
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2012-03-10

Quadratic Spline Approximation of the
Newsvendor Problem Optimal Cost Function
Christina Marie Burton
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Burton, Christina Marie, "Quadratic Spline Approximation of the Newsvendor Problem Optimal Cost Function" (2012). All Theses
and Dissertations. 3087.
https://scholarsarchive.byu.edu/etd/3087

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3087?utm_source=scholarsarchive.byu.edu%2Fetd%2F3087&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Quadratic Spline Approximation of the Newsvendor Problem Optimal Cost

Function

Christina M. Burton

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Robin Roundy
Jeffrey Humpherys
Shue-Sum Chow

Department of Mathematics

Brigham Young University

April 2012

Copyright c© 2012 Christina M. Burton

All Rights Reserved

ABSTRACT

Quadratic Spline Approximation of the Newsvendor Problem Optimal Cost
Function

Christina M. Burton
Department of Mathematics, BYU

Master of Science

We consider a single-product dynamic inventory problem where the demand distri-
butions in each period are known and independent but with density. We assume the
lead time and the fixed cost for ordering are zero and that there are no capacity con-
straints. There is a holding cost and a backorder cost for unfulfilled demand, which
is backlogged until it is filled by another order. The problem may be nonstationary,
and in fact our approximation of the optimal cost function using splines is most ad-
vantageous when demand falls suddenly. In this case the myopic policy, which is most
often used in practice to calculate optimal inventory level, would be very costly. Our
algorithm uses quadratic splines to approximate the optimal cost function for this dy-
namic inventory problem and calculates the optimal inventory level and optimal cost.

Keywords: newsvendor problem, single-product, nonstationary, discrete-time, multi-
period, finite horizon, independent demands, no capacity constraints, backordering,
optimal inventory level, near optimal policy, value function approximation, quadratic
splines

iii

Contents

List of Figures iv

1. INTRODUCTION 1

2. APPROACH 3

3. BOUNDS ON THE TRUE VALUE FUNCTION 5

4. THE SPLINE FUNCTIONS 9

4.1. Spline Properties 9

4.2. Upper Bound on the Second Derivative 10

4.3. Error Analysis For a Single Interval 11

4.4. The Algebra of the Spline and Minimizing Ht(x) 14

5. THE KNOT CREATION ALGORITHM 16

5.1. Knot Creation Algorithm for x ≤ xNtt 16

5.2. Knot Creation Algorithm for x ≥ xNtt 18

6. SUMMARY 23

7. COMPUTATIONS 25

8. CONCLUSION 27

9. APPENDIX 27

9.1. V0 Parameter Derivation and Error Analysis 30

9.2. V1 Parameter Derivation and Error Analysis 31

9.3. V2 Parameter Derivation and Error Analysis 31

9.4. Proof of Lemma 4.1 33

9.5. Transformation and Inverse Transformation 34

9.6. Identities 35

References 37

iv

List of Figures

1 Upper and lower bounds for vit(x
′) with λ = (vit)

′(1) and Λ = −(vit)
′(0). 12

2 Upper and lower bounds for vit(x
′) on the unit domain with λ = −vit(0) and

Λ = vit(1). 12

3 Linear spline in case 1a. 19

4 Linear spline in cases 2a, 2b. 20

5 Linear spline in (a) case 2a and (b) case 2b. 22

6 Linear spline in case 1b. 23

7 Graph of the mean demand function f(t) where η = 2. 25

1

1. INTRODUCTION

The private sector of the United States is currently stocking inventories worth

hundreds of billions of dollars. Increasingly, these inventories are being managed by

computer software, not by humans. A very small percentage improvement in the

management of these inventories can add up to massive savings. We propose to

improve a number of the fundamental computations that are performed many times

per day in managing inventories that experience random demands.

In most algorithm-driven, real-world inventory management systems, the algo-

rithms do not attempt the computation of an optimal policy. Instead, most commer-

cial software uses the myopic policy. In other words, they optimize the costs that will

be incurred in a single time period and ignore the future. That often works well, but

when demand levels fall rapidly it leads to very expensive errors. As life cycles for

manufactured products continue to shrink and demand volatility continues to grow,

this problem is becoming more prevalent.

We will start by studying a single item that experiences random demands, whose

inventory is replenished once in every time period. The dominant point of view

among both researchers and practitioners is that solving this dynamic program is

inappropriate for large, real-world inventory systems because the optimal cost func-

tion νt(x) does not have an analytic representation, and approximating it effectively

is too time-consuming to solve. We intend to change that perception by creating

an algorithm that models the optimal cost function using quadratic splines, which

makes it easy to quickly calculate the optimal inventory level in every period.

Amazingly, the published literature on inventory systems has not attempted to use

spline functions to approximate the optimal cost function νt(x). The first accepted

discussion of the newsvendor problem was by Edgeworth (1888) who used the normal

2

distribution to find the probability that a certain cash reserve level was sufficient to

cover all customer demands at a bank. Morse and Kimball (1951) coined the term

“newsboy” when formulating the problem while Arrow et al. (1951) pioneered the

discrete-time dynamic programming of the single-product problem with independent

demands. Karlin (1958) investigated the linear order cost model and Veinott (1965)

formulated the myopic policy and its properties. In the 1960’s and 1970’s, the problem

garnered a lot of attention, evolving in name from the Christmas Tree Problem to the

Newsboy Problem and finally to the less gender specific name “newsvendor problem”,

suggested by Matt Sobel in the 1980’s [Porteus (2002)]. Since then the study of

algorithms that have fast performance guarantees for this fundamental problem has

been very limited.

There are two books that give a thorough derivation of some of the most common

splines. Shikin and Plis (1995) and Kvasov (2000) use linear algebra to compute

the parameters for one dimensional lagrange and cubic splines and prove that these

methods converge. The processes described can be modified to change whether none

or a few of the spline’s derivatives are continuous at the knots. We used quadratic

splines to approximate νt(x) in order to have fewer parameters to compute per spline

in order to reduce the running time of our program. This lowered the number of

degrees of freedom that we could use so ultimately our spline was not smooth like

νt(x), though still continuous and convex.

We have created software that calculates the optimal inventory level over many

time periods and whose running time will be attractive for companies like Amazon,

which stocks millions of different items. In addition, the quadratic spline functions

we use to model the optimal cost νt(x) are provably a close approximation. In Section

2 we prove this after defining the dynamic program that we will approximate and

3

after discussing the error terms. We prove that the optimal cost function and its

derivatives are bounded in Section 3 and we define the spline function parameters

and properties in Section 4. In Section 5 we describe the algorithm that calculates

the spline parameters. We summarize the process of creating the spline in Section

6 while Section 7 analyzes the tradeoff between running time and accuracy of our

computer program. We leave the reader with some concluding remarks in Section 8.

An Appendix is included for the more lengthy proofs and derivations.

2. APPROACH

In this section we define the dynamic program we want to solve and introduce the

spline and its properties. We prove the important result that the spline is a close

approximation to the dynamic program.

The dynamic program that defines an optimal solution is

νt(x) = min
y≥x
{gt(y) + E[νt+1(y −Dt)]} (2.1)

In this equation x is the inventory level before ordering in period t, y is the inventory

level after ordering, Dt is random demand in period t with finite mean, E represents

the expectation, and νt(x) is the optimal cost of managing the inventory system in

period t. Let x+ = max(0, x). Then

gt(y) = htE[(y −Dt)
+] + πtE[(Dt − y)+] (2.2)

is the single-period cost function with holding cost ht and backorder cost πt. Let

T be the last period to order inventory. The salvage value function is gT (x), i.e.,

νT+1(x) = 0. Since the term in braces is a convex function of y that diverges as

4

|y| → ∞ [see Zipkin (2000) Theorem 9.4.1], there exists an Rt < ∞ that minimizes

the term in braces, and νt(x) is constant for x ≤ Rt.

The true cost function is complicated because the retailer will order new inventory

in every period t if the inventory level is less than the cost minimizing level Rt. Its

formula is a function of the maximum of the amount of inventory on hand and the

cost minimizing level in every time period. For example, let

Ht(x) = gt(x) + E[νt+1(x−Dt)]. (2.3)

Define x ∨ y = max{x, y} and x ∧ y = min{x, y}. Then (2.1) can be equivalently

written

νt(x) = Ht(x ∨Rt), (2.4)

and νt(x) is non-decreasing.

The function νT (x) and its derivative are known; however, in periods t < T , νt(x)

must be computed. We create a function St(x) that is a spline approximation of νt(x),

which has some of the same properties–it is convex, continuous and asymptotically

linear, but not smooth. We define the equivalents of (2.3) and (2.4) by

Ht(x) = gt(x) + E[St+1(x−Dt)] and vt(x) = min
y≥x
Ht(y) = Ht(x ∨Rt) (2.5)

where Rt minimizes Ht(x), and ST+1(x) = 0.

Our algorithm creates the function St(x) so that is at most εt above or below vt(x),

where vt(x) is within εt+1 of the optimal cost function νt(x). Hence St(x) is at most

5

εt+1 + εt above or below νt(x). Thus the error is cumulative, and we have

εt =
T∑
j=t

εj. (2.6)

Theorem 2.1. If we create St(x) such that |St(x)−vt(x)| ≤ εt for all x ∈ (−∞, xNtt],

then |St(x)− νt(x)| ≤ εt for all x and all t. Furthermore |Ht(x)−Ht(x)| ≤ εt+1.

Proof. The general idea of this proof was described above. The formal proof is in the

Appendix. �

The definition of xNtt is not needed in this section. It is given in Section 5.1.

3. BOUNDS ON THE TRUE VALUE FUNCTION

We construct upper and lower bounds for νt(x) and its derivatives. If we expand

our definition of Ht(x) we get

Ht(x) = gt(x) + E[Ht+1((x−Dt) ∨Rt+1)]

= gt(x) + E[gt+1((x−Dt) ∨Rt+1) + E[νt+2(((x−Dt) ∨Rt+1)−Dt+1)]]

= gt(x) + E[gt+1((x−Dt) ∨Rt+1)+

E[gt+2((((x−Dt) ∨Rt+1)−Dt+1) ∨Rt+2) + E[. . .]]].

Let D[t,j] =
∑j

i=tDi and D[t,j) =
∑j−1

i=t Di. Define D(t,j] similarly and set D[t,t) = 0.

If x ≥ Rj + D[t,j) for all t ≤ j ≤ T , then we have so much inventory that we never

have to order again. In the limit as x approaches infinity, the probability that there

is enough inventory to meet all future demand converges to 1 and the inequalities in

6

the derivation below become equalities. By the monotonicity of Ht(x),

Ht(x) = gt(x) + E[Ht+1((x−Dt) ∨Rt+1)]

≤ gt(x) + E[Ht+1(x−Dt)] = gt(x) + E[gt+1(x−Dt) + E[νt+2(x−D[t,t+1])]]

= gt(x) + E[gt+1(x−Dt) + E[Ht+2((x−D[t,t+1]) ∨Rt+2)]]

≤ gt(x) + E[gt+1(x−Dt) + E[Ht+2(x−D[t,t+1])]]

= . . . =
T∑
j=t

E[gj(x−D[t,j)] = H̃t(x). (3.1)

Note that

H̃t(x) = gt(x) + E[H̃t+1(x−Dt)]. (3.2)

We will bound Ht(x) in the following theorem.

Theorem 3.1. Let µ[t,j] = E[D[t,j]]. Then

Ht(x) ≤
T∑
j=t

(
hj(x− µ[t,j]) + (hj + πj)E[(D[t,j] − x)+]

)
= H̃t(x) for all x. (3.3)

Proof. The idea of the proof appears above. The formal proof is in the Appendix. �

To find a simple lower bound on Ht(x), notice that for all t

gt(x) ≥ htE[(x−Dt)
+] ≥ htE[x−Dt] = ht(x− µt). (3.4)

Theorem 3.2.

Ht(x) ≥
T∑
j=t

hj(x− µ[t,j]) = H t(x). (3.5)

Proof. See the Appendix for the proof. �

7

To summarize,

H t(x) ≤ νt(x) ≤ H̃t(x)∀x. (3.6)

Note that

H̃t(x)−H t(x) =
T∑
j=t

(
hj(x− µ[t,j]) + (hj + πj)E[(D[t,j] − x)+]

)
−

T∑
j=t

hj(x− µ[t,j])

=
T∑
j=t

(hj + πj)E[(D[t,j] − x)+]. (3.7)

Clearly, H̃t(x)−H t(x) is a non-negative, decreasing function in x.

We can prove more about the relationships between the derivatives of νt(x) and

the derivatives of H̃t(x) and H t(x). We note that convex functions are differentiable

almost anywhere. In general, we use f ′(x) to refer to the left-handed derivative of f

at x. Since νt(x) is constant to the left of Rt and νt(x) = Ht(x) if x > Rt,

ν ′t(x) =

 0 if x ≤ Rt

H ′t(x) if x > Rt

 = H ′t(x ∨Rt) ≥ H ′t(x) (3.8)

where H ′t(Rt) = 0 by the definition of Rt. Similarly,

ν ′′t (x) =

 0 if x ≤ Rt

H ′′t (x) if x > Rt

 = H ′′t (x ∨Rt) ≤ H ′′t (x). (3.9)

Theorem 3.3. If the density of Dt is bounded then H̃ ′t(x) ≤ ν ′t(x)∀x.

Proof. By (2.1), (2.2), (2.3) and (3.1), νt(x), Ht(x), and H̃t(x) are uniformly Lipschitz

continuous. By (3.2), H̃ ′t(x) = gt(x) + d
dx

E[H̃t+1(x−Dt)]. By way of induction, note

that H̃T+1(x) = νT+1(x) = 0 and assume H̃ ′t+1(x) ≤ ν ′t+1(x)∀x. By uniform Lipschitz

8

continuity, we can invert the derivative and expectation. From (3.8) and (2.3),

ν ′t(x) ≥ H ′t(x) = g′t(x) + E[ν ′t+1(x−Dt)] ≥ g′t(x) + E
[
H̃ ′t+1(x−Dt)

]
= H̃ ′t(x).

�

Theorem 3.4. ν ′t(x) ≤ H
′
t(x)∀x.

Proof. Note that ν ′T (x) = g′T (x) ≤ hT = H
′
T (x). Assume ν ′t+1(x) ≤ H

′
t+1(x)∀x. By

(3.8) and the uniform Lipschitz continuity of νt+1(x),

ν ′t(x) = H ′t(x ∨Rt) = g′t(x ∨Rt) + E
[
ν ′t+1((x ∨Rt)−Dt)

]
≤ g′t(∞) + E

[
H
′
t+1((x ∨Rt)−Dt)

]
= ht +

T∑
j=t+1

hj = H
′
t(x).

�

Remark 3.5. Theorems 3.3 and 3.4 say that both H̃t(x) − νt(x) and νt(x) −H t(x)

decrease monotonically in x.

Theorem 3.6. If the density of Dt is bounded then ν ′′t (x) ≤ H̃ ′′t (x)∀x.

Proof. Assume ν ′′t+1(x) ≤ H̃ ′′t+1(x)∀x. Because Dt has a bounded density, g′t(x) is

uniformly Lipschitz continuous. By (2.1) and (3.2), the same can be said for νt+1(x).

Therefore we can invert expectations and second derivatives. By (3.9)

ν ′′t (x) ≤ H ′′t (x) = g′′t (x) + E
[
ν ′′t+1(x−Dt)

]
≤ g′′t (x) + E

[
H̃ ′′t+1(x−Dt)

]
= H̃ ′′t (x).

�

The second derivative bound is important in calculating the maximum error of our

approximation.

9

We construct vt(x) so that, like νt(x), it has the following properties:

Theorem 3.7. H t(x) ≤ vt(x) ≤ H̃t(x) for all x.

Proof. In period T , vT (x) = νT (x) so HT (x) ≤ vT (x) ≤ H̃T (x) by (3.6).

By (3.2), Lemma 5.2 and (9.5),

H̃t(x) ≥ H̃t(x ∨Rt) = gt(x ∨Rt) + E[H̃t+1((x ∨Rt)−Dt)]

≥ gt(x ∨Rt) + E[St+1((x ∨Rt)−Dt)]

≥ gt(x ∨Rt) + E[H t+1((x ∨Rt)−Dt)] = H t(x ∨Rt) ≥ H t(x)

where vt(x) = gt(x ∨Rt) + E[St+1((x ∨Rt)−Dt)] by (2.5). �

Theorem 3.8. If the density of Dt is bounded, then vt(x) is convex and non-decreasing.

Proof. By convexity of νT (x) [Zipkin (2000) Theorem 9.4.1], we have vT (x) = νT (x)

is convex.

For t < T , by (2.5) we have v′′t (x) = g′′t (x ∨ Rt) + d2

dx2 E[St+1((x ∨ Rt)−Dt)]. Due

to the bounded density of Dt, we can invert the derivative and expectation to get

v′′t (x) = g′′t (x∨Rt) + E[S′′t+1((x∨Rt)−Dt)]. gt(x) is convex and St+1(x) is convex by

Theorem 5.1 so g′′t (x) ≥ 0 and S′′t (x) ≥ 0, which implies v′′t (x) ≥ 0 so vt(x) is convex.

By (2.5), v′t(x) = 0 to the left of Rt so monotonicity follows. �

4. THE SPLINE FUNCTIONS

4.1. Spline Properties. In period t our task is to approximate vt(x) with a function

St(x). St(x) has some useful properties. We will prove in this section that St(x) is

convex, asymptotically linear and bounded from below. If xit and xi+1
t are successive

knots of St(x) then the function values of St(x) on the interval [xit, x
i+1
t] will depend

10

only on the function values and derivatives of vt(x) at xit and xi+1
t , i.e., the dependence

of St(x) on vt(x) is localized. We use quadratic splines as opposed to cubic splines

because the simple algebraic forms of quadratic splines make convexity easier to retain

and reduce the computational effort per knot.

A knot is the x value at the end of one quadratic section of the spline and the

beginning of another. Let the first knot be x1
t = Rt. As we remarked after (2.1),

St(x) will be constant to the left of x1
t so let Ct = vt(Rt). Following (2.5), let

St(x) = Ht(Rt) = Ct for x ≤ x1
t = Rt. We will discuss in depth how to create the

knots {xit}Mt
i=2 in Section 5. The formula of the spline is

St(x) = Ct +
Mt∑
i=1

(cit(x− xit)+ +
dit
2

((x− xit)+)2) (4.1)

where cit and dit are defined in Section 4.4.

4.2. Upper Bound on the Second Derivative. In order to create a quadratic

spline that is within εt of vt(x), it is helpful to know the maximum of v′′t (x) on an

interval. We will show how v′′t (x) can be evaluated in Section 4.4. We use the open

source chebfun package created by a team from the Oxford University Mathematical

Institute to find the coordinates of the local minimums and maximums of v′′t (x) on

[xit, x
i+1
t]. First we find the set of local maxima and the set of local minima that have

x values between xit and xi+1
t . If the set of local maxima is empty, we evaluate v′′t (xit)

and v′′t (xi+1
t). Otherwise the x values of the local maxima and minima tell us whether

xit and xi+1
t are local maximizers of v′′t (x) on [xit, x

i+1
t] or not, and we check all local

maximizers of v′′t (x). Let Bi be half of the maximum of the elements of the set of

local maxima and v′′t (xit) and v′′t (xi+1
t) if necessary.

11

4.3. Error Analysis For a Single Interval. Our goal is to create a spline St(x)

such that |St(x) − vt(x)| ≤ εt for xit ≤ x ≤ xi+1
t . Once we have fixed a knot xit, we

guess at a knot xi+1
t , define our quadratic spline St(x) on [xit, x

i+1
t], and get an upper

bound on |St(x)−vt(x)| over [xit, x
i+1
t]. The bound depends on Bi and the values and

derivatives of vt(x) at xit and xi+1
t . If the error bound is satisfactory we accept xi+1

t ;

otherwise we adjust it (see Section 5.1).

To standardize our error analysis, we transform vt(x) by mapping (xit, vt(x
i
t)) into

(0, 0) and (xi+1
t , vt(x

i+1
t)) into (0, 1). Let vit(x

′) be the image of vt(x) on [xit, x
i+1
t] under

this transformation. The formula for the transformation is given in the Appendix.

Note that (vit)
′(0) and (vit)

′(1) are determined by v′t(x
i
t) and v′t(x

i+1
t), and that the

upper bound on 1
2
(vit)

′′(x′) becomes

Bi = Bi(xi+1
t − xit)2 = Biδ2

i . (4.2)

Let

λ = −(vit)
′(0) ∧ (vit)

′(1) and Λ = −(vit)
′(0) ∨ (vit)

′(1). (4.3)

Since vt(x) is convex, λ and Λ are positive. We create our spline by defining

(Sit)
′′(x′) = 2λ. Then Sit(x

′) = λx′(x′ − 1) for x′ ∈ [0, 1]. St(x) will be convex

at xit and xi+1
t because λ = (Sit)

′(1− ε) ≤ (vit)
′(1) and −λ = (Sit)

′(ε) ≥ (vit)
′(0).

The function vit(x
′) must stay convex between (0, 0) and (1, 0) and cannot curve

too quickly because (vit)
′′(x′) ≤ 2Bi. We use this information to create upper and

lower bound functions for vit(x
′) called Vi(x

′), i = 0, 1, 2. In our derivations of Vi(x
′),

i = 0, 1, 2 and in Figure 1 we assume that Λ = −(vit)
′(0) and λ = (vit)

′(1). Otherwise

Figure 2 represents the upper and lower bounds. Our formulas for the maximum

error apply in either case.

12

Figure 1. Upper and lower bounds for vit(x
′) with λ = (vit)

′(1) and
Λ = −(vit)

′(0).

Figure 2. Upper and lower bounds for vit(x
′) on the unit domain with

λ = −vit(0) and Λ = vit(1).

13

Since (vit)
′(0) and (vit)

′(1) are fixed, (vit)
′′(x′) ≤ 2Bi and vit(x

′) is convex, vit(x
′)

must be below the graph of

V0(x′) =

Bi(x

′)2 − Λx′ if 0 ≤ x′ ≤ ξ,

(2Bi(ω − 1) + λ)x′ +Bi(1− ξ2)− λ if ξ ≤ x′ ≤ ω,

(x′ − 1)(Bi(x
′ − 1) + λ) if ω ≤ x′ ≤ 1,

where

ξ = (Λ− (Λ + λ)2/(4Bi))/(2Bi − (Λ + λ)), and

ω = 1− (λ− (Λ + λ)2/(4Bi))/(2Bi − (Λ + λ)).

Note that V0(x′) is continuous and smooth on [0, 1]. V0(x′)− Sit(x′) is largest where

their derivatives are equal, at x∗ = 1 + Bi(ω−1)
λ

. The maximum error is

ε = V0

(
1 +

Bi(ω − 1)

λ

)
− Sit

(
1 +

Bi(ω − 1)

λ

)
= Bi(ω − 1)2

(
Bi

λ
− 1

)
. (4.4)

We obtain two bounds on the maximum amount by which Sit(x
′) can be above

vit(x
′). The applicable bound depends on the relative sizes of λ,Λ and Bi. The

functions that bound vit(x
′) from below, shown in Figure 1, are

V1(x′) =

Bi(x

′)2 −Θx′ if 0 ≤ x′ ≤ γ,

λ(x′ − 1) if γ ≤ x′ ≤ 1,

(4.5a)

V2(x′) =

−Λx′ if 0 ≤ x′ ≤ α,

Bi(x
′ − α)2 − Λx′ if α ≤ x′ ≤ β,

λ(x′ − 1) if β ≤ x′ ≤ 1,

(4.5b)

14

where Θ = −λ + 2
√
Biλ, γ = (λ + Θ)/(2Bi), α = λ−Λ

2(λ+Λ)
+
(
λ+Λ
2Bi

) (
Bi
λ+Λ
− 1

2

)
and

β = λ
λ+Λ

+ λ+Λ
4Bi

.

The largest error Sit(x
′) can be above V1(x′) and V2(x′) occurs at x∗ = Θ−λ

2(Bi−λ)
and

x∗ = (Λ−λ+2Biα)
2(Bi−λ)

respectively, and is equal to

ε =

λ(
√
Bi−
√
λ)√

Bi+
√
λ

if Bi ≤ (λ+Λ)2

4λ

1
4

[
Bi − λ− Bi(Λ−λ)2

(λ+Λ)2

+
(

(Λ−λ)2

Bi−λ −
(λ+Λ)2

Bi

)(
Bi
λ+Λ
− 1

2

)2]
if (λ+Λ)2

4λ
≤ Bi.

(4.6)

For the derivation of the parameters of Vi(x
′), i = 0, 1 and 2, see the Appendix. Let

εit = max{ε, ε}. (4.7)

Lemma 4.1. If (λ + Λ)2 ≥ 4Biλ then V0(x′) ≥ vit(x
′) ≥ V1(x′) for x′ ∈ [0, 1].

Otherwise V0(x′) ≥ vit(x
′) ≥ V2(x′).

Proof. See the Appendix. �

Lemma 4.2. |Sit(x′)− vit(x′)| ≤ εit for 0 ≤ x′ ≤ 1.

Proof. This was proved in the development above. �

Having defined Sit(x
′), we find St(x) for xit ≤ x ≤ xi+1

t by inverting the transfor-

mation we applied to vt(x) on [xit, x
i+1
t]. The details are in the Appendix.

Remark 4.3. As the transformation (9.16) does not scale the units of measure along

the y axis, |St(x)− vt(x)| ≤ εit for xit ≤ x ≤ xi+1
t .

4.4. The Algebra of the Spline and Minimizing Ht(x). In the previous sub-

section we defined St(x) on each interval. The result is equation (9.20a), which says

15

St(x) = vt(x
i
t) +mi

t(x−xit) +Ai(x−xit)(x−xi+1
t) for xit ≤ x ≤ xi+1

t where Ai, defined

in (9.19), is a function of λ, xit, and xi+1
t . St(x) is convex and is within εt of vt(x)

for x ≤ xNtt . Now we need to represent St(x) in the format of (4.1). Making these

definitions agree yields formulas for the coefficients of (4.1), namely

cit = mi
t + Ai(xit − xi+1

t)−
i−1∑
k=1

(ckt + dkt (x
i
t − xkt)) and dit = 2Ai −

i−1∑
k=1

dkt . (4.8)

To minimize Ht(x) and find Rt we use the MATLAB function fminunc, which

accepts the first and second derivatives of vt(x) for greater accuracy. When we

evaluate vt(x) and its derivatives, we use the representation of St+1(x) given by (4.1).

We now describe how this is done.

Define nDu(x) = E[(Du − x)+] and n2
Du

(x) = E[((Du − x)+)2]. Using (4.1) we can

compute Ht(x) = gt(x) + E[St+1(x−Dt)] easily as follows:

Ht(x) = ht(x− µt) + (ht + πt)E[(Dt − x)+] + Ct+1

+

Mt+1∑
i=1

(cit+1E[(x− xit+1 −Dt)
+] +

dit+1

2
E[((x− xit+1 −Dt)

+)2])

= ht(x− µt) + (ht + πt)nDt(x) +

Mt+1∑
i=1

cit+1

(
x− xit+1 − µt + nDt(x− xit+1)

)
(4.9)

+ Ct+1 +

Mt+1∑
i=1

dit+1

2

(
E[D2

t]− 2µt(x− xit+1) + (x− xit+1)2 − n2
Dt(x− x

i
t+1)
)
.

16

Let FDt(x) = 1− FDt(x) where FDt(x) and fDt(x) are the cumulative and proba-

bility distribution functions for Dt respectively. By (4.9) we have

H′t(x) = ht − (ht + πt)FDt(x) (4.10)

+

Mt+1∑
i=1

[
cit+1FDt(x− xit+1) + dit

(
x− xit+1 − µt + nDt(x− xit+1)

)]
,

and

H′′t (x) = (ht + πt)fDt(x) +

Mt+1∑
i=1

cit+1fDt(x− xit+1) + ditFDt(x− xit+1). (4.11)

When finding Rt by numerically minimizing Ht(x) we can restrict the search for

Rt to a small interval, [rt ∧Rt+1, rt], where rt = arg min gt(x). This is advantageous

because rt is easily evaluated; it is the solution to the classical newsvendor problem.

To see why rt is an upper bound on Rt, note that gt(x) and E[St+1(x − Dt)] are

convex functions, and the latter is non-decreasing. Hence the minimizer of their

sum cannot be greater than the minimizer of gt(x). Also, note that if x ≤ Rt+1

then x − Dt ≤ x ≤ Rt+1, so St+1(x) = Ct+1. Therefore if x ≤ rt ∧ Rt+1, then

gt(x) + E[St+1(x−Dt)] is a decreasing function.

5. THE KNOT CREATION ALGORITHM

5.1. Knot Creation Algorithm for x ≤ xNtt . In Section 4 we gave the formula

for the spline as a function of the knots and the values of vt(x) and of v′t(x) at the

knots. We also calculated the maximum approximation error between two consecutive

knots. In this section we describe the algorithm we use to choose knots that are few

in number, but which keep the spline close to vt(x).

The basic idea of the knot creation algorithm is that given xit we want to find an

xi+1
t and a quadratic spline between xit and xi+1

t that is within εt of vt(x). The error

17

εit, defined in (4.7), is a function of xit and xi+1
t , vt(x

i
t), vt(x

i+1
t), v′t(x

i
t), and v′t(x

i+1
t)

as well as the maximum of the second derivative of vt(x) on [xit, x
i+1
t]. Because of the

way our computations are sequenced, it is most importantly a function of xi+1
t . The

larger xi+1
t is, the larger εit will be.

The number of knots would be minimized if we found the value of xi+1
t that made

εit exactly equal to εt. However, to avoid excessive computation in finding xi+1
t , we

will make an initial conjecture on where xi+1
t should be, then test and, if necessary,

refine our conjecture. Our initial conjecture is based on ε (see (4.6)). If we make the

simplifying assumption that λ = (vit)
′(1), we can set εt = λ(

√
Bi−
√
λ)√

Bi+
√
λ

and substitute

into (4.2), solve for δi, and get

δi =

√
λ+ εt√
λ− εt

· κ
√
λ√
Bi
. (5.1)

The parameters κ and ∆ give the user freedom to tune the algorithm. We use

κ = ∆ = 1.

We will terminate the knot creation algorithm if the spline is below H̃t(x) or above

H t(x) by less than εt. Define the distance functions

udt(x) = H̃t(x)− St(x) and ddt(x) = St(x)−H t(x). (5.2)

Initially we guess that xi+1
t = δi + xit, but if εit > εt we cut the distance to our next

knot in half and try again. If the error εit is less than εt, but εit is too small, we double

the distance to our next knot and try again. If εt
4
≤ εit ≤ εt then we accept xi+1

t and

check whether udt(x
i+1
t) ≤ εt or ddt(x

i+1
t) ≤ εt. If not, the knot algorithm continues.

If so we set Nt = i+ 1, change our approach and start using linear splines. After the

last knot xMt
t we define the spline to be H t(x) because it maintains a simple linear

18

form and sandwiches St(x) between H̃t(x) and H t(x) for all x ≥ xNtt as proven in

Theorem 3.7.

The following are the steps for the first knot creation algorithm:

Knot Creation Algorithm for x ≤ xNtt :

(1) x1
t = Rt, i = 1, k = 2, κ = 1, ∆ = 1, n = 0.

(2) Set Bi = 1
2
v′′t (xit) using (4.11). Define δi using (5.1) and let xi+1

t = xit + δi.

(3) Set Bi = 1
2

max[xit,x
i+1
t] v

′′
t (x). Use (4.4), (4.6) and (4.7) to find εit, which is the

maximum of the top and bottom error.

(4) Set b = n. Redefine

n =

1 if εit <

εt
4∆

−1 if εit > εt

0 otherwise.

If n = 0 or 1 and in addition either udt(x
i+1
t) ≤ εt or ddt(x

i+1
t) ≤ εt, set

Nt = i+ 1, define cit and dit as in (4.8), and go to 6. Otherwise go to 5.

(5) If n = −1 and b = 1, set δi = δi
k

and xi+1
t = xit + δi.

If nb = −1 or n = 0, define cit and dit as in (4.8), set i = i+ 1, and set n = 0.

If n 6= 0, and either nb = 1 or b = 0, let δi = δi ∗ kn and xi+1
t = xit + δi.

Go to 3.

(6) Define St(x) for all x greater than or equal to xNtt using the “Knot Creation

Algorithm for x ≥ xNtt ”.

5.2. Knot Creation Algorithm for x ≥ xNtt . When 0 ≤ udt(x
i
t) ≤ εt or 0 ≤

ddt(x
i
t) ≤ εt, we have different criteria for creating the knots because we have more

information about νt(x). Recall that νt(x) is bounded between H̃t(x) and H t(x), and

19

that both H̃t(x)− νt(x) and νt(x)−H t(x) are non-increasing as proven in Theorems

3.1, 3.2, 3.3 and 3.4. These are the steps for the knot creation algorithm after

0 ≤ udt(x
i
t) ≤ εt or 0 ≤ ddt(x

i
t) ≤ εt:

(1) If 0 ≤ udt(x
i
t) < εt (case 1a) or ddt(x

i
t) ≤ εt (case 1b), find the linear function

Vi(x) = mi
tx + bit that passes through the point (xit,St(xit)) and is tangent to

H̃t(x) at some x̃ > xit. Go to 3 if 0 ≤ udt(x
i
t) < εt and go to 4 otherwise.

Figure 3. Linear spline in case 1a.

(2) If εt ≤ udt(x
i
t) ≤ εt, find the line V i

t (x) = mi
tx + bit that passes through the

point (xit,St(xit)) and is tangent to H̃t(x) − (udt(x
i
t) − εt) at some x̃ > xit. If

S′t(xit) > mi
t (case 2b), let mi

t = S′t(xit) and define bit such that V i
t (x) = mi

tx+bit

goes through (xit,St(xit)) (otherwise case 2a applies). Go to 3.

(3) Find the point (xi+1
t , V i

t (xi+1
t)) so that H̃t(x

i+1
t)−V i

t (xi+1
t) = εt and xi+1

t > xit.

If V i
t (xi+1

t) < H t(x
i+1
t) go to 4. Otherwise let i = i+ 1 and go to 2.

(4) Find the point x where V i
t (x) and H t(x) intersect (case 3). Let St(x) = V i

t (x)

for xit ≤ x ≤ x. Let Mt = i + 1 and define xMt
t = x. Let St(x) = H t(x) for

x ≥ xMt
t . Stop.

20

Figure 4. Linear spline in cases 2a, 2b.

Lemma 5.1. St(x) is convex and non-decreasing.

Proof. Convexity follows from the algorithm above. The key points in the argument

are the paragraph following (4.3) and step (2) of the “Knot Creation Algorithm for

x ≥ xNtt ”. Since S′t(x) = 0 for x ≤ x1
t (see (4.1)), the convexity implies monotonicity.

�

Lemma 5.2. Assuming that H t(x) ≤ vt(x) ≤ H̃t(x) for all x, H t(x) ≤ St(x) ≤ H̃t(x)

for all x.

Proof. In the “Knot Creation Algorithm for x ≥ xNtt ”, udt(x) > εt, ddt(x) > εt and

|St(x)− vt(x)| ≤ εt by Lemma 4.2 so

H t(x) < vt(x)− εt ≤ St(x) + εt − εt ≤ St(x)

and similarly,

St(x) ≤ St(x)− εt + εt < vt(x) + εt < H̃t(x).

for x ≤ xNtt .

21

For x ≥ xNtt in cases 1a, 1b, 2a, and 4, St(x) ≤ H̃t(x) since St(x) is tangent to H̃t(x)

or some translate down. In case 2b, St(xit) = vt(x
i
t) and v′t(x) ≥ v′t(x

i
t) = S′t(x) by

convexity of vt(x) so St(x) ≤ vt(x) ≤ H̃t(x) by Theorem 3.7 and by linearity of St(x).

As in step (2), if St(x) < H t(x), we redefine St(x) so St(x) ≥ H t(x) for x ≥ xMt
t .

�

Theorem 5.3. |St(x)− νt(x)| ≤ εt for all x ≥ xNtt .

Proof. We begin with case 1a, in which H̃t(x
i
t)−St(xit) ≤ εt, and St(xit) = vt(x

i
t). Let

xit ≤ x ≤ xi+1
t . By (9.2) and by the triangle inequality

|H̃t(x
i
t)− νt(xit)| ≤ |H̃t(x

i
t)− vt(xit)|+ |vt(xit)− νt(xit)| ≤ εt + εt+1 = εt. (5.3)

By Theorem 3.3 H̃ ′t(x) ≤ ν ′t(x) so the distance between H̃t(x) and νt(x) will decrease

as x grows. Since H̃t(x
i
t)− εt ≤ vt(x

i
t)− εt+1 ≤ νt(x

i
t), H̃t(x)− εt is a lower bound on

νt(x) as shown in Figure 3. Because H̃t(x) is an upper bound on νt(x) and because

St(x) = V i
t (x) is between H̃t(x) and H̃t(x)− εt, |St(x)−νt(x)| ≤ εt for xit ≤ x ≤ xi+1

t .

In case 2a we have εt < udt(x
i
t) ≤ εt. Let xit ≤ x ≤ xi+1

t . By an argument similar

to the one used in case 1a, H̃t(x)− udt(xit)− εt+1 ≤ νt(x) ≤ H̃t(x). By construction,

H̃t(x̃)−V i
t (x̃) = udt(x

i
t)−εt = H̃t(x

i
t)−V i

t (xit)−εt. Since H̃t(x) is convex and xit < x̃,

we must have H̃ ′t(x
i
t) ≤ (V i

t)′(xit) = mi
t. Hence H̃t(x)−V i

t (x) decreases until the point

(x̃, V i
t (x̃)). Thereafter H̃t(x)−V i

t (x) increases, but this iteration of our knot creation

algorithm stops when H̃t(x) − V i
t (x) = εt, so H̃t(x) − V i

t (x) ≤ εt for xit ≤ x ≤ xi+1
t .

On this interval, the gap between V i
t (x) and the lower bound H̃t(x)−udt(xit)−εt+1 on

νt(x) expands from εt+1 at xit to εt at x̃ and then decreases. Therefore St(x) is within

εt of the bounds of νt(x) (see Figure 5(a)), so it follows that |St(x)− νt(x)| ≤ εt for

xit ≤ x ≤ xi+1
t .

22

In case 2b we have εt < udt(x
i
t) ≤ εt and (V i

t)′(xit) = v′t(x
i
t). As before, let

xit ≤ x ≤ xi+1
t . We now have a different lower bound on νt(x). Because vt(x)

is convex v′t(x) ≥ v′t(x
i
t). Combined with the fact that |vt(x) − νt(x)| ≤ εt+1, we

know that the line with slope v′t(x
i
t) that passes through the point (xit, vt(x

i
t)− εt+1)

as shown in Figure 5(b) is a lower bound on νt(x). Keeping V i
t (x) parallel to this

lower bound as we do in case 2b, and because H̃t(x
i+1
t) − V i

t (xi+1
t) = εt, we have

|St(x)− νt(x)| = |V i
t (x)− νt(x)| ≤ εt.

(a) (b)

Figure 5. Linear spline in (a) case 2a and (b) case 2b.

Consider case 1b in which St(xit)−H t(x
i
t) ≤ εt (Figure 6). If St(xit)+εt+1 ≥ H̃t(x

i
t)

set x′ = xit. Otherwise there is a line that passes through (xit,St(xit) + εt+1) and is

tangent to H̃t(x) at (x′, H̃t(x
′)), where xit ≤ x′ ≤ x̃. We know by Theorem 3.1 that

νt(x) ≤ H̃t(x), that νt(x) is convex and that νt(x) − St(x) ≤ εt+1. Hence the line

segment that connects (xit,St(xit) + εt+1) and (x′, H̃t(x
′)) is an upper bound on νt(x).

For x ≥ x′, H̃t(x) is an upper bound on νt(x). The slope of the line segment is less

than mi
t in step (1), so the distance between the upper bound on νt(x) and V i

t (x)

is decreasing for xit ≤ x ≤ x̃. Hence V i
t (x) stays within εt of the upper bound on

νt(x). By Theorem 3.2 νt(x) ≥ H t(x), so |St(x) − νt(x)| = |V i
t (x) − νt(x)| ≤ εt for

xit ≤ x < xi+1
t .

23

We consider case 3 and assume that x ≥ x = xMt
t . We claim that εt ≥ H̃(x)−H(x).

This is automatic if we reach case 3 from any of cases 1a, 2a, 2b. If we reach case 3

from case 1b then if xi+1
t = xMt

t , Theorem 3.7 says mi
t = H̃ ′t(x̃) ≤ H

′
t(x̃) = H

′
t(x) for

all x ∈ [xit, x], so by Remark 3.5

εt ≥ V i
t (xit)−H t(x

i
t) ≥ V i

t (x̃)−H t(x̃) = H̃t(x̃)−H t(x̃) ≥ H̃t(x)− V i
t (x).

We define St(x) = H t(x) for all x ≥ xMt
t . Because H̃t(x) ≥ νt(x) ≥ H t(x), St(x)

stays within εt of νt(x).

Figure 6. Linear spline in case 1b.

�

6. SUMMARY

Often times the details of the proofs tend to obfuscate the simple elegance of the

method. We intend to summarize the algorithm for creating the spline to clarify the

proceedure and refer the interested reader to the proofs in previous sections and the

Appendix of the paper.

Assuming that we know the demand distribution in each period, we know the an-

alytic representation of the optimal cost function νT (x) in period T , whose minimum

24

RT is the solution to the myopic policy and can be computed. Thus the approximate

optimal cost function vT (x) is equal to νT (x) and the first knot is x1
T = RT . From

here we make an educated guess about the location of the next knot x2
T . We then

compute the maximum possible error |ST (x)− νT (x)| that can occur for x ∈ [x1
T , x

2
T].

This computation is facilitated by transforming the interval [x1
T , x

2
T] to the unit do-

main so we can use a standardized quadratic spline with fixed endpoints at (0, 0) and

(1, 0).

If the computed error bound is greater than the set limit εT , then the knot x2
T is

not close enough to x1
T . We try again with a closer knot. If the bounds are so close

together that the maximum possible error is less than one fourth of εT , then we try to

move the knot x2
T farther away from x1

T so that in the end we use fewer knots, which

reduces the number of terms in the formula for the spline. If x2
T has an acceptable

maximum error, then we fix the knot x2
T and repeat the process for the knot x3

T , and

so on. We let the spline be equal to νT (Rt) for all x less than RT and for large x

we let the spline be equal to the lower bound HT (x) when the lower bound and the

spline intersect. We choose our quadratic splines so that the spline is continuous,

convex and has the same upper and lower bound functions as νT (x).

After approximating νT (x) with the spline function ST (x), we can evaluateHT−1(x),

H′T−1(x), and H′′T−1(x) via (4.9)-(4.11). To E[ST (x−DT−1)] we add the single period

cost function gT−1(x) to obtain HT−1(x). We minimize this function to obtain RT−1

and define vT−1(x). Then we repeat the above proceedure by defining the spline

approximation ST−1(x) to vT−1(x).

The error bounds accumulate from one time period to the next. Reducing the error

limits counterbalances the error accumulation, but forces us to use more knots and

increases the run time. This algorithm for creating spline approximations is still fast.

25

The computations tell us what the optimal inventory level is in every time period

and what the optimal costs are.

7. COMPUTATIONS

In this section, we describe the Standard Case that we use to test our software.

Then we compare the run time and accuracy of our results.

We let the mean demand be the following function of t ∈ [1, 7/2] (see Figure 7):

f(t) = 3− (η − 3)(3 sin(πt)− 2t+ 2)/8. (7.1)

1 1.5 2 2.5 3 3.5

2

2.2

2.4

2.6

2.8

3

Function for Mean Demand

time

m
ea

n
de

m
an

d

Figure 7. Graph of the mean demand function f(t) where η = 2.

This function has maximum value of 3 at t = 1 and decays to η < 3 by time

t = 7/2. We obtain mean demands for discrete time periods by uniformly scaling the

time interval 1 ≤ t ≤ 7/2. This function models the mean demand, so in all cases

E[D1] = 3, demand then dips slightly before recovering, and demand finally crashes

to E[DT] = η.

In our Standard Case T = 10, ht = 1, πt = 10, εt = .5, and η = 2. We also let

σ2
t /µt = 3/4 for every time period t. We vary one of these parameters at a time. The

26

table headings are vt(R1), which is our approximation of the optimal cost over all

time periods of each dynamic program with the specific parameters; R1, the optimal

inventory in period 1; and “knots” – the number of knots used in the first time period.

We did our computations in MATLAB on a 32-bit Windows 7 PC with an AMD

Athlon(tm) 64 X2 Dual Core Processor 4600+ 2.40 GHz CPU.

πt/ht vt(Rt) Rt knots time (sec)
5 21.10 4.4296 38 7.5095
10 25.32 4.9821 40 7.4958
15 27.69 5.2809 40 7.4597
20 29.31 5.4825 40 7.4326

Cutting the error limit by ninety nine percent to εt = .01 in the table below

increased our run time by twenty eight percent. It also increased the number of

knots to more than nine times as many.

εt vt(Rt) Rt knots time (sec)
.9 25.34 4.9793 9 6.9293
.5 25.33 4.9798 12 6.8789
.1 25.32 4.9820 26 7.2503
.01 25.32 4.9822 86 8.8372

We maintained a constant ratio for the variance over the mean, but as this value

grew, the absolute size of the standard deviation also grew. When the standard

deviation grew larger than 1 over all time periods t (σ2
t /µt = 3 with 2 ≤ µt ≤ 3), the

expected cost quickly rose to $52.58 as demand became more volatile.

σ2
t /µt vt(Rt) Rt knots time (sec)
3 52.58 6.6979 42 4.0157

3/4 25.32 4.9821 40 7.4155
1/3 16.82 4.3340 37 12.2966
3/16 12.61 4.0013 38 18.6921

In this table, smaller values of η mean average demand is lower in all time periods

except the first. The optimal inventory level remains constant over the change in

27

demand, but the cost decreases as demand decreases because backorders are less

likely and the backorder cost πt is very large compared to our holding cost ht.

η vt(Rt) Rt knots time (sec)
.5 22.55 4.9355 33 9.4734
1 23.46 4.9568 36 8.1355

1.5 24.41 4.9718 38 7.7085
2 25.32 4.9821 40 7.5257

The number of time periods and the time are directly correlated as shown in the

next table.

T vt(Rt) Rt knots time (sec)
5 12.66 4.9769 20 3.5368
10 25.32 4.9821 40 7.8773
15 34.00 4.9866 56 16.1837
20 50.68 4.9888 72 19.1496

As the reader can clearly see, our program is predictable and robust. We hope to

soon use a MATLAB compiler for even faster execution times.

8. CONCLUSION

Our algorithm for approximating the optimal cost function of the single-product

dynamic inventory problem is both fast and accurate. Approximation by quadratic

splines is simple and computationally effective and bypasses having to compute the

analytic representation of νt(x). With this software, we hope companies will have

better means of regulating their inventory optimally.

9. APPENDIX

We begin by proving some of the Theorems in Sections 2 and 3. We derive the

parameters for V0, V1 and V2 in Sections 9.1 - 9.3. In Section 9.4 we prove Lemma

28

4.1. The formulas for the transformation and inverse transformation are in Section

9.5. In Section 9.6 we prove a well known result that simplifies our computations.

Theorem 2.1. If we create St(x) such that |St(x)−vt(x)| ≤ εt for all x ∈ (−∞, xNtt],

then |St(x)− νt(x)| ≤ εt for all x and all t. Furthermore |Ht(x)−Ht(x)| ≤ εt+1.

Proof. We proceed by induction. Note that HT (x) = HT (x) so νT (x) = vT (x). Thus

if |ST (x)−vT (x)| ≤ εT for all x ∈ (−∞, xNtt] and by Theorem 5.3 |ST (x)−νT (x)| ≤ εT

for x ≥ xNtt , then |ST (x)− νT (x)| ≤ εT for all x.

In period t < T assume that |St+1(x) − νt+1(x)| ≤ εt+1 for all x by the induction

hypothesis. Then

|Ht(x)−Ht(x)| = |gt(x) + E[St+1(x−Dt)]− (gt(x) + E[νt+1(x−Dt)])|

= |E[St+1(x−Dt)− νt+1(x−Dt)]| ≤ |E[εt+1]| = εt+1. (9.1)

We now show that |vt(x) − νt(x)| ≤ εt+1. Because we use properties that apply

to both (vt(x),Ht(x),Rt) and to (νt(x), Ht(x), Rt), we assume WLOG that Rt ≥ Rt.

We have for all x ≥ max{Rt, Rt}, |vt(x)−νt(x)| = |Ht(x)−Ht(x)| ≤ εt+1 using (2.4)

and (2.5). Then for all Rt ≤ x ≤ Rt,

νt(x) + εt+1 = νt(Rt) + εt+1 = Ht(Rt) + εt+1 ≥ Ht(Rt) = vt(Rt) ≥ vt(x)

≥ vt(Rt) = Ht(Rt) ≥ Ht(Rt)− εt+1 ≥ Ht(Rt)− εt+1 = νt(x)− εt+1.

We have proved

|vt(x)− νt(x)| ≤ εt+1 for all x. (9.2)

By the discussion in Section 4.1, St(x) = vt(x) for x ∈ (−∞,Rt]. In Lemma 4.2

we will prove that |St(x)− vt(x)| ≤ εt for all x ∈ (Rt, x
Nt
t]. Then by (9.2) and by the

29

triangle inequality

|St(x)− νt(x)| ≤ |St(x)− vt(x)|+ |vt(x)− νt(x)| ≤ εt + εt+1 = εt

for all x ∈ (−∞, xNtt]. Combining this with Theorem 5.3, we have |St(x)−νt(x)| ≤ εt

for all x. �

Theorem 3.1. Let µ[t,j] = E[D[t,j]]. Then

Ht(x) ≤
T∑
j=t

(
hj(x− µ[t,j]) + (hj + πj)E[(D[t,j] − x)+]

)
= H̃t(x) for all x. (9.3)

Proof. Formally, we proceed by induction. Let t = T . Since the salvage value is zero,

νT+1(x−Dt) = vT+1(x−Dt) = 0. So

HT (x) = gT (x) + E[νT+1(x−DT)]

= hT (x− µT) + (hT + πT)E[(DT − x)+] = H̃T (x).

Assume (9.3) for time t + 1. Then by (2.3), (2.4), the fact that Rt+1 minimizes

Ht+1(x) and by (3.2) we have

Ht(x) = gt(x) + E[νt+1(x−Dt)] = gt(x) + E[Ht+1((x−Dt) ∨Rt+1)]

≤ gt(x) + E[Ht+1(x−Dt)] ≤ gt(x) + E[H̃t+1(x−Dt)] = H̃t(x).

�

Theorem 3.2.

Ht(x) ≥
T∑
j=t

hj(x− µ[t,j]) = H t(x). (9.4)

30

Proof. For t = T , the result follows from (3.4) since HT (x) = gT (x). Assume (9.4)

for time t+ 1. Since H t+1(x) is increasing, in period t

Ht(x) = gt(x) + E[νt+1(x−Dt)] = gt(x) + E[Ht+1((x−Dt) ∨Rt+1)]

≥ gt(x) + E[H t+1((x−Dt) ∨Rt+1)] ≥ gt(x) + E[H t+1(x−Dt)] (9.5)

≥ ht(x− µt) +
T∑

j=t+1

hj(x− µ[t,j]) = H t(x).

Thus H t(x) is a lower bound on Ht(x) in every period t. �

9.1. V0 Parameter Derivation and Error Analysis. We maximize V0(x′)−Sit(x′).

Second order conditions require that V ′′0 (x′∗) ≤ (Sit)
′′(x′∗) = 2λ. By the Mean Value

Theorem (vit)
′(1)− (vit)

′(0) = (vit)
′′(x′?) for some x′? ∈ (0, 1) so

2λ = 2(−(vit)
′(0) ∧ (vit)

′(1)) ≤ (vit)
′(1) + (−(vit)

′(0)) = (vit)
′′(x′?) ≤ 2Bi. (9.6)

Thus V ′′0 (x′) = 2Bi ≥ 2λ for x′ < ξ and x′ > ω, so WLOG we assume that ξ ≤ x′ ≤ ω.

We equate V ′0(x′) and (Sit)
′(x′) to find the largest error. For ξ ≤ x′ ≤ ω,

V ′0(x′∗)− (Sit)
′(x′∗) = 2Bi(ω − 1) + λ− 2λx′∗ + λ ⇒ x′∗ = 1 +

Bi(ω − 1)

λ
.

Setting x′ = 1 + Bi(ω−1)
λ

we obtain

V0

(
1 +

Bi(ω − 1)

λ

)
− Sit

(
1 +

Bi(ω − 1)

λ

)
= (2Bi(ω − 1) + λ)

(
1 +

Bi(ω − 1)

λ

)
+Bi(1− ω2)− λ− λ

(
1 +

Bi(ω − 1)

λ

)2

+ λ

(
1 +

Bi(ω − 1)

λ

)
=

2B2
i (ω − 1)2

λ
−Bi(ω − 1)2 = Bi(ω − 1)2

(
Bi

λ
− 1

)
.

The error is nonnegative by (9.6).

31

9.2. V1 Parameter Derivation and Error Analysis. We now derive the param-

eters of V1(x′). We note that

λ = V ′1(γ) = −Θ + 2Biγ ⇒ γ = (λ+ Θ)/(2Bi). (9.7)

Clearly, Sit(x
′)−V1(x′) is biggest when 0 = S ′i(x

′
∗)−V ′1(x′∗) = 2λx′∗−λ− [2Bix

′
∗−Θ]

or where x′∗ = Θ−λ
2(Bi−λ)

. So

Sit(x
′
∗)− V1(x′∗) = λx′∗(x

′
∗ − 1)− [Bi(x

′
∗)

2 −Θx′∗] = (Θ− λ)x′∗ − (Bi − λ)(x′∗)
2

=
(Θ− λ)2

4(Bi − λ)
=

(2
√
Biλ− 2λ)2

4(Bi − λ)
=
λ(
√
Bi −

√
λ)2

Bi − λ
=
λ(
√
Bi −

√
λ)

√
Bi +

√
λ

. (9.8)

The error applies if V ′1(0) = −Θ ≥ −Λ = V ′2(0), which is true if and only if
(
λ+Λ

)2 ≥

4Biλ.

9.3. V2 Parameter Derivation and Error Analysis. The parameters for V2(x′)

and the corresponding error are derived in a manner that is conceptually similar.

Since vit(x
′) and Sit(x

′) are smooth in [0, 1] and are equal at the endpoints,

−Λ + 2(β − α)Bi = λ ⇐⇒ β − α =
λ+ Λ

2Bi

. (9.9)

Because V2(x′) is continuous at β, −Λβ +Bi(β − α)2 = λ(β − 1), so

β =
[Bi(β − α)2 + λ]

λ+ Λ
=

λ

λ+ Λ
+
λ+ Λ

4Bi

, and (9.10)

α = β − λ+ Λ

2Bi

=
λ

λ+ Λ
− λ+ Λ

4Bi

=

(
λ+ Λ

)
+
(
λ− Λ

)
2(λ+ Λ)

− λ+ Λ

4Bi

=
λ− Λ

2(λ+ Λ)
+

1

2
− λ+ Λ

4Bi

(9.11)

=
λ− Λ

2(λ+ Λ)
+

(
λ+ Λ

2Bi

)(
Bi

λ+ Λ
− 1

2

)
. (9.12)

32

Substituting λ+Λ
4Bi

= 1
4Bi

(λ− Λ + 2Λ) into (9.11) we get

α =
1

2

(
1− Λ

Bi

+ (λ− Λ)

(
1

λ+ Λ
− 1

2Bi

))
. (9.13)

The maximum error between Sit(x
′) and V2(x′) occurs at x′∗ if the derivatives are

equal at x′∗. Thus S ′i(x
′
∗) = V ′2(x′∗) ⇒ 2λx′∗ − λ = 2Bi(x

′
∗ − α) − Λ which is true if

and only if x′∗ = (Λ−λ+2Biα)
2(Bi−λ)

. Then

Sit(x
′
∗)− V2(x′∗) = λ((x′∗)

2 − x′∗)− (Bi(x
′
∗ − α)2 − Λx′∗)

= (λ−Bi)(x
′
∗)

2 + (Λ + 2Biα− λ)x′∗ −Biα
2 =

(Λ− λ+ 2Biα)2

4(Bi − λ)
−Biα

2.

Since V ′2(α) = V ′2(0) = S ′i(0) < S ′i(1) = V ′2(1) = V ′2(β) and V2(0) = Sit(0) = Sit(1) =

V2(1) = 0, there exists an x′ ∈ [α, β] such that V ′2(x′) = S ′i(x
′). This error is valid if

0 ≤ α, β ≤ 1, which is true if and only if 4Biλ ≥ (λ+ Λ)2.

Sit(x
′
∗)− V2(x′∗) =

1

4(Bi − λ)

(
Λ− λ+Bi

[
1− Λ

Bi

+ (λ− Λ)
(1

λ+ Λ
− 1

2Bi

)])2

−Bi

(
λ− Λ

2(λ+ Λ)
+

(
λ+ Λ

2Bi

)(
Bi

λ+ Λ
− 1

2

))2

=
1

4(Bi − λ)

[
Bi − λ+ (λ− Λ)

(Bi

λ+ Λ
− 1

2

)]2

− Bi(Λ− λ)2

4(λ+ Λ)2

− λ− Λ

2

(
Bi

λ+ Λ
− 1

2

)
− (λ+ Λ)2

4Bi

(
Bi

λ+ Λ
− 1

2

)2

=
Bi − λ

4
+
λ− Λ

2

(Bi

λ+ Λ
− 1

2

)
+

(Λ− λ)2

4(Bi − λ)

(Bi

λ+ Λ
− 1

2

)2

− Bi(Λ− λ)2

4(λ+ Λ)2
− λ− Λ

2

(
Bi

λ+ Λ
− 1

2

)
− (λ+ Λ)2

4Bi

(
Bi

λ+ Λ
− 1

2

)2

.

33

The resulting error bound is

1

4

[
Bi − λ−

Bi(Λ− λ)2

(λ+ Λ)2
+

(
(Λ− λ)2

Bi − λ
− (λ+ Λ)2

Bi

)(Bi

λ+ Λ
− 1

2

)2
]
. (9.14)

9.4. Proof of Lemma 4.1.

Lemma 4.1. If (λ + Λ)2 ≥ 4Biλ then V0(x′) ≥ vit(x
′) ≥ V1(x′) for x′ ∈ [0, 1].

Otherwise V0(x′) ≥ vit(x
′) ≥ V2(x′).

Proof. We will prove that V0(x′) is the best upper bound and V1(x′) and V2(x′) are

the best lower bounds of any function f(x′) with the properties

f(0) = f(1) = 0, f ′(0) = −Λ, f ′(1) = λ, f(x′) is convex, and f ′′(x′) ≤ 2Bi. (9.15)

V ′0(0) = −Λ = f ′(0), V ′0(1) = λ = f ′(1) and V0(x′) has the maximum second

derivative value 2Bi for x′ near the endpoints 0 and 1 so V0(x) forms two parabolas

that are upper bounds on f(x) for 0 ≤ x′ ≤ ξ and ω ≤ x′ ≤ 1. The line between

V0(ξ) and V0(ω) is an upper bound on f(x′) because f(x′) is convex. Thus V0(x′) is

an upper bound of f(x′).

By convexity 0 ≤ f ′′(x′) and V ′′2 (x′) = 0 for 1 ≤ x′α, β ≤ x′ ≤ 1. Also since f(x′) is

convex, V ′2(x′) = V ′2(0) = −Λ = f ′(0) for 0 ≤ x′ ≤ α and V ′2(x′) = V ′2(1) = λ = f ′(1)

for β ≤ x′ ≤ 1, V2(x′) is a lower bound of f(x′) for 0 ≤ x′ ≤ α, β ≤ x′ ≤ 1. Suppose

f(x′∗) < V2(x′∗), α < x′∗ < β. If f ′(x′∗) < V2(x′∗), then f ′(β) < V ′2(β) = λ and

f(β) < V2(β) since f ′′(x′) ≤ V2(x′) = 2Bi for α < x′ < β. Thus f(x′) has slope

strictly less than λ when it intersects the line with slope λ that goes through (1, 0).

Because of the finite bound on the second derivative of f(x′), this contradicts the

fact that f(1) = 0. If f ′(x′∗) > V2(x′∗), then f ′(α) < V ′2(α) = −Λ and f(α) > V2(α)

since f ′′(x′) ≤ V2(x′) = 2Bi for α < x′ < β. Thus f(x′) has slope strictly greater

34

than −Λ when it intersects the line with slope −Λ that goes through (0, 0). Because

of the finite bound on the second derivative of f(x′), but we need f(0) = 0, we have

a contradiction. Thus f(x′) ≥ V2(x′) for α < x′ < β so V2(x′) is a lower bound of

f(x′) for 0 ≤ x′ ≤ 1.

If the second derivative bound is constrictive, then V1(x′) is a lower bound of f(x′)

by the same argument as in the previous paragraph.

Since vit(x
′) satisfies properties (9.15), the Lemma is proved. �

9.5. Transformation and Inverse Transformation. Assume vt(x) passes through

the points (xit, vt(x
i
t)) and (xi+1

t , vt(x
i+1
t)) and that v′′t (x) ≤ 2Bi for x ∈ [xit, x

i+1
t] (see

Section 4.2). In the original domain we view vt(x
i
t) as a function of xit. To facilitate

the error analysis for a given t and i we define the unit domain by mapping (xit, vt(x
i
t))

and (xi+1
t , vt(x

i+1
t)) into (0, 0) and (1, 0) respectively using the transformation

x′ =
x− xit
xi+1
t − xit

, mi
t =

vt(x
i+1
t)− vt(xit)
xi+1
t − xit

, and y′ = y −mi
tx− (vt(x

i
t)−mi

tx
i
t).

(9.16)

In the unit domain we view y′ as a function of x′. The functions vt(x) and St(x) from

the original domain map into Sit(x) and vit(x) in the unit domain. Thus

vt(x) = vit

(
x− xit
xi+1
t − xit

)
+ vt(x

i
t) +mi

t(x− xit), (9.17)

vit(x
′) = vt(x

i
t + x′(xi+1

t − xit))− vt(xit)−mi
tx
′(xi+1

t − xit), (9.18)

and similar expressions hold for St(x) and Sit(x
′).

35

We need to do the inverse of the transformation of (9.16). Using (9.16) to map

y′ = Sit(x
′) = λx′(x′ − 1) into the initial domain we get

St(x)−mi
tx− (vt(x

i
t)−mi

tx
i
t) = λ

(
x− xit
xi+1
t − xit

)(
x− xit
xi+1
t − xit

− 1

)
for x ∈ [xit, x

i+1
t]. Let

Ai =
λ

(xi+1
t − xit)2

. (9.19)

Hence,

St(x) = vt(x
i
t) +mi

t(x− xit) + Ai(x− xit)(x− xi+1
t), (9.20a)

S′t(x) = mi
t + Ai(2x− xit − xi+1

t), (9.20b)

S′′t (x) = 2Ai. (9.20c)

We rectify the expressions for St(x) in (4.1) and (9.20a) by choosing cit and dit

appropriately. Let 1{x ≥ xkt } be one for all k ≤ i and zero for all k > i. The

derivatives of (4.1) are

S′t(x) =
Mt∑
i=1

(cit1{x ≥ xit}+ dit(x− xit)1{x ≥ xit}), (9.21a)

S′′t (x) =
Mt∑
i=1

dit1{x ≥ xit}. (9.21b)

If x ∈ [xit, x
i+1
t] and i ≤ Mt − 1, then we get S′t(x) =

∑i
k=1(ckt + dkt (x − xkt)) and

S′′t (x) =
∑i

k=1 d
k
t . Consequently, the definitions of cit and dit are (4.8). When we

define a spline by a straight line, Ai = 0.

9.6. Identities. To simplify our computations, we repeat the following well-known

result.

36

Proposition 9.1. Assume that the distribution of the demands is either normal

or gamma, and that the demands are independent. If the demands are normally

distributed let Dt ∼ N (µt, σt), µ[t,j] =
∑j

s=t µs, σ[t,j] =
√∑j

s=t σ
2
s , and k[t,j] =

x−µ[t,j]

σ[t,j]
.

We have

nD[t,j]
(x) = σ[t,j](φ(k[t,j])− k[t,j]Φ(k[t,j])) and (9.22a)

n2
Dt(x) = σ2

t ((k
2
t + 1)Φ(kt)− ktφ(kt)). (9.22b)

If Dt follows a gamma distribution then Dt ∼ Gamma(αt, θ), all demands have the

same shape parameter θ, and α[t,j] =
∑j

s=t αs. We have

nα[t,j],θ(x) =
α[t,j]

θ
Fα[t,j]+1,θ(x)− xFα[t,j],θ(x) and (9.23a)

n2
αt,θ(x) =

αt(αt + 1)

θ2
Fαt+2,θ(x)− 2αtx

θ
Fαt+1,θ(x) + x2Fαt,θ(x). (9.23b)

Proof. Let D ∼ N (µt, σt) and let z = s−µt
σt

so dz = ds
σt

. Then

nDt(x) =

∫ ∞
x

(s− x)fDt(s)ds =

∫ ∞
x−µt
σt

(σtz + µt − x)φ(z)dz

= σt

∫ ∞
kt

(z − kt)φ(z)dz = σt(φ(kt)− ktΦ(kt)) (9.24)

because zφ(z) = − d
dz
φ(z), and since z2φ(z) = φ(z) + d2

dz2
φ(z),

n2
Dt(x) =

∫ ∞
x

(s− x)2fDt(s)ds =

∫ ∞
x−µt
σt

(σtz + µt − x)2φ(z)dz

= σ2
t

∫ ∞
kt

(z − kt)2φ(z)dz = σ2
t ((k

2
t + 1)Φ(kt)− ktφ(kt)). (9.25)

37

If Dt ∼ Gamma(αt, θ) then for n ∈ Z+

∫ ∞
x

sngαt,θ(s)ds =

∫ ∞
x

sn
θαtsαt−1e−θs

Γ(αt)
ds

=

∫ ∞
x

αt(αt + 1) . . . (αt + n− 1)

θn
θαt+nsαt+n−1e−θs

Γ(αt + n)
ds

=
αt(αt + 1) . . . (αt + n− 1)

θn

∫ ∞
x

gαt+n,θ(s)ds

=
αt(αt + 1) . . . (αt + n− 1)

θn
Fαt+n,θ(x).

Furthermore,

nαt,θ(x) =

∫ ∞
x

(s− x)gαt,θ(s)ds =
αt
θ
Fαt+1,θ(x)− xFαt,θ(x) (9.26)

n2
αt,θ(x) =

∫ ∞
x

(s− x)2gαt,θ(s)ds (9.27)

=
αt(αt + 1)

θ2
Fαt+2,θ(x)− 2αtx

θ
Fαt+1,θ(x) + x2Fαt,θ(x).

If the Dt are normally distributed then
∑k

t=j Dt ∼ N (
∑k

t=j µt,
∑k

t=j σ
2
t) and if the

Dt follow gamma distributions then
∑k

t=j Dt ∼ Gamma(
∑k

t=j αt, θ). Thus the expec-

tation of the sum of these random variables is again a random variable of the same

distribution type with the parameters described above. �

References

K. Arrow, T. Harris, and J. Marschak. Optimal inventory policy. Econometrica, 19:

250–272, 1951.

F. Edgeworth. The mathematical theory of banking. Journal of Royal Statististical

Society, pages 113–127, 1888.

S. Karlin. One stage inventory models with uncertainty. Studies in the Mathematical

Theory of Inventory and Production, pages 109–134, 1958.

38

B.I. Kvasov. Methods of shape-preserving spline approximation. World Scien-

tific, 2000. ISBN 9789810240103. URL http://books.google.com/books?id=

_So7vgJTEZYC.

P. Morse and G. Kimball. Methods of Operations Research. Technology Press of MIT,

Cambridge, 1951.

Evan L. Porteus. Foundations of Stochastic Inventory Theory. Stanford University

Press, Stanford, 2002.

E.V. Shikin and A.I. Plis. Handbook on splines for the user. CRC Press, 1995. ISBN

9780849394041. URL http://books.google.com/books?id=DL88KouJCQkC.

A. Veinott, Jr. Optimal policy for a multi-product, dynamic, nonstationary, inventory

problem. Management Science, 12:206–222, 1965.

Paul H. Zipkin. Foundations of Inventory Management. McGraw-Hill, Cambridge,

2000. ISBN 0-521-77043-2.

http://books.google.com/books?id=_So7vgJTEZYC
http://books.google.com/books?id=_So7vgJTEZYC
http://books.google.com/books?id=DL88KouJCQkC

	Brigham Young University
	BYU ScholarsArchive
	2012-03-10

	Quadratic Spline Approximation of the Newsvendor Problem Optimal Cost Function
	Christina Marie Burton
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Figures
	1. INTRODUCTION
	2. APPROACH
	3. BOUNDS ON THE TRUE VALUE FUNCTION
	4. THE SPLINE FUNCTIONS
	4.1. Spline Properties
	4.2. Upper Bound on the Second Derivative
	4.3. Error Analysis For a Single Interval
	4.4. The Algebra of the Spline and Minimizing Ht(x)

	5. THE KNOT CREATION ALGORITHM
	5.1. Knot Creation Algorithm for x xtNt
	5.2. Knot Creation Algorithm for x xtNt

	6. SUMMARY
	7. COMPUTATIONS
	8. CONCLUSION
	9. APPENDIX
	9.1. V0 Parameter Derivation and Error Analysis
	9.2. V1 Parameter Derivation and Error Analysis
	9.3. V2 Parameter Derivation and Error Analysis
	9.4. Proof of Lemma 4.1
	9.5. Transformation and Inverse Transformation
	9.6. Identities

	References

