle. This is also not necessarily the only

way that could choose P We could actually choose for P any point on the cycle

which has double intersection multiplicity, and then choose Q to be the remaining

intersection point. Choosing P as we have done just simplifies our examples.) See

Figures 24 and 25.

Define a function α : C∗ → S, (where S is the usual additive group on Q mod 1,

or the group S1 restricted to rational points), by

α(X) = ρ(O, X) mod c.
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Clearly, the point O is mapped to the identity α(O) = 0.

Since Div0(C∗) is a free Abelian group generated by the points of the cycle,

and since S is Abelian, the map α extends to a homomorphism ϕ : Div0(C∗) → S

defined by

ϕ
(∑

µXX
)

=
∑

µXα(X).

Proposition 5.8. The map ϕ is a homomorphism.

Proof. This is true almost by definition. If D =
∑

µXX and E =
∑

νXX, then

since D + E =
∑

(µX + νX)X, we have

ϕ(D + E) = ϕ
(∑

(µX + νX)X
)

=
∑

(µX + νX)α(X)

=
∑

µXα(X) +
∑

νXα(X)

= ϕ(D) + ϕ(E).

Therefore, ϕ is a homomorphism.

When the vertex lies on or within the cycle, then shifting it in any one of the

vertical, horizontal, or x = y directions, while keeping the vertex on or within the

cycle, shifts exactly two points of intersection with the cycle. To be more specific,

and to emphasize the importance of this concept, we will state it as a lemma.

Lemma 5.9. For g a tropical line with div g = D+E+F and for which the vertex

of K(g) lies on or within the cycle, if g′ is a line with vertex on or within the cycle

and div g′ = D + E ′ + F ′, then ρ(E,E ′) = ρ(F ′, F ) = c− ρ(F, F ′).

Proof. Let g be a line with vertex V on or within the cycle, with div g = D+E+F ,

and suppose that g′ is also a line with vertex V ′ on or within the cycle, and with
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div g′ = D + E ′ + F ′. If D is on the vertical ray of K(g), then it must be on the

vertical ray of K(g′). Likewise, if D lies of the horizontal ray or the diagonal ray

of K(g), then it must be on the same ray of K(g′), respectively. Let’s assume that

the x coordinates of the vertices lie some distance d(Vx, V
′
x) = δ apart, and that the

y-components lie a distance d(Vy, V
′
y) = ε apart. (This is again Euclidean distance.)

Of course, if D is on the horizontal ray, then ε = 0; if on the vertical ray, δ = 0;

and if on the diagonal ray, then δ = ε.

Suppose that D is on the vertical ray (as in our example, Figure 26). Then the

y-components of the intersections corresponding to the horizontal rays, say F and

F ′, are separated by exactly ε. So if F and F ′ lie on the same side s1 of the cycle,

then since the only possible slopes of s are∞,±1, and
1

2
, ρ(F ′, F ) = ρs1(F

′, F ) = ε.

If E and E ′ also lie on one side s2, then since the possible slopes are∞, 0, 1, 1

2
, and

2, again we have ρ(E,E ′) = ρs2(E,E
′) = ε. (See in our example, Figure 26, the

shift from K(g) to K(g′), or from K(g′) to K(g′′).)

If the E and E ′ or F and F ′ don’t lie on the same side of the cycle, then we can

break up the shift into finitely many smaller shifts for which the intersections lie on

the same sides for each of the smaller shifts. So even if the shift slides intersection

points around corners, our result regarding the opposing distances remains true.

If D lies on either of the other two rays, then the proof is nearly identical.

We simply employ a permutation of variables x, y, and z to put D on the vertical

ray, apply the above argument, and then use the reverse permutation to put the

variables back. Therefore, our result is true in all cases.

We get the following lemma (due to Dr. Tracy Hall [5]).

Lemma 5.10. For any tropical line g such that div g = D + E + F , we get
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Figure 26: Demonstrating the change in intersection points when a vertical shift is

made.

ϕ(div g) = 2ϕ(P ) + ϕ(Q).

Proof. Suppose that g is a line, which we may assume to have vertex lying on or

within the cycle, with div g = D+E+F . Then we may shift g to a line g′ with vertex

that lies on or within the cycle and also on the line f which has div f = 2P+Q. Say

div g′ = D+E ′+F ′. We need only use at most two shifts from the three directions

that we may shift as above. By Lemma 5.9, we know that when we shift g to g′,

because of the fact that ρ(E,E ′) = ρ(F ′, F ), we get ϕ(E ′) = ϕ(E) + ρ(E,E ′), and
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Figure 27: The corner loci of f and g.

ϕ(F ′) = ϕ(F ) + ρ(F, F ′). Thus

ϕ(D + E + F ) = ϕ(D) + ϕ(E) + ϕ(F )

= ϕ(D) + ϕ(E ′)− ρ(E,E ′) + ϕ(F ′)− ρ(F, F ′)

= ϕ(D) + ϕ(E ′) + ϕ(F ′)− ρ(E,E ′) + ρ(F ′, F )

= ϕ(D) + ϕ(E ′) + ϕ(F ′) + 0

= ϕ(D + E ′ + F ′).

For example, Figure 27 shows f(x, y) = 0 ⊕ x ⊕ y and g(x, y) = 0 ⊕ 2x ⊕ 1y.

When we shift g over one unit to the right, as shown in Figure 28, we get Figure

29.

Now that the vertex of g′(x, y) = 0⊕ 1x⊕ 1y lies on f , we can employ one more

shift in the upward x = y direction to slide the vertex so that the newly shifted g′′

is equal to f (see Figure 30). Again from Lemma 5.9, ϕ(D+E ′+F ′) = ϕ(2P +Q),

so that ϕ(D + E + F ) = 2ϕ(P ) + ϕ(Q).
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Figure 28: The graph of g is shifted (to g′) so that its vertex V lies on the graph of

f , resulting in Figure 29.

Figure 29: The corner locus of g′ now lies on K(f).
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Figure 30: Now the graph of g′ is shifted diagonally up to match up with f .

This gives the following corollaries.

Corollary 5.11. If D and D′ are divisors on the cycle with D ∼ D′, then ϕ(D −

D′) = 0.

Proof. Since D−D′ = div g−div g′ for some g and g′, both the products of n lines,

ϕ(D −D′) = ϕ(D)− ϕ(D′) = n(2P +Q)− n(2P +Q) = 0.

Corollary 5.12. If X and Y are points on the cycle and D = X−O and D′ = Y −O

are the corresponding divisors in Div0(C∗), then D ∼ D′ if and only if X = Y .

Proof. Obviously X = Y implies D ∼ D′. If D ∼ D′ where D = X − O and

D′ = Y −O, then

ϕ(D −D′) = ϕ(X − Y ) = ϕ(X)− ϕ(Y ) = 0
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by Corollary 5.11. But then ϕ(X) = ϕ(Y ). Thus X and Y are both the same

distance from P . Therefore, X = Y .

Therefore, while every point on a given tentacle is linearly equivalent to every

other point on that tentacle, no two points on the cycle are linearly equivalent.

Therefore, since ϕ : Div0(C∗) → S is a surjective homomorphism, we have the

exact sequence

0→ kerϕ→ Div0(C∗)→ S → 0.

Corollaries 5.11 and 5.12 shows us that kerϕ is equal to the subgroup of principal

divisors of Div0(C∗). Therefore, Jac(C) ∼= Jac(C∗) by Corollary 5.5. Also,

Jac(C∗) = Div0(C∗)/ ∼ ∼= Div0(C∗)/ kerϕ,

and by the exactness of the sequence above, Div0(C∗)/ ∼ ∼= S. Thus we have

shown that

Jac(C) ∼= S

as we stated in Theorem 4.15.
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