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Abstract

Maximal Unramified Extensions of Cyclic Cubic Fields

Ka Lun Wong

Department of Mathematics

Master of Science

Maximal unramified extensions of quadratic number fields have been well studied. This
thesis focuses on maximal unramified extensions of cyclic cubic fields. We use the uncondi-
tional discriminant bounds of Moreno to determine cyclic cubic fields having no non-solvable
unramified extensions. We also use a theorem of Roquette, developed from the method of
Golod-Shafarevich, and some results by Cohen to construct cyclic cubic fields in which the
unramified extension is of infinite degree.
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Chapter 1. Introduction

Maximal unramified extensions of quadratic number fields have been well studied. Yama-

mura [11] studied maximal unramified extensions of imaginary quadratic number fields of

small conductors 6 420 (and 6 1000 under the Generalized Riemann Hypothesis (GRH))

and determined the structures of the Galois groups Gal(Kur/K) of the maximal unramified

extensions Kur of these imaginary quadratic number fields K. The main idea in Yamamura’s

paper is to use the discriminant bounds to show that certain fields with discriminant less

than the bounds have no non-solvable unramified extension. Then, the maximal unramified

extension will coincide with the top of the class field tower of K which is also the maxi-

mal unramified solvable extension. In his paper, he gives the explicit structure of Kur and

Gal(Kur/K) in the following table.
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In the above table, K1 is the (first) Hilbert class field of K and K2 is the second Hilbert class

field (Hilbert class field of K1) of K. The constant l is the length of the class field tower,

i.e., the smallest number l such that Kl = Kl+1, provided that such l exists.

He also gives examples of unramified non-solvable extensions of K. The following is the

first example.

Proposition 1.1. The field Q(
√
−1507) is the first imaginary quadratic number field having

an unramified A5-extension which is normal over Q in the sense that none of Q(
√
d) of

discriminant d with 0 > d > −1507 has such an extension. Moreover, such an extension of

K = Q(
√
−1507) is given by the composite field of K with the splitting field of the quintic

polynomial x5 − 5x3 + 5x2 + 24x+ 4, which is an A5-extension of Q.

Our research focuses on maximal unramified extensions of cyclic cubic fields. We follow

his ideas but use the unconditional discriminant bounds of Moreno [8] to determine cyclic

cubic fields having no non-solvable unramified extensions. That will imply the maximal

unramified solvable extensions, which are also the top of the class field tower, are the maximal

unramified extensions. We give several examples of cyclic cubic fields with non-solvable

unramified extensions as well. We also use a theorem of Roquette (see [5]), developed from

the method of Golod-Shafarevich, to construct cyclic cubic fields in which the unramified

extension is of infinite degree. Some results by Cohen [2] on cyclic cubic fields are also very

useful and important to our construction of certain examples.

1.1 Preliminaries I

All of the results in this section can be found in most introductory books on algebraic number

theory, such as Marcus [6].

LetK be a number field over Q and letOK be the ring of integers inK. Let L be a number

field containing K and let OL be the ring of integers in L. Let P be a prime in OK . Then
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the ideal POL in OL factors uniquely into prime ideals in OL, i.e. POL = Q1
e1Q2

e2 ...Qg
eg .

The exponent ei of Qi is called the ramification index of Qi over P , denoted by e(Qi|P ).

Definition 1.2. A prime P is ramified if ei > 1 for some i. The prime P splits if g > 1.

The prime P is inert (remains prime) if g = 1 and e1 = 1.

Here we also give some definitions from Cox [3] about infinite primes.

Definition 1.3. Prime ideals of OK are often called finite primes to distinguish them from

the infinite primes, which are determined by the embeddings of K into C. A real infinite

prime is an embedding σ : K → R, while a complex infinite prime is a pair of complex

conjugate embeddings σ, σ : K → C, σ 6= σ. Given an extension L/K, an infinite prime σ

of K ramifies in L provided that σ is real but it has an extension to L which is complex.

For example, the infinite prime of Q is unramified in Q(
√

2) but ramified in Q(
√
−2).

We say L is an unramified extension of K if L is unramified at all primes, finite or infinite.

Definition 1.4. Let P be a prime of OK and Q be a prime of OL. The fields OK/P and

OL/Q are called the residue fields associated with P and Q, respectively. The degree f of

OL/Q over OK/P is called the inertial degree of Q over P , denoted by f(Q|P ).

Proposition 1.5. If U ⊂ P ⊂ Q are primes in three number rings OF ⊂ OK ⊂ OL, then

e(Q|U) = e(Q|P )e(P |U) and f(Q|U) = f(Q|P )f(P |U).

Proof. Let the factorization of U in OK be P e(P |U)P
eP2
2 ...P

ePn
n and the factorization of P

in OL be Qe(Q|P )Q
eQ2
2 ...Q

eQr
r . Since every prime of OL lies over a unique prime of OK and

every prime of OK lies over a unique prime of OF , the factorization of U in OL looks like

[Qe(Q|P )Q
eQ2
2 ...Q

eQr
r ]e(P |U)[...]eP2 ...[...]ePn . Thus, e(Q|U) = e(Q|P )e(P |U).

And f(Q|U) = [OL/Q : OF/U ] = [OL/Q : OK/P ][OK/P : OF/U ] = f(Q|P )f(P |U).

The following proposition can be found in Marcus [6]. It relates an important relation

between the degree of L over K and the ramification indices and inertial degrees.
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Proposition 1.6. Let n be the degree of L over K and let Q1, ..., Qg be the primes of OL over

a prime P of OK. Denote by e1, ..., eg and f1, ..., fg the corresponding ramification indices

and inertial degrees. Then

g∑
i=1

eifi = n.

Proposition 1.7. If L is normal over K and Q and Q′ are two primes lying over P , then

e(Q|P ) = e(Q′|P ) = e and f(Q|P ) = f(Q′|P ) = f . Moreover, efg = n.

Proof. Let P = Qe(Q|P )Q′e(Q
′|P )Q

eP3
3 ...Q

ePn
n . Let G = Gal(OL/OK). We know that G per-

mutes the primes lying over P and σ(Q) = Q′ for some σ ∈ G. Thus, P = σ(P ) =

Q′e(Q|P )σ(Q′)e(Q
′|P )σ(Q3)eP3 ...σ(Qn)ePn and e(Q|P ) = e(Q′|P ).

We define σ : OL/Q → OL/Q′ by σ(x + Q) = σ(x) + Q′ where σ is the specific element

in G such that σ(Q) = Q′ as above. This function is a well-defined function. To show

it is one-to-one, we suppose σ(x1 + Q) = σ(x2 + Q). Then σ(x1) + Q′ = σ(x2) + Q′ and

σ(x1) − σ(x2) = σ(x1 − x2) ∈ Q′. Thus, x1 − x2 ∈ Q and so x1 + Q = x2 + Q. This shows

σ is one-to-one. Also, for any y + Q′ ∈ OL/Q′, ∃σ−1(y) + Q ∈ OL/Q where σ−1 ∈ G such

that σ(σ−1(y) + Q) = σ(σ−1(y)) + Q′ = y + Q′. This shows σ is onto. It is clearly a field

homomorphism as it preserves addition and multiplication. Therefore, OL/Q ∼= OL/Q′ and

f(Q|P ) = f(Q′|P ) = f .

So if we have a cyclic cubic field K over Q and if p ∈ Z is ramified in K, then p = P 3

for some prime P in K and e(P |p) = 3. Moreover, if L is an unramified extension over K

and Q is a prime in L over P , e(Q|P ) = 1 and e(Q|p) = e(P |p) = 3.

Definition 1.8. Let K be a number field. Let α1, ..., αn be an integral basis for K and let

σ1, ..., σn be the n embeddings of K in C. The discriminant of K is defined to be

disc(K) = disc(α1, ..., αn) = |σi(αj)|2

which is an invariant of K.
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Definition 1.9. The root discriminant of K is defined to be

rdK = |disc(K)|1/[K:Q].

The following proposition can be found in Marcus [6]. From it, we know what primes in

Z are ramified in K if we know the discriminant of K.

Proposition 1.10. Let p be a prime in Z. Then p is ramified in OK if and only if p | disc(K).

Here we quote a proposition from Neukirch [9] which we will use.

Proposition 1.11. Let F ⊂ K ⊂ L. Let 4 denote the relative discriminant and N denote

the relative norm. We have 4L/F = NK/F (4L/K)4[L:K]
K/F .

Corollary 1.12. If L is an unramified extension of K, then 4L/Q = 4[L:K]
K/Q and the root

discriminant rdL of L is the same as the root discriminant rdK of K.

Proof. Let m = [K : Q] and n = [L : K]. By Proposition 1.11, 4L/Q = NK/Q(4L/K)4[L:K]
K/Q .

Since L over K is unramified, no prime in K divides 4L/K and 4L/K is the unit ideal. Then

NK/Q(4L/K) = 1. Thus, rdL = 4
1

mn

L/Q = (4n
K/Q)

1
mn = 4

1
m

K/Q = rdK .

Thus, we see that if L is an unramified extension over K, then p ∈ Z divides disc(L) if

and only if p divides disc(K).

Now, we will look at a proposition of Marcus [6] which tells us necessary and sufficient

conditions for when a prime splits completely in a subfield of cyclotomic field. Let Q(ζ) be a

cyclotomic field with ζ = e2πi/p. We know that the Galois group G of Q(ζ) is cyclic of order

p− 1, hence there is a unique subfield Fd ⊂ Q(ζ) having degree d over Q, for each divisor d

of p− 1.

Proposition 1.13. Let p be an odd prime, and let q be any prime 6= p. Fix a divisor d of

p− 1. Then q is a d-th power mod p if and only if q splits completely in Fd.
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1.2 Preliminaries II - Class Field Theory

We now give some definitions and theorems from class field theory, which can be found in

Cox [3].

Definition 1.14. A fractional ideal a of K is a nonzero finitely generated OK-submodule of

K.

We list some properties of fractional ideals found in Cox [3].

(1) Any fractional ideal can be written in the form αI where α ∈ K and I is an ideal of

OK .

(2) Any fractional ideal a is invertible, i.e., there is a fractional ideal b such that ab = OK .

(3) Any fractional ideal a can be written uniquely as a product a =
r∏
i=1

paii , where the

pi’s are distinct prime ideals of OK , and the ai are integers.

(4) Let IK denote the set of all fractional ideals of K. The set IK is closed under

multiplication and IK is an Abelian group under this operation. The subset PK (i.e., those

of all principal fractional ideals of the form αOK for some α ∈ K∗) forms a subgroup. The

quotient IK/PK is the ideal class group and is denoted by CK . The order of the ideal class

group is called the class number and is denoted by hK (or h(K)).

We will now introduce the Hilbert class field of K and the relation between the Hilbert

class field and the ideal class group. The following propositions are found in Cox [3].

Proposition 1.15. Given a number field K, there is a finite Galois extension L of K such

that:

(i) The field L is an unramified Abelian extension of K.

(ii) Any unramified Abelian extension of K lies in L.

The field L of Proposition 1.15 is called the Hilbert class field of K. It is the maximal

unramified Abelian extension of K and is unique. To see the relation between the Hilbert
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class field and the ideal class group, we introduce a map, called the Artin map. We first

define the Artin symbol.

Lemma 1.16. Let L/K be a Galois extension, and let p be a prime of OK which is unramified

in L. If P is a prime of OL containing p, then there is a unique element σ ∈ Gal(L/K)

such that for all α in OL,

σ(α) ≡ αN(p) (mod P),

where N(p) = |OK/p| is the norm of p.

The unique element σ of Lemma 1.16 is called the Artin symbol and is denoted ((L/K)/P)

since it depends on the prime P of L. When L is an Abelian extension of K, the Artin symbol

((L/K)/P) depends only on the underlying prime p because of the following property:

If σ ∈ Gal(L/K), then

(
(L/K)

σ(P)

)
= σ

(
(L/K)

P

)
σ−1.

So the Artin symbol can be written as ((L/K)/p).

Now we can extend the definition of Artin symbol. When L is an unramified Abelian

extension, ((L/K)/p) is defined for all primes p of OK . If IK is the set of all fractional ideals,

then for any a =
r∏
i=1

paii ∈ IK we can define the Artin symbol ((L/K)/a) to be the product

(
(L/K)

a

)
=

r∏
i=1

(
(L/K)

pi

)ai
.

The Artin symbol thus defines a homomorphism, called the Artin map ,

(
(L/K)

·

)
: IK → Gal(L/K).

The Artin reciprocity theorem for the Hilbert class field relates the Hilbert class field to

7



the ideal class group CK as follows:

Theorem 1.17. If L is the Hilbert class field of a number field K, then the Artin map

(
(L/K)

·

)
: IK → Gal(L/K)

is surjective, and its kernel is exactly the subgroup PK of principal fractional ideals. Thus

the Artin map induces an isomorphism

CK ∼ // Gal(L/K).

If we apply Galois theory to Proposition 1.15 and Theorem 1.17, we get the following

classification of unramified Abelian extensions of K.

Corollary 1.18. Given a number field K, there is a one-to-one correspondence between

unramified Abelian extensions M of K and subgroups H of the ideal class group CK. Fur-

thermore, if the extension M corresponds to the subgroup H, then the Artin map induces an

isomorphism

CK/H ∼ // Gal(M/K).

All these results are the special case and consequences of the Existence Theorem and

Isomorphy Theorem from class field theory which will not be stated here.
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Chapter 2. Cyclic Cubic Fields

This whole chapter is mostly a reproduction of results from Cohen [2] with many of the

details reproduced here for completeness. Let K be a number field of degree 3 over Q, i.e. a

cubic field. If K is Galois over Q, its Galois group must be isomorphic to the cyclic group

Z/3Z. Hence, we say that K is a cyclic cubic field. The Galois group has an identity element

and two other elements which are inverses of each other. We denote them by σ and σ−1 = σ2.

Proposition 2.1. Let K = Q(θ) be a cubic field, where θ is an algebraic integer whose

minimal polynomial will be denoted P (X). Then K is a cyclic cubic field if and only if the

discriminant of P is a square.

Proof. Since Gal(K/Q) is a subgroup of S3, Gal(K/Q) ∼= A3(= Z3) or S3. By a proposition

of Cohen [2], we know that Gal(P ) ⊂ An if and only if disc(P ) is a square, where P is the

minimal polynomial of θ for K = Q(θ). Thus, K is a cyclic cubic field if and only if the

discriminant of P is a square.

Let K be a cyclic cubic field. Let θ be an algebraic integer such that K = Q(θ), and let

P (X) = X3 − SX2 + TX −N be the minimal polynomial of θ, with integer coefficients S,

T and N . Since any cubic field has at least one real embedding and since K is Galois, all

the roots of P must be in K. Hence, they must all be real, so a cyclic cubic field must be

totally real.

2.1 General Parametric Description of Cyclic Cubic Fields

From Cohen [2], we know we can describe cyclic cubic fields parametrically. First, we set

ζ = e2πi/3, i.e. a primitive cube root of unity. Since K is totally real, ζ 6∈ K, hence

the extension field K(ζ) is a degree six field over Q. The field K(ζ) is still Galois over Q
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because it is the composite of two Galois extensions over Q. The Galois group is generated by

commuting elements σ and τ , where σ acts on K by permuting the roots of P (X) transitively

and trivially on ζ, and τ denotes complex conjugation. Then, the first result we need is as

follows.

Lemma 2.2. Set γ = θ + ζ2σ(θ) + ζσ2(θ) ∈ K(ζ), and β = γ2/τ(γ). Then β ∈ Q(ζ) and

we have

P (X) = X3 − SX2 +
S2 − e

3
X − S3 − 3Se+ eu

27
,

where e = βτ(β) and u = β + τ(β) (i.e. e and u are the norm and trace of β considered as

an element of Q(ζ)).

Proof. We have τ(γ) = τ(θ) + τ(ζ2)τ(σ(θ)) + τ(ζ)τ(σ2(θ)) = θ + ζσ(θ) + ζ2σ2(θ). One

sees immediately that σ(γ) = σ(θ) + σ(ζ2)σ(σ(θ)) + σ(ζ)σ(σ2(θ)) = σ(θ) + ζ2σ2(θ) + ζθ =

ζ(θ + ζ2σ(θ) + ζσ2(θ)) = ζγ. Hence, σ(β) =
σ(γ2)

σ(τ(γ))
=

ζ2γ2

ζ2τ(γ)
=

γ2

τ(γ)
= β.

Thus, β is invariant under the action of σ, so by Galois theory β must belong to the

quadratic subfield Q(ζ) of K(ζ). In particular, e and u as defined above are in Q. Also,

e = βτ(β) =
γ2

τ(γ)
· [τ(γ)]2

τ 2(γ)
= γτ(γ), and eu = γτ(γ)

(
γ2

τ(γ)
+

[τ(γ)]2

γ

)
= γ3 + [τ(γ)]3.

Now we have the matrix equations:


S

γ

τ(γ)

 =


θ + σ(θ) + σ2(θ)

θ + ζ2σ(θ) + ζσ2(θ)

θ + ζσ(θ) + ζ2σ2(θ)

 =


1 1 1

1 ζ2 ζ

1 ζ ζ2




θ

σ(θ)

σ2(θ)

 .

Hence, 
θ

σ(θ)

σ2(θ)

 =


1 1 1

1 ζ2 ζ

1 ζ ζ2


−1

S

γ

τ(γ)

 =
1

3


1 1 1

1 ζ ζ2

1 ζ2 ζ




S

γ

τ(γ)

 .
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Thus,

θ =
1

3
(S + γ + τ(γ)),

σ(θ) =
1

3
(S + ζγ + ζ2τ(γ)), and

σ2(θ) =
1

3
(S + ζ2γ + ζτ(γ)).

We compute that

T =θσ(θ) + θσ2(θ) + σ(θ)σ2(θ)

=
1

9
[(S + γ + τ(γ))(S + ζγ + ζ2τ(γ)) + (S + γ + τ(γ))(S + ζ2γ + ζτ(γ))

+ (S + ζγ + ζ2τ(γ))(S + ζ2γ + ζτ(γ))]

=
1

9
[S2 + ζSγ + ζ2Sτ(γ) + Sγ + ζγ2 + ζ2γτ(γ) + Sτ(γ) + ζγτ(γ) + ζ2[τ(γ)]2

+ S2 + ζ2Sγ + ζSτ(γ) + Sγ + ζ2γ2 + ζγτ(γ) + Sτ(γ) + ζ2γτ(γ) + ζ[τ(γ)]2

+ S2 + ζ2Sγ + ζSτ(γ) + ζSγ + γ2 + ζ2γτ(γ) + ζ2Sτ(γ) + ζγτ(γ) + [τ(γ)]2

=
1

9
[3S2 + 2Sγ(1 + ζ + ζ2) + 2Sτ(γ)(1 + ζ + ζ2) + γ2(1 + ζ + ζ2) + [τ(γ)]2(1 + ζ + ζ2)

+ 3γτ(γ)(ζ + ζ2)]

=
1

9
(3S2 − 3e)

=
S2 − e

3
.

Next we compute

N = θσ(θ)σ2(θ)

=
1

27
(S + γ + τ(γ))(S + ζγ + ζ2τ(γ))(S + ζ2γ + ζτ(γ))

=
1

27
[(S2 + ζSγ + ζ2Sτ(γ) + Sγ + ζγ2 + ζ2γτ(γ) + Sτ(γ) + ζγτ(γ) + ζ2[τ(γ)]2)(S + ζ2γ

+ ζτ(γ))]

11



=
1

27
[S3 + ζS2γ + ζ2S2τ(γ) + S2γ + ζSγ2 + ζ2Sγτ(γ) + S2τ(γ) + ζSγτ(γ) + ζ2S[τ(γ)]2

+ ζ2S2γ + Sγ2 + ζSγτ(γ) + ζ2Sγ2 + γ3 + ζγ2τ(γ) + ζ2Sγτ(γ) + γ2τ(γ) + ζγ[τ(γ)]2

+ ζS2τ(γ) + ζ2Sγτ(γ) + S[τ(γ)]2 + ζSγτ(γ) + ζ2γ2τ(γ) + γ[τ(γ)]2 + ζS[τ(γ)]2

+ ζ2γ[τ(γ)]2 + [τ(γ)]3]

=
1

27
[S3 + (S2γ + Sγ2 + S2τ(γ) + S[τ(γ)]2 + γ2τ(γ) + γ[τ(γ)]2)(1 + ζ + ζ2)

+ 3Sγτ(γ)(ζ + ζ2) + γ3 + [τ(γ)]3]

=
S3 − 3Se+ eu

27
.

This completes the proof.

We will modify θ (hence its minimal polynomial P (X)) so as to obtain a unique defining

polynomial for each cyclic cubic field. But before that, we need to prove a lemma.

Lemma 2.3. If Q(θ) is a cyclic cubic field, then Q(θ) = Q(bθ + cσ(θ)) for any b, c ∈ Q,

where b and c are not both zero.

Proof. First we note that 1 and θ are linearly independent over Q, otherwise θ ∈ Q. Now

suppose 1, θ, σ(θ) are linearly dependent over Q. Then A+Bθ+Cσ(θ) = 0 for some A, B,

C ∈ Q, but not all zero. If C = 0, then A+Bθ = 0 and A = B = 0. Thus C 6= 0. Then,

Bθ + Cσ(θ) = −A
B

C
θ + σ(θ) = −A

C

σ(θ) = −A
C

+
B

C
θ.

Let x = −A
C

and y =
B

C
. We compute
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σ(θ) = x+ yθ, σ2(θ) = x+ y(x+ yθ) = (x+ xy) + y2θ,

θ = σ3(θ) = x+ xy + y2(x+ yθ) = x(1 + y + y2) + y3θ.

Thus, y = 1, x = 0 because 1 and θ are linearly independent over Q. However, σ(θ) = θ

is a contradiction. Thus, 1, θ, σ(θ) are linearly independent over Q. Then bθ + cσ(θ) 6∈ Q

if b, c ∈ Q and b, c are not both zero. Thus, Q ⊂ Q(bθ + cσ(θ)) ⊆ Q(θ) and so Q(θ) =

Q(bθ + cσ(θ)).

Now, we modify θ. First note that replacing γ by (b + cζ)γ is equivalent to changing θ

into bθ + cσ(θ), and β is changed into β
(b+ cζ)2

b+ cζ
.

To see this, set γ′ = (b+ cζ)γ. Then we compute

γ′ = (b+ cζ)(θ + ζ2σ(θ) + ζσ2(θ))

= bθ + cζθ + bζ2σ(θ) + cσ(θ) + bζσ2(θ) + cζ2σ2(θ)

= bθ + cσ(θ) + ζ2[bσ(θ) + cσ2(θ)] + ζ[cθ + bσ2(θ)]

= bθ + cσ(θ) + ζ2σ(bθ + cσ(θ)) + ζ(bθ + cσ(θ)).

Let θ′ = bθ + cσ(θ). Then γ′ = θ′ + ζ2σ(θ′) + ζσ2(θ′). Also,

β′ =
γ′2

τ(γ′)
=

(b+ cζ)2γ2

τ((b+ cζ)γ)
=

(b+ cζ)2γ2

τ(γ)(b+ cζ2)
= β

(b+ cζ)2

(b+ cζ2)
.

Now, let {pk} be the set of primes which split in Q(ζ) (they are the primes whose factorization

looks like pk = πkπk). By Proposition 1.13, if we choose p = 3, q = pk and d = 2, then pk

splits completely in F2 = Q(ζ) if and only if pk is a square mod 3, i.e. pk ≡ 1 (mod 3). Let

{qk} be the set of inert primes, i.e. primes such that qk ≡ 2 (mod 3). Note that 3 is the

only prime ramified in Q(ζ) because the discriminant of Q(ζ) is −3. Let ρ = 1 + 2ζ =
√
−3

13



denote the prime above 3. Then, we can write

b+ cζ = (−ζ)gρf
∏

πk
ek
∏

πk
fk
∏

qk
gk .

Hence, since b+ cζ2 = b+ cζ, we have

(b+ cζ)2

b+ cζ2
=

(−ζ)2gρ2f
∏
πk

2ek
∏
πk

2fk
∏
qk

2gk

(−ζ2)g(−ρ)f
∏
πk

ek
∏
πkfk

∏
qkgk

= (−1)g+fρf
∏

πk
2ek−fk

∏
πk

2fk−ek
∏

qk
gk .

If the decomposition of β is

(−ζ)nρm
∏

πk
lk
∏

πk
mk

∏
qk
nk ,

then choose gk = −nk and f = −m. Thus,

β
(b+ cζ)2

(b+ cζ2)
= (−1)g+f+nζn

∏
πk

lk+2ek−fk
∏

πk
mk+2fk−ek .

Furthermore, for each k consider the quantity mk + 2lk.

Case(1): If mk + 2lk ≡ 0 or 1 (mod 3), choose ek =

⌊
−mk − 2lk + 1

3

⌋
and fk = lk + 2ek.

Then,

πlk+2ek−fk
k πk

mk+2fk−ek = πk
mk+2lk+3ek = πk

mk+2lk+3
⌊
−mk−2lk+1

3

⌋
.

Letmk+2lk = 3M or 3M+1. Then−mk−2lk+1 = −3M+1 or−3M . So, 3

⌊
−mk − 2lk + 1

3

⌋
=

3

⌊
−M +

1

3

⌋
= −3M or 3 b−Mc = −3M . Then, mk + 2lk + 3

⌊
−mk − 2lk + 1

3

⌋
= 0 or 1.

Thus,

πlk+2ek−fk
k πk

mk+2fk−ek = 1 or πk.

Case(2): If mk + 2lk ≡ 2 (mod 3), then lk + 2mk ≡ 1 (mod 3), and we choose fk =

14



⌊
−lk − 2mk + 1

3

⌋
and ek = mk + 2fk. Then,

πlk+2ek−fk
k πk

mk+2fk−ek = πk
lk+2mk+3fk = πk

lk+2mk+3
⌊
−lk−2mk+1

3

⌋
.

Letting lk + 2mk = 3M + 1, then −lk − 2mk = −3M − 1, −lk − 2mk + 1 = −3M . So

3

⌊
−lk − 2mk + 1

3

⌋
= −3M . Hence, lk + 2mk + 3

⌊
−lk − 2mk + 1

3

⌋
= 3M + 1 − 3M = 1.

Thus,

πlk+2ek−fk
k πk

mk+2fk−ek = πk.

With this choice of exponents, β′ ∈ Z[ζ] because πk and πk are in Z[ζ]. Also, β′ is not

divisible by any inert or ramified prime, and is divisible by split primes only to the first

power. Also, at most one of πk or πk divides β′. In other words, if e′ = β′τ(β′) is the new

value of the norm of β′, then e′ is equal to a product of distinct primes congruent to 1 modulo

3.

Now, K = Q(θ) = Q(θ′) and θ′ is a root of the polynomial F (X) = X3−S ′X2 +T ′X−N ′

and by Lemma 2.2, F (X) = X3 − S ′X2 +
S ′2 − e′

3
X − S ′3 − 3S ′e′ + e′u′

27
.

Consider Q(X) = F

(
X +

S ′

3

)
=

(
X +

S ′

3

)3

− S ′
(
X +

S ′

3

)2

+
S ′2 − e′

3

(
X +

S ′

3

)
− S ′3 − 3S ′e′ + e′u′

27

= X3 +S ′X2 +
S ′2

3
X+

S ′3

27
−S ′X2− 2S ′2

3
X− S

′3

9
+
S ′2

3
X− e

′

3
X+

S ′3

9
− S

′e′

9
− S

′3

27
+
S ′e′

9
− e
′u′

27

= X3 − e′

3
X − e′u′

27
and let θ′′ = θ′ − S ′

3
be a root of Q(X).

Consider T (X) = 27Q

(
X

3

)
= 27

(
X3

27
− e′

9
X − e′u′

27

)
= X3 − 3e′X − e′u′. Since

β′ =
u′ + v′

√
−3

2
and β′ is not divisible by the ramified prime ρ, u′ cannot be divisible by

3. Otherwise, ρ divides u′ and v′
√
−3 and thus divides β′. Then, by suitably choosing the

exponent g above (which amounts to changing β′ into −β′), we may assume u′ ≡ 2 (mod 3).

In our process, because we want e′ to be equal to a product of primes congruent to 1

modulo 3, b and c are chosen uniquely and thus β′ is unique, hence so are e′ and u′. We
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restate this in the following proposition.

Proposition 2.4. For any cyclic cubic field K, there exists a unique pair of integers e and u

such that e is equal to a product of distinct primes congruent to 1 modulo 3, u ≡ 2 (mod 3)

and such that K = Q(θ′) where θ′ is a root of the polynomial Q(X) = X3 − e

3
X − eu

27
, or

equivalently K = Q(θ) where θ is a root of P (X) = 27Q(X/3) = X3 − 3eX − eu.

Example 2.5. Consider the cyclic cubic field represented by

P (x) = x3 + 273x2 − 1911x− 206297.

By Lemma 2.2, we find that β = −1140

7
ζ − 2118

7
, e = 68796 and u = −3096

7
. When

we factor β, we get β = (
√
−3)3(3 + 2ζ)−1(1 − 2ζ)3(3 − ζ)(2). The first factor is the

prime above 3, the second and third factors are primes above 7. The fourth factor is a

prime above 13. The last factor is an inert prime. So we have n = 4, m = 3, n1 = 1,

l1 = −1, m1 = 3, l2 = 1, m2 = 0. So we choose g1 = −1, f = −3, e1 = 0, f1 = −1,

e2 = 0, f2 = 0. Then we have b + cζ = (−ζ)g(
√
−3)−3(1 − 2ζ)−1 and β′ = β

(c+ bζ)2

(b+ cζ2)
=

(−1)g+1(−ζ)4(1 − 2ζ)(3 − ζ) = (−1)g+1

(
8 + 10i

√
3

2

)
. We then choose g = 1. We get

β′ =
8 + 10i

√
3

2
. So e′ = 91 = (7)(13) and u′ = 8. The canonical defining polynomial is then

P (X) = X3 − 3(91)X − (91)(8) = X3 − 273X − 728.

Example 2.6. Consider the cyclic cubic field represented by

P (x) = x3 + 551x2 − 2677272958x− 53771714527237.

By Lemma 2.2, we find that β = −45205665

10921
ζ +

955376950

10921
, e = 8032122475 and u =

1955959565

10921
. When we factor β, we get β = (−ζ)4(4 + ζ)(1 + 6ζ)(7 + 9ζ)−1(2 + 9ζ)2(1 +

9ζ)(−3 − 14ζ)−1(−11 − 14ζ)2(5). The first factor is a unit. The second factor is a prime

above 13. The third factor is a prime above 31. The fourth and fifth factors are primes
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above 67. The sixth factor is a prime above 73. The seventh and eighth factors are primes

above 163. The last factor is an inert prime. So we have n = 4, m = 0, n1 = 1, l1 = 1,

m1 = 0, l2 = 1, m2 = 0, l3 = −1, m3 = 2, l4 = 1, m4 = 0, l5 = −1, m5 = 2. So we choose

g1 = −1, f = 0, e1 = 0, f1 = 0, e2 = 0, f2 = 0, e3 = 0, f3 = −1, e4 = 0, f4 = 0, e5 = 0,

f5 = −1. Then we have b+ cζ = (−ζ)g(2 + 9ζ)−1(−11− 14ζ)−1(5)−1 and β′ = β
(c+ bζ)2

(b+ cζ2)
=

(−1)gζ4(4 + ζ)(1 + 6ζ)(1 + 9ζ) = (−1)g

(
343− 3i

√
3

2

)
. We then choose g = 1. We get

β′ =
−343 + 3i

√
3

2
. So e′ = (13)(31)(73) and u′ = −343. The canonical defining polynomial

is then P (X) = X3 − 3(13)(31)(73)X − (13)(31)(73)(−343) = X3 − 88257X + 10090717.

In the next section, we will prove the converse of this proposition and show examples of

how to find cyclic cubic fields with a given discriminant.

2.2 Specific Parametric Description of Cyclic Cubic Fields

From the work of Cohen [2], we know that depending on whether 3 is ramified or not in K,

the canonical minimal representing polynomial has different forms. We can see the following

theorem due to Cohen.

Theorem 2.7. All cyclic cubic fields K are given exactly once (up to isomorphism) in the

following way:

(1) If the prime 3 is ramified in K, then K = Q(θ) where θ is a root of the equation

P (X) = X3− e
3
X− eu

27
∈ Z[X], where e =

u2 + 27v2

4
, u ≡ 6 (mod 9), 3 - v, u ≡ v (mod 2),

v > 0 and
e

9
is equal to the product of distinct primes congruent to 1 modulo 3.

(2) If the prime 3 is unramified in K, then K = Q(θ) where θ is a root of the equation

P (X) = X3 − X2 +
1− e

3
X − 1− 3e+ eu

27
∈ Z[X], where e =

u2 + 27v2

4
, u ≡ 2 (mod 3),

u ≡ v (mod 2), v > 0 and e is equal to the product of distinct primes congruent to 1 modulo

3.

17



In both cases, the discriminant of P is equal to e2v2 and the discriminant of the number

field K is equal to e2.

(3) Conversely, if e is equal to 9 times the product of t−1 distinct primes congruent to 1

modulo 3, (respectively is equal to the product of t distinct primes congruent to 1 modulo 3),

then there exist up to isomorphism exactly 2t−1 cyclic cubic fields of discriminant e2 defined

by the polynomials P (X) given in (1) (respectively (2)).

To prove this theorem, we will need in particular to compute explicit integral bases and

discriminants of cyclic cubic fields. So, let K be a cyclic cubic field. By Proposition 2.4, we

have K = Q(θ) where θ is a root of the equation P (X) = X3−3eX−eu, where e =
u2 + 3v2

4
,

u ≡ 2 (mod 3) and e is equal to a product of distinct primes congruent to 1 modulo 3.

We first quote some definitions, a proposition and a few lemmas from Cohen [2].

Definition 2.8. An order R in field K is a subring of K which as a Z-module is finitely

generated and of maximal rank n = deg(K).

Definition 2.9. Let O be an order in a number field K and let p be a prime number. We

say O is p-maximal if [OK : O] is not divisible by p.

The following proposition, called Dedekind’s criterion, gives the conditions for Z[θ] to be

p-maximal. We only quote the second part that we will use.

Proposition 2.10. Let K = Q(θ) be a number field, let T ∈ Z[X] be the minimal polynomial

of θ and let p be a prime number. Denote by − reduction modulo p (in Z, Z[X] or Z[θ]). Let

T (X) =
k∏
i=1

ti(X)ei be the factorization of T (X) modulo p in Fp[X], and set g(X) =
k∏
i=1

ti(X)

where the ti ∈ Z[X] are arbitrary monic lifts of ti.

(2) Let h(X) ∈ Z[X] be a monic lift of T (X)/g(X) and set f(X) = (g(X)h(X)−T (X))/p ∈

Z[X]. Then Z[θ] is p-maximal if and only if (f, g, h) = 1 in Fp[X].

Lemma 2.11. Let p | e. Then the order Z[θ], where θ is a root of X3 − 3eX + eu (as in

Proposition 2.4), is p-maximal.
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Proof. We apply Dedekind’s criterion. Since p | e, P (X) = X3, therefore, t1(X) = X,

g(X) = X, h(X) = X2 and f(X) =
g(X)h(X)− P (X)

p
=

3e

p
X+

eu

p
. Since p | e, we cannot

have p | u, otherwise p | v, hence p2 | e which was assumed not to be true. Therefore, p -
eu

p

so (f, g, h) = 1, showing that Z[θ] is p-maximal.

Corollary 2.12. The discriminant of P (X) is equal to 81e2v2. The discriminant of the

number field K is divisible by e2.

Proof. The discriminant of X3 + aX + b is equal to −4a3 − 27b2, hence the discriminant of

P is equal to −4(−3e)3 − 27(eu)2 = 27e2(4e − u2) = 27e2(3v2) = 81e2v2, thus proving the

first statement. For the second statement, we know that the discriminant of the field K is

a square divisor of 81e2v2. We also know disc(P ) = disc(K)f 2 where f = [OK : Z[θ]]. By

the preceding lemma, Z[θ] is p-maximal for all primes dividing e, and e is coprime to 81v2.

That means if p | e, p - f and thus p | disc(K) and e2 | disc(K).

Since, as we will see, the prime divisors of v other than 3 are irrelevant, what remains is

to look at behavior of the prime 3.

Lemma 2.13. Assume that 3 - v. Then Z[θ] is 3-maximal.

Proof. Again we use Dedekind’s criterion. Since eu ≡ 2 (mod 3), we have P = X3 − eu =

X3 + 1 = (X + 1)3 in F3[X], hence t1 = X + 1, g(X) = X + 1, h(X) = (X + 1)2 and f(X) =

(X + 1)3 − (X3 − 3eX − eu)

3
= X2 + (e + 1)X +

1 + eu

3
= (X + 1)(X + e) +

eu+ 1− 3e

3
.

Hence (f, g, h) = (X+1, f) =

(
X + 1,

eu+ 1− 3e

3

)
. Now we check that r =

eu+ 1− 3e

3
=

(u2 + 3v2)(u− 3) + 4

12
=

(u2(u− 3) + 3v2(u− 3) + 4

12
=

(u3 − 3u2 + 4) + 3v2(u− 3)

12

=
(u− 2)2(u+ 1) + 3v2(u− 3)

12
. Since u ≡ 2 (mod 3), 4r ≡ v2(u − 3) (mod 9) and since

3 - v, r ≡ 2 (mod 3) so (f, g, h) = 1, which proves the lemma.

Lemma 2.14. With the above notation, let θ be a root of P (X) = X3 − 3eX − eu, where

e =
u2 + 3v2

4
and u ≡ 2 (mod 3). The conjugates of θ are given by the formulas σ(θ) =

−2e

v
− u+ v

2v
θ +

1

v
θ2, σ2(θ) =

2e

v
+
u− v

2v
θ − 1

v
θ2.
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Proof. Let θ2 = σ(θ) and θ3 = σ2(θ). The discriminant of P (X) = f 2 where f = (θ −

θ2)(θ2 − θ3)(θ3 − θ) and f = ±9ev by Corollary 2.12. If necessary, by exchanging θ2 and θ3,

we may assume that θ2 − θ3 =
9ev

(θ − θ2)(θ − θ3)
=

9ev

P ′(θ)
=

9ev

(3θ2 − 3e)
. Using the extended

Euclidean algorithm with A(X) = X3 − 3eX − eu and B(X) = X2 − e, we find the inverse

of B modulo A. Thus,

A(X) = [B(X)]X − 2eX − eu

− 1

2e
A(X) = −X

2e
B(X) +X +

u

2

X +
u

2
= − 1

2e
A(X) +

X

2e
B(X).

And,

B(X) =
(
X +

u

2

)(
X − u

2

)
+
u2 − 4e

4
u2 − 4e

4
= B(X)−

(
− 1

2e
A(X) +

X

2e
B(X)

)(
X − u

2

)
u2 − 4e

4
=

1

2e

(
X − u

2

)
A(X) +

[
1− X

2e

(
X − u

2

)]
B(X)

1 =
4

2e(u2 − 4e)

(
X − u

2

)
A(X) +

(
4

u2 − 4e

)[
1− X

2e

(
X − u

2

)]
B(X).

So,

A(X)r(X) +B(X)s(X) = 1,

where r(X) =
4

2e(u2 − 4e)

(
X − u

2

)
and s(X) =

(
4

u2 − 4e

)[
1− X

2e

(
X − u

2

)]
=

4

4e− u2

[
X

2e

(
X − u

2

)
− 1

]
=

1

4e− u2

[
X

e
(2X − u)− 4

]
=

1

3v2e
[X(2X − u)− 4e]

=
2X2 − uX − 4e

3v2e
.
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Hence, B(X)s(X) ≡ 1 (mod A(X)) and s(X) is the inverse of B(X) modulo A(X). Also,

s(θ) =
1

B(θ)
. Thus, θ2− θ3 =

9ev

(3θ2 − 3e)
=

9ev

3B(θ)
=

9ev

3
s(θ) =

(
9ev

3

)(
2θ2 − uθ − 4e

3v2e

)
=

1

v
(2θ2 − uθ − 4e). Then, since θ + θ2 + θ3 = 0, θ2 − θ3 − θ = 2θ2. Hence, θ2 =

1

2

(
1

v
(2θ2 − uθ − 4e)− θ

)
= −2e

v
− u+ v

2v
θ +

1

v
θ2. And we obtain θ3 = −θ2 − θ =

2e

v
+

u− v
2v

θ − 1

v
θ2.

Now we will prove a theorem that implies the first two statements of Theorem 2.7.

Theorem 2.15. Let K = Q(θ) be a cyclic cubic field where θ is a root of X3 − 3eX − eu

and where, as above, e =
u2 + 3v2

4
is equal to a product of distinct primes congruent to 1

modulo 3.

(1) Assume that 3 - v. Then (1, θ, σ(θ)) (where σ(θ) is given by the above formula) is an

integral basis of K and the discriminant of K is equal to (9e)2.

(2) Assume that 3 | v. Then if θ′ =
θ + 1

3
, (1, θ′, σ(θ′)) is an integral basis of K and the

discriminant of K is equal to e2.

Proof. (1) Since θ2 = vσ(θ)+
u+ v

2
θ+2e, the Z-module O generated by (1, θ, σ(θ)) contains

Z[θ]. We also see Z[θ] = 〈1, θ, vσ(θ)〉. Thus [O : Z[θ]] = v. That means 81e2v2 = disc(O)[O :

Z[θ]]2 and hence disc(O) is equal to 81e2. We know that Z[θ] is 3-maximal and p-maximal

for every prime dividing e. Hence, [OK : Z[θ]] is not divisible by 3 or p. Therefore, 3 and

p do not divide [OK : O], so O is 3-maximal and p-maximal for every prime p dividing e.

Thus, [OK : O] = 1 and disc(K) = 81e2 and it follows that O is the maximal order and

(1, θ, σ(θ)) is an integral basis of K.

(2) We now consider the case where 3 | v. The field K can then be defined by the

polynomial Q(X) = P (3X − 1)/27 = X3−X2 +
1− e

3
− 1− 3e+ eu

27
. Since e ≡ 1 (mod 3),

u ≡ 2 (mod 3) and 3 | v, we know
1− e

3
∈ Z and

1− 3e+ eu

27
∈ Z. To see the second one,

we let u = 3n+2 and v = 3m for some n, m ∈ Z. Then, e =
u2 + 3v2

4
=

(3n+ 2)2 + 3(3m)2

4
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for some n, m ∈ Z. Also, 27 | (1− 3e+ eu) ⇐⇒ 27 | (4− 12e+ 4eu) and

4− 12e+ 4eu =4− 3[(3n+ 2)2 + 3(3m)2] + [(3n+ 2)2 + 3(3m)2](3n+ 2)

=4− 3(9n2 + 12n+ 4 + 27m2) + [9n2 + 12n+ 4 + 27m2](3n+ 2)

=4− 27n2 − 36n− 12− 81m2 + 27n3 + 36n2 + 12n+ 81m2n+ 18n2 + 24n

+ 8 + 54m2

=27n2 − 27m2 + 27n3 + 81m2n.

Thus, 27 | (4− 12e+ 4eu) and 27 | (1− 3e+ eu) and
1− 3e+ eu

27
∈ Z. So Q(X) ∈ Z[X].

Furthermore, the discriminant ofQ(X) is
3∏

16i<j63

(
θi + 1

3
− θj + 1

3

)2

=
3∏

16i<j63

(
θi
3
− θj

3

)2

=

1

36

3∏
16i<j63

(θi−θj)2 =
1

36
disc(P (X)) =

e2v2

32
. Set θ′ =

θ + 1

3
, which is a root of Q(X), and let

O be the Z-module generated by (1, θ′, σ(θ′)). So σ(θ′) = σ

(
θ + 1

3

)
=
−2e
v
− u+v

2v
θ + 1

v
θ2 + 1

3
=

v − 2e

3v
− u+ v

6v
θ +

1

3v
θ2. Since θ = 3θ′ − 1,

σ(θ′) =
v − 2e

3v
− u+ v

6v
(3θ′ − 1) +

1

3v
(3θ′ − 1)2

=
v − 2e

3v
− u+ v

2v
θ′ +

u+ v

6v
+

1

3v
(9θ′2 − 6θ′ + 1)

=
v − 2e

3v
− u+ v

2v
θ′ +

u+ v

6v
+

1

3v
(9θ′2 − 6θ′ + 1)

=
2 + u+ 3v − 4e

6v
− 4 + u+ v

2v
θ′ +

3

v
θ′2.

Thus, θ′2 = −2 + u+ 3v − 4e

18
+

4 + u+ v

6
θ′+

v

3
σ(θ′). Since 4e = u2 + 3v2, u2 ≡ v2 (mod 2)

and thus u ≡ v (mod 2). And since we let u = 3n + 2 and v = 3m, we see that n ≡ m

(mod 2). So we have,
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2 + u+ 3v − 4e = 2 + 3n+ 2 + 3(3m)− (3n+ 2)2 − 3(3m)2

= 4 + 3n+ 9m− 9n2 − 12n− 4− 27m2

= 9m− 9n− 9n2 − 27m2

= 9(m− n)− 9(n2 −m2)− 18m2.

Hence, 18 | (2 + u + 3v − 4e). Also, 4 + u + v = 4 + 3n + 2 + 3m = 6 + 3(n + m), so

6 | (4 + u+ v).

Thus, O ⊃ Z[θ′] and since Z[θ′] =
〈

1, θ′,
v

3
σ(θ′)

〉
, [O : Z[θ′]] =

v

3
. Therefore, the

discriminant of O is equal to e2. By Corollary 2.12, disc(K) must be divisible by e2 and so

disc(K) = e2 and (1, θ′, σ(θ′)) is an integral basis of K.

Now we will prove Theorem 2.7.

Proof. First, we note that the polynomials given in Theorem 2.7 are irreducible in Q[X]. We

use Eisenstein’s Criterion for Z[X] for the first polynomial and the second one is obtained

from the first one by changing X to 3X − 1 and dividing by 27. Thus, the irreducibility

follows.

(1) From Theorem 2.15, one sees immediately that 3 is ramified in K if and only if 3 - v.

Hence Proposition 2.4 tells us that K is given by an equation P (X) = X3 − 3eX − eu. If

we set u′ = 3u, v′ = v and e′ = 9e, we have e′ =
u′2 + 27v′2

4
, u′ ≡ 6 (mod 9), 3 - v′, and

P (X) = X3 − e′

3
X − e′u′

27
.

(2) Assume now that 3 is not ramified, i.e. that 3 | v. From the proof of the second part

of Theorem 2.15, we know that K can be defined by the polynomial X3 −X2 +
1− e

3
X −

1− 3e+ eu

27
∈ Z[X] and this time we set e′ = e, v′ =

v

3
and u′ = u, it is clear that the

second statement of Theorem 2.7 follows.
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Now we prove that any two fields defined by different polynomials P (X) given in (1) or

any two fields defined by different polynomials P (X) given in (2) are not isomorphic, i.e. the

pair (e, u) determines the isomorphism class. This follows immediately from the uniqueness

statement of Proposition 2.4. (Note that the e and u in Proposition 2.4 are either equal to

the e and u of the theorem (in case(2)), or to e/9 and u/3 (in case (1)).)

Let us prove (3). Assume that e is equal to a product of t distinct primes congruent to

1 modulo 3. Let A = Z[(1 +
√
−3)/2] be the ring of algebraic integers of Q(

√
−3). If α ∈ A

with 3 - N (α), there exists a unique α′ associate to α (i.e. generating the same principal

ideal) such that α′ = (u+ 3v
√
−3)/2, u ≡ 2 (mod 3).

To see this, we look at the following: Let α =
a+ b

√
−3

2
where a ≡ b (mod 2). Suppose

3 - N (α) =
a2 + 3b2

4
. Then, 3 - N (α) ⇐⇒ 3 - (a2 + 3b2) ⇐⇒ 3 - a2 ⇐⇒ 3 - a.

Let ζ =
1 +
√
−3

2
, ζ2 =

−1 +
√
−3

2
, ζ3 = −1, ζ4 =

−1−
√
−3

2
, ζ5 =

1−
√
−3

2
. Then,

α =
a+ b

√
−3

2

αζ3 = −α =
−a− b

√
−3

2

αζ =
a− 3b+ (a+ b)

√
−3

4
=

a−3b
2

+ a+b
2

√
−3

2

αζ4 = −αζ =
−a+3b

2
+ −a−b

2

√
−3

2

αζ2 =
−a− 3b+ (a− b)

√
−3

4
=
−a−3b

2
+ a−b

2

√
−3

2

αζ5 = −αζ2 =
a+3b

2
+ −a+b

2

√
−3

2

Consider the following cases:

(i) If 3 | b and a ≡ 2 (mod 3), then take α′ = α.

(ii) If 3 | b and a ≡ 1 (mod 3), then take α′ = −α.
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(iii) If b ≡ 1 (mod 3) and a ≡ 1 (mod 3), then let b = 3t + 1 and a = 3k + 1. We

know that t ≡ k (mod 2). Then
a+ b

2
=

3t+ 3k + 2

2
= 3

(
t+ k

2

)
+ 1, so 3 -

(
a+ b

2

)
.

a− b
2

= 3t − 3k, so 3 |
(
a− b

2

)
. We would take α′ = αζ2 or αζ5. Now look at

−a− 3b

2
=
−3k − 1− 9t− 3

2
= −3

(
k + t

2

)
− 3t− 2 ≡ 1 (mod 3). Thus we take α′ = αζ5.

(iv) If b ≡ 1 (mod 3) and a ≡ 2 (mod 3), then let b = 3t + 1 and a = 3k + 2. We

know that t+ 1 ≡ k (mod 2). Then
a+ b

2
=

3t+ 3k + 3

2
= 3

(
t+ k + 1

2

)
, so 3 |

(
a+ b

2

)
.

a− b
2

= 3t − 3k + 1, so 3 -
(
a− b

2

)
. We would take α′ = αζ or αζ4. Now look at

−a+ 3b

2
=
−3k − 2 + 9t+ 3

2
=

9t+ 3k + 1

2
=

3(3t− k + 1)

2
≡ 2 (mod 3). Thus, we will

take α′ = αζ4.

(v) If b ≡ 2 (mod 3) and a ≡ 1 (mod 3), we will take α′ = αζ.

(vi) If b ≡ 2 (mod 3) and a ≡ 2 (mod 3), we will take α′ = αζ2.

Again, by Proposition 1.13, if pi is a prime congruent to 1 modulo 3, then pi splits in A

and pi = αiαi for a unique αi = (ui + 3vi
√
−3)/2 with ui ≡ 2 (mod 3) and vi > 0 because

3 - N (αi) = pi.

Hence, if e =
∏

16i6t

pi, then e =
∏

16i6t

pi =
∏

16i6t

αiαi =
u2 + 27v2

4
= N

(
u+ 3v

√
−3

2

)
=

(
u+ 3v

√
−3

2

)(
u− 3v

√
−3

2

)
if and only if

u+ 3v
√
−3

2
=
∏

16i6t

βi where βi = αi or

βi = αi and this gives 2t solutions to the equation e =
u2 + 27v2

4
. (We choose this specific

associate in order to get u ≡ 2 (mod 3) and 3v.)

But, we have seen above that the isomorphism class of a cyclic cubic field is determined

uniquely by the pair (e, u) satisfying appropriate conditions. Since e =
u2 + 27(−v)2

4
gives
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the same field as e =
u2 + 27v2

4
, this shows, as claimed, that there exactly 2t−1 distinct value

of u, hence 2t−1 non-isomorphic fields of discriminant e2. This finishes the proof of one case.

Assume e is equal to 9 times the product of t− 1 distinct primes congruent to 1 modulo

3. If α ∈ A with 3 - N (α), there exist 2 unique α′ associates to α (i.e. generating the

same principal ideal) such that α′ = (a + b
√
−3)/2, a ≡ 2 (mod 3) and 3 - b. Hence, if

e = 9
∏

16i6t−1

pi, then e = 9
∏

16i6t−1

pi = 9
∏

16i6t−1

α′iα
′
i =

u2 + 27v2

4
= N

(
u+ 3v

√
−3

2

)
=

(
u+ 3v

√
−3

2

)(
u− 3v

√
−3

2

)
if and only if

u+ 3v
√
−3

2
= 3

∏
16i6t−1

βi where βi = α′i

or βi = α′i. Now, we want to count how many unique solutions we can get from this

equation. First, we note that any pi = αiαi, where we can set αi to be the unique form

in the previous part and αiζ
2 and αiζ

4 to be the 2 unique associates that we want. Then

u+ 3v
√
−3

2
always has the form 3α1

∏
26i6t−1

βiζ
k where βi = αi or βi = αi and k = 0,

k = 2 or k = 4 (The case with 3α1

∏
26i6t−1

βiζ
k just give the same u and −v) . All possible

solutions will be generated and we just need to count the wanted unique solutions. (The

case where k = 0 does not give any solutions.) We see that the number of unique solutions

is 2
t−2∑
i=0

(
t− 2

i

)
= 2(1 + 1)t−2 = 2t−1. We have seen above that the isomorphism class of a

cyclic cubic field is determined uniquely by the pair (e, u) satisfying appropriate conditions.

Hence there are 2t−1 non-isomorphic fields of discriminant e2. This finishes the proof of the

second case.

Example 2.16. We can continue Example 2.5. We have the cyclic cubic field K = Q(θ)

where θ is a root of x3 − 273x− 728 with e = 7 · 13, u = 8 and v = 10 under the notation of

Proposition 2.4. By Theorem 2.15, disc(K) = (9e)2. Using notation of Theorem 2.7(1), we

get new values of e and u, namely e = 9 · 7 · 13 and u = 3 · 8 (with v = 10). We nevertheless

obtain the same defining polynomial P (x) = x3 − e

3
x− eu

27
= x3 − 273x− 728. In addition,

we are now able to find all cyclic cubic fields ramified at 3, 7 and 13. According to Theorem
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2.7(3), there exist up to isomorphism exactly 4 cyclic cubic fields of discriminant e2. To find

them, we see that 7 =

(
−1 + 3i

√
3

2

)(
−1− 3i

√
3

2

)
and 13 =

(
5− 3i

√
3

2

)(
5 + 3i

√
3

2

)
.

Then,

u+ 3vi
√

3

2
= 3

(
−1 + 3i

√
3

2

)(
5− 3i

√
3

2

)(
1 + i

√
3

2

)2

=
−57 + 3i

√
3

2
,

or = 3

(
−1 + 3i

√
3

2

)(
5− 3i

√
3

2

)(
1 + i

√
3

2

)4

=
24− 30i

√
3

2
,

or = 3

(
−1 + 3i

√
3

2

)(
5 + 3i

√
3

2

)(
1 + i

√
3

2

)2

=
−3− 33i

√
3

2
,

or = 3

(
−1 + 3i

√
3

2

)(
5 + 3i

√
3

2

)(
1 + i

√
3

2

)4

=
51 + 15i

√
3

2
.

Thus, the 4 cyclic cubic fields are determined uniquely by the pairs (e,−57), (e, 24), (e,−3)

and (e, 51), with e = 3 · 7 · 13.

Example 2.17. We can continue Example 2.6. We have the cyclic cubic field K = Q(θ)

where θ is a root of x3− 88257x+ 10090717 with e = 13 · 31 · 73, u = −343 and v = 3 under

the notation of Proposition 2.4. By Theorem 2.15, disc(K) = e2. Using notation of Theorem

2.7(2), we have the same e and u, but with a new v, namely v = 1. Thus, we have the defining

polynomial P (x) = x3−x2+
1− e

3
x− 1− 3e+ eu

27
= x3−x2−9806x+376999. Also, as in the

previous example, we can find all cyclic cubic fields of discriminant e2. According to Theo-

rem 2.7(3), there exist up to isomorphism exactly 4 cyclic cubic fields of discriminant e2. To

find them, we see that 13 =

(
5− 3i

√
3

2

)(
5 + 3i

√
3

2

)
, 31 =

(
−4 + 6i

√
3

2

)(
−4− 6i

√
3

2

)

and 73 =

(
−7 + 9i

√
3

2

)(
−7− 9i

√
3

2

)
. Then,
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u+ 3vi
√

3

2
=

(
5− 3i

√
3

2

)(
−4 + 6i

√
3

2

)(
−7 + 9i

√
3

2

)
=
−343 + 3i

√
3

2
,

or =

(
5− 3i

√
3

2

)(
−4− 6i

√
3

2

)(
−7 + 9i

√
3

2

)
=

251− 135i
√

3

2
,

or =

(
5− 3i

√
3

2

)(
−4 + 6i

√
3

2

)(
−7− 9i

√
3

2

)
=

224− 150i
√

3

2
,

or =

(
5− 3i

√
3

2

)(
−4− 6i

√
3

2

)(
−7− 9i

√
3

2

)
=

8 + 198i
√

3

2
.

Thus, the 4 cyclic cubic fields are determined uniquely by the pairs (e,−343), (e, 251), (e, 224)

and (e, 8), with e = 13 · 31 · 73.

Example 2.18. In this example, we want to find all cyclic cubic fields that ramify at 7, 13,

and 19. According to Theorem 2.7(3), there exist up to isomorphism exactly 4 cyclic cubic

fields of discriminant e2 where e = 7 · 13 · 19. We have 7 =

(
−1 + 3i

√
3

2

)(
−1− 3i

√
3

2

)
,

13 =

(
5− 3i

√
3

2

)(
5 + 3i

√
3

2

)
and 19 =

(
−7− 3i

√
3

2

)(
−7 + 3i

√
3

2

)
. Then,

u+ 3vi
√

3

2
=

(
−1 + 3i

√
3

2

)(
5− 3i

√
3

2

)(
−7− 3i

√
3

2

)
=

2− 48i
√

3

2
,

or =

(
−1 + 3i

√
3

2

)(
5− 3i

√
3

2

)(
−7 + 3i

√
3

2

)
=
−79− 15i

√
3

2
,

or =

(
−1 + 3i

√
3

2

)(
5 + 3i

√
3

2

)(
−7− 3i

√
3

2

)
=

83 + 3i
√

3

2
,

or =

(
−1 + 3i

√
3

2

)(
5 + 3i

√
3

2

)(
−7 + 3i

√
3

2

)
29− 45i

√
3

2
.

Thus, the 4 cyclic cubic fields are determined uniquely by the pairs (e, 2), (e,−79), (e, 83)

and (e, 29), with e = 7 · 13 · 19.
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Chapter 3. Discriminant Bounds

Discriminant bounds have been a popular topic in number theory. Minkowski gave the first

proof that |dK | > 1 for any number field K using the geometry of numbers, based on the

lower bound |dK | >
(π

4

)2r2
(
nn

n!

)2

(see [6]). Discriminant bounds have been improved over

the years. Odlyzko [10] utilized the zeros of the Dedekind zeta function to get better lower

bounds. Also, if Generalized Riemann Hypothesis (GRH) is assumed, much better bounds

can be obtained. Serre suggested using explicit formulae to achieve greater flexibility in the

choice of parameters. The unconditional bound that we use from C.J. Moreno [8] is also

derived by using Weil’s explicit formulas and the bound is given by:

rdK > (60.8)
r1
n (22.3)

2r2
n e
− 8.6

n2/3 . (3.1)

If K is a totally real field, the inequality becomes:

rdK > (60.8)e
− 8.6

n2/3 (3.2)

Now we look at the following proposition from Yamamura [11] and see how we use the

lower bound to determine that a field has no non-solvable unramified extension.

Proposition 3.1. Let B(nK , r1, r2) be the lower bound for the root discriminant of K of

degree nK with signature (r1, r2). Suppose that K has an unramified normal extension L of

degree m. If h(L) = 1 and rdK < B(60mnK , 60mr1, 60mr2), then Kur = L.

Proof. Suppose that L/K is normal, that h(L) = 1 and that rdK < B(60mnk, 60mr1, 60mr2).

Given any normal unramified extension F of K, we see that LF is a normal unramified ex-

tension of L. Set h = [LF : L] and set G = Gal(LF/L). Clearly, G must be non-solvable,

since otherwise it would have an Abelian quotient (i.e. G/G1 is Abelian where G1 is a normal
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subgroup of G) which would yield an Abelian unramified extension of L. Such an extension

can not exist, because L has class number 1.

LF
h>60

||||||||

CCCCCCCC

L

m BBBBBBBB F

{{{{{{{{

K

nK

Q

Since G is non-solvable, we have h > 60 where 60 is the order of A5, the small-

est non-solvable group. In addition, since LF/K is unramified, we have rdLF = rdK <

B(60mnk, 60mr1, 60mr2) 6 B(hmnk, hmr1, hmr2). This is a contradiction, since the degree

of LF is hmnk, and it has hmr1 real places and hmr2 pairs of complex places (no real places

turns to complex places as LF is unramified over L). Thus, all unramified extensions of K

are contained in L and Kur = L.

Let K be a cyclic cubic field and L is the top of the class field tower of K. We will make

a table of unconditional lower bounds for totally real fields F with degree n over Q using

inequality (3.2).

[L : K] n lower bounds for rdF

1 180 46.42

3 540 53.40

4 720 54.62

7 1260 56.47

8 1440 56.83

Table 3.1
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The conditional (under GRH) lower bounds for totally real fields F are found in the

unpublished tables due to A.M. Odlyzko, which are copied in Martinet’s expository paper

[7]. We only list part of the tables here.

n lower bounds for rdF

180 72.553

360 87.642

480 93.555

720 101.488

1000 107.548

1200 110.728

Table 3.2
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Chapter 4. Maximal Unramified Extensions of Cyclic Cubic

Fields

With the information above, we proceed to look at cyclic cubic fields and their maximal

unramified extensions.

4.1 Maximal Unramified Solvable Extensions

Since we know the canonical representing polynomial of cyclic cubic fields, we can generate

a full list of cyclic cubic fields of root discriminant less than a certain number. We first look

at the cyclic cubic fields of root discriminant less than 72.553 (the lower bound for totally

real fields of degree 180 under GRH in Table 3.2), ramified at only one prime and having

h(K) = 1. The first column gives the canonical representing polynomials.

P (x) disc(K) rdK h(K)

x3 − x2 − 2x+ 1 72 3.66 1

x3 − 3x− 1 34 4.33 1

x3 − x2 − 4x− 1 132 5.53 1

x3 − x2 − 6x+ 7 192 7.12 1

x3 − x2 − 10x+ 8 312 9.87 1

x3 − x2 − 12x− 11 372 11.1 1

x3 − x2 − 14x− 8 432 12.27 1

x3 − x2 − 20x+ 9 612 15.5 1

x3 − x2 − 22x− 5 672 16.5 1

x3 − x2 − 24x+ 27 732 17.47 1

x3 − x2 − 26x− 41 792 18.41 1

x3 − x2 − 32x+ 79 972 21.11 1

x3 − x2 − 34x+ 61 1032 21.97 1

x3 − x2 − 36x+ 4 1092 22.82 1

P (x) disc(K) rdK h(K)

x3 − x2 − 42x− 80 1272 25.27 1

x3 − x2 − 46x− 103 1392 26.83 1

x3 − x2 − 50x+ 123 1512 28.36 1

x3 − x2 − 52x− 64 1572 29.1 1

x3 − x2 − 60x+ 67 1812 32 1

x3 − x2 − 64x− 143 1932 33.4 1

x3 − x2 − 66x− 59 1992 34.09 1

x3 − x2 − 70x+ 125 2112 35.44 1

x3 − x2 − 74x+ 256 2232 36.77 1

x3 − x2 − 76x+ 212 2292 37.43 1

x3 − x2 − 80x− 125 2412 38.73 1

x3 − x2 − 90x− 261 2712 41.88 1

x3 − x2 − 94x− 304 2832 43.1 1

x3 − x2 − 102x+ 216 3072 45.51 1
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(Continued)

P (x) disc(K) rdK h(K)

x3 − x2 − 110x+ 49 3312 47.85 1

x3 − x2 − 112x− 25 3372 48.43 1

x3 − x2 − 122x− 435 3672 51.26 1

x3 − x2 − 124x+ 221 3732 51.82 1

x3 − x2 − 126x− 365 3792 52.37 1

x3 − x2 − 136x+ 515 4092 55.1 1

x3 − x2 − 140x+ 343 4212 56.17 1

x3 − x2 − 144x+ 16 4332 57.23 1

x3 − x2 − 146x+ 504 4392 57.76 1

x3 − x2 − 152x+ 220 4572 59.33 1

P (x) disc(K) rdK h(K)

x3 − x2 − 154x− 343 4632 59.85 1

x3 − x2 − 162x+ 505 4872 61.9 1

x3 − x2 − 166x− 536 4992 62.91 1

x3 − x2 − 174x+ 891 5232 64.91 1

x3 − x2 − 180x− 521 5412 66.39 1

x3 − x2 − 190x+ 719 5712 68.83 1

x3 − x2 − 192x− 171 5772 69.31 1

x3 − x2 − 200x− 512 6012 71.22 1

x3 − x2 − 204x− 999 6132 72.16 1

Table 4.1

The following table shows cyclic cubic fields of root discriminant less than 72.553, ramified

at only one prime but having h(K) 6= 1. We will explain the first three lines in this table in

Example 4.2, 4.3, 4.4. The others are proven similarly.

P (x) disc(K) rdK h(K) h(K1) h(K2)

x3 − x2 − 54x+ 169 1632 29.84 4 1 1

x3 − x2 − 92x− 236 2772 42.49 4 2 1

x3 − x2 − 104x− 371 3132 46.1 7 1 1

x3 − x2 − 116x+ 517 3492 49.57 4 1 1

x3 − x2 − 132x+ 544 3972 54.02 4 1 1

x3 − x2 − 182x+ 81 5472 66.88 4 1 1

x3 − x2 − 202x+ 1169 6072 71.69 4 2 1

Table 4.2
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The following table shows cyclic cubic fields of root discriminant less than 72.553, ramified

at two primes. The first pair of cyclic cubic fields in the first two lines of this table will be

explained in Example 4.5. The others are proven similarly.

P (x) disc(K) rdK h(K) h(K1)

x3 − 21x− 35 34 · 72 15.83 3 1

x3 − 21x− 28 34 · 72 15.83 3 1

x3 − x2 − 30x− 27 72 · 132 20.23 3 1

x3 − x2 − 30x+ 64 72 · 132 20.23 3 1

x3 − 39x− 26 34 · 132 23.92 3 1

x3 − 39x− 91 34 · 132 23.92 3 1

x3 − x2 − 44x+ 64 72 · 192 26.06 3 1

x3 − x2 − 44x− 69 72 · 192 26.06 3 1

x3 − 57x− 152 34 · 192 30.81 3 1

x3 − 57x− 19 34 · 192 30.81 3 1

x3 − x2 − 72x− 209 72 · 312 36.11 3 1

x3 − x2 − 72x+ 225 72 · 312 36.11 3 1

x3 − x2 − 82x+ 64 132 · 192 39.37 3 1

x3 − x2 − 82x+ 311 132 · 192 39.37 3 1

x3 − x2 − 86x− 48 72 · 372 40.63 3 1

x3 − x2 − 86x+ 211 72 · 372 40.63 3 1

x3 − 93x− 341 34 · 312 42.7 3 1

x3 − 93x− 217 34 · 312 42.7 3 1

x3 − x2 − 100x+ 379 72 · 432 44.91 3 1

x3 − x2 − 100x− 223 72 · 432 44.91 3 1

x3 − 111x− 370 34 · 372 48.04 3 1

x3 − 111x− 37 34 · 372 48.04 3 1
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(Continued)

P (x) disc(K) rdK h(K) h(K1)

x3 − 129x− 215 34 · 432 53.11 3 1

x3 − 129x− 559 34 · 432 53.11 3 1

x3 − x2 − 134x− 209 132 · 312 54.56 3 1

x3 − x2 − 134x+ 597 132 · 312 54.56 3 1

x3 − x2 − 142x− 601 72 · 612 56.7 3 1

x3 − x2 − 142x+ 680 72 · 612 56.7 3 1

x3 − x2 − 156x+ 799 72 · 672 60.36 3 1

x3 − x2 − 156x− 608 72 · 672 60.36 3 1

x3 − x2 − 160x− 677 132 · 372 61.39 3 1

x3 − x2 − 160x− 196 132 · 372 61.39 3 1

x3 − x2 − 170x− 776 72 · 732 63.92 3 1

x3 − x2 − 170x+ 757 72 · 732 63.92 3 1

x3 − 183x− 854 34 · 612 67.05 3 1

x3 − 183x− 793 34 · 612 67.05 3 1

x3 − x2 − 184x− 41 72 · 792 67.37 3 1

x3 − x2 − 184x+ 512 72 · 792 67.37 3 1

x3 − x2 − 186x− 911 132 · 432 67.86 3 1

x3 − x2 − 186 + 207 132 · 432 67.86 3 1

x3 − x2 − 196x− 829 192 · 312 70.27 3 1

x3 − x2 − 196x+ 349 192 · 312 70.27 3 1

x3 − 201x− 737 34 · 672 71.37 3 1

x3 − 201x− 1072 34 · 672 71.37 3 1

Table 4.3
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According to Table 4.1, the first 28 cyclic cubic fields with class number 1 have root

discriminant less than 46.42 which is the unconditional lower bound for totally real fields of

degree 180 (from Table 3.1), and the first 47 cyclic cubic fields with class number 1 have root

discriminant less than 72.553 which is the conditional lower bound for totally real fields of

degree 180 (from Table 3.2). Therefore, they do not have non-solvable unramified extension.

Applying Proposition 3.1, we can conclude as follows:

Theorem 4.1. The first 28 (47 under GRH) cyclic cubic fields with class number 1 have

trivial maximal unramified extension.

Now we examine each of the cyclic cubic fields with h(K) 6= 1 in the tables above and

demonstrate how we determine the maximal unramified extensions.

Example 4.2. Let K be the cyclic cubic field defined by x3−x2−54x+169 with dK = 1632

and rdK = 29.84. It is the first cyclic cubic field with h(K) = 4 (from Table 4.2). The class

field K1 of K is the splitting field L′ (A4-extension over Q) of the sextic field L represented

by x6 − 3x5 − 11x4 + 27x3 − 3x2 − 11x + 1 with field discriminant 1634, found from John

Jones’ website Number Fields. To confirm L′ is K1, we see that L′ has degree 12 and the

prime 163 is unramified in L′/K. Also, we know that Gal(L′/K) is Abelian (Z2×Z2, normal

subgroup of A4). We then use PARI to compute the class number of K1. Since h(K1) = 1

and rdK = 29.84 < 54.62 which is the lower bound for totally real fields of degree 720,

we have Kur = K1 by Proposition 3.1. In this case, we have Gal(Kur/K) = Z2 × Z2 and

Gal(Kur/Q) = A4.
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Example 4.3. Let K be the cyclic cubic field defined by x3 − x2 − 92x − 236 with dK =

2772 and rdK = 42.49. It is the second cyclic cubic field with h(K) = 4 (from Table

4.2). The class field K1 of K is the splitting field of the sextic field L represented by

x6 − 3x5 − 19x4 + 43x3 + 47x2 − 69x + 16 with field discriminant 2774. This sextic field is

obtained from John Jones’ website Number Fields. We use PARI to find that h(K1) = 2.

And K2 turns out to be the splitting field of the octic field F ′ represented by x8−x7−11x6 +

13x5 + 32x4−41x3−23x2 + 32x−1 with field discriminant 2774. We use PARI again to find

that h(K2) = 1. Since rdK = 42.49 < 56.83 which is the lower bound for totally real fields of

degree 1440, we have Kur = K2 by Proposition 3.1. In this case, we have Gal(Kur/K) = Q8

and Gal(Kur/Q) = SL(2, 3).
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Example 4.4. Let K be the cyclic cubic field defined by x3−x2−104x−371 with dK = 3132

and rdK = 46.10. It is the first cyclic cubic field with h(K) = 7 (from Table 4.2). The class

field K1 of K is the splitting field of the heptic field F represented by x7−x6−15x5 +20x4 +

33x3 − 22x2 − 32x− 8 with field discriminant 3134. This heptic field is obtained from John

Jones’ website Number Fields. Since h(K1) = 1 and rdK = 46.10 < 56.47 which is the lower

bound for totally real fields of degree 1260, we have Kur = K1 by Proposition 3.1. In this

case, we have Gal(Kur/K) = Z7 and Gal(Kur/Q) = F21.
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Example 4.5. Let K be the cyclic cubic field defined by x3− 21x− 35 and K ′ be the cyclic

cubic field defined by x3−21x−28. They are the first two cyclic cubic fields with class number

not equal to 1 (h(K) = h(K ′) = 3) and with dK = dK′ = 34 · 72 and rdK = rdK′ = 15.83

(from Table 4.3). We take the composite field L of K(or K ′) and the cubic subfield of the

cyclotomic field Q(ζ9) ramified only at 3. To confirm the composite field L is the class field

of K (or K ′), we again check the degree of L, the ramification indices of 3 and 7 in L and the

Galois group of L/K. We then use PARI to compute the class number ofK1. Since h(K1) = 1

and rdK = 15.83 < 53.40 which is the lower bound for totally real fields of degree 540, we

have Kur = K1 by Proposition 3.1. In this case, we have Gal(Kur/K) = Gal(Kur/K
′) = Z3

and Gal(Kur/Q) = Z3 × Z3.
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There are some cyclic cubic fields that have different and bigger class numbers and if we

assume GRH, we can still show that they have no non-solvable unramified extension and

find their maximal unramified extensions. We give several examples.

Example 4.6. Examine the following two cyclic cubic fields.

P (x) disc(K) rdK h(K) h(K1)

x3 − 219x− 1241 34 · 732 75.57 9 1

x3 − 219x− 730 34 · 732 75.57 9 1

Let K be the first cyclic cubic field in the above table and K ′ be the second one. On John

Jones’ website Number Fields, we find that there are two nonic fields ramified at 3 and 73.

Let L be the nonic field represented by x9 − 3x8 − 54x7 + 95x6 + 843x5 − 417x4 − 3347x3 +

1278x2 + 3204x− 1457 and L′ be the nonic field represented by x9 − 3x8 − 54x7 + 137x6 +

759x5− 1971x4− 2178x3 + 5625x2 + 1608x− 3284. Using PARI, we confirm that K ⊂ L and

K ′ ⊂ L′. Also, we check that L and L′ are unramified extensions of K and K ′ respectively

by checking the ramification indices of 3 and 73 in L and L′. Using PARI, we find that

the splitting field S of L and L′ is the same field. Since S has degree 9 over K (K ′), the

primes 3 and 73 are unramified in S/K (S/K ′) and S is Abelian over K (K ′), we know that

K1 = K ′1 = S. If K1 has a non-solvable unramified extension, the degree would be at least

1620. Since h(K1) = 1 and rdK = 75.57 < 110.728 which is the lower bound for totally real

fields of degree 1200 under GRH (the lower bound for totally real fields of degree 1620 under

GRH would be bigger than 110.728) from Table 3.2, we have Kur = K1 by Proposition 3.1. In

this case, we have Gal(Kur/K) = Gal(Kur/K
′) = Z3×Z3 and Gal(Kur/Q) = (Z3×Z3)oZ3.
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Example 4.7. Examine the following two cyclic cubic fields.

P (x) disc(K) rdK h(K) h(K1) h(K2)

x3 − x2 − 226x− 503 72 · 972 77.25 3 4 1

x3 − x2 − 226x+ 176 72 · 972 77.25 12 1 1

Let K be the first cyclic cubic field in the above table and K ′ be the second one. We take

the composite field of K and K ′ and get a field of degree 9 over Q. After checking the

ramification indices of 7 an 97 in the composite field, we confirm that is the class field of K.

Then, on John Jones’ website Number Fields, we find a sextic field L ramified at 7 and 97.

It is represented by x6 − 3x5 − 45x4 + 95x3 + 41x2 − 89x − 22. Its splitting field L′ is an

A4-extension of Q. We use PARI to find that L′ is an unramified Z2 × Z2-extension of K ′.

Now, we take the composite field of K1 and L′, we get a field of degree 36 over Q. Using

PARI, we check that 7 and 97 are unramified in K1L
′/K1. Thus, the composite field is K2.

Since K2 is unramified over K ′ and Gal(K2/K
′) = Z6×Z2, K2 is the class field of K ′. Since

h(K2) = 1 and rdK = 77.25 < 110.728 which is the lower bound for totally real fields of

degree 1200 under GRH (the lower bound for totally real fields of degree 2160 under GRH

would be bigger than 110.728) from Table 3.2, we have Kur = K2 by Proposition 3.1. In

this case, we have Gal(Kur/K) = A4, Gal(Kur/K
′) = Z6 × Z2 and Gal(Kur/Q) = A4 × Z3.
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Example 4.8. Examine the following four cyclic cubic fields. They are the first four cyclic

cubic fields ramified at 3 primes.

P (x) disc(K) rdK h(K) h(K1)

x3 − 273x− 728 34 · 72 · 132 87.54 9 1

x3 − 273x− 91 34 · 72 · 132 87.54 9 1

x3 − 273x− 1729 34 · 72 · 132 87.54 9 1

x3 − 273x− 1547 34 · 72 · 132 87.54 9 1

Let K1, K2, K3, K4 be the first, second, third and fourth cyclic cubic field in the above

table. Then, on John Jones’ website Number Fields, we find 10 nonic fields ramified at 3, 7

and 13. We label them L1 to L10. Using PARI, we check that each of the cyclic cubic fields

is contained in four different nonic fields. If we take the composite field of Li and Kj where

Li 6⊃ Kj, we can get the same field of degree 27 over Q. After checking the ramification

indices of 3, 7, and 13 using PARI, we confirm that the composite field is the class field H

of Ki. Since h(H) = 1 and rdK = 87.54 < 110.728 which is the lower bound for totally real

fields of degree 1200 under GRH (the lower bound for totally real fields of degree 1620 under

GRH would be bigger than 110.728) from Table 3.2, we have Kur = H by Proposition 3.1.

In this case, we have Gal(Kur/Ki) = Z3 × Z3 and Gal(Kur/Q) = Z3 × Z3 × Z3.
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Now, we can organize our results in the following tables. The first table shows the com-

plete list of cyclic cubic fields with rdK 6 54.02 having non-trivial maximal unramified

extensions. The second table shows the complete list of cyclic cubic fields with rdK between

54.02 and 71.96 having non-trivial maximal unramified extensions under GRH. The final ta-

ble gives additional examples, assuming GRH, in which the cyclic cubic fields have rdK > 72

and non-trivial maximal unramified extensions. In these three tables, h(K2) = 1 for all K2.

Cubic Polynomial f D(K) rdK h(K) h(K1) Gal(Kur/K) Gal(Kur/Q)

x3 − 21x− 35 34 · 72 15.83 3 1 Z3 Z3 × Z3

x3 − 21x− 28 34 · 72 15.83 3 1 Z3 Z3 × Z3

x3 − x2 − 30x− 27 72 · 132 20.23 3 1 Z3 Z3 × Z3

x3 − x2 − 30x+ 64 72 · 132 20.23 3 1 Z3 Z3 × Z3

x3 − 39x− 26 34 · 132 23.92 3 1 Z3 Z3 × Z3

x3 − 39x− 91 34 · 132 23.92 3 1 Z3 Z3 × Z3

x3 − x2 − 44x+ 64 72 · 192 26.06 3 1 Z3 Z3 × Z3

x3 − x2 − 44x− 69 72 · 192 26.06 3 1 Z3 Z3 × Z3

x3 − x2 − 54x+ 169 1692 29.84 4 1 Z2 × Z2 A4

x3 − 57x− 152 34 · 192 30.81 3 1 Z3 Z3 × Z3

x3 − 57x− 19 34 · 192 30.81 3 1 Z3 Z3 × Z3

x3 − x2 − 72x− 209 72 · 312 36.11 3 1 Z3 Z3 × Z3

x3 − x2 − 72x+ 229 72 · 312 36.11 3 1 Z3 Z3 × Z3

x3 − x2 − 82x+ 64 132 · 192 39.37 3 1 Z3 Z3 × Z3

x3 − x2 − 82x+ 311 132 · 192 39.37 3 1 Z3 Z3 × Z3

x3 − x2 − 86x− 48 72 · 372 40.63 3 1 Z3 Z3 × Z3

x3 − x2 − 86x+ 211 72 · 372 40.63 3 1 Z3 Z3 × Z3

x3 − x2 − 92x− 236 2772 42.49 4 2 Q8 SL(2, 3)

x3 − 93x− 341 34 · 312 42.70 3 1 Z3 Z3 × Z3

x3 − 93x− 271 34 · 312 42.70 3 1 Z3 Z3 × Z3

x3 − x2 − 100x+ 379 72 · 432 44.91 3 1 Z3 Z3 × Z3

x3 − x2 − 100x− 223 72 · 432 44.91 3 1 Z3 Z3 × Z3

x3 − x2 − 104x− 371 3132 46.10 7 1 Z7 F21

x3 − 111x− 370 34 · 372 48.04 3 1 Z3 Z3 × Z3

x3 − 111x− 37 34 · 372 48.04 3 1 Z3 Z3 × Z3

x3 − x2 − 116x+ 517 3492 49.57 4 1 Z2 × Z2 A4

x3 − 129x− 215 34 · 432 53.11 3 1 Z3 Z3 × Z3

x3 − 129x− 559 34 · 432 53.11 3 1 Z3 Z3 × Z3

x3 − x2 − 132x+ 544 3972 54.02 4 1 Z2 × Z2 A4
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Under GRH

Cubic Polynomial f D(K) rdK h(K) h(K1) Gal(Kur/K) Gal(Kur/Q)

x3 − x2 − 134x− 209 132 · 312 54.56 3 1 Z3 Z3 × Z3

x3 − x2 − 134x+ 597 132 · 312 54.56 3 1 Z3 Z3 × Z3

x3 − x2 − 142x− 601 72 · 612 56.70 3 1 Z3 Z3 × Z3

x3 − x2 − 142x+ 680 72 · 612 56.70 3 1 Z3 Z3 × Z3

x3 − x2 − 156x+ 799 72 · 672 60.36 3 1 Z3 Z3 × Z3

x3 − x2 − 156x− 608 72 · 672 60.36 3 1 Z3 Z3 × Z3

x3 − x2 − 160x− 677 132 · 372 61.39 3 1 Z3 Z3 × Z3

x3 − x2 − 160x− 196 132 · 372 61.39 3 1 Z3 Z3 × Z3

x3 − x2 − 170x− 776 72 · 732 63.92 3 1 Z3 Z3 × Z3

x3 − x2 − 170x+ 757 72 · 732 63.92 3 1 Z3 Z3 × Z3

x3 − x2 − 182x+ 81 5472 66.88 4 1 Z2 × Z2 A4

x3 − 183x− 854 34 · 612 67.05 3 1 Z3 Z3 × Z3

x3 − 183x− 793 34 · 612 67.05 3 1 Z3 Z3 × Z3

x3 − x2 − 184x− 41 72 · 792 67.37 3 1 Z3 Z3 × Z3

x3 − x2 − 184x+ 512 72 · 792 67.37 3 1 Z3 Z3 × Z3

x3 − x2 − 186x− 911 132 · 432 67.86 3 1 Z3 Z3 × Z3

x3 − x2 − 186x+ 207 132 · 432 67.86 3 1 Z3 Z3 × Z3

x3 − x2 − 196x− 829 192 · 312 70.27 3 1 Z3 Z3 × Z3

x3 − x2 − 196x+ 349 192 · 312 70.27 3 1 Z3 Z3 × Z3

x3 − 201x− 737 34 · 672 71.37 3 1 Z3 Z3 × Z3

x3 − 201x− 737 34 · 672 71.37 3 1 Z3 Z3 × Z3

x3 − x2 − 202x+ 1169 6072 71.96 4 2 Q8 SL(2, 3)
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Other examples under GRH (with rdK > 72)

Cubic Polynomial f D(K) rdK h(K) h(K1) Gal(Kur/K) Gal(Kur/Q)

x3 − 219x− 1241 34 · 732 75.57 9 1 Z3 × Z3 (Z3 × Z3) o Z3

x3 − 219x− 730 34 · 732 75.57 9 1 Z3 × Z3 (Z3 × Z3) o Z3

x3 − x2 − 226x− 503 72 · 972 77.25 3 4 A4 A4 × Z3

x3 − x2 − 226x+ 176 72 · 972 77.25 12 1 Z6 × Z2 A4 × Z3

x3 − 273x− 728 34 · 72 · 132 87.54 9 1 Z3 × Z3 Z3 × Z3 × Z3

x3 − 273x− 91 34 · 72 · 132 87.54 9 1 Z3 × Z3 Z3 × Z3 × Z3

x3 − 273x− 1729 34 · 72 · 132 87.54 9 1 Z3 × Z3 Z3 × Z3 × Z3

x3 − 273x− 1547 34 · 72 · 132 87.54 9 1 Z3 × Z3 Z3 × Z3 × Z3
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4.2 Unramified Non-Solvable Extensions

Theorem 4.9. The cyclic cubic field K defined by x3−x2−3422x+1521, ramified at 10267,

has an unramified A5-extension. Moreover, such an extension of K is given by the composite

field of K with the splitting field of the quintic polynomial x5−25x3−7x2 +116x−45, which

is an A5-extension of Q.

Before we prove this, we first explain how we find this cyclic cubic field. We want a cyclic

cubic field to have an unramified non-solvable extension, so we try to get an A5-extension

of a cyclic cubic field ramified at only one prime. We search on John Jones’ website Number

Fields for totally real quintic fields ramified at only one prime, and with splitting field an

A5-extension of Q. Here we let L denote a totally real quintic field and let S denote the

splitting field of L. If we take the composite field of a cyclic cubic field K with S, we get an

A5-extension of K because any A5-extension does not contain a cyclic cubic extension and

K ∩ S = Q.

Here we list the first two (in terms of field discriminants) totally real quintic fields ramified

at only one prime (3 or prime congruent to 1 modulo 3), and with splitting field an A5-

extension of Q because only 3 or primes congruent to 1 modulo 3 can be ramified in a cyclic

cubic field.

dL Polynomial

83112 x5 − x4 − 16x3 + 7x2 + 57x+ 35

102672 x5 − 25x3 − 7x2 + 116x− 45

Now we will construct the two cyclic cubic fields ramified at 8311 and 10267 respectively.

We factor them in the ring of algebraic integers of Q(
√
−3) into the unique associates as

in the proof of Theorem 2.7. 8311 =

(
−13 + 105i

√
3

2

)(
−13− 105i

√
3

2

)
and 10267 =(

−1− 117i
√

3

2

)(
−1 + 117i

√
3

2

)
. Thus, e = 8311 and u = −13 for the first cyclic cubic
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field and e = 10267 and u = −1 for the second one. The representing polynomials are

x3 − x2 − 2770x+ 4925 and x3 − x2 − 3422x+ 1521.

Now, we can look at the ramification indices of primes lying over 8311 and 10267 in the

A5-extensions over K. Let K be the cyclic cubic field defined by x3−x2−2770x+4925 with

dK = 83112. There is only one prime in OK lying over 8311 and e = 3. Let L be the totally

real quintic field, with an A5-extension as the splitting field, defined by x5 − x4 − 16x3 +

7x2 + 57x+ 35 and dL = 83112. There are 2 primes lying over 8311 in OL with ramification

indices e1 = 1, and e2 = 2 respectively. This implies if we take the composite field of K and

the splitting field S of L, the ramification index of primes lying over 8311 in OKS is divisible

by 2 and thus at least 6. Thus, 8311 is ramified more in KS and it is not an unramified

extension of K.

We will now prove our theorem.

Proof. Let K be the cyclic cubic field defined by x3 − x2 − 3422x+ 1521 with dK = 102672.

There is only one prime in OK lying over 10267 and e = 3. Let L be the totally real quintic

field, with an A5-extension as the splitting field, defined by x5− 25x3− 7x2 + 116x− 45 and

dL = 102672. There are 3 primes lying over 10267 in OL with ramification indices e1 = 1,

e2 = 1, and e3 = 3 respectively. Let S be the splitting field of L. So we know that 3 | eS.

Since the characteristic of the residue field of 10267 in Q is 10267 and it is relatively prime to

eS, primes lying above 10267 are tamely ramified. Thus the inertia group in S is cyclic which

implies eS = 1, 2, 3 or 5 and thus eS = 3. Now we take the composite field of K and the

splitting field S. The Galois group Gal(KS/Q) = A5×Z3. Again, primes lying above 10267

are tamely ramified in OKS. Thus, eKS = 1, 2, 3, 5, 6 or 15 because the inertia group in KS

is cyclic and A5×Z3 only has elements of orders 1, 2, 3, 5, 6 and 15. Also eKS = eSeKS/S = 3

or 9. Thus, eKS = 3. Therefore, KS is a non-solvable unramified extension of K.

We confirmed that the cyclic cubic field K defined by x3 − x2 − 3422x + 1521 and

ramified at 10267 has a non-solvable unramified extension. Such extension is given by the
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the composite field of K with the splitting field of the totally real quintic field defined by

x5 − 25x3 − 7x2 + 116x− 45, which is an A5-extension of Q.

Theorem 4.10. The cyclic cubic fields K defined by x3−x2− 4020x+ 76833 and x3−x2−

4020x − 92021, both ramified at 7 and 1723, have an unramified A5-extension. Moreover,

such an extension of K is given by the composite field of K with the splitting field of the

quintic polynomial x5 − 2x4 − 23x3 + 22x2 + 140x+ 9, which is an A5-extension of Q.

We follow the same strategy as the previous example and look for totally real quintic fields

with splitting field an A5-extension of Q but ramified at two primes (3 or primes congruent to

1 modulo 3). Here we list the first (in terms of field discriminants) several totally real quintic

fields ramified at two primes that are 3 or primes congruent to 1 modulo 3, and with split-

ting field an A5-extension of Q. The list is obtained from John Jones’ website Number Fields.

dL Polynomial

32 · 8832 x5 − 2x4 − 12x3 + 17x2 + 30x− 31

72 · 15792 x5 − x4 − 23x3 + 25x2 + 22x− 1

72 · 17232 x5 − 2x4 − 23x3 + 22x2 + 140x+ 9

Let K be a cyclic cubic field ramified at 3 and 883. Let L be the totally real quintic field,

with an A5-extension as the splitting field, defined by x5− 2x4− 12x3 + 17x2 + 30x− 31 and

dL = 32 · 8832. There are 2 primes lying over 3 in OL with ramification indices e1 = 1, and

e2 = 2 respectively. This implies if we take the composite field of K with the splitting field

S of L, the ramification index of primes lying over 3 in OKS is divisible by 2 and thus at

least 6. Thus, 3 is ramified more in KS and it is not an unramified extension of K.

Let K be a cyclic cubic field ramified at 7 and 1579. Let L be the totally real quintic

field, with an A5-extension as the splitting field, defined by x5 − x4 − 23x3 + 25x2 + 22x− 1

and dL = 72 · 15792. There are 2 primes lying over 7 in OL with ramification indices e1 = 1,
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and e2 = 2 respectively. This implies if we take the composite field of K with the splitting

field S of L, the ramification index of primes lying over 7 in OKS is divisible by 2 and thus

at least 6. Thus, 7 is ramified more in KS and it is not an unramified extension of K.

Now we proceed to find the two cyclic cubic fields ramified at 7 and 1723. We fac-

tor 7 and 1723 in the ring of algebraic integers of Q(
√
−3) into the unique associates.

7 =

(
−1 + 3i

√
3

2

)(
−1− 3i

√
3

2

)
and 1723 =

(
−40 + 42i

√
3

2

)(
−40− 42i

√
3

2

)
. Then,

u+ 3vi
√

3

2
=

(
−1 + 3i

√
3

2

)(
−40 + 42i

√
3

2

)
or

(
−1 + 3i

√
3

2

)(
−40− 42i

√
3

2

)

=

(
−169− 81i

√
3

2

)
or

(
209− 39i

√
3

2

)
. Thus, u = −169 or u = 209. The representing

polynomials are x3 − x2 − 4020x+ 76833 and x3 − x2 − 4020x− 92021.

Now we prove our theorem.

Proof. Let K be one of the cyclic cubic fields ramified at 7 and 1723. Let L be the totally

real quintic field, with an A5-extension as the splitting field, defined by x5 − 2x4 − 23x3 +

22x2 + 140x+ 9 with dL = 72 · 17232. There are 3 primes lying over 7 and 1723 respectively

in OL with ramification indices e1 = 1, e2 = 1, and e3 = 3 respectively for both 7 and 1723.

Let S be the splitting field of L. So we know that 3 | eS. Since the characteristic of the

residue field of 7 in Q is 7 and the characteristic of the residue field of 1723 in Q is 1723.

The two characteristics are relatively prime to eS, thus primes lying above 7 and 1723 are

tamely ramified. Thus the inertia groups in S are cyclic which implies eS = 1, 2, 3 or 5 and

thus eS = 3 for both 7 and 1723. Now we take the composite field of K and the splitting

field S. The Galois group Gal(KS/Q) = A5 × Z3. Similar to the previous proof, we have

eKS = 1, 2, 3, 5, 6 or 15. Also, we have eKS = eSeKS/S = 3 or 9. Thus, we have eKS = 3 for

both 7 and 1723. Therefore, KS is an unramified extension of K.
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4.3 Unramified Extensions of Infinite Order

In 1964, Golod and Shafarevich [4] found first example of algebraic number field with infinite

class field tower. In 1965, Brumer [1] showed that a number field with sufficiently many

ramified prime ideals has infinite class field tower. In 1967, Roquette proved a sharper result

(see [5]).

Theorem 4.11. Let K be a normal extension of degree n over Q, let r be the number of

infinite places of K, and let p be a prime with exponent vp(n) > 0 in n. Moreover let tp be

the number of primes which are ramified in K with ramification index e ≡ 0 (mod p). Then

K has infinite class field tower if

tp >
r − 1

p− 1
+ vp(n)δp + 2 + 2

√
r + δp,

where δp = 1 if the p-th roots of unity are in K and δp = 0 if not.

When K is a cyclic cubic field, n = 3, r = 3, p = 3, v3(3) = 1, δ3 = 0. Thus, K has

infinite class field tower if t3 >
3− 1

3− 1
+ 0 + 2 + 2

√
3 + 0 ≈ 6.46. That means K has infinite

class field tower if 7 or more primes are ramified in K. My goal is to construct a cubic

polynomial which represents a cyclic cubic field with 7 ramified primes.

We applied Theorem 2.7 to construct two examples:

Example 4.12. We want a cyclic cubic field K to have discriminant e2 = (34)(72)(132)(192)

(312)(372)(432). Using the algorithm in the proof of Theorem 2.7, we find a solution of u

which is 3(73). Thus, K defined by the polynomial f(x) = x3 − 255828027x + 6225148657

has 7 ramified primes. According to Theorem 4.11, K has infinite class field tower and the

unramified extension of K is infinite.

Example 4.13. We want a cyclic cubic field K to have discriminant e2 = (72)(132)(192)(312)

(372)(432)(612). Using the algorithm in the proof of Theorem 2.7, we find a solution of
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u which is 2582. Thus, K defined by the polynomial f(x) = x3 − x2 − 1733945516x −

496871720736 has 7 ramified primes. According to Theorem 4.11, K has infinite class field

tower and the unramified extension of K is infinite.

50



Bibliography

[1] A. Brumer. Ramification and class towers of number fields. Michigan Math. J., 12:129–
131, 1965.

[2] Henri Cohen. A course in computational algebraic number theory, volume 138 of Grad-
uate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[3] David A. Cox. Primes of the form x2 + ny2. A Wiley-Interscience Publication. John
Wiley & Sons Inc., New York, 1989. Fermat, class field theory and complex multiplica-
tion.
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