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ABSTRACT

PIPE DIAGRAMS FOR THOMPSON’S GROUP F

Aaron Peterson

Department of Mathematics

Master of Science

We review the definition and standard description of Thompson’s Group

F . We define the set of pipe diagrams and show that this set forms a group

isomorphic to F . We use pipe diagrams to prove two theorems about giving a

minimal representation for an arbitrary element of F .
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Chapter 1

Preface

Thompson’s Group F was first described by Richard Thompson in 1965. It

was used to construct finitely presented groups with unsolvable word problems [10].

Thompson’s Group also arises in homotopy theory in work on homotopy idempo-

tents. [4], [5], and [7]. The group F has a universal conjugacy idempotent, and is an

infinitely iterated HNN extension [7], [2]. Brown and Geoghegan [2] proved that F is

FP∞, giving the first example of a torsion-free infinite-dimensional FP∞ group.

An element of F is typically represented by a pair of binary trees [3], [6], [11].

Multiplication is performed by rotating subtrees. Rotation is tedious since each op-

eration requires a new pair of trees to be drawn. In this thesis we introduce, as an

alternative, the pipe diagram. In pipe diagrams, multiplication by a generator simply

requires the lengthening of one pipe. A multiplicative history can be recorded in a

single diagram.

A widely studied problem is to find the minimal representation for an element of

F in a given presentation. Fordham [6] succeeded in solving this problem for a two

generator set by examining the caret types of trees. We study this problem for a

three generator presentation by examining pipe diagrams. In this thesis we prove two

1



2 Chapter 1 Preface

theorems concerning the minimal representation problem for pipe diagrams including

a local reduction algorithm. We do not yet have a global reduction algorithm.

In chapter 2 we review the definition and standard descriptions of F . In chapter

3 we define the set of pipe diagrams and show that this set is isomorphic to F . In

chapters 4 and 5 we examine the problem of minimal reductions, and in chapter 6 we

discuss other problems that we are interested in.



Chapter 2

Review of Thompson’s Group F

In chapter 2 we review the definition of Thompson’s group F and describe how

F is equivalent to the set of reduced ordered pairs of rooted ordered binary n-caret

trees. We introduce generators for F and give two standard presentations and a third

presentation. We also discuss multiplication by a generator and the advantages of

using the third presentation. The content of this section is standard in the literature

on F and many proofs are not included. For a more detailed description of F see [3].

2.1 Thompson’s Group F

Let F be the set of piecewise linear homeomorphisms from the closed unit interval

[0,1] to itself that satisfy the following:

1) If f is not differentiable at x, then x ∈ { p
2q | p, q ∈ Z}.

2) For f ∈ F , if f ′(x) exists, then f ′(x) = 2k for some integer k ∈ Z.

Since f ∈ F is a strictly increasing homeomorphism it is clear that f(0) = 0 and

f(1) = 1. Since f is piecewise linear, the set of points at which f is not differentiable

must be finite.

3



4 Chapter 2 Review of Thompson’s Group F

It can be checked that a function f ∈ F maps the set of dyadic rational numbers

bijectively onto itself. It follows that F is closed under function composition and

inversion. So with the operation of function composition, F forms a group which is

Thompson’s Group F .

Example 1.1 Three functions in F are the functions A, B and C defined below, and

the graphs of A and B are shown in 2.1.

A(x) =



x
2
, 0 ≤ x ≤ 1

2

x− 1
4
, 1

2
≤ x ≤ 3

4

2x− 1, 3
4
≤ x ≤ 1

B(x) =



x, 0 ≤ x ≤ 1
2

x
2

+ 1
4
, 1

2
≤ x ≤ 3

4

x− 1
8
, 3

4
≤ x ≤ 7

8

2x− 1, 7
8
≤ x ≤ 1

C(x) =



2x, 0 ≤ x ≤ 1
8

x + 1
8
, 1

8
≤ x ≤ 1

4

x
2

+ 1
4
, 1

4
≤ x ≤ 1

2

x, 1
2
≤ x ≤ 1

Other important examples include the functions

X0 = A, X1 = B, X2 = A−1BA, . . . , Xn = A−(n−1)BAn−1.

2.2 Binary Trees

Binary trees play an important role in understanding F . Each element f ∈ F can

be realized as a pair of binary trees where multiplication involves rotating subtrees

of one of the trees.



2.2 Binary Trees 5

1

11
2

3
4

1
4

1
2

A(x)

1

11
2

3
4

1
2

7
8

5
8

3
4

B(x)

Figure 2.1 The graphs of A(x) and B(x).



6 Chapter 2 Review of Thompson’s Group F

Definition 2.2.1. A rooted ordered binary tree S is a tree with the following prop-

erties.

1. S has a root v0

2. if S consists of more than v0, then v0 has valence 2

3. if v is a vertex in S with valence greater than 1, then there are exactly two

edges ev,L, ev,R which contain v but are not contained in the shortest path in S

from v0 to v.

The edge ev,L is the left edge, and the edge ev,R is the right edge. Define a leaf

to be any vertex of valence 1 or a vertex of valence 0 in the case of the trivial tree.

A caret consists of a vertex v of valence 3 and the corresponding edges ev,L and ev,R.

The left side of the tree consists of the maximal arc of left edges containing v0, and

the right side is defined analogously. There is a standard numbering for the leaves and

the carets of a rooted ordered binary tree. Extend all the leaves so that they lie on a

horizontal line, and then number them from left to right. To obtain the numbering

on the carets, number the gaps between the leaves from left to right and follow the

gap upward to a vertex. The number of the vertex is the same as the number of the

gap. In 2.2 we have an example.

Definition 2.2.2. A standard dyadic interval in the unit interval [0,1] is an interval

of the form [ a
2n , a+1

2n ], with a, n ≥ 0 and a ≤ 2n − 1.

We will now describe the tree of standard dyadic intervals T . The vertices of T

are the standard dyadic intervals in [0,1]. An edge of T is a pair (I, J) of standard

dyadic intervals I and J where either I is a left half of J and (I, J) is a left edge,

or I is the right half of J and (I, J) is a right edge. A finite portion of the tree of

standard dyadic intervals is shown in 2.3.
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1 2 3 4 5 6 7

1

2

3

4

5

6

Figure 2.2 An example of an ordered rooted binary tree with the leaves

and carets numbered left to right.

[0,1]

[0, 1
2
] [1

2
, 1]

[1, 1
4
] [1

4
, 1

2
] [1

2
, 3

4
] [3

4
, 1]

Figure 2.3 The tree of standard dyadic intervals
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Definition 2.2.3. A T -tree is defined to be a finite ordered rooted subtree of T with

root [0,1]. From now on T -trees will be referred to simply as trees.

Definition 2.2.4. Define a tree diagram to be an ordered pair of trees (D, R) with

the same number of leaves. A tree diagram can be thought of as a function

D → R.

In the diagram D is called the domain tree and R is called the range tree. The

leaves of D partition [0,1] into standard dyadic intervals, and the leaves of R do

the same. Since a function f ∈ F maps standard dyadic intervals in [0,1] linearly

onto standard dyadic intervals in [0,1] we can construct a function f ∈ F from a

tree diagram (D, R). Define f to be the function that takes the standard dyadic

interval corresponding to the i-th leaf in D linearly onto the standard dyadic interval

corresponding to the i-th leaf in R.

Given a function f ∈ F it is not difficult to construct a tree diagram (D, R)

which represents f , but this diagram is not unique. Another tree diagram can be

constructed by adding carets in a way which we will now describe. Let I and J be

the n-th leaves of D and R respectively. Let I1 and I2 be the leaves in order of the

caret C at vertex I, and let J1 and J2 be the leaves in order of the caret K at vertex

J . Since f maps I linearly onto J , f(I1) = J1 and f(I2) = J2. So (D′, R′) is a tree

diagram for f where D′ = D ∪ C and R′ = R ∪K. An example is shown in 2.4.

To obtain a bijective correspondence between the set of tree diagrams and the set

of elements of Thompson’s Group F define an equivalence relation on tree diagrams

as follows. If for an integer n the n-th and (n+1)-st leaves of D are leaves of a caret C

and the n-th and (n + 1)-st leaves of R are leaves of a caret K, then by removing the

carets C and K except for the roots we obtain a new tree diagram for f . If there are

no such carets then the diagram is said to be reduced. There is exactly one reduced
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f

f

I J

I1 I2 J1 J2

D R

D′ R′

Figure 2.4 In D′ and R′, the 5th and 6th leaves are leaves of the same caret

in each tree. This is an unreduced tree diagram for f . In D and R those
carets are removed. This is the reduced diagram for f .

tree diagram associated to a function f ∈ F .

In 2.4, the 5th and 6th leaves of D′ are leaves of a caret C and the 5th and 6th

leaves of R′ are leaves of a caret K. If we remove these carets except for their roots,

we obtain the tree diagram (D, R). After removing these carets there are no more

carets of this type, so (D, R) is the reduced tree diagram for the function f .

Theorem 2.2.1. There is a bijection from the set of reduced tree diagrams to Thomp-

son’s Group F .

The bijection between F and the set of tree diagrams induces a multiplication

structure on the set of tree diagrams. Given two tree diagrams (D, R) and (R,S),

their product is simply (D, S). This corresponds to function composition. Since R is

the range of the first function and the domain of the second, we can compose these two

functions. The function representing (D, S) will take the standard dyadic intervals of

D linearly onto the standard dyadic intervals of S. Given two tree diagrams (D, R)

and (R′, S) where R 6= R′, we add carets where necessary to make R match up with

R′. An example is shown in 2.5.

Theorem 2.2.2. The set of reduced tree diagrams with the multiplication operation
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DRR′S

R ∪ K1

D ∪ K1

R′ ∪ K2S ∪ K2

S ∪ K2 D ∪ K1

Figure 2.5 Two trees are multiplied by hanging carets on appropriate ver-

tices until the domain tree of one is identical to the range tree of the other.

described above forms a group isomorphic to Thompson’s Group F .

2.3 Presentations for F

Of great importance are the elements A, B, and C as shown in the previous chap-

ter. From now on we will refer to these elements as a, b, and c. In 2.6 we show the

tree diagrams for the elements a, b, and c. Multiplication on the right by a is shown

in 2.7. Multiplication on the right by b and c is similar to multiplication on the right

by a. These elements generate F [3].

There are two standard presentations for F .

F2 = 〈a, b : [ab−1, a−1ba], [ab−1, a−2ba2]〉

where [x, y] = xyx−1y−1 and

F∞ = 〈X0, X1, X2, . . . : X−1
k XnXk = Xn+1 for k < n〉.
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a b

c

Figure 2.6 The tree diagrams for the generators a, b, and c.

R

= R

A B

C

A

C

ω

B

a

ω · a

Figure 2.7 Right multiplication by a essentially rotates the subtree B to

the right side of the diagram.
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In these presentations, the symbol Xk corresponds to the element of F previously

defined using this symbol. It is not difficult to determine c = aba−2. This yields a

third presentation for F

F3 = 〈a, b, c : [ab−1, a−1ba], [ab−1, a−2ba2], c−1aba−2〉.



Chapter 3

Pipe Diagrams

In chapter 3 we introduce a new diagram which we will call a pipe diagram. Then

we show that the set of equivalence classes of pipe diagrams is equivalent to the set

of reduced ordered pairs of rooted ordered n-caret trees. We define multiplication on

the set of equivalence classes of pipe diagrams and show that, with this operation,

the set forms a group isomorphic to Thompson’s Group F .

3.1 Definition of a Pipe Diagram

Definition 3.1.1. A pipe diagram consists of a horizontal line segment with a finite

number of vertical line segments crossing perpendicular to the horizontal segment.

The vertical line segments are called pipes.

We require that no two pipes can see each other. This means that if two pipes

are the same length on top (on bottom), then there is a pipe that is longer on top

(respectively on bottom). An example is shown in 3.1.

A pipe diagram is completely characterized by the number of pipes and the relative

heights of the pipes on either side of the horizontal line segment in a way which we

13



14 Chapter 3 Pipe Diagrams

Figure 3.1 An example of a pipe diagram

will now describe.

To facilitate the description we will assign a top number and a bottom number

to each pipe. The tallest pipe above the horizontal line segment is given top number

1. The tallest pipe on either side of 1 is given top number 2. The tallest pipe on

either side of each 2 lying on the same side of the 1 as the 2 is given top number 3.

We continue in this manner until all of the pipes are labeled. Bottom numbers are

assigned similarly. We say that two pipe diagrams are equivalent if numbers appear

in the same order. The set of equivalence classes of pipe diagrams will simply be

called the set of pipe diagrams. For convenience, the top number of a pipe will be

called the level of the pipe. We illustrate the numbering system in 3.2.

3.2 Correspondence between pipe diagrams and F

Theorem 3.2.1. The set of pipe diagrams is in bijective correspondence with the set

of ordered pairs of rooted ordered n-caret trees.

Proof. Given an ordered pair of rooted ordered n-caret trees (D, R), we will construct

the corresponding pipe diagram. Draw a horizontal line segment. Beginning with D
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1

22

33

4

3

4

1
2

3
3

4

2
3

4

Figure 3.2 The tallest pipe is number 1, the tallest pipe on each side of 1

is 2, and so forth.

label the initial caret 1. Inductively, a caret is labeled i + 1 if it is a child of i.

Corresponding to caret 1 draw a vertical line segment extending upward from the

horizontal line segment which will be the level 1 pipe. Corresponding to each caret

2 draw a vertical line segment extending upward from the horizontal line segment

on the appropriate side of pipe 1. Each of these vertical line segments will be a

level 2 pipe. We proceed in this manner until we have the upper half of a pipe

diagram which corresponds to D. Then we construct the lower half of a pipe diagram

which corresponds to R by proceeding in the same way as before and then reflecting

our diagram about the horizontal line segment. Then we match the two diagrams

together so that the horizontal line segments coincide and all of the pipes line up.

Our construction yields the bijective correspondence. An example can be seen in 3.3.

Definition 3.2.1. We say a pipe is a trivial pipe if it is shorter than any adjacent

pipe on both sides of the horizontal line. A pipe is also trivial if it becomes trivial

upon removal of a pipe already known to be trivial. A pipe is lower-trivial if it is
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1

2
3

3

1
2

3 34

2

1

2

2

3 3

1

2

3 4
3

f

Figure 3.3 Number the vertices in a tree diagram according to the distance

from the root vertex. Each vertex then corresponds to a pipe with the same
number.

locally shortest on bottom.

On the set of pipe diagrams we will define an equivalence relation as follows: Two

pipe diagrams are equivalent if one can be obtained from the other by inserting or

deleting trivial pipes. In each class there is a unique pipe diagram that contains no

trivial pipes. We will call this representative a reduced pipe diagram.

Theorem 3.2.2. The set of reduced pipe diagrams is in bijective correspondence with

the set of reduced ordered pairs of rooted ordered n-caret trees.

Proof. We only need to show that a pipe diagram is reduced if and only if the

corresponding pair of rooted ordered caret trees is reduced. Let (D, R) be a reduced

pair of ordered caret trees, and let P be the corresponding pipe diagram. We will

renumber the pipes in P as follows: the pipe on the far left is given number 1, and

inductively, the pipe immediately to the right of pipe i is given number i + 1. This

numbering corresponds to the left to right numbering of carets on an n-caret tree.
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a

a

b

b

c

c

Figure 3.4 The generators a, b, and c as pipe diagrams.

Assume pipe j is trivial. Since pipe j is locally shortest on both sides, both children

of caret j are leaves in both R and D. Since this does not occur we conclude that

there are no trivial pipes in P . This completes the proof.

We have shown that the elements of Thompson’s Group F are in bijective corre-

spondence with the set of pipe diagrams. In 3.4 we show the generators a, b, and c as

pipe diagrams.

Definition 3.2.2. If a single pipe p is lengthened from level n to level n− 1, we say

that p is promoted.

The multiplication in F viewed as pairs of trees induces a multiplication on the

set of pipe diagrams. We will interpret this multiplication in terms of multiplication

by a generator. In 3.5 we show how multiplication by a acts on the domain tree and
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1

C2

A B

1

2
A

B C

A B

C A

CB

Figure 3.5 The generator a rotates the right subtree of the level 2 caret

to the right side of the diagram. In the pipe diagram this corresponds to
promoting the level 2 pipe to level 1.

the corresponding action on the pipe diagram.

Here the pipes A, B, and C represent the tallest pipes among a number of pipes.

We see that multiplication by a essentially promotes the left level 2 pipe to level 1.

A similar analysis shows that multiplication by b promotes the right left level 3 pipe

to level 2, and multiplication by c promotes the left right level 3 pipe to level 2. This

gives us the following theorem.

Theorem 3.2.3. The set of pipe diagrams with the multiplication operation described

above forms a group isomorphic to Thompson’s Group F .



Chapter 4

The Trivial Pipe Theorem

Given a generating set for F , it would be ideal to know how to reduce an arbitrary

pipe diagram to the trivial diagram in the shortest number of steps. In chapter 4 we

show that with certain generating sets which include generating sets from the standard

presentations there is no need to insert a trivial pipe in a minimal reduction. In fact,

if a trivial pipe is promoted, the reduction in not minimal. This is the Trivial Pipe

Theorem.

4.1 The Trivial Pipe Theorem

Definition 4.1.1. A saturated generating set for F is a generating set Sn = {x1, x2, · · · }

which satisfies

1. each generator xi ∈ Sn promotes a particular pipe exactly one level

2. for every pipe at level k ≤ n there exists a generator xi ∈ Sn that promotes the

pipe.

We now state and prove the Trivial Pipe Theorem.

19
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D

Dx1

Dx′
1

Dx2

Dx′
2

· · ·

· · ·

Dxn−1

Dx′
n−1

Dxn

Figure 4.1 When the trivial pipe is raised we have two paths. The lower

path is the shadow reduction.

Theorem 4.1.1. The Trivial Pipe Theorem. Let F = 〈x1, x2, x3, · · · : r1, r2, r3, . . .〉

be a presentation for F where the generating set is a saturated generating set. Then

a reduction for an element of F in which a trivial pipe is promoted is not a minimal

reduction. In particular, using the presentation F3, a reduction for an element of F

in which a trivial pipe is promoted is not a minimal reduction.

Proof. This proof will involve several cases which we present using tree diagrams,

although the proof was discovered using pipe diagrams. Promotions will sometimes be

referred to as moves. Suppose we have a pipe diagram and a reduction of this diagram

in which a trivial pipe is promoted. We consider the last trivial pipe to be promoted

and assume that after this pipe is promoted, all other trivial pipes are removed from

the diagram. Beginning with the move in which the trivial pipe is promoted, we

will construct an alternate reduction for this diagram which will be shorter than the

original reduction. The alternate reduction will be called the shadow reduction and

the moves in the shadow reduction will be called shadow moves. This is illustrated

in 4.1.

Before the trivial pipe is promoted, the diagram is D. The move x1 promotes the

trivial pipe, and the move x′1 leaves the diagram unchanged. Following this move, for

each move xi we define exactly one move x′i so that eventually the paths meet again.

The moves x′i are the shadow moves. Since there is exactly one shadow move for each

move in the reduction and at least one of the shadow moves is trivial, the shadow

reduction is shorter. Here we describe how to construct the shadow reduction.
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1
2

123

m
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Mm

3

Figure 4.2 The move in which the trivial pipe is promoted

Since the pipe is trivial, it must lie between two pipes. Both of these pipes are

longer on top and bottom of the diagram than the trivial pipe. One of these two

adjacent pipes must be taller than the other, and by symmetry we will assume that

the shorter of the two pipes lies to the left of the trivial pipes. In Figure 4.2 we show

the three pipes and the move in which the trivial pipe is promoted.

Considering only the trivial pipe and the pipe immediately to the left of this

pipe it is clear that at any time during the reduction process one of these pipes is

taller than the other. We will denote the taller of the two by M , and the shorter of

the two by m. At any stage in the reduction process we have a pipe diagram, and

corresponding to that pipe diagram we have a tree diagram representing the domain

tree. Since these two pipes must always lie next to each other, there are only two

possible tree diagrams. If m is on the left of M , we know that the pipe M will be at

a higher level than m, the pipe m must lie in the left subtree of M , and since m is to

the immediate left of M , m can have no right subtree. If m is on the right of M , we

know that the pipe M will be at a higher level than m, the pipe m must lie in the

right subtree of M , and since m is to the immediate right of M , m can have no left

subtree. Figure 4.3 shows the two diagrams here where A, B, C, and D are subtrees

of the tree.

For each of these two diagrams there is a corresponding diagram which we call

the shadow diagram. The shadow diagrams will be used in the construction of the
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M
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D
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M
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D
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Figure 4.3 The diagram on the left is where m is on the left of M , and the

diagram on the right is where m is on the right of M .

shadow reduction in which m is always on the right of M and m has no subtree. Let

T be the transformation that takes a diagram to its shadow diagram. In the case

where m is on the left of M the shadow diagram is obtained by raising m to the level

of M , and lowering M so that it is trivial. In the case where m is on the right of M

the shadow diagram is obtained by lowering m so that it is trivial. In either case the

shadow diagram is a diagram that can be obtained by never promoting the trivial

pipe. The shadow diagrams are shown in 4.4.

We will show that if xi ∈ S transforms a diagram D to a diagram Dxi then there

exists x′i ∈ S such that x′i transforms T (D) to T (Dxi). This is depicted in 4.5.

In other words, given a move in the reduction that takes a diagram to its image,

there is a corresponding move in the shadow reduction which takes the shadow dia-

gram to the shadow diagram of the image. From this we will see that at some point in

the reduction the shadow diagram becomes identical to the actual diagram and that

it remains the same for the rest of the reduction. Moreover, we will see that a trivial

pipe is never promoted in the shadow reduction and that there are fewer moves in

the shadow reduction than in the actual reduction.

There are ten cases. We will show each case by a diagram. In these diagrams
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Figure 4.4 The two shadow diagrams are seen here.

T T

xi

D Dxi

T (Dxi)T (D)
x′

i

Figure 4.5 The generator xi transforms D to Dxi, and the generator x′i
transforms T (D) to T (Dxi).
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AL, BL, CL, and DL denote the left subtrees of A, B, C, and D respectively, and

AR, BR, CR, and DR denote the right subtrees of A, B, C, and D respectively. Any

letter without a circle will denote an individual pipe, usually the tallest or shortest

pipe of a subtree. In the first five cases we assume that we will be starting with m

on the left of M , and in the last five we will assume the opposite. The first five are

shown in figures 4.6 through 4.10, and the last five are shown in figures 4.11 through

4.15.
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Figure 4.6 Case 1: Raising the tallest pipe in B past M means that M will

now be in the right subtree of B. The pipes that form the subtree BR are
now in the left subtree of M , and the right subtree of M remains unchanged.
In the shadow diagram we see the result of the move is the same. In fact, B
is at the same level and on the same side so the move can be accomplished
through multiplication by the same generator. The move takes the shadow
diagram to the shadow diagram of its image.
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If the move takes place entirely in one of the subtrees A, B, or C then the move in

the shadow diagram will be similar. If the move takes place entirely in the subtree D

then the move may be at a higher level and on a different side in the shadow diagram.

We have shown that whenever M is promoted past a pipe or a pipe is promoted

past M , the same generator takes the shadow diagram to the shadow diagram of the

image. We have also shown that whenever m is promoted past a pipe or a pipe is

promoted past m, we do the trivial move in the shadow reduction. If the move takes

place entirely in a subtree, then there is a corresponding move at least as high in the

shadow reduction.

At some point in the reduction process the trivial pipe that was raised will become

trivial again, say after multiplication by xn. We have shown that Dx′1 · · ·x′n is the

shadow diagram of Dx1 · · ·xn. But when the pipe is trivial the diagram is identical

to its shadow diagram. So after this point the reduction processes are the same. At

least one of the moves x′i is trivial, so the shadow reduction process is shorter than

the original process. This completes the proof.
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Figure 4.7 Case 2: Here we assume that A lies to the right of M . If A is on

the left of M then the case will be similar. Since M is moved past A, A now
lies in the right subtree of M . The subtree C will still lie below A. The rest
of the diagram remains unchanged. In the shadow diagram the move occurs
at the same level, so the same generator is used. The pipe A is still on the
right of M , so it lies in the right subtree of M .
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Figure 4.8 Case 3: After the promotion m is now in the right subtree of

D. The subtree DR is still lower than m and lies to the left of m, so it is the
left subtree of m. The rest of the diagram remains unchanged. The shadow
diagrams are identical, so the move required in the shadow reduction is the
trivial move.
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Figure 4.9 Case 4: Moving m past M , m now lies on the right of M . Since

C is still below m, C is the right subtree of m. B is now the left subtree of
M .
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Figure 4.10 Case 5: This case is similar to the case where we promote the

tallest pipe in B past M . In the shadow reduction we get the same result
through multiplication by the same generator.
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Figure 4.11 Case 6: This case is similar to Case 2. Multiplying the shadow

diagram by the same generator gives the desired result.
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Figure 4.12 Case 7: This case is similar to case 5. In the shadow diagram

we use the same generator to promote the tallest pipe in B past M .
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Figure 4.13 Case 8: Multiplying the shadow diagram by the same generator

gives the desired result.
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Figure 4.14 Case 9: This case is similar to case 3. The necessary move in

the shadow reduction is the trivial move.
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Figure 4.15 Case 10: This case is similar to case 4. The necessary move in

the shadow reduction is the trivial move.
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Chapter 5

The First Reduction Theorem

Given a pipe diagram it would be ideal to know how to reduce the diagram to the

trivial diagram in the minimal number of steps. In chapter 5 we develop an algorithm

to eliminate one pipe in a pipe diagram, and we show that this algorithm eliminates

the pipe in the minimal number of steps.

Fordham [6] gives a linear-time algorithm which takes as input an element of F

in the form of its reduced tree diagram and gives as output the minimal length of

the element in the generators {a, b}. Other algorithms for this generating set were

given by Guba [8] and Belk-Bux [1]. In [9] an alternative algorithm is given for certain

generating sets including the generating set {X0, X1, · · · , Xn} which is a finite version

of the standard infinite generating set. Woodruff [11] unsuccessfully investigated the

problem of generalizing Fordham’s algorithm to the generating set {a, b, c}. In the

setting of pipe diagrams this generating set is especially advantageous since it allows

pipes to be raised on both sides of the diagram.

We now consider the problem of reducing a pipe diagram to the trivial diagram.

Given a pipe diagram, choose a lower-trivial pipe. We will give an algorithm to

eliminate this pipe, and since the diagram is trivial when all the pipes are trivial, we

37



38 Chapter 5 The First Reduction Theorem

repeat this process for each lower-trivial pipe until all are eliminated.

Define the set

D = {(D, p) | D is a pipe diagram and p is a pipe that is lower-trivial in D}.

We will categorize each pair (D, p) into nine cases. For each case we will give an

algorithm to eliminate p, and we will give the number of steps required by the al-

gorithm to do so. We claim that this number is the minimal number of moves that

will eliminate p. In the pair (D, p) let pl and pr be the pipes to the left and right

of p respectively. Let n be the level of p and let jl and jr be the levels of pl and pr

respectively. The assigned number will be a function of these parameters and another

parameter which we will describe later. In 5.1 we give an example.

1
2

3

4
56

7
8

9

p
pl

pr

5.1 Nine Cases

Definition 5.1.1. A pair (D, p) ∈ D is right (left) cascading if the pipe p lies on the

right (left) side of the diagram and there is no pipe of higher level to the right (left)

of p.

The first six cases are cases in which the pair is cascading, where the difference in

each case arises in the different subtrees p may have. We will assume that the pairs
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Figure 5.1 Here n = 4, jl = 9, and jr = 7

pr
p

pl

1
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66

Figure 5.2 A Left Cascading Diagram

are right cascading, and the case where they are left cascading is symmetric. A left

cascading diagram is shown in 5.2.

Case I: Right Cascading where jr = n + 1 and jl < n or jl = n + 1 and there is

no pipe pr.

Case II: Right Cascading and jr = jl = n + 1.

In the first two cases we need to promote pl and pr so that they are taller than

p. The idea is to promote p to level 2 and then promote pl and pr. An example is

shown in 5.3. We use the following procedure.

1. If p is at level 2 proceed to (3). Otherwise go to (2).
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pr
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Figure 5.3 An example of a cascading reduction, where the numbers indi-

cate the order in which the moves are performed.

2. If p is at level 3, promote the level two pipe to level 1 and go to (1). Otherwise

promote the pipe which is at level 3 to level 2 and repeat (2).

3. Promote pr to level 2 and go to (4).

4. If p is trivial stop the process. Otherwise promote pr to level 1 and go to (5).

5. Promote pl to level 2.

Case III: Right Cascading with no pipe pr and jl = n + 2. This case is similar to

the first two cases.

1. If pl is at level 3 promote pl. Otherwise go to (2).

2. If p is at level 3, promote the level 2 pipe to level 1. Otherwise promote the

level 3 pipe to level 2. If pl is at level 3 go to (1), otherwise repeat (2).

Case IV: Right Cascading with no pipe pr and jl > n + 2.

1. If p is at level 1 go to (4). Otherwise go to (2).
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2. If p is at level 2, promote p to level 1 and go to (4). Otherwise go to (3).

3. If p is at level 3, promote the level 2 pipe to level 1 and go to (2). Otherwise

promote the level 3 pipe to level 2 and repeat (3).

4. If pl is at level 2, promote pl. Otherwise promote the level 3 pipe to level 2 and

repeat (4).

Case V: Right Cascading with jl < n and jr > n + 1.

1. If p is at level 1 go to (4). Otherwise go to (2).

2. If p is at level 2, promote p to level 1 and go to (4). Otherwise go to (3).

3. If p is at level 3, promote the level 2 pipe to level 1 and go to (2). Otherwise

promote the level 3 pipe to level 2 and repeat (3).

4. If pr is at level 2, promote pr and go to (5). Otherwise promote the level 3 pipe

to level 2 and repeat (4).

5. Promote pl.

Case VI: Right Cascading with jr > n + 1 and jl ≥ n + 1 or jl > n + 1 and

jr ≥ n + 1.

1. If p is at level 2, promote p to level 1 and go to 4. Otherwise go to (2).

2. If p is at level 3, promote the level 2 pipe to level 1. Otherwise go to (3).

3. Promote the level 3 pipe to level 2 and go to (1).

4. If pr is at level 2 go to (6), otherwise promote the left right level 3 pipe to level

2 and repeat (4).
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5. If pl is at level 2 go to (6), otherwise promote the left left level 3 pipe to level

2 and repeat (5).

6. Promote jr to level 1 and then promote jl to level 2.

Case VII: The pipe p is at level n = 1.

1. If pl is at level 2, go to (3). Otherwise promote the left right level 3 pipe to

level 2 and repeat (1).

2. If pr is at level 2, go to (3). Otherwise promote the right left level 3 pipe to

level 2 and repeat (2).

3. Promote pl to level 1 and go to (4).

4. Promote pr to level 2.

Case VIII: The pair (D, p) is non-cascading with n ≥ 3 and min jl, jr > n. We

will eliminate p by first promoting it to level 1, and then promoting the pipes on both

sides of p until pl and pr are at level 2. The we will promote pl past p and then pr

past p. Before describing the procedure we must define the five possible situations

that could arise. We call these situations types. The types are determined by the

locations of p, the level one pipe, the left level 2 pipe, the level 3 pipe which lies on

the same side of the left level 2 pipe as p, and the level 4 pipe which lies on the same

side of the level 3 pipe as p. The types are shown in 5.4.

1. If p is at level 2, promote p to level 1 and go to (4). Otherwise go to (2).

2. If p is at level 3, promote p to level 2 and go to (1). Otherwise go to (3).

3. If we have Type I, promote the level 3 pipe to level 2. If we have Type II,

promote the level 2 pipe to level 1. If we have Type III, promote the level 3
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Figure 5.4 The five types of diagrams.
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pipe to level 2. If we have Type IV, promote the level 3 pipe to level 2. If we

have Type V, promote the level 2 pipe to level 1. Return to (1).

4. If pl is at level 2, go to (5). Otherwise promote the left right level 3 pipe to

level 2 and repeat (4).

5. If pr is at level 2, go to (6). Otherwise promote the right left level 3 pipe to

level 2 and repeat (5).

6. Promote pl to level 1 and go to (7).

7. Promote pr to level 2.

Case IX: The pipe p is at level n ≥ 3 and min jl, jr < n. In this case we proceed

as in case VIII until p is at level 3. Then we promote p. This gives us a cascading

diagram and we proceed as directed on those cases.

5.2 Number of moves

Given a pair (D, p), we wish to calculate the number of moves that are required

by the algorithm to eliminate p. We consider each case.

Case I: The pair (D, p) is left cascading with no pipe pl. In this case the pipe pr

starts at level jr, and is always promoted one level at each step until it ends at level

2. The number of moves required to achieve this is jr − 2.

Case II: The pair (D, p) is left cascading and there is a pipe pl. Here, two additional

moves are required to promote pl past p. In this case, the total number of moves

required is (jr − 2) + 2 = jr.

Case III: Through similar analysis we determine that the number of moves required

to eliminate p is jl − 1.
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Case IV: Through similar analysis we determine that the number of moves required

to eliminate p is jl.

Case V: Through similar analysis we determine that the number of moves required

to eliminate p is jr.

Case VI: Through similar analysis we determine that the number of moves required

to eliminate p is jr + jl − n.

Case VII: Here it takes jl + jr − 2 moves to eliminate p if there are pipes pr and

pl. It takes jl − 1 or jr − 1 if there is only a pipe pl or pr respectively.

Case VIII: The pair (D, p) is non-cascading with n ≥ 3 and min jl, jr > n. In this

case the pipe p is first promoted to level 1. Examining Step 3 of the algorithm we

note that the Type IV and Type V moves do not raise the level of p, but all other

moves raise the level of p by one. So if k is the total number of Type IV and Type V

moves, the total number of moves required to promote p to level 1 is n− 1 + k. The

difficulty is in calculating the number of Type IV and Type V moves which we will

discuss shortly. Each time the level of p is raised by one the levels of pl and pr are

each raised by one. So when p is at level 3, the pipes pl and pr are at levels jl−(n−3)

and jr − (n− 3). Promoting p the final two levels to level 1 either the level of one of

the pipes pl or pr is raised by 2 and the level of the other is not raised, or the level of

each pipe is raised by 1. In step 4, pl is promoted to level 2 by a sequence of moves

which each raise the level of pl by one. So the number of moves required to perform

this step is 2 less than the level of pl when p is at level 1. The same is true for pr in

step 5. So the total number of moves required to perform steps 4 and 5 is

(jl − (n− 3)− 2) + (jr − (n− 3)− 2)− 2 = jl + jr − 2n.

Since two moves are required to complete Steps 6 and 7, we have a total of

(jl + jr − 2n) + (n− 1 + k) + 2 = jl + jr − n + k + 1
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moves to eliminate p where k is the total number of Type IV and Type V moves.

Case IX: There are two subcases. If p is on the right side of the level 1 pipe,

jr < n, jl = n + 1, and the number of Type V moves is even then the number of

required moves is jl +k. If p is on the right side of the level 1 pipe, jl < n, jr = n+1,

and the number of Type V moves is odd then the number of moves is jr + k. In all

other cases, the number is max jl, jr + k + 1.

We will now describe how to calculate the number of Type IV and Type V moves.

We will assume that p initially lies on the right side of the diagram. It is helpful to

study the tree diagram of the domain tree. Traverse the diagram by moving along

the geodesic between the root and the vertex representing p. Since the diagram is

not cascading at some point the geodesic will turn to the left. As we descend to the

left, we can change direction in two ways. In one way we turn to the right for one

edge length, and then we turn back to the left. This corresponds to a Type IV move

since in a Type IV move the 3 is promoted to a 2 and the p still lies on the same side

of the diagram. In the other way we turn to the right and continue in this direction

for at least two edge lengths. This corresponds to a Type V move since in a Type V

move the 2 is promoted to a 1 and now p lies on the opposite side of the diagram.

Type IV Type V

The mirror images of these cases also yields Type IV and Type V moves. Here we

draw a geodesic from the root to a vertex p and count the number of Type IV and
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Type V moves. The Type IV moves are circled with the bigger circles, and the Type

V moves are circled by the smaller circles.

p

5.3 Minimal elimination

We now have a function φ : D → {0, 1, 2 . . .} with φ((D, p)) taking the value

determined by the case in which it lies. The function φ gives the number of moves

needed to eliminate a pipe p in a diagram D using the algorithm. Now we will show

that the algorithm is the most efficient algorithm. We first make this notion precise.

Let S be the generating set of F3. We define the elimination function on D with

respect to S

E : D → {0, 1, 2, . . .}

to be the function which takes a pair (D, p) to the fewest number of generators
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required to make p a trivial pipe. In particular, E(D, p) = n if

1. there exists generators x1, x2, · · · , xn ∈ S such that p is trivial in Dx1x2 · · ·xn

where the generators act on D by raising pipes one level at a time, and

2. for any generators x1, x2, · · · , xm ∈ S with m < n, p is not trivial in Dx1x2 · · ·xm.

Fordham [6] calculated minimal length elements for Thompson’s Group F . He

constructed a function from the elements of F to the nonnegative integers and then

used a lemma to show that his function was the length function. The following lemma

will allow us to check if a function from D to the nonnegative integers is the same as

the elimination function. The lemma is analogous to the one used by Fordham and

the proof will be similar.

Lemma 5.3.1. Given a function φ : D → {0, 1, 2, · · · }, if φ has the properties

1. φ((D, p)) = 0 if and only if p is a trivial pipe in D,

2. if (D, p) is an element of D and x is a generator of F then φ((D, p)) − 1 ≤

φ((Dx, p)), and

3. for any (D, p) ∈ D with p nontrivial, there is at least one generator x such that

φ((Dx, p)) = φ((D, p))− 1,

then φ((D, p)) = E((D, p)) for all (D, p) ∈ D.

Proof. Assume that the product of generators x1x2 · · ·xn is a minimal eliminator p.

Then E((Dx1 · · ·xi, p)) = n − i for 1 ≤ i ≤ n, and φ((Dx1 · · ·xi, p)) ≥ φ((D, p)) − i

by property (ii). When i = n, we have 0 = φ((Dx1 · · ·xn, p)) ≥ φ((D, p))− n. So

φ((D, p)) ≤ n = E((D, p)).
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Now assume that φ((D, p)) = n > 0. By property (iii), there exists generators

x1, x2, . . . , xn such that φ((Dx1x2 · · ·xn, p)) = 0. By property (i), p is trivial in

dx1 · · ·xn. So x1 · · ·xn is an eliminator, but not necessarily a minimal eliminator,

of p. Therefore E((D, p)) ≤ n = φ((D, p)). In conclusion E((D, p)) = φ((D, p)).

5.4 The First Reduction Theorem

Theorem 5.4.1. The First Reduction Theorem. Given a pipe diagram D and

a lower trivial pipe p, the described algorithm will eliminate p in the fewest possible

number of steps.

Proof. To prove this result we simply need to show that the function φ satisfies the

properties listed in Lemma 5.3.1 where our generating set is S, the generating set of

F3. In proving this we will see that the moves prescribed in the algorithm are moves

which satisfy property (iii) in Lemma 5.3.1. In particular, they reduce the elimination

number by one each time.

By symmetry we will only need to consider the diagrams where p is initially on the

right side. We do not need to consider the generators which raise level 2 pipes to level

3 pipes on the left side of the diagram since they have no affect on the parameters

that define the proposed number of moves required. In addition we do not consider

the generator which promotes the left level 2 pipe to level 1 since it will always raise

the required number of moves. The only generators we need to consider are a−1, b,

and b−1. Recall that a−1 promotes the right level 2 pipe to level 1, b promotes the

right left level 3 pipe to level 2, and b−1 promotes the right right level 3 pipe to level

2.

In checking these cases, the procedure is simple. First, draw the diagram, deter-

mine the case of the diagram, and calculate the number of required moves. Second,
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multiply by a generator, determine the case of the new diagram, and calculate the

new number of required moves. Verify that the necessary conditions are satisfied for

each case. Some diagrams will be included, but in most cases the results are simply

stated and can be verified by following the described procedure.

We first check the first six cases for n > 3. These cases are all cascading, so

multiplication by one of the three generators results in another cascading diagram.

In the first five cases the number of moves required is measured in terms of jl or jr.

No move can change the level of any pipe by more than one, so there is no move that

reduces the length by more than one. In the sixth case the length is measured by

jl + jr − n. Any move either raises each of these by one or lowers each of these by

one. So the total number is either raised by one or lowered by one. In all six cases,

multiplication by b−1 lowers the number of required moves by one. Now we need to

check the six cases individually for n ≤ 3.

Case I: The number of moves required is jl − 2 or jr − 2 which are both equal to

2. For n = 3 multiplication by a−1 lowers jr − 2 or jl − 2 to 1. Multiplication by b

raises jr − 2 or jl − 2 to 3. If there is a pipe pr multiplication by b−1 lowers the level

of jr − 2 to 1. If there is no pipe pr, then multiplication by b−1 gives us a case III

diagram in which the number of moves is now jl − 1 which is increased.

If n = 2 the number of moves required is clearly 1 which matches the given

number.

Case II: For n = 3 the number of moves required is 4. Multiplication by a−1

lowers the number of moves to 3. Multiplication by b gives us a case VI diagram in

which the number of moves is 5.

For n = 2 the number of moves required is 3. Multiplication by a−1 gives us a

case VII diagram in which the number of moves required is 3. Multiplication by b

gives us a case I diagram in which the number of moves required is 2. Multiplication
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p pr p
pr

p
pr

Figure 5.5 In the diagram on the left n = 5. The level 3 pipe is promoted

and the level of pr changes from 6 to 5. In the middle diagram n = 3. The
level 2 pipe is promoted, and the level of pr changes from 4 to 3. In the case
on the right n = 2. The pipe pr is promoted from level 3 to level 2.

by b−1 gives a case IX diagram in which the number of moves required is 4.

Case III: For n = 3 the number of moves is 4. Multiplication by a−1 lowers this

number to 3. Multiplication by b raises this number to 5. Multiplication by b−1 gives

a case IV diagram in which the number of moves is 5.

For n = 2 the number of moves required is 3. Multiplication by a−1 gives a case

VII diagram in which the number of moves is 3. Multiplication by b gives a case I

diagram in which the number of moves is 2. Multiplication by b−1 gives us a case IX

diagram in which the number of moves is 6.

Case IV: For n = 3 the number of moves is jl. After multiplication by a−1 we still

have a case IV diagram and the number of moves is jl − 1. If we multiply by b−1 we

still have a case IV diagram and the number of moves is jl. If we multiply by b we

have a case IV diagram and the number of moves is jl + 1.

For n = 2 the number of moves is jl. After multiplication by a−1 we have a case

VII diagram, and the number of moves is jl − 1. If we multiply by b there are two

possibilities. In one case we still have a case IV diagram and the number of moves is

jl. This occurs if jl ≥ 6. If jl = 5 then we have a case III diagram and the number

of moves is 4. If we multiply by b−1 we have a case IX diagram in which the number
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of moves is jl + 2.

Case V: For n = 3 the number of moves is jr. After multiplication by a−1 we still

have a case V diagram and the number of moves is jr − 1. If we multiply by b−1, we

have a case V diagram and the number of moves is jr − 1. Multiplying by b−1 gives

a case V diagram and the number of moves is jr + 1.

For n = 2 the number of moves is jr. If we multiply by a−1 we have a case VII

diagram and the number of moves is 2 + (jr − 1)− 2 = jr. After multiplying by b we

have a case V diagram and the number of moves is jr + 1. After multiplying by b−1

we have a case IX diagram. Here the number of moves is jr + 2.

Case VI: For n = 3 the number of moves is jl + jr − 3. If we multiply by a−1

the number becomes (jl − 1) + (jr − 1)− 2 = jl + jr − 4. After multiplying by b we

have a case VI diagram and the number becomes (jl + 1) + (jr + 1)− 4 = jl + jr − 2.

If we multiply by b−1 we still have a case VI diagram, and the number becomes

jl + (jr − 1)− 2 = jl + jr − 3.

For n = 2 the number of required moves is jl + jr − 2. Multiplying by a−1 gives

a case VII diagram in which the number of moves is jl + (jr − 1) − 2 = jl + jr − 3.

Multiplying by b gives four possibilities. The first possibility arises if jr = 3 and

jl = 4. The initial number of moves in this case is 5. After multiplying we get a case

II diagram and the number of moves is 4. The second possibility arises if jl ≥ 4 and

jr ≥ 4. Here the initial number of moves is jr + jl− 2. After multiplication we have a

case VI diagram and the number of moves is jl + (jr + 1)− 3 = jl + jr − 2. The next

possibility is jl = 3. Here the initial number of moves is jr + 1. After multiplication

we have a case V diagram and the number of moves is jr + 1. The fourth possibility

is if jr = 3 and jl > 4. Here the initial number of moves is jl +1. After multiplication

we have a case VI diagram and the number of moves is jl + 4 − 3 = jl + 1. If we

multiply by b−1 then the total number of moves there are two cases. The first is if
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jr ≥ 4. The initial number of moves is jl + 2. Here multiplication gives us a case

VIII diagram and the number of moves is (jl + 1) + 4− 3 + 1 = jl + 3. If jr = 3 then

the initial number is jl + 1. After multiplication we have a case IX diagram and the

number of moves is jl + 2.

Case VII: If there is no pipe pr then the number of moves is jl − 1. If jl = 2

then we promote pl. If jl > 2 then we promote the level 3 pipe to a level 2 pipe and

this clearly reduces the number of moves by one. There is no move that changes jl

by more than one, so this case is complete. If there is a pipe pr the argument is the

same.

Case VIII: We will first check this case for n > 3. There are five possibilities

given by the five types of diagrams that arise in the description of the algorithm. The

algorithm was discovered using pipe diagrams, but we will use the tree diagram in the

proof since it will enable us to determine the number k before and after each move.

In the tree diagram the subtree of p contains both pl and pr. For each diagram we

will see what happens under the action of each generator.
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a−1 =

b =

b−1 =

p p

p
p

p

p

Figure 5.6 Type I: When multiplied by a−1, the numbers n, jl, and jr remain

unchanged, but a Type IV or Type V move is added. So k is increased by
one, so this move does not decrease the length. When multiplied by b, the
numbers n, jl, and jr are all lowered by one, and k remains unchanged. So
the length is decreased by one. When multiplied by b−1 the numbers k, n,
jl, and jr are all increased by one. This move increases the length.

Now we consider the case where n = 3, The pipe p must lie between the level 1

pipe and the level 2 pipe, otherwise, the diagram would be cascading. So φ((D, p)) =

jl+jr−2. If we multiply by a−1, then the level 2 pipe is promoted and φ((D·a−1, p)) =

jl + jr − 2 which is the same. If we multiply by b then p is promoted, pl is raised one

level, and we have a case VI diagram. So

φ((D · b, p)) = (jl − 1) + jr − 2 = jl + jr − 3

which is reduced by one. If we multiply by b−1 then the right right level 3 pipe is
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a−1 =

b =

b−1 =

p

p

p

p

p

p

Figure 5.7 Type II: When multiplied by a−1 the numbers n, jl, and jr

are all decreased by one and k remains unchanged. This move decreased
the length by one. When multiplied by b, the numbers n, jl, and jr are all
increased by one and k remains unchanged. This move increases the length.
When multiplied by b−1 the numbers n, jl, and jr remain unchanged, but k
is increased by one. This move increases the length.
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a−1 =

b =

b−1 =

p

p

p

p

p

p

Figure 5.8 Type III: When multiplied by a−1 the numbers n, jl, and jr

are all decreased by one and k remains unchanged. This move decreases
the length by one. When multiplied by b, the numbers n, jl, and jr are all
increased by one and k remains unchanged. This move increases the length.
When multiplied by b−1 the numbers n, jl, and jr are all decreased by one,
but k remains unchanged. This move decreases the length by one.
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a−1 =

b =

b−1 =

p p

p

p

p

p

Figure 5.9 Type IV: When multiplied by a−1 the numbers n, jl, and jr

remain unchanged and k is decreased by one. This move lowers the length
by one. When multiplied by b, the numbers n, jl, and jr remain unchanged
and k is decreased by one. This move decreases the length by one. When
multiplied by b−1 the numbers n, jl, and jr are all increased by one, and k
remains unchanged. This move increases the length.
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a−1 =

b =

b−1 =

p

p

p

p

p

p

Figure 5.10 Type V: When multiplied by a−1 the numbers n, jl, and jr

remain unchanged and k is decreased by one. This move decreases the length
by one. When multiplied by b, the numbers n, jl, and jr remain unchanged
and k is also unchanged. This move decreases does not affect the length.
When multiplied by b−1 the numbers n, jl, and jr are all increased by one,
and k does not change. This move does not change the length.
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ppl pr
ppl pr

ppl pr

Figure 5.11 In the diagram on the left the level 2 pipe is promoted. In the

middle diagram p is promoted. In the diagram on the right the right right 3
is promoted.

promoted and

φ((D · b−1, p)) = (jl + 1) + (jr + 1)− 3 + 1 = jl + jr.

which is raised. We illustrate this in 5.11.

Case IX: We first consider the latter case, which is when the number is equal to

max jl, jr + k. For n > 3 the diagrams for the five types in this case are the same as

those in case VIII except that now only one of the pipes pl or pr lies in the subtree

of p. Without loss of generality we may assume that pr lies in the right subtree of

p. Then φ((D, p)) = jr + k + 1. The value of k changes in the same way as in case

VIII. When the levels of p, pl, and pr are changed by one in case VIII, the value of pr

is changed by one here. The result is a change in the value of φ by one.

Again we must check the case where n = 3. There are two possible diagrams for

this case. The first is done in 5.12 and the second is done in 5.13.

In the first diagram has two possibilities. If jl = 4 then the total number of moves

is 4. If we multiply by b then we have a case II diagram and the number of moves is

3. If we multiply by a−1 we have another case IX diagram and the number is 5. If

we multiply by b−1 we have a case IX diagram and the number of moves is 5. The

second possibility is if jl > 4 in which case the total number of moves is jl + 1. In

this case, multiplication by b gives a case VI diagram in which the number of moves
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p

pl

pr

Figure 5.12 The first diagram for Case IX when n = 3

p
pl pr

Figure 5.13 The second diagram for Case IX when n = 3

is jl. If we multiply by a−1, then we have a case IX diagram in which the number of

moves is jl + 1. If we multiply by b−1 we have another case IX diagram in which the

number of moves is jl + 2.

In this case the arguments are similar to those of the previous case. Now we must

consider the first subcase of case IX. For this we assume that p is on the right side of

the diagram, jl = n + 1, r < n, and the number of Type V moves is odd. Here the

number is jl + k. If n > 3 we assume consider the same diagrams as we considered in

Case VIII. First we note that if k is increased, then the number in question is either

raised or unchanged. Second, note that jl can never be lowered by more than one at

a time. Taking this into account it is clear that in the first three types the number

is never lowered by more than one. We also note that b, a−1, and b−1 all lower the

numbers for Type I, Type II, and Type III respectively.
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In Type IV, if we multiply by a−1 then jl is unchanged. The number k remains

the same, but the number of Type V moves is increased to an odd number. This does

not affect the number since p is now on the left side of the diagram. So the number

remains the same. If we multiply by b, the number jl is unchanged, but k is decreased

by one as a Type IV move is removed. So the new number is jl + (k − 1) which is

lower. If we multiply by b−1 it is clear that the number will be increased.

In Type V, if we multiply by a−1 then p is now on the left side of the diagram, k is

decreased by one as the number of Type V moves is decreased, and jl is unchanged.

So the new number is jl + (k − 1) which is decreased. When multiplied by b all the

numbers remain unchanged, and when multiplied by b−1, jl is increased, and k does

not change. Now if n = 3 the cases are as before since k = 0.

We have shown that the generator specified in the algorithm decreases the value

of φ by one, and no generator decreases the value of φ by more than one. So φ satisfies

the conditions in the lemma and the algorithm is minimal.



62 Chapter 5 The First Reduction Theorem



Chapter 6

Conclusion

We have defined the pipe diagram as an alternate description of F , and we have

investigated the problem of finding a minimal representative for an element of F in

the presentation F3. We have shown that a minimal reduction does not require the

insertion of a trivial pipe, and we have given an algorithm that eliminates a lower-

trivial pipe in the fewest possible number of steps. Pipe diagrams were essential in

discovering these theorems.

Some open problems that remain of interest are

1. finding an algorithm that reduces an element of F to the trivial element in the

fewest number of steps in the presentation F3,

2. finding a minimal representation for an element of F in the presentations with

saturated generating sets, and ultimately

3. determining the amenability of F .

We hope that the minimal elimination of a given pipe will provide insight on how

to construct the algorithm for the presentation F3. The problem then would be to

choose which lower-trivial pipe to eliminate first in each diagram.

63
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