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ABSTRACT

SOME CONGRUENCE PROPERTIES OF PELL’S EQUATION

Nathan C. Priddis
Department of Mathematics

Master of Science

In this thesis I will outline the impact of Pell’s equation on various branches
of number theory, as well as some of the history. I will also discuss some recently

discovered properties of the solutions of Pell’s equation.
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1 Introduction

The term Pell’s equation is used to refer to equations of the form

2 — Ny* =1. (1)

with NV > 1. There is perhaps no other equation that has influenced the development
of number theory as much as Pell’s equation.

As with many Diophantine equations, we are particularly interested in integer
solutions to (1). From the Diophantine point of view, among all conics the hyperbola,
namely the solutions to (1), is the only non-trivial case to study. For example, the
circle 22 + y? = 1 has only four integer solutions. The parabola, ¥y = ax? has an
integer solution for each integer, x.

Geometrically, the set of solutions to (1) (including non-integer solutions) has
two connected components (see Fig.1). The integer solutions on the component with
x > 0 form an infinite cyclic group (see Section 3), from which the solutions on the
other component may be obtained by changing the sign for x. Thus it suffices to
concentrate on the solutions with = > 0.

Of course if N is square, then Ny? + 1 is not square unless y = 0. So there is
only the trivial solution to (1) if N is a square. Furthermore, if N has square factors,
a change of variables will reduce the equation to an equivalent equation of the same
form, with square-free N. So in general, when talking about Pell’s equation, we will
only consider N to be a square-free integer. We will let H denote the set of all
solutions to (1) for a fixed N over some field.

One of the reasons that Pell’s equation is so important, is that its solution set pro-
vides an example of many important objects in number theory. Among other things,
Pell’s equation is a Diophantine equation, and the set of solutions is an example of

both an algebraic group, and an algebraic torus. Furthermore, it was the study of



%,

Figure 1: Pell’s equation defines a hyperbola.

Pell’s equation that led to Dirichlet’s Unit Theorem. We will consider each of these

ideas separately, and show how Pell’s equation is related to each idea.

1.1 Diophantine Equations

A Diophantine equation is a polynomial equation

flxy,29,...,2,) =0 (2)

in the several variables x1, xo, ..., x, with integer coefficients. In number theory, we
want solutions of (2) also in integers, or sometimes in the rational numbers Q.

Suppose we have several Diophantine equations, or more generally, a set of poly-
nomials

filxr,29,...,2,) =0

with 1 < j < m for some positive integer m with rational coefficients. If we allow the

solutions to be contained in an algebraically closed field L, then the set of solutions



forms an algebraic variety V' defined over Q. If K is a subfield of L, we call the points
(1, 22,...,2,) € V with z; € K the set of K-rational points, or simply the set of
K-points of V| and denote it by V(K). In number theory we are interested in the
case when K is a number field, in particular, K = Q. The set of integer points on V'
is a subset of the lattice Z", and is a lattice in its own right when the integer points
on V form a group.

It is clear that Pell’s equation is a Diophantine equation. The set H is a variety

and the set of integer solutions forms a lattice in H.

1.2 Algebraic Groups

The study of the variety becomes more interesting when it has the structure of a group.
It is a fact that H is an algebraic group. this will become apparent in Section 3. We
call a variety V an algebraic group defined over Q, when its identity e has rational
coordinates, and the inverse map x — z~! and multiplication map (z,y) — zy are
given by polynomials in the coordinates of x and y with coefficients in Q. (Unless
otherwise stated, all algebraic groups are assumed to be defined over Q.)

The simplest example of an algebraic group is SL,,, the group of n x n matrices

(xlj) The group is a hypersurface defined by the single equation
det (l’w) —1=0

which is clearly a polynomial equation in the n? variables z;;. Recall that each entry
of the adjoint matrix adj z is a polynomial in the variables x;;, being the determinant
of an (n — 1) X (n — 1) matrix obtained from z by deleting its i-th row and j-th

column. Recall further that

a1
~ det(x)

x -adjx = adj x.



Hence, each entry of ™! is a polynomial in the variables z;;. Clearly each entry of
the product xy is a polynomial in z;; and y;;. Finally, the identity of the group SL,,
namely, the identity matrix I, is in Q**. Thus SL,, is an algebraic group defined over

Q.

Another example is the group GL, of invertible n x n matrices. This group is an

algebraic variety in n? 4+ 1 variables z;; and z defined by the single equation
z - det(z;;) = 1. (3)

Equation (3) is equivalent to saying det(x;;) # 0. Similar to SL,, we see that for
xr € GL,, we have

a1
~ det(x)

x cadjxr = z-adjx.

The rest of the argument showing that GL,, is an algebraic group is much the same as
with SL,,. We will also see in Section 3 that the set of integer solutions to (1) forms

an algebraic group.

It is a standard fact that any algebraic group can be realized as a subgroup of

GL,, for some n > 1. In fact, if (x,y) is a solution to (1), then the map

is an injective group homomorphism into the group SLy(Z), a subgroup of GLy(Q).
This fact will become apparent after we have defined the group operation on G. In

fact, the requirement that (x,y) is a solution to (1) is equivalent to saying that



1.3 Algebraic Tori

An algebraic group T is called a torus if (as an algebraic group) 7T is isomorphic
to a group of diagonal matrices. We say T' splits over an extension K of Q if this
isomorphism is given by polynomials with coefficients in K.

We have seen that H can be realized as a subgroup of SLy(Z). Let

VN 1

g:
N —VN
Consider the map
Ty ' z+yvVN 0
=g g =
Ny =z Ny =z 0 z—yvN

This map gives us a bijection from H into the group of invertible diagonal matrices
with entries in Q(v/N). From here, it can easily be checked that this defines an

isomorphism of algebraic groups. We leave the details as an exercise.

1.4 Dirichlet’s Unit Theorem

When studying certain fields, we are interested in a set called the ring of integers, and
the group of units of this ring. Dirichlet’s Unit Theorem tells us exactly the structure
of the group of units for any number field.

In order to understand Dirichlet’s Unit Theorem, we must give a little more back-
ground in number fields.

A number field K is a subfield of C such that dimg(K) is finite. For example, if
N > 1is a square-free integer the set Q(v/N) = {7’ + sV N|r,s € @} is a field with
dimg Q(v/N) = 2.

The set of integers, Z forms an important subset of the set of rational numbers,

b}



Q. We can define a similar notion for any number field. We call the set
Ok = {a € K|« is a root of a monic polynomial with coefficients in Z}

the ring of integers of K. It is a well-known fact that O is a subring of K.

The group of units of a ring A is the set
A" ={a € Alab =1 for some b € A}.

In other words, the group of units is the set of invertible integers. For example, if we
take the ring of n x n matrices, then the group of units is the group GL,,. Dirichlet,
a German mathematician, gave a complete description of the group of units of O as

follows:

Theorem 1 (Dirichlet’s Unit Theorem). The group of units O = Wy x Z", where

r 1s determined by K and Wy is the set of roots of unity contained in K.

Consider the quadratic field Q(v/N). For this field, r = 1, so we have

X ~
ﬁ@(\/ﬁ) =~ {+1} x Z.

Furthermore, if N = 2,3 (mod 4), then the group of units of Oy 1s essentially the
set of solutions to (1). In other words, the set of integer solutions to (1) is isomorphic
to {1} x Z. We explain this in more detail in Appendix B. A proof Dirichlet’s Unit

Theorem for quadratic fields is also given there.

2 History

Pell’s equation has a long and interesting history. We find the first reference in a

problem given by Archimedes in 200 B.C. Mathematicians in India had an interesting

6



solution to Pell’s equation dating around the 7th century A.D. We will discuss both of
these pieces of history, as well as the modern treatment of Pell’s equation beginning

with Fermat, and culminating in Lagrange’s treatise on Pell’s equation.

2.1 The Cattle Problem

Pell’s equation dates back to as early as 200 B.C. Gotthold Lessing, a German literary
figure, discovered a manuscript written by Archimedes in the Wolfenbiittel Library
in 1773. On the manuscript, Archimedes presented a problem to the mathematicians
in Alexandria which has come to be known as the “cattle problem.” The following is

a translation of the problem by Ivor Thomas [5, p. 203-207]:

If thou art diligent and wise, O stranger, compute the number of cattle
of the Sun, who once upon a time grazed on the fields of the Thrinacian
isle of Sicily, divided into four herds of different colours, one milk white,
another glossy black, the third yellow and the last dappled. In each herd
were bulls, mighty in number according to these proportions: Understand,
stranger, that the white bulls were equal to half and a third of the black
together with the whole of the yellow, while the black were equal to the
fourth part of the dappled and the fifth, together with, once more, the
whole of the yellow. Observe further that the remaining bulls, the dappled,
were equal to a sixth part of the white and a seventh, together with all the
yellow. These were the proportions of the cows: The white were precisely
equal to the third part and a fourth of the whole herd of black; while the
black were equal to the fourth part once more of the dappled and with
it the fifth part, when all, including the bulls, went to pasture together.
Now the dappled in four parts were equal in number to a fifth part and

a sixth of the yellow herd. Finally the yellow were in number equal to a
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sixth part and a seventh of the white herd. If thou canst accurately tell, O
stranger, the number of cattle of the Sun, giving separately the number of
well-fed bulls and again the number of females according to each colour,
thou wouldst not be called unskilled or ignorant of numbers, but not yet
shalt thou be numbered among the wise. But come, understand also all
these conditions regarding the cows of the Sun. When the white bulls
mingled their number with the black, they stood firm, equal in depth and
breadth, and the plains of Thrinacia, streching far in all ways, were filled
with their multitude. Again, when the yellow and the dappled bulls were
gathered into one herd they stood in such a manner that their number,
beginning from one, grew slowly greater till it completed a triangular
figure, there being no bulls of other colours in their midst nor none of
them lacking. If thou art able, O stranger, to find out all these things and
gather them together in your mind, giving all the relations, thou shalt
depart crowned with glory and knowing that thou hast been adjudged

perfect in this species of wisdom.

To solve this problem, we need to use Pell’s equation, as we will demonstrate.
Heath also gives a solution in [4], and Weil discusses how the problem leads to the
Pell equation in [7]. If we let X, Y, Z, W denote the numbers of white, black, yellow,
and dappled bulls, resp., and z, y, z, w represent the numbers of white, black, yellow,
and dappled cows, resp., then the first half of the epigram gives us the following seven

equations in eight variables:

X=G+3)Y+Z
Y=(G+)W+Z
W=G+HX+Z



r= 3+ +y)
y=(3+5)W+w)
w=(t+3)(Z+2)

z=(3+3)(X +x)

The solution to the first three equations can found using elementary linear algebra

techniques. Up to a scaling factor the solution is

X =2226t, Y =1602t, Z =891, W = 1580t.

When we substitute this solution into the last four equations, we get four equations

in five unknowns:

x_l+1869t
12 2
—3+711t
Y= %0
11+3267t
W= —+——
30 10
13
— 2 1 689t
=t

We require a solution in integers. The smallest value for ¢ that yields such a solution

is 4657, which happens to be prime. The solution up to a scaling factor is

X =10, 366, 482 - n; x = 17,206,360 -n
Y =17,460,514 - n; y=4,893,246 - n
Z =4,149,387 - n; 2 =95,439,213 - n
W =17,358,060 - n; w = 3,515,820 - n.



The second half of the problem gets more difficult. In essence, it says X + Y is a

perfect square, and Z + W is a triangular number. That is,

X +Y =p? (4)

q(q+1)

Z4W =
* 2

for some integers p and ¢q. Combining our previous solution and (4), we can write

X +Y =17826996 - n =22 -3 11-29 - 4657 - n = p°.

It is clear that (4) will be satisfied if we find an integer U, such that

n=3-11-29-4657 - U2

Let A=3-11-29-4657.

Adding together Z and W, we get

Z 4+ W = 115074473 - n = 7 - 353 - 4657 - n.

Let B = 7-353-4657. It can be easily verified from (5) that if we multiply a triangular
number by 8, and then add 1, the result is a perfect square. Therefore, we can write
8(Z+W)+1=8Bn+1=V?for some integer V, and the two equations (4) and (5)
become

V2 —8ABU? = 1.

We can make one further simplification, since 8AB is not square-free. We notice

SAB =23-3-7-11-29-353-4657%. Thus we put u = 2-4657-U, and v = V to obtain

v? — 47294940 = 1 (6)

10



So the cattle problem is reduced to finding the integer solutions to equation (1), with

N =4,729,494.* The “smallest” non-trivial integer solution to (6) is

v = 109931986732829734979866232821433543901088049

u = 50549485234315033074477819735540408986340.

In this solution, the first number has 45 digits and the second number has 41 digits.

However, to solve the cattle problem, because of our simplification, we require that
the second coordinate be divisible by 9314. As we will later see, all solutions of (6)
can be found from the solution given above. However, it has been shown in [3] that
the number of cattle required to solve the problem is an integer with 206,545 digits.
The complete solution was not found out until 1965. (For more on this solution,
see [8] and [4]. The number representing the total number of cattle is found in the

Unpublished Mathematical Tables of Mathematics of Computation.)

2.2 Cakravala

The Indian school of mathematics, particularly the work of Brahmagupta and Bhaskara
had an interesting method for calculating integer solutions to (1). The works of Brah-
magupta, dating back to the seventh century, contain a method for combining cer-
tain solutions to form new solutions. This method was known as the bhavana. This
method could also be used in some cases for finding solutions to (1), given some other
information. These solutions were used, among other things, for approximating v/ N

with rational numbers. Indeed, if (z,y) is a solution to (1) with x > 0 and y > 0,

*Some authors will reduce the problem to Pell’s equation with N = 410286423278424. In that
case, they have not removed the square-free factors.

11



2
then we have (5) — N =21 andso

The inequality follows from the fact that % >N >1,and so z+yv N > 2y. So for
large values of y, the approximation is quite good; however, it requires that we know

a solution to (1).

In order to understand the bhavana, we need to consider equations of the form
2 — Ny* =m (7)

where m is a non-zero (positive or negative) integer. Notice that the Pell equation is
a special case of (7). In order to make the following discussion easier to follow, we
shall adopt the notation of André Weil [7]. We will denote by the triple (z,y;m) a

solution to (7). We call = the major root, y the minor root, and m the additive.

The bhavana is based on Brahmagupta’s identity
(2 — Ny*)(2* — Nw?) = (z2 £ Nyw)* — N(zw + y2)*.

The verification of this identity is a straightforward calculation. Given two solutions

(z,y;mq) and (z,w;my), then the bhavana is
(zvy;ml) * (Zaw;m2) = (a?z+Nyw,atw+yz,m1m2) (8)

The bhavana always yields a solution to (7) with additive m;ms, because of Brah-
magupta’s identity. If m; = 1, then the bhavana yields another solution, different
from the first, with additive msy. Continued use of the bhavana, will then yield in-

finitely many solutions to (7) with additive ms. Similary if we know a single solution

12



(p,q; 1) to (1), using the bhavana, we get a new solution (p? + N¢?,2pq; 1), with first
coordinate strictly larger than p. If we continue to use the bhavana, we see that
we actually obtain infinitely many solutions to (1). This method already enabled
Brahmagupta to solve the Pell equation in many cases. For example, if one composes
(z,y;m) with itself, then one obtains (X,Y; M), with M = m? Now if X/m, and
Y /m are integers, then we have a solution to the Pell equation (X/m,Y/m;1).

A more complete method for solving (1) was developed in the twelfth century and
is found in the works of Bhaskara, and a less well-known mathematician known as
Jayadeva. This method is known as the cakravala. The basic idea of the method is
this: given a solution (p, ¢; m), we construct another solution (z, y; M) with M = mm/
so that m’ is “small.” Then the composition (p,q;m) * (z,y; M) yields the solution
(X,Y;m?m’). The construction will ensure that X/m and Y/m are integers, and so
we get a new solution (X/m,Y/m;m’). The process is then continued in this way,
each time getting a new additive, m”, m", etc. until the additive becomes equal to
1.

More specifically, we begin with a solution (p;,g;;m;). We may assume that g¢;
and m; are relatively prime to each other. If this were not the case, then there would

exist a square-free integer d # 1 such that ¢; = ¢qd, and m; = md, and
p? =m; + N¢2 = md + N¢*d®
so that d would divide p; making d? divide m;. Then we would have the solution

(aa®)

Next, we construct a triple (z;,1; 22 — N), by choosing x; so that p; + ¢;z;" is a

multiple of m;. In order to find such a number, the Indian mathematicians would refer

TThe reader should notice that this is the minor root of the subsequent composition.

13



to a method they called the kuttaka—better known today as the Chinese remainder
theorem. Further, they would insist that we choose z; in such a way so that |[N — 22|
is as small as possible. We will discuss these requirements in more detail after we

explain the method. Using the bhavana with this newly constructed solution gives us
(pir @iy i) * (x4, 1327 — N) = (piwi + Ngi, pi + qwi; mi(xf — N)).
Put X; = p;x; + Nq; and Y; = p; + ¢;x;. Now we observe that

@ (2} — N) = gzl — p} +m,

= (qiz; + pi)(qiri — pi) +m;.

The first equality follows from (7), since p? —m; = N¢?. Now m; divides Y; = q;z; +p;
by construction, and m; is relatively prime to ¢;, so m; divides 2? — N. Furthermore,

X2 =m;(z? — N)+ NY? from the composition. Thus m? divides X2, and m; divides

X;.

X _ Y _ (@}-N)
Now we put piy1 = Tma> 441 = Tl and M1, = i

Img|

, and we have a new
solution (pi11, giv1;miv1). We continue this process until we reach m;,, = 1 for some
positive integer k.

Nowhere in the writings of the Indian mathematicians do we find proof that the
process should yield a solution to (1). However, their ability to find solutions in hard
cases surely gave them confidence in the generality of the method. The reason for
calling the method cakravala, which means “circular”, is that the sequence of additives
repeats itself (see [7]).

We began by taking a known solution (p;, ¢;;m;), so to begin the algorithm, we

need to find a solution (pg,qo; mo). In practice, the Indian mathematicians would

In practice, they would stop when they reached £1, £2, or 4, because of Brahmagupta’s work
with the bhavana. For more details, see [6].

14



choose py > 0, such that p? is the closest square to N, above or below. Then we

clearly have the triple (po, 1;mg) with mg = pg — N.

We make a few final remarks here before leaving this topic. In his book [7, p.
23], Weil notices that we actually don’t need to use kuttaka to define the z;. In
defining xy, we simply choose g = —py (mod |my|) (but we remember to choose xg
in the congruence class so that |N — x3| is as small as possible). Now having chosen
x;, we can simply choose x;,1, so that z;,1 = —x; (mod m;;1). Indeed, from the

composition, we have

Yit1 =piv1 — Tt
_ pii + N — pivy — g}
||

7

||

so clearly Y, is divisible by m;,; with this choice of x;,1. Also, if we choose x; so

that z; < VN < x; + |my|, and we assume |m;| < 2v/N, then we have
2VN < z; + VN + |my.

If 2; + /N < 0, this would imply that 2v/N < |m;|, contrary to assumption. So if
Im;| < 2v/N, then z; + v/N > 0 and

0<N—2a?=(/N—z)(VN + ) < 2/m;|vVN

and therefore |m; 1| = %ﬁ’z < 2V/N. If there is a better choice (remember the pre-
scription said that | N — 22| should be as small as possible), i.e. if y; = z; (mod |m;|)

with |N — y?| < |N — 22|, then using y; instead of z; would yield m; ., still with

15



|mii1| < 2/ N. Hence, as Weil notes, the integers mg, my, ms, ... are bounded, and

they must repeat themselves.

Finally, let us remark that if we begin with py < VN < pg+ 1, and always choose
x; so that z; < VN < x; + |m;]|, then the numbers % correspond to the convergents
of the simple continued fraction for v N. (We will not prove this fact here. For an

outline of the proof, see [6, p. 29-30].)

Ezxample. In order to demonstrate how effective the cakravala can be, we consider an

example. Let N = 41. The closest square to 41 is 36, so we put
Po = 6, qo = 1, moy = —5.

Now we choose g = —6 (mod 5), so that zq < v/41 < xy + 5. That is g = 4. Using

the bhavana we get
(6,1; =5) * (4,1; —25) = (65, 10; 125).
Upon division by 5 and —5, resp., we have
p=13, ¢ =2, m =5.

Using the recommendation of Weil, we now need to find ;1 = —zg (mod 5), with
r1 < V41 < x1 + 5. Recall xy = —4, so the desired value is 1 = 6. Using the

bhavana,

(13,2:5) = (6, 1; —5) = (160, 25; —25).

Upon dividing by 5, we get

p2=32, @ =25 my=—L
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Continuing in this manner, we obtain the following solutions:

(397,62;5), (826,129; —5)

and finally
(2049, 320; 1). 9)

Since the additive is 1, we have a solution to Pell’s equation, (2049, 320). If we were
to continue with the calculations, we would see the following “circular” pattern of
additives,

-3,95,—1,5,-5,1,-5,5,—1,5,-5,1,....

Finally, we notice that in calculating (9), we could have stopped using the cakravala

after obtaining (32,5; —1), for we can use the bhavana to calculate

(32,5:—1) * (32,5; —1) = (2049, 320; 1).

2.3 More Recent History

In the seventeenth century, the French Mathematician, Fermat, challenged several
English mathematicians, in particular, Wallis and Brouncker, to solve a few problems,
one of which was to solve (1) in integers. Fermat could not have known of Archimedes’
cattle problem, nor of the previous works of the Indian mathematicians. In [7, p. 81]
Weil remarks, “What would have been Fermat’s astonishment, if some missionary,
just back from India, had told him that this problem had been successfully tackled

there by native mathematicians almost six centuries earlier!”

Wallis and Brouncker, first sent him a solution in rational numbers, which proved
to be quite simple. They later contrived a method yielding a solution in integers that

was much the same as the cakravala and the later treatment by Lagrange in continued
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fractions. In the method they devised, we assume the existence of a solution (x, y) and
then write = ym + z. Upon substitution into (1), the ordered pair (y, z) becomes

a solution to a related equation

Ay? — 2Byz — C2* = £1.

The number m was taken to be the largest integer smaller than the positive root of (1),
and it was assumed then that z was less that y. The procedure was then continued,
each time reducing the equation to another one with a smaller solution until one
reached an equation with an obvious solution, usually (1,0).> The subsitutions were
then traced back to obtain the desired solution (z,y).

This method was enough to find solutions in all of the cases that Brouncker and
Wallis tried, including N = 61 and N = 109, in which cases the first solutions are
(1766319049, 226153980) and (158070671986249, 15140424455100), resp.

This method is essentially what Fermat called the “method of descent.” They
apparently did not see the need to check any further that this method would yield a
solution for all choices of N. ¥

In 1730, Euler wrote a letter to Goldbach pointing out an error in the latter’s claim
concerning a certain problem regarding triangular numbers. In the letter, Euler noted
that the problem in question reduced to an equation of the form z? — 8y? = 1. Euler
wrote, “Such problems have been agitated between Wallis and Fermat ...and the
Englishman Pell devised for them a peculiar method described in Wallis’s works” [7,
p. 174].

In [7], Weil notes that this was a mistake of Euler’s, since Pell had nothing to do
with the problem at all. In [2, p.352], Euler again attributed the method devised by

Wallis and Brouncker to Pell. Because of Euler’s mistake, (1) is called Pell’s equation

$This method is explained more fully in [2, p. 351-60].
YThis method will in fact give a solution in every case. see [7]
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even today.

In 1768, Lagrange wrote the first published proof of the fact that Pell’s equation
always yields a solution in integers. The proof relied on the concept of continued
fractions. He also gave a definitive treatment of Pell’s equation in three papers pre-
sented in 1768, 1769, and 1770, resp. to the Berlin Academy along with several results
about continued fractions. This was before he received a copy of Euler’s Elements
of Algebra. When he received a copy, he conceived a plan to have it translated into
French, and to add to it an improved exposition of his three papers presented earlier.

We will give Lagrange’s proof in section 3.2.

3 Group Structure

We now consider the set of integer solutions to (1) with > 0. In other words consider
the set

G={(z,y) € Z’|2* = Ny’ =1, and z > 0} .

We will show that this set forms a group, and we will give the group structure.

The set G constitutes “half” of the solutions to Pell’s equation. Notice that if
(x,y) € G, then (—z,y) is also a solution to (1). It turns out that G is a group using
the binary operation defined by the bhavana. In other words, given two elements

(z1,91), (T2, 92) € G, we define
(w1, 91) * (T2, 92) = (2122 + Ny1ya, 112 + T2y1). (10)
Recall Brahmagupta’s identity, which states

(2% — Ny*)(2* — Nw?) = (vz £ Nyw)? — N(zw + y2)*
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This identity shows that G is closed under the binary operation. The identity element
of G is (1,0), and if (z,y) € G, then the inverse, (z,y)!, is the element (z,—y).
We leave it as an exercise to check these facts, and that (10) defines an associative
operation. (Notice that this is actually an algebraic group.) Regarding the structure

of GG, we have the following theorem:
Theorem 2. G is an infinite cyclic group.

In other words, every solution to (1) is generated by a “least” solution. As we
mentioned previously, Lagrange was the first to provide a proof for this fact. The
proof requires some knowledge of continued fractions, so before we can give Lagrange’s

proof, we will provide more background.

3.1 Continued Fractions

In this section, we recall the definition and some properties of continued fractions,
which we will need. We will end with a proof that the integer solutions to (1) are found
by computing the continued fraction expansion for v/ N. A more detailed exposition
of continued fractions can be found among other places in [2] and [3] (see also notes
to Chapter 10 in [3]). Much of what we explain here will be modeled after [3].

A finite continued fraction is an expression of the form

More generally, we call an expression of the form

1
ag + ——g— (12)
ay + a2+a3<1|»“.

a continued fraction. As this presentation is cumbersome, we shall henceforth write
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lag, a1, as, . ..,ak] to represent (11), and [ag, a1, as,...] for (12). Furthermore, if ag
is an integer and a; is a positive integer for i > 1, then we say (11) is a simple finite
continued fraction and (12) is a simple continued fraction.

In either case, we call the numbers ag, ay, as, ... the partial convergents.

The following properties of finite continued fractions are clear from the definition:

[ao] = ag
1 aopa + 1
[ao,al] = Qg + — =
ay ay
1
lag, a1, ..., ax] = ao +
[ala az, ) aK]
1
[a(]valv 7CLK] = [a07a17 '7aK—1+_]
QK
Given a continued fraction (finite or infinite), we say [ag, a1, ..., a,] is the n-
th convergent to [ag,a1,as...] in the infinite case or to [ao,ar,as,...,ax] if 0 <
n < K in the finite case. Let a), = [an, ani1, ani2, .. .| in the infinite case or a], =
[@n, Qpit, Qnaa, - - ., ag] in the finite case. We say a!, is the n-th complete quotient.

For ease in working with continued fractions, we also define the following se-
quences:
P1 = ao =1
p2=ap1+1 G2 = a1q1 (13)
Pnt1 = @nPp + Pn—1 o1 = Gnlp + Gp—1, for n > 2.
These sequences are key to working with continued fraction. They also have some

unique properties. The next few theorems will outline some of those properties.

Theorem 3. If p, and q, are defined as above, then

- Pn+1
An+1

[Cl(),al,aQ, .. '7an]

Proof. We prove this by induction on n. It is true, if n = 0, for [ag] = ap =

s
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Now suppose the statement is true for [ag, ai, as, ..., a,y] whenever m < mn, i.e.

_ Pm+1 _ PmQm +pm—1

ap,d1,...,04 .
[ ’ m] qm+1 gmQm + Gm—1
Now we can write
1
[ao,al,...,anH]:[ao,al,...,an+ ]
Ap+1
_ Pn (an + an1+1> +pn—1
dn (an + an1+1> + dn—1

(n+1anPn + Pn + Apt1Pn—1
Op+10nGn + Gn T Ant1Gn—1
An11(@nPn + Pn1) + P
Un+1(@nGn + Gn-1) + @n
(n4+1Pn+1 + Pn

Un1Gn+1 1 Gn

_ Pn+2 ]

dn+2

Pn+1

Because of the previous theorem, we will also say that the numbers p are

n+1

convergents.

Theorem 4. The numbers p, and q, also satisfy

Pnin—1 — Pn—14n = (_]-)n
forn > 2, and
Prnldn—2 — Pn—24n = (_1)n_1an—1
forn > 3.

Proof. The first statement is proven by induction on n. For n = 2, we have

gt — 1ge = (prax + 1) — prayq = (—1)%
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Now for n > 2, we have

Pnt1@n — Gt 1Pn = (@nDn + Pn—1)qn — Pn(@nGn + Gn-1)
= Pn—-149n — PnQn-1
= _(pnqn—l - pn—lqn)

= (-1
This proves the first statement. For the second statement, we have

Pn+19n—1 — Gn4+1Pn—-1 = (anpn + pn—l)Qn—l - pn—l(anQn + Qn—l)
= QpPnldn—1 — AnPn—14n
= an(Pnn-1 — Pn-1qn)

=a,(—1)". O

Because of this theorem, we can write

& . Pn—2 o (_1>n_1an—1

an qn—2 dnqn—2

In particular, if n is even, then 22 < 22=2 and if n is odd, 2= > E2=2 Tp other words
) b ) b )

qn qn—2 qn qn—2
we have two sequences of convergents, one increasing, and the other decreasing. We

also know that

In particular flﬁ > Z”—*i whenever n is even.
n n—

Theorem 5. If p, and g, are as above, then q, > q,_1 and q, > n — 1, whenever

n > 2.

Proof. We prove both statements by induction on n. Recall ¢; = 1, and so ¢ = a; >
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1 =¢;. Now for n > 2, we have

Gn+1 = GnQn + Qn—1

2 Gn + Gn-1
> g+ 1
>n—-1)+1
The last two inequalities follow from the induction hypothesis. O
Now suppose that [ag, a1, as,...] is an infinite simple continued fraction. From

the previous theorems, we see that we have two sequences of convergents

{pZn } {p2n+1 }
— % and .
q2n d2n+1

The first is a strictly decreasing sequence, and the second is a strictly increasing

sequence. We have also seen that every term in the first sequence is larger than every
term in the second sequence. From this we know that both sequences converge. But

we also know that

Pon _ Pon—1| _ 1 < 1

Gon  Qon—1 GanGon—1 ~ (2n—1)(2n —2)
Thus as n — oo, we see that [ag, aj, as, ..., a,] converges to some real number, . We
say that z is the value of the simple continued fraction [ag, a1, as, .. .]|. In other words,

every infinite simple continued fraction represents some real number. We would like
to know if every real number can be expressed as a simple continued fraction, and
whether this expression is unique. We will deal with these questions in the next
several theorems. First, however, we need to prove the following fact, which will be

useful in proving several important results.
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Theorem 6. A finite simple continued fraction represented by an odd number of
convergents can be represented by an even number, and visa versa.

Proof. Given |ag, ay, ..., ay|, with a, > 2, we see that

lag, a1, ..., a,) = lag,a1,...,a, —1,1].
Otherwise (if a,, = 1), then
[ao,al,...,an_l,l]: [ao,al,...,an_1+1]. ]

2

s can be expressed as [0,1,1,1], or as [0, 1, 2]

For example, the fraction

We will now describe an algorithm for expressing any real number as a continued
fraction. Let x be a real number. Let ay be the integer with ag < x < ag + 1, i.e. let

ag be the largest number less than or equal to x. Put x = ag + xg. If zg # 0, then
0 < zg < 1, and so we define a} = wil
Now given a}, let a; be the largest integer smaller than or equal to af, i.e. a; <

a; < a; + 1. Clearly a; > 1. Again put a} = a; + ;. If x; # 0, then 0 < z; < 1, so we
... Now this algorithm continues until

o agl.

define a; , = i Thus z = [af] = [ag, d!]
xx = 0 for some K. If we reach a value K such that xx = 0, then z = [ay, a1,
Now suppose that x is rational. Let x = g in lowest terms. By applying the

algorithm we can write g = ag + g, or in other words

P = qap + qTo.

Apparently r; = qzo is an integer, and 0 < zp < 1, s0 0 < r; < ¢. So now if xg # 0
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(and therefore also 1 # 0), we put a} = w—lo = ;L. Again, we put @} = a; + 1, or in

other words

q=a1m +x177.

Again we see that ro = 7 is an integer and 0 < ry < r; < ¢. Continuing in this

manner, we get a system of equations

D =qap+ 11
q=r1a1 + 79

71 :a27“2+7“3

We recognize this as the Euclidean algorithm. We have a decreasing sequence of
integers ¢ > r; > rg > --- > 0, or rgy; = 0 for some K. Let rxy; be the first of
the sequence with this property. We had rx 1 = rxxg, and therefore zx = 0. So we
have

b
- =lag, a1,...,ax].
q

Because of this algorithm, we see that every rational number can be expressed as a
finite simple continued fraction. The next theorem will be useful in proving some

uniqueness conditions on simple continued fractions.

Theorem 7. If a], is the n-th complete quotient of a finite simple continued fraction
lag, ay,...,ak|, then a, < al, < ap,+1, except ax_1 = a’y_; — 1 if ax = 1. Also if al,
is the n-th complete quotient of an infinite simple continued fraction, then a, < a,, <

a, + 1.

Proof. If x = |ag, a1, . ..,ak], then a,, = [an, ant1, .. .,ax]. If K =0, then ag = af. If

on the other hand, K > 0, then a/, = a, + %, for 0 <n<K-1 anda,, , >1
n+1
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whenever 0 < n < K — 1, except aj, ., = 1, when n = K — 1, and ag = 1. Hence
a, < a, <ap,+1for0<n<K —1, except in the case ax = 1.

In the infinite case, suppose x = [ag, a1, as, . ..]. Then

a; ::[anuan+17an+27"J

= lim [an7 Ap41, Ap4-2, - - - aN]
N—oo
1
= Qp + -
Impy—ool@nit, Gnig, - - -, an]
= an —I— 7
an+1
In particular, x = af = ag + ai, Thus a, > a, > 1 whenever n > 1. So 0 < a,l <
1 n+1
1. O

For any real number, regarding the n-th partial quotient, we can see that = = ag,.

Furthermore,

T = Qg + -
1
_apah +1
ay
aipy +1
= o (14)
191
Continuing in this manner, suppose z = %. Then we see
(a'i + %) Pi + Di—1
i+1
Tr =
(ai + %) ¢ + qi—1
i+1
_ a;(api + pi—1) + s (15)

ajy1(aigi + qi-1) + qi
_ a1 Pit1 + Di
a1 Giv1 + Gi

We will use this fact in the next theorem, which shows the uniqueness of the simple
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continued fraction representation of any real number z.

Theorem 8. Fach irrational number x can be expressed in exactly one way as a

simple continued fraction.

Proof. 1f we do the continued fraction algorithm, the process will not terminate, as

it will for finite continued fractions. So if x is irrational, we can write

x = lag, ay] = [ag, ay, ..., d,]

’r'n

where al, .y = ay41 + 77— > app1. So from (15) we can write
n+2

/
o Ay 1Pn+1 + DPn
= 0
an—l—lqn-l-l + dn

And now

r— Pn_ Pn9n+t1 — Pntidn
qn Qn+1(a/rl+1Qn+1 + Qn>
1

Gn+19n+2
1

n(n+1)

IN

Now as n — oo, we see that ‘x — Zﬁ — 0. In particular,
n

T
r = lim — = [ag, a1, ag, . ...
n—oo qn

Thus the algorithm gives us a simple continued fraction whose value is x. By the

previous theorem, this representation must be unique. O

Now we deal with the uniqueness of finite simple continued fractions. We will
see that the representation of rational numbers by finite simple continued fractions is

almost unique.
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Theorem 9. FEvery rational number can be expressed in exactly two ways as a finite

simple continued fraction.

Proof. From Theorem 6, we know that there are two representations to any finite
simple continued fraction. One ends with 1, and the other does not. Furthermore,
we saw that every rational number can be expressed as a finite simple continued
fraction. So suppose x = |ag, @1, ...,an] = [bo,b1,...,by] With ay > 1 and by >
1. From Theorem 7, ay = by. Now suppose that the first n partial quotients are
identical, i.e. a; = b; whenever 0 < i < mn — 1. Then we have [ag, a1, ...,a,-1,a,] =
[bo, b1, ... by, b.]. If n =1, then we have ay + i = ap+ %, and so a} = 0] and

therefore a1 = b;. If n > 1, then

apPn +Pn1 oo+ paa
angn + qn-1 U,qn + gnor

Le. (a’/n - b/n)(ann—l - pn—lqn) = 0.

Therefore a,, — b/, = 0, and thus a,, = b,. Now suppose that N < M. We have shown

that a,, = b,, whenever 0 <n < N. If M > N, then

Laks = [ao ai GN] = [ao ai an, by bM] = M
qN+1 ) ) 9 9 ) 3 ) + ) b%qn + Gt
or in other words, py11qnv — pnvgn+1 = 0, which is a contradiction. O

Having established the uniqueness of representations of simple continued frac-
tions, and the fact that every real number has a representation as a simple continued
fraction, we want to show that the integer solutions to (1) are found among the con-
vergents to the simple continued fraction representation of v/N. This fact is a result

of the following technical lemma and the following theorem.
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Lemma 10. If
. Pw+ R
 Qw+ S

where w > 1, and P,Q, R, S are integers satisfying PS — QR = +1 and Q > S > 0,
then ’—; and g are consecutive convergents to the simple continued fraction expansion
for x.

Proof. We write 5 as a simple continued fraction [ag, a1, ..., a,] = 2. We know

dn41

PS — QR = 41 = (—1)""!, since we can choose n even or odd at our leisure. We
know that ged(P, Q) = 1, and @ > 0. But we also know that ged(p,41,gne1) = 1 and

Gn+1 > 0, so we have P = p,,.1 and () = ¢,11. Thus

pn-i-lS - qn-i-lR = (_l)n_l = Pn+14n — Gn+1Pn-

Now since ged(pp, gn,) = 1, we see that ¢,.1|(S — ¢,). But now we have ¢, = Q >
S > 0, and also ¢,11 > ¢, so in particular, |S — ¢,| < ¢u+1. Therefore, S — ¢, = 0,
and so S = q,, R = p,. Now if we develop w as a simple continued fraction, we must
have

xr = ag,a,...,a,,w]

Now if we expand the coninued fraction expansion for w, we get w = [a,,, Gpi1, Gnio, - - -],

and the fractions z"—ﬂ and flﬁ are consecutive convergents for x. O
n n

Theorem 11. If

1
< —

2q¢?

‘ p
q

then % is a convergent in the simple continued fraction, whose value is x.

Proof. We express g as a simple continued fraction [ag, ay, ..., a,], and we can choose
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n even or odd as we please, so that

1)"19
P, D
q q
where 0 < 6 < % Now we put
X = WPn+1 +pn
WQn+1 + dn
where Z)Z—ﬁ and £2 are consecutive convergents to £. (To do this simple put w =
Pn—Zg4n
Tdn+1—Pn+1 )
Now
(_1)n—19 _ ]ﬁ = Pn+14n — PnGn+1 _ (_1)n—1
i1 Gn Gni1(Whhi1 + @) Gr1 (Wt + ¢n)
SO
v 1
Gnt1 Wnt1+Gn
and
1 n
w=-— a 1.
0 qn+1

Therefore by the previous theorem, Zﬁ and z”—i are consecutive convergents to x. But
n n

P _ posi O
q dn+1

We saw earlier that any integer solution (p, q) to (1) satisfies

By the preceding theorem, g is a convergent to the simple continued fraction expansion

of V/N.
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3.2 Lagrange’s Proof

In the solution to the cattle problem, we saw how difficult the solutions to (1) can be
to find. It is true, however, that an integer solution always exists. In fact the set of
integer solutions is an infinite cyclic group. If N is not square free, then we can make

a change of variables, to reduce to the case that N is square-free.

If (x,y) is an integer solution to (1), then z? — Ny? = 1. In Section 2.2, we saw
that [ — VN| < ﬁ Therefore, by Theorem 11, if a solution to (1) exists, it is to be

found among the convergents of the simple continued fraction whose value is v N

Here we give Lagrange’s proof of the existence of a non-trivial solution to (1), no
matter what NNV is, as well as his proof that all non-trivial integer solutions to (1) can

be found from a single solution.

Lagrange’s proof. In view of the preceding comments, we define the following quan-

tities:
p():la q0:07 :U“0<\/N
— — po—VNgo _ _ 1
P1 = Mo, q1 = ]-7 M1 < qf\/ﬁ—p? ~ VN—mo (16)

Dit1 = WiDi T Dic1 Giv1 = i + Gi1,  fit1 < %

for all 4 > 1. In defining u; we take the greatest integer smaller than the above-named

pi—:VN

N < Mit1 1. Notice the similarity to (13).

quantity, i.e. i1 <

ILagrange’s proof was actually more general than the proof we give here. The method in the proof
is the same, though. In [2], Lagrange gives a method for minimizing the quantity Az? + Bxy + Cy?
with integers x and y.
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: R pi-1—VNgi—1 ;
Now if we put a; = R/ for ¢ > 1, then we can calculate

i1 = Pi — \/qu'
\/N%'H — Pi+1
_ pi — \/qu'
VN (g + qi1) — (api + pi—1)
bi — \/NQZ'
(VNgi—1 — pi-1) + wi(VNg; — p;)

1
~ VNai1-pis VNgi—pi
pi—VNg; +M2pi—\/ﬁ¢h’
B 1
Coai— Hi

Because of this, we see that in defining the numbers p;, g;, ;, we were merely
doing the continued fraction algorithm. In other words, the numbers pu; are the
quotients in the simple continued fraction expansion of VN, i.e. ([0, f41, f2, - - . | is the
simple continued fraction whose value is v/ N. Furthermore, the fractions % are the

convergents to v V.

Now we have u; < a;. In fact, we have chosen pu; so that a; < u; + 1, so that
a1 > 1 for all ¢ > 1. It is also true that a; > 1 by definition. This shows that
Pi—1 — VN ¢i—1 and p; — VN ¢; have different signs, for each choice of ¢. This fact will

be useful later.

In order to facilitate calculation of a;, we multiply numerator and denominator

of a; by pi + VNg;. Recall from Theorem 4 that p;g;_y — pi1¢; = (—1)%, so in the
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numerators, we have the following:

(po — VNqo)(p1 + VNg1) = popr — Ngogr + VN (poqr — p1do)
= VN + o

(pi—l - \/NQi—l)(pi + \/qu) =pi—1pi — Nqi—1q; + \/N(pi—l%' - PiC_Iz'—l)
= piPi1 — Ngigi—1 + (—=1)"*WN,  fori> 2.

In the denominators we have

(\/NQO —po)(po + \/NQO) = ng —pg =-1

(\/Nq@' —pi)(pi + \/qu) = qu —p%, for i > 2.

Now we define

Pi=us—N Q1= po
P = p? - Nqiz Qi = pipi-1 — Nqigi—1-

So now we have

Qi+ (—1)'VN
a; = —PZ

Qo — VN

<o+ 1
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We can write );41 in terms of P; and @); in the following way:

Q1 = Py + Qo, and
Qi+1 = piPit1 — N¢iGi1
= pi(api + pie1) — Nai(pi¢s + gi—1)
= wi(p} — N@;) + (pipi—1 — Ngigi—1)

= P + Q.

Similarly,
Py = p§+1 - qu'2+1
= (wipi + pi-1)? — N(pig; + qi—1)”
= 1P = 21,Qi + Picy.
So we can calculate the sequences Py, Py, P, ... and Qq, @1, . ..

and ¢;. Futhermore,

Qf — Py = (ug— (pi — N¢i)) = N, and

independent of p;

20— PP = (P + Q) — (1 P + 2,Q; + Pi_y)

=Q?— PP,

So by induction, we have Q7. ; — P;P;y; = N for i > 1. From the definition of P,

we see that P; and P,y have different signs for ¢ > 0, beginning with Py = 1 and

Py = ud — N < 0. Since the P; are integers and Q7 , — PiP,11 = N, we see that

|P;| <N and |Q;| < VN fori > 0.

Now since P; and @); are bounded sequences of integers, some pair Py, (), must be
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repeated in the sequence, i.e. there is some positive integer p such that

Py = Prip,  Qx= Quryp.

From (19), we must also have y1y = pxy,, and hence

1 = Py + Qx = Qryp1  and
N - Q3

= Pyipi1

PA+1:

Continuing in this manner, we see that P; = P;;, and Q; = )i, whenever ¢ > A. In

other words, the sequences are periodic after \.

Recall p; — vV Ng¢; and p;o1 — V' Ngiq have different signs. From (17) and (18) we
see that the terms in the sequence Py, P;, P, ... also have alternating signs. Now we

have p; + v/ Ng; > 0 for all i and
Piv1 + \/N%H = pi(pi + \/qu) + pi-1 + \/NQZ‘—1

for all ¢ > 1. Solving for u; we see that

_ Pit1 F VNgin _ Piart VNgi_1

pi+V~Ng pi+VNg
. : : ; pi—1+VNgi—1 pi+1+\/ﬁq@'+1
Now p; > 0 is an integer for all i. Also Na > (0. Hence VN > 1
for 4 > 1. Therefore _pitVNG ] for g > 1, and potvNey _ 1 < 1. Soin

Pit1+VNGi11 pi+VNg  pot+vN

particular, we have

Di+1 + \/N%'H
P <
D + \/qu'
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for + > 1. Furthermore,

pi+\/NQi pi_\/Nqi p?—Nq-2

Qi + (-1)TVN
— 7 ’

pis1 + VNG (pz' - m%) _ Pitapi — NGi1qi + VN (pigis1 — pis1i)

thus transforming (21) into

L Qiy1 + (1) VN

i <+ 1. 922
2 i + (22)

Recall P, = Py, Qi = Qit,, whenever 7 > \. From our preceding calculations,
we have Q3 — Py_1 P\ = N. Therefore P\_; = Py;,1. So from (22) we have py_; =
frtp—1. From these two facts and (20) we have Qxy1 — puaFPy = Q. Therefore,
Qxr-1 = Qryp—1. Proceeding in this manner, we see that in fact P, = Py, for all
1 > 0. Now since Py = 1, we see that P; = 1 for infinitely many choices of 7. In fact,

we have P, = 1, which gives us pi — ng =1, with p, # 1 and ¢, # 0. O

This completes the proof of the existence of a non-trivial solution of (1). Now we
need to show that every solution is generated by a “least” solution. To see this first
notice that if (z1,y1) and (x9,y2) are solutions of (1), with 0 < 21 < 3, and y; > 0,
yo > 0, then we have 2 — Ny3 = 22 — Ny?, and therefore N(y3 — y?) = 23 — 23 > 0,
so that yo > y1. So there exists a solution (t1,u;) with ¢; > 0,u; > 0, such that given
any other solution (z,y), we have t; < z and u; < y.

We can construct new solutions from known solutions in the following way: Let

(x1,91), (2,y2) be two solutions. We can compose the two solutions to obtain

(122 + Ny1ya, T1y2 + T2y1).

From Brahmagupta’s identity, we can see that the result of this composition is also
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a solution. Now we construct the solutions (t;, ;) recursively by the following:

tg = t% + NU% U = 2t1u1

tir1 = tity + Nugu;  uipr = tyu; + tug.
Clearly t; < t;41 and therefore u; < u;;1. We can also write

ty £ usVN = (t; + ul\/ﬁf and

Because of the ambiguity of sign, we have

(t1 + w1V N) + (t; — uy VN’
2

w — (ti + wiVN)' = (1 — usVN)'

C 2V/N '

ti:

We now give Lagrange’s proof that any integer solution to (1) is of the form

Proof. We first notice that (z,y) is a solution to 1 if and only if (z, £y), and (—z, +y)

are all solutions as well. So it suffices to know those solutions with > 0 and y > 0.

Now suppose that there were another solution (6, v), with ¢; < 6 < t;;; for some

i. Then we also have u; < v < v;41. We can construct another solution (¢,u) to (1)

by t = 0t;11 — Nvugyq and u = Qu;q — t;1v. The fact that (¢, u) is a solution follows

from Brahmagupta’s identity. We can write

1

0 — vv/N
1

tiv1 + Ui VN

0 — VN =

i1 — VNuq =
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Substituting, we have

1 1
U = u; VWN+— | —v | VNuj +
+1< 9+I/\/N) < i

Ui+1 v

B H—FV\/N B ti+1 +Ui+1\/N‘

Likewise we can express t;u;+1 — t;+1u; in the form

Ui+ Uy

ti+uivVN  tig +ui VN

Lihip1 — i u; =

And since 6 > t; and v > u;, we also have

Uit v Uit Us

u = —_ < J—
O+vVN  tig+unVN  ti+uvN  tig +uia VN

But remember,

(tl +U1\/N)i + (t1 - U1\/N)Z

2
w — (ti + uVN) = (t —u VN
P 2\/N )

ti:

SO

tiv1 + Uz’+1\/N)

= iliy1 — Lip1u;.

(t1 + uV'N)* 1ty — uiVN)' + (81 — utvVN) ™ (t + uy /N

+1 +1 2\/N
(tl —I—ulx/ﬁ) — (tl — ul\/ﬁ)
2V'N

. 2u1\/ﬁ
2V N

= Uq.
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The second equality follows from the fact that
(ty + u1VN)'(t, —uy VN = (£ — Nu?)' = 1.

So we get a solution (t,u) with u < u; contradicting the minimality of u;. O

Remark. If we consider Lagrange’s proof, that all solutions are generated by the least
solution, we can use modern algebraic techniques to obtain the same result. That is

to say, the solution (¢, ) from which we desired to derive a contradiction is obtained

by multiplying (6, v) and (fi1, tis1) ™" = (fig1, —Uit1)-

Ezample. We give an example here of finding an integer solution to (1) using La-
grange’s method, again with N = 41 (see the example following Section 2.2). A
command is also given in Appendix A.2 for computing the smallest integer solution
using Maple Software. Using (16) we can compute the convergents to the continued

fraction whose value is v/41.

p0:17 q0:07 IU’0:6

p1 = 6, G =1, u1<ﬁz2.48 SO ji1 =2

pr=13, @ =2, u2<2f/;_1/§3z2.08 SO f1g = 2

ps =32, q3=>5, 3 < é‘j’/_ﬁ\_/g ~ 124  so uz =12

ps =397, q4= 62, u4<6232%1_\/§1)7z2.48 SO fig = 2

ps =826, g5 = 129, u5<%%2.08 S0 fi5 = 2

pe = 2049, g5 =320, pg < SEEVIL ~ 248 50 g = 12

etc...
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Now we compute from (18)

Now we can stop there, because Ps = 1. So we have the solution (2049, 320) to (1).

4 Main Result

In this last section, we come to the main theme of this work. Before we can state our

results, we need some background.

For an integer m > 1, the reduction modulo m map

red,, : Z — Z/mZ

is the map that sends an integer a to its remainder r (0 < r < m) on division by
m. We shall denote the image of red,, by putting bar on the elements of Z. For
example, if m = 5, then reds(16) = 1, and reds(—22) = 3. The map red,, is a ring
homomorphism. Furthermore, if p is prime, then the set of remainders upon division
by p, Z/pZ is a field. All that we need to check is that every element has an inverse.
The rest of the axioms defining a field are easily verified. To see that every element in
Z,/pZ has an inverse, notice that is 0 < a < p, then ged(a,p) = 1. By the Euclidean

algorithm, we can write pxr + ay = 1 for some integers z and y. Upon reduction
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modulo p of this equation, we see that

=]

N
I

—_

and y € Z/pZ.

The map red,, induces a ring homomorphism on the ring of matrices also denoted
by
red,, : My(Z) — My(Z/mZ),

where My(Z) and My(Z/mZ) are the rings of 2 x 2 matrices with entries in Z and

Z/mZ, resp. For example, it is not difficult to see that

=
(@]

6 5
red5 =
23 -2

Wl
Wl

Similarly, given the map G — SLy(Z), red,, also induces a group homomorphism

red,, : G — SLo(Z/mZ).

The image of this map is clearly a finite group. Moreover, since G is cyclic,
red,,(G) is a finite cyclic group. We denote by gy(m) the order of the image of G
under the reduction mod m homomorphism. In the following discussion, since each

element in the image red,,(G) is of the form

Ny

Kl

we will denote these elements simply by (zZ, 7). The group law defining G as a group is

equivalent to the corresponding matrix multiplication, so when we multiply elements
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of red,,(G), we will simply use (10).

The following theorems and the corollary sum up our main result.

Theorem 12. Let p be a prime with p # 2.

If p|N, then gn(p)|2p. On the other hand suppose p{ N.

1. If N is a square as an element of F,,, then gn(p)|(p — 1).

2. If N is not a square as an element of F,, then gy (p)|(p + 1).
Finally, gn(2) =1 or 2.

Theorem 13. Let m = p{'p5 ...pS", where the p; are distinct primes and €; positive

integers. Then

e1—1 er—1

gn(m) | (p7  an(p)ps  an (p2) - P gn(pr)) -

Furthermore,

lem(gn(p1), gn(p2); - -5 gn(Pr)) | gn(m).

Corollary 14. If m is as in the theorem, and (I)ﬂ) =1 for all i, then gy(m) | p(N),

where ¢(N) is the Euler phi-function.

Here we will give an example of how gy (m) can be computed.

Example. Consider N = 7, i.e. 2?> — 7Ty> = 1. The first integer solution to this
equation, and therefore a generator of G, is (8, 3). Now we want to consider reds(G).
We will use bar notation to indicate elements of Z/5Z. Upon reduction, the generator
becomes (3, 3). Now we know that reds(G) is cyclic, so to find the order of the group,
it suffices to multiply the generator until we get back to the identity, (1,0). If we
multiply (3,3) * (3,3) using 10, we get (72, 18). Now we notice 72 =2 (mod 5), and

18 = 3 (mod 5). So we have the next solution (2,3). Continuing in this way, we
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compute the following:

So we see that the order of reds(G) is 6, i.e. ¢7(5) = 6. From our theorem, we

expected g7(5)|5 + 1.

Without further conditions on N and m these results (Theorems 12 and 13) cannot

be any stronger. Consider the following examples.

Ezample. Let N = 11. The generator for the group of solutions to (1) is (10, 3). We

can compute gy(m) for different values of m. For example,

gn(3) =1, gn(5) =4, gn(7) =3, gn(13)=T.

So we see that gy(3) is as small as possible, whereas gy (5) = ¢(5). Also,

gy (5% -7-13%) =52 13- gn(5) - gn(7) - gn(13) = 27300.

So the order of the group with N = 11 and m = 147875 has attained the upper bound
prescribed by Theorem 13. On the other hand, let N = 17. The generator for G is
(33,8), and

gn(3) =4, gn(5) =6, gn(T) =8,
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so we have gy(p) = p+ 1 for these three primes. However, we have
gn(3%-5-7) =1lecm(4,6,8) = 24.

In this example, the order of the group attains the lower bound.

4.1 Proof of Main Result

koK

For the proof we need the following techincal lemma.

Lemma 15. If (z,y) € G, then for any positive integer n, (x,y)" = (n, yn), where

_ n n n n—2 n k_n—2k 2k n n n
xn—(o)x +<2)Nx Y-+ —i—(zk)N:c Y+ +(n)N2y

o n n—1 n n—3 . n k_n—2k—1_ 2k+1 . n n=2 n—1
yn—<1>x y+<3)N:c y° + +<2k+1>N:c Y + —l—(n_l)N 2 xy

if n is even, and

n n n n n—1
— n N n—2 2 L. Nk n—2k 2k . N D) n—1
Ty <0>:)§ + <2> Tyt + + <2k) x Y+ + n_1 Ty

Y a1 n n—3_ 3 n k n—2k—1 2k+1 n nl
= N N N 2
v (1)9: Y+ <3) "oy + + <2k:+ 1) x Y + + (n) Y

if n s odd.

Proof. We proceed by induction. The theorem is obviously true for n = 1. The

**This formula is also given by Lagrange, but with a different proof
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inductive step is as follows. If n is even, then from (10)

" n n n n
= " Nz¥ 22 1 ... NEpn—2k, 2k N3y
() (5) ot s () vsam st (1) vy

n n n
+ Ny ( l)xn—ly + <3)an—3y3 4ot <2k: N 1) NFgn—2b—1,2k+1 |

N
Nz Y2 4. n TN\ gk pn—2k 2k
) Tyt + +(<2k‘—1)+(2k5 T y2k

and

Ynt1l = Tl + TYn

= " "+ " Nz"2y? + ...+ " Nbgn=2ky2k oy n N%y" y
0 2 2% n
Y n-1 n n-3, 3 n k,n—2k—1, 2k+1
N N
+x<(1)x y+<3) T +(2k+1) vy

n
n n

" Nk pn—2k, 2k+1

)Iw +<<2/€>+<2k+1)> YTt
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Now the binomial theorem tells us that (Z) + (kil) = (Zﬁ), so we have

n+1 n+1 - n+1 B
zn—i—1:< 0 )$n+1+< 9 )Nz" 1y2_|_..._|_< ol )kan—i-l 2ky2k_|_

1 n
—l—(n+ )N2a:y"
n

n+1 n+1 n+1
] = n N n—2,3 | . Nk (n+1)—2k—1, 2k+1
Yn+1 ( 1 )xy+< 3 ) Yy + +<2k+1) X Y +

n+1 n
N2 n+1
+(n+1) Y

as desired. A similar calculation shows the case when n is odd. The only difference

being that the pure y term shows up in x,; instead of y,,;. O

Proof of Theorem 12. Now we want to consider the group red,(G), where p is a prime,
p # 2. If © € Z, then we denote by € Z/pZ the image of the canonical map
Z — Z/pZ, namely reduction mod p. When p is a prime, Z/pZ is the finite field F,,.
We will also denote by (Z,y) the elements of red,(G). Recall that for z € F,, 7 = Z.
This property of the Frobenius map will be important in the following discussion.

If p| N, then after reduction mod p, equation (1) becomes z? =1, so T = +1.

If z =1and g = 0, then (z,7) = (1,0), which is the identity of the group. If
Z =1 and g # 0, then since p is odd,

_ 1
(7,9)" = (xp+---+ <pf I)NTasy”_l, (f)xp—1y+---+NTyp> - (23)

Because p|(?) if 0 < k < p, equation (23) shows that (z, ) = (1,0).

On the other hand, if # = —1 and y = 0, we have (Z,%)* = (1,0), whereas for
7 # 0, by (23) again, (Z,)? = (—1,0). Therefore, (Z,7)* = (1,0).

Clearly the generator of red,(G) falls into one of the categories listed above.

We now consider the case when p is not a factor of N. To fix notation, we recall

some standard facts from basic number theory that can be found, for example, in
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p—1
[1, p. 36]. Consider the map ¢ : F — F defined by ¥(v) = 7 2, F)\ being the
multiplicative group of non-zero elements of the finite field [F,. The image of the map
-1
is {#1}. Now if Z is a square in F¥, then Z = t*, and ¢(7) = (t2) 2 = 1. So we have

(Fx)? C kert). Also there are some elements § € F such that ¢(§) = —1 otherwise

p—1

y 2 — 1 has more roots than its degree. Therefore ker+y) C F), and [F) : ker ] > 2.

Now

2=[F: (FX)* = [F) : kery][ker v : (F))?],

showing that (F)* = ker .

p—1
To summarize, if T is a square then £ 2 = 1, and if Z is not a square, then
p—1
F2 =1

Suppose N is a square. Then since p is odd, Lemma 15 gives us

_p-1 - 1
A ey e

p—1

= (2", N2 g)

The second equality follows because p (pH) whenever k is not equal to 0,1,p or p+1.

This shows that (z,4)?~' = (1,0). Therefore gn(p)|(p — 1).

p—1 _ ptl -
Now suppose N is not a square. Then we have N 2 =—1,andso N 2 =—N.

Since p + 1 is even Lemma 15 shows that

—ptl 1 1\ -p=1
(l;’y)P-l-l — (Z’p+1 4. +N 2 *P+1’ (p—jl_ ):Epy++ <p+ )N ) l’yp)
= (2* - Ny*, 25 — 75)

— (1,0).

Since this is true for any (z,7) € red,(G), we have gy (p)|(p + 1).
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Now suppose p = 2. From (1), it is easy to see that reds(G) is one of three
possibilities. These possibilities are {(1,0)}, {(1,0),(0,1)}, and {(1,0),(1,1)} (the
second only if 2 | NV, and the third only if 21 N). O

We also have the immediate corollary.

Corollary 16. Let p # 2 be a prime number. If (x,y) is a solution to the Pell

equation (1), then p does not divide x unless

1. (% —1ifp=1 (mod 4) and
—1ifp=3 (mod 4).

_p—1
%) denotes the Legendre symbol, i.e. (%) =N = 41 (as an element

o
~
=
o~ ~— ~—
I

Proof. 1f p|N, then gn(p)|2p, but 4 1 2p.

On the other hand suppose p { N. If (1) has a solution (z,y) with p|z, then
red,(G) has an element of the form (0,7). But (0,7)* = (Ny? 0) = (—1,0), since
72 — Ny? = 1. So our previous calculations show that |(0,7)| = 4. But if red,(G)
contains an element of order 4, then 4|gx(p), which by our theorem is only possible

under the conditions stated. O

Remark. It is not difficult to see that elements of the form (0, §) are the only elements

of order four in red,(G). Suppose (Z,y) has order four. Then

(z,9)* = (z* + 6Nz*y* + N*y*, 4z5(2* + Ny°))

= (1,0)

Since we are working in a field, the second coordinate is zero only if one of the factors

is zero. If Z # 0, then either = 0 or (22 + Ny?) = 0. If the first, then 2% = 1, and so
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(z,7) has order at most two. If the latter, then since (z,%)? = (z° + Ny?, 2zy), our

proof of the corollary shows that the order of (z,)? is four, so (z, %) has order 8.

Theorem 12 provides a complete classification of the groups red,(G), where p is
a prime. However, if we consider red,,(G), where m > 1 is composite, we also get
a finite cyclic group. The order of red,,(G) is given by Theorem 13. The proof of

Theorem 13 will follow from the following two propositions.

Proposition 17. Let m = p*, where k is a positive integer. Then gn(m)|p*~Lgn(p).

Remark. Notice the similarity of the function gy(m) for a fixed N to the Euler ¢-
function ¢(m):

o(p") = p"'o(p).

Proof of Proposition. If k = 1, the statement is trivial. So we may assume k > 2.
Consider the map ¢ : red,(G) — redy-1(G) induced by red,r-1. In other words,
reduce the entries of elements of red,«(G), by pF~1. This is a surjective map, and so
we have

red,:(G)/ ker ¢ = red,»-1(G),

or in other words, gn(p*) = gn(p*~1) - | ker ¢|. We will use bar notation to denote

elements of Z, i.e. if x € Z, then 7 is its image in Z,x.

We need to know the order of ker ¢, so let (z,y) € ker ¢. Then (Z,y) has the form

(1 + nyp" 1, fiep® 1), where ny and n, are integers. But we know that

T — Ny* =142mp" " +nfp™ " — Nnjp* ' = 1. (24)

Since k > 2, 2(k — 1) > k, and so p*|p?*~!. From (24) we have i; = 0. Therefore

(z,7) has the form (1, ip™1).
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Now for p # 2 we have

_ _p=1_
oy = (14 (5) N (7 )8 Tty

= (1,0).

The second equality holds because a power of p* shows up in every term excepting
the first term of the first entry.

If p =2, then we have

(2,9)% = (1 + N(z(2"71))%, 2nx(2571))
= (1, 0).
Thus we see that |ker ¢| divides p. By induction then, gn(p*)|p* tgn(p). 0

Proposition 18. Suppose m = qr, with ged(q,7) = 1. Then gn(m)|(gn(q) - gn (7).

Proof. The Chinese remainder theorem gives an isomorphism
Z]mZ — 7/qZ X Z]rZ

where the map in the first (resp. second) is just reduction mod ¢ (resp. 7). Let ¢,
denote the map into the first coordinate, and ¢, the map into the second coordinate,

and consider the map
Y i red,, (G) — red,(G) x red, (G)

given by (Z,9) — ((@q(f),wq(ﬂ)), (%(f),%(ﬂ)))- Now (z,9) € kery iff (%) =

0, (Z) = 1 and ¢,(y) = ¢,(y) = 0. But since the Chinese Remainder Theorem gave
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us an isomorphism of rings, this happens exactly when z = 1, and y = 0. Therefore

¢ is injective, and we see that gn(m)|(gn(q) - gn(7)). O
Proof of Theorem 13. The proof follows from the previous two propositions. O

Corollary 19. If m is as in the theorem, and (g) =1 for alli, then gy(m) | p(m),

3

where ¢p(m) is the Euler phi-function.

Remark. The previous corollary does not hold generally if (pﬁz) = —1 for any p;.

Consider the following example:

Ezample. Suppose N = 13. The generator for G with this choice of N is (649, 180).
It is not difficult to check that 13 = 6 (mod 7) is not square and 13 (mod 19) are
not square in their respective fields. We have ¢13(7) = 8, and ¢13(19) = 20, and
913(133) = 40. However, ¢(133) =6 - 18 = 108.
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Appendices

A Tables and Maple Code

We have seen how difficult the generator for G' can be to compute. Calculating gy (m)
can also require a great deal of work. It is best done using a computer, especially for
large values of N. In this appendix, I will give some tables displaying gy (m), and
the Maple code that I have written to compute gx(m), as well. The code and tables

are provided merely to assist in the computation of gy(m).

A.1 Tables

I have included ten tables listing values of gy(m). Table 1 shows gy(p) for the first
25 primes. There, I have taken the first square-free integers less than or equal to 51
for N. Table 2 shows gn(p*) with 1 < k < 3 for the first several primes. Again, I
have taken the first sqare-free integers less than or equal to 51. Tables 3-10 show the
values of gy(m) for the integers 2 < m < 100. In these last tables, we have taken all

of the square-free integers N with 2 < N < 9.
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45

gn(p) =2 3 5 7T 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
N =2 1 4 6 3 12 14 8 20 11 10 15 38 5 44 23 54 20 62 68 35 36 13 84 44 48
3 2 6 3 8§ 10 12 18 5 11 15 32 36 14 11 23 9 58 60 34 7 36 80 82 90 16
) 1 4 10 8 5 14 6 3 8 7 5 38 20 44 16 18 29 10 68 35 T4 13 28 22 98
6 1 6 4 8 3 7 18 18 11 28 32 19 42 42 23 52 30 31 66 35 36 8 7 10 12
7 2 2 6 7 12 14 3 18 12 28 15 36 21 44 23 52 58 62 68 18 37 40 82 45 49
10 1 1 10 8 12 3 18 4 24 30 15 6 20 21 48 13 20 62 11 35 74 39 41 44 98
11 2 1 4 3 22 7 18 6 24 15 32 36 42 42 48 52 30 31 34 24 74 39 82 44 24
13 1 1 2 8 4 26 8 20 11 14 32 38 14 7 16 13 4 5 68 24 T4 13 28 30 98
14 1 4 4 7 10 12 9 20 12 6 3 38 7 42 23 54 60 20 66 18 37 10 28 45 7
15 2 3 10 6 10 7 16 20 24 30 8 19 21 7 48 13 58 12 33 5 T4 40 42 45 98
17 1 4 6 8 4 6 34 9 24 30 32 38 42 21 23 13 29 62 3 72 T4 16 41 44 98
19 2 2 4 8 3 1 4 38 8 15 3 19 42 22 48 27 58 60 66 35 9 39 42 90 98
21 1 1 4 14 4 14 16 10 8 5 16 3 40 14 23 9 29 62 22 24 74 26 41 88 98
22 1 2 3 1 22 12 18 5 24 28 32 19 42 22 16 27 58 60 66 24 74 3 21 44 48
23 2 4 2 3 10 12 9 18 23 28 16 38 10 42 6 54 12 62 22 36 9 13 82 9 49
26 1 4 1 8 5 26 4 9 11 30 32 18 42 44 48 18 29 62 11 72 74 39 41 90 98
29 1 4 1 1 4 2 6 20 11 58 32 38 14 44 16 26 29 62 11 35 74 80 41 30 98
30 1 6 5 6 4 12 16 9 3 14 32 12 42 11 24 27 60 62 17 35 37 80 82 30 49
31 2 2 4 1 10 2 9 4 11 10 31 38 5 42 24 54 60 62 68 36 37 39 82 45 48
33 1 6 6 & 11 7 16 20 4 28 30 9 40 44 3 54 15 31 66 9 37 8 41 30 48
34 1 2 4 4 10 14 17 20 6 28 8 36 21 44 23 54 12 20 68 3 37 8 12 44 49
35 2 4 5 14 6 3 16 18 22 28 5 38 42 21 12 54 58 31 33 8 72 80 84 18 32
37 1 1 6 3 5 14 18 20 24 6 32 74 20 44 23 26 60 62 33 7 4 80 41 30 98
38 1 1 3 § 10 12 8 38 8 28 5 4 42 42 48 52 30 31 34 3 6 39 82 90 98
39 1 3 4 6 12 26 3 18 11 15 10 38 40 22 16 27 60 30 22 72 74 10 84 88 98
41 1 4 2 § 12 14 6 20 11 30 15 18 82 21 48 54 29 15 68 24 36 80 41 90 98
42 1 3 6 14 10 4 16 9 24 14 16 19 40 44 23 13 10 60 68 72 74 78 14 88 98
43 2 2 3 3 6 12 8 18 8 15 32 19 10 8 48 52 1 31 17 35 74 80 21 30 24
46 1 2 4 3 12 2 3 20 1 30 4 12 20 44 24 52 58 12 68 36 12 13 28 45 49
Table 1: gn(p) for the first 25 primes
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gn(m) =2 4 8 3 9 2r 5 25 125 7 49 343 11 121 1331 13 169 2197
N =2 1 2 4 4 12 36 6 30 150 3 21 147 12 132 1452 14 14 182
3 2 4 4 6 18 54 3 15 7 8 56 392 10 110 1210 12 156 2028
) 1 1 2 4 4 12 10 50 250 8 56 392 5 55 605 14 182 2366
6 1 2 4 6 6 18 4 20 100 8 8 5 3 33 363 7 91 1183
7 2 4 4 2 6 18 6 30 150 7 49 343 12 132 1452 14 182 2366
10 1 2 4 1 3 9 10 50 250 & 56 392 12 132 1452 3 39 507
11 2 4 4 1 3 9 4 20 100 3 21 147 22 242 2662 7 91 1183
13 1 12 1 1 3 2 10 50 8 56 392 4 44 484 26 338 4394
14 1 2 2 4 12 3 4 20 100 7 49 343 10 110 1210 12 156 2028
15 2 4 4 3 3 9 10 50 250 6 42 294 10 110 1210 7 91 1183
17 1 11 4 12 3 6 30 150 8 56 392 4 44 484 6 78 1014
19 2 4 4 2 6 18 4 20 100 8 56 392 3 33 363 1 13 169
21 1 2 21 3 9 4 20 100 14 98 686 4 44 484 14 182 2366
22 1 2 4 2 6 18 3 15 7 1 7 49 22 242 2662 12 156 2028
23 2 4 4 4 12 36 2 10 50 3 3 21 10 110 1210 12 156 2028
26 1 2 4 4 12 36 1 5 25 8 56 392 5 55 605 26 338 4394
29 1 1 2 4 4 4 1 5 25 1 7 49 4 4 44 2 26 338
30 1 2 4 6 18 54 5 25 126 6 42 294 4 44 484 12 156 2028
31 2 4 4 2 6 18 4 20 100 1 7 49 10 110 1210 2 26 338
33 1 2 2 6 6 18 6 30 150 8 56 392 11 121 1331 7 91 1183
34 1 2 4 2 6 18 4 20 100 4 28 196 10 110 1210 14 182 2366
35 2 4 4 4 12 36 5 25 125 14 98 68 6 66 726 3 39 507
37 1 121 3 9 6 30 150 3 3 21 5 55 605 14 182 2366
38 1 241 3 9 3 3 15 8 56 392 10 110 1210 12 156 2028
39 1 12 3 9 2r 4 4 20 6 6 42 12 132 1452 26 338 4394
41 1 1 1 4 12 36 2 10 50 8 56 392 12 132 1452 14 182 2366
42 1 2 4 3 3 3 6 6 30 14 98 68 10 110 1210 4 52 676
43 2 4 4 2 2 6 3 16 7 3 21 147 6 66 726 12 156 2028
46 1 2 2 2 6 18 4 20 100 3 21 147 12 132 1452 2 26 338
47 2 4 4 4 12 36 6 30 150 2 14 98 10 110 1210 14 182 2366
o1 2 4 4 6 6 18 4 4 20 1 7 49 6 66 726 12 156 2028

Table 2: gn(p) for the first several prime powers
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Table 3: 2 <m <25, and N <51

=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25
1 4 2 6 4 3 4 12 6 12 4 14 3 12 8 8 12 20 6 12 12 11 30
2 6 4 3 6 8 4 18 6 10 12 12 8 6 8 18 18 5 12 24 10 11 15
1 4 1 10 4 8 2 4 10 5 4 14 8 20 4 6 4 3 10 8 5 8 50
1 6 2 4 6 8 4 6 4 3 6 7 8 12 8 18 6 18 4 24 3 11 20
2 24 6 2 7 4 6 6 12 4 14 14 6 4 3 6 18 12 14 12 12 30
1 12 10 1 8 4 3 10 12 2 3 8 10 8 18 3 4 10 8 12 24 50
2 1 4 4 2 3 4 3 4 2 4 7 6 4 8 18 6 6 4 3 22 24 20
1 11 2 1 8 2 1 2 4 1 26 8 2 4 8 1 20 2 8 4 11 10
1 4 2 4 4 v 2 12 4 10 4 12 v 4 4 9 12 20 4 28 10 12 20
2 3 4 10 6 6 4 3 10 10 12 7 6 30 4 16 6 20 20 6 10 24 12 50
1 41 6 4 8 1 12 6 4 4 6 8 12 2 34 12 9 6 8 4 24 4 30
2 2 4 4 2 8 4 6 4 3 4 1 8 4 8 4 6 38 4 8 6 8 4 20
1 1 2 4 1 14 2 3 4 4 2 14 14 4 4 16 3 10 4 14 4 8 2 20
1 22 3 2 1 4 6 3 2 2 12 1 6 8 18 6 5 6 2 22 24 4 15
2 4 4 2 4 3 4 12 2 10 4 12 6 4 4 9 12 18 4 12 10 23 4 10
1 4 2 1 4 8 4 12 1 5 4 26 8 4 8 4 12 9 2 8 5 11 4 5
1 4 1 1 4 1 2 4 1 4 4 2 1 4 4 6 4 20 1 4 4 11 4 5
1 6 2 5 6 6 4 18 5 4 6 12 6 30 8 16 18 9 10 6 4 3 12 25
2 2 4 4 2 1 4 6 4 10 4 2 2 4 4 9 6 4 4 2 10 11 4 20
1 6 2 6 6 8 2 6 6 11 6 7 8 6 4 16 6 20 6 24 11 4 6 30
1 2 2 4 2 4 4 6 4 10 2 14 4 4 8 17 6 20 4 4 10 6 4 20
2 4 4 5 4 14 4 12 10 6 4 3 14 20 8 16 12 18 20 28 6 22 4 25
1 11 6 1 3 2 3 6 5 1 14 3 6 4 18 3 20 6 3 5 24 2 30
1 12 3 1 8 4 3 3 10 2 12 8 3 8 8 3 38 6 8 10 8 4 3
1 31 4 3 6 2 9 4 12 3 26 6 12 4 3 9 18 4 6 12 11 6 4
1 41 2 4 8 1 12 2 12 4 14 8 4 1 6 12 20 2 8 12 11 4 10
1 3 2 6 3 14 4 3 6 10 6 4 14 6 8 16 3 9 6 42 10 24 12 6
2 2 4 3 2 3 4 2 6 6 4 12 6 6 8 8 2 18 12 6 6 8 4 15
1 2 2 4 2 3 2 6 4 12 2 2 3 4 4 3 6 20 4 6 12 1 2 20
2 4 4 6 4 2 4 12 6 10 4 14 2 12 4 8 12 6 12 4 10 11 4 30
2 6 4 4 6 1 4 6 4 6 12 12 2 12 8 34 6 10 4 6 6 24 12 4



22 23 24 25

21

19 20

9 10 11 12 13 14 15 16 17 18

8

8§ 4 2
22 2 50
12 24 6 5
11 4 30
1 4 20
8 2 10
11 4 6
8§ 4 50
6 20

4 15

2 4

4 5

4 20

1 2

4 10

4 5

10 24
23
22
11
11
12 24

1

10

4

12

12
24 22 24
28 22 22

4
8
6
3
8
8
4
12
6
8
14
4
8
12

4 20 2
6 9 10
9 38 2
1 9 6
6 10 4
1 3 2
4 18 6
12 20 10
18 18 4
2 10 12
2 20 4
6 20 2
12 20 4
39 2
4 9 2
4 3 2

4
16
9
18
8
6
9
18
8
1
16
16
9
18
18
16

4
10
3
6
4
2
12
20
12
6
4
2
4
2
4
4

5)
11
12

1
10

4
12
12
22
10

5)

)
10
12
12
22

4

6

9

1

6

1

4
12
18
2

2

6
12
3

4

4

1
1
1
1
2
1
1
1
1
2
1
1
2
1
1
1

30
20

11

20

18

12

12

15
50
20
30

24
11

2 18 12 8

8
34

10

14

11
24
24

8
14

20 1
20

12

8

10

18

4 13 14 2

1

20
50
30

11
22

18 12 19 10 12
20

18

20

10

12

=53
95
o7
58
99
69
70

61
62
65
66
67
71
73
74
7

N

57

78
79
82

83
85

86

87
89

91

93

94
95

97

,and b1 < N < 100

Table 4: 2 <m <25
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Table 5: 26 < m < 50, and N <51

N(m) | m=26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
N=2 14 36 6 10 12 15 16 12 8 6 12 38 20 28 12 5 12 44 12 12 11 23 & 21 30
3 12 54 8 15 6 32 16 30 18 24 36 36 10 12 12 14 24 11 20 18 22 23 24 56 30
5 14 12 8 7 20 5 8 20 6 40 4 38 3 28 10 20 8 44 5 20 8 16 4 56 50
6 7 18 8 28 12 32 16 6 18 8 6 19 18 42 4 42 24 42 6 12 11 23 24 8 20
7 14 18 28 28 6 15 4 12 6 42 12 36 18 14 12 21 14 44 12 6 12 23 4 49 30
10 3 9 8 30 10 15 16 12 18 40 6 6 4 3 20 20 8 21 12 30 24 48 8 56 50
11 14 9 12 15 4 32 16 22 18 12 12 36 6 7 4 42 6 42 44 12 24 48 & 21 20
13 26 3 8 14 2 32 8 4 8 8 1 38 20 26 2 14 8 7 4 2 11 16 4 56 10
14 12 36 14 6 4 3 8 20 9 28 12 38 20 12 4 7 28 42 10 12 12 23 4 49 20
15 14 9 12 30 30 8 & 30 16 30 12 19 20 21 20 21 6 7 20 30 24 48 12 42 50
17 6 36 8 30 12 32 4 4 34 24 12 38 9 12 6 42 8 21 4 12 24 23 4 56 30
19 2 8 8 1 4 3 16 6 4 8 12 19 38 2 4 42 8 22 12 12 8 48 8 56 20
21 14 9 14 5 4 16 8 4 16 28 6 3 10 14 4 40 14 14 4 12 8 23 4 98 20
22 12 18 2 28 6 32 16 22 18 3 6 19 5 12 12 42 2 22 22 6 24 16 8 7 15
23 12 36 12 28 4 16 4 20 18 6 12 38 18 12 4 10 12 42 20 12 46 6 4 3 10
26 26 36 8 30 4 32 16 20 4 8 12 18 9 52 4 42 8 44 10 12 11 48 8 56 5
29 2 4 1 58 4 32 8 4 6 1 4 38 20 4 2 14 4 4 4 4 11 16 4 7 5
30 12 54 6 14 30 32 16 12 16 30 18 12 9 12 20 42 6 11 4 90 3 24 24 42 25
31 2 8 4 10 4 31 4 10 18 4 12 38 4 2 4 5 2 42 20 12 22 24 4 7 20
33 7 18 8 28 6 30 8 66 16 24 6 9 20 42 6 40 24 44 22 6 4 3 12 56 30
34 14 8 4 28 4 8 16 10 17v 4 6 36 20 14 4 21 4 44 10 12 6 23 8 28 20
35 6 36 28 28 20 S5 16 12 16 70 12 38 18 12 20 42 28 21 12 60 22 12 & 98 50
37 14 9 3 6 6 32 8 5 18 6 3 7 20 14 6 20 3 4 5 6 24 23 4 3 30
38 12 9 8 28 3 5 16 10 8 24 6 4 38 12 12 42 8 42 10 3 8 48 8 56 3
39 26 27 6 15 12 10 8 12 3 12 9 38 18 78 4 40 6 22 12 36 11 16 12 6 4
41 14 36 8 30 4 15 1 12 6 8 12 18 20 28 2 8 &8 21 12 12 11 48 4 56 10
42 4 3 14 14 6 16 16 30 16 42 6 19 9 12 12 40 42 44 10 6 24 23 24 98 6
43 12 6 12 15 6 32 16 6 8 3 4 19 18 12 12 10 6 8 12 6 8 48 & 21 30
46 2 8 6 30 4 4 8 12 3 12 6 12 20 2 4 20 6 44 12 12 1 24 4 21 20
47 14 36 4 30 12 15 4 20 8 6 12 12 6 28 12 7 4 42 20 12 22 47 4 14 30
51 12 18 4 28 12 15 16 6 34 4 12 19 10 12 4 20 6 11 12 12 24 23 24 7 4
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gn(m) |m=26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
N =53 1 2 1 14 4 32 8 20 4 2 4 6 20 4 2 14 4 7 5 4 8 23 4 7 2
55 12 8 8 1 10 8 8 22 16 40 6 38 9 12 10 7 8 44 11 30 22 46 4 56 50
o7 14 27 6 2803 8 8 12 9 6 18 38 38 42 2 40 6 6 12 9 24 48 12 42 5
o8 2 3 6 58 6 32 16 1 18 6 2 9 9 2 12 42 3 21 2 6 11 48 8 21 30
59 14 8 8 28 4 15 16 10 8 & 12 19 10 14 4 10 8 14 20 12 2 23 8 56 20
61 1 3 8 10 2 32 8 4 6 8 1 38 3 1 2 5 8 4 4 2 8 23 4 56 10
62 12 12 4 28 12 31 4 12 9 12 4 12 18 12 6 20 4 44 12 12 11 24 4 28 6
65 26 36 3 14 20 32 2 12 18 30 12 3 20 52 10 42 12 4 12 60 8 23 4 21 50
66 4 54 8 15 12 15 4 66 8 8 18 19 18 12 4 10 24 6 22 36 24 48 6 56 20
67 2 2 12 28 6 15 16 10 2 3 4 36 10 2 12 42 6 42 20 6 24 16 8 21 30
69 1 6 8 10 4 10 4 10 16 8 2 19 20 2 4 14 8 4 10 4 23 8 2 56 4
70 7 8 14 30 2 15 16 10 16 14 6 36 20 14 4 42 14 22 10 6 22 24 8 98 5
71 14 36 4 4 4 15 4 20 18 4 12 36 20 28 4 21 4 44 20 12 22 23 4 7 20
73 14 9 8 3 2 32 4 12 18 8 3 18 9 14 2 20 8 44 12 6 11 48 2 8 2
74 6 4 6 7 4 32 16 12 18 6 4 74 9 12 4 20 12 1 12 4 24 23 8 3 10
7 4 4 14 10 4 32 4 4 16 7 4 3 3 4 2 40 28 11 22 4 22 16 4 49 5
78 13 8 6 28 6 10 16 10 18 6 6 18 20 26 12 8 6 42 10 6 11 12 8 42 30
79 12 6 12 30 4 16 4 12 18 12 4 38 20 12 4 7 6 42 12 4 6 23 4 21 20
82 6 3 8 7 6 15 16 5 18 24 2 38 9 6 12 8 8 4 10 6 11 16 8 56 6
83 14 3 8 28 6 32 16 3 8 24 4 3 18 7 12 4 8 14 12 3 24 23 8 56 30
85 14 1 1 10 10 32 8 4 34 10 1 3 3 14 10 2 1 4 4 10 11 16 4 7 50
86 7 9 6 28 4 32 16 2 1 12 6 36 10 7 4 20 3 8 2 12 8 48 8 21 20
87 12 9 4 58 6 30 8 6 16 12 12 19 6 12 12 40 4 21 12 6 22 48 4 28 30
89 14 36 8 10 4 32 4 20 8 8 12 38 20 28 1 42 8 44 5 12 24 23 4 8 1
91 26 18 28 28 2 16 16 2 18 14 12 38 20 26 4 40 14 11 4 6 24 3 8 98 10
93 14 3 2 4 1 62 8 5 16 2 2 38 6 14 2 7 2 22 10 1 11 16 4 14 5
94 12 8 4 28 4 15 4 4 8 4 6 38 4 12 4 3 4 4 4 12 11 47 2 28 20
95 4 36 6 15 20 1 8 12 18 30 12 36 19 4 10 7 12 14 6 60 22 46 4 42 50
97 14 9 8 10 6 5 4 o5 18 24 3 38 20 14 6 42 8 21 5 6 8 23 2 56 30

Table 6: 26 < m < 50, and 51 < N < 100
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Table 7:

51 <m < 75,and N <51

n(m) | m=51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 U5

N=2 8 14 54 36 12 12 20 10 20 12 62 15 12 32 42 12 68 8 44 6 35 12 36 38 60
3 18 12 9 54 30 8 30 30 58 12 60 32 72 32 12 30 34 36 66 24 7 36 36 36 30
5 12 14 18 12 10 & 12 7 29 20 10 5 8 16 70 20 68 6 & 40 35 4 74 38 100
6 18 14 52 18 12 8 18 28 30 12 31 32 24 32 28 6 66 18 66 8 35 12 36 19 60
7 6 28 52 18 12 28 18 28 58 12 62 30 42 8 42 12 68 12 12 42 18 12 37 36 30
10 18 6 13 9 60 8 4 30 20 10 62 15 24 32 30 12 11 18 24 40 35 12 74 6 50
11 18 28 52 18 44 12 6 30 30 4 31 32 3 32 28 22 34 36 24 12 24 12 74 36 20
13 8 26 13 3 4 8 20 14 4 2 5 32 8 16 26 4 68 8 11 8 24 2 74 38 10
14 36 12 54 36 20 14 20 6 60 4 20 3 8 16 12 20 66 18 12 28 18 12 37 38 20
15 48 28 13 18 10 12 60 30 58 60 12 8 6 16 70 30 33 16 24 30 5 12 74 38 150
17 68 6 13 36 12 8 36 30 29 12 62 32 24 8 6 4 3 34 24 24 72 12 74 38 60
19 4 4 27 18 12 8 38 30 58 4 60 6 24 32 4 6 66 4 8 8 35 12 9 38 20
21 16 4 9 9 4 14 10 5 29 4 62 16 42 16 28 4 22 16 8 28 24 6 74 3 20
22 18 12 27v 18 66 4 10 28 58 6 60 32 6 32 12 22 66 18 24 3 24 12 74 19 30
23 36 12 54 36 10 12 36 28 12 4 62 16 12 8 12 20 22 36 92 6 36 12 9 38 20
26 4 26 18 36 5 8 36 30 29 4 62 32 24 32 26 20 11 4 44 8 72 12 74 18 20
29 12 2 26 4 4 2 20 58 29 4 62 32 4 16 2 4 11 6 4 1 35 4 74 38 20
30 48 12 27v 54 20 12 18 14 60 30 62 32 18 32 60 12 17 16 6 30 35 36 37 12 150
31 18 4 54 18 20 4 4 10 60 4 62 62 6 4 4 10 68 36 22 4 36 12 37 38 20
33 48 14 54 18 66 8 60 28 15 6 31 30 24 16 42 66 66 16 12 24 9 6 37 9 30
34 34 14 54 18 20 4 20 28 12 4 20 8 12 32 28 10 68 34 6 4 3 12 37 36 20
35 16 12 54 36 30 28 36 28 58 20 31 10 84 32 15 12 33 16 44 70 8 12 72 38 100
37 18 14 26 9 30 6 20 6 60 6 62 32 3 16 42 5 33 18 24 6 7 6 4 74 30
38 8 12 52 9 30 8 38 28 30 6 31 5 24 32 12 10 34 8 8 24 35 12 6 4 3
39 3 26 27 2r 12 6 18 15 60 12 30 10 18 16 52 12 22 3 33 12 72 18 74 38 12
41 12 14 54 36 12 8 20 30 29 4 15 15 24 1 14 12 68 6 44 8 24 12 36 18 20
42 48 4 13 3 30 2809 14 10 6 60 16 42 32 12 30 68 16 24 42 72 12 74 19 6
43 8 12 52 6 6 12 18 30 1 12 31 32 6 32 12 6 17 8 8 6 35 4 74 38 30
46 6 2 52 18 12 6 20 30 58 4 12 4 6 16 4 12 68 6 2 12 36 6 12 12 20
47 8 28 52 36 30 4 12 30 60 12 60 30 12 4 42 20 22 8 44 6 18 12 37 12 60
51 102 12 27y 18 12 4 30 28 58 12 31 30 6 32 12 6 17 68 24 4 72 12 74 38 12
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gn(m) | m=51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 T4 15

N =53 4 1 106 12 10 2 20 14 29 4 62 32 4 16 2 20 68 4 8 2 8 4 7 6 4
95 16 12 54 18 110 8 18 15 6 10 31 8 24 16 60 22 66 16 22 40 36 6 8§ 38 50
o7 9 14 52 2v 12 6 114 28 29 6 15 8 18 16 14 12 34 18 24 6 35 18 36 38 15
58 18 2 18 3 6 12 9 58 60 6 10 32 3 32 6 1 68 18 11 6 7 4 74 9 30
99 8 28 4 18 20 8 10 28 118 4 31 30 24 32 28 10 66 8 2 8 72 12 74 38 20
61 6 1 6 3 4 8 3 10 4 2 122 32 8 16 2 4 68 6 8 8 8 2 12 38 10
62 36 1252 12 12 4 3 28 58 12 60 31 4 & 12 12 66 18 44 12 9 4 37 12 12
65 36 26 54 36 60 3 20 14 60 20 30 32 12 4 130 12 33 18 8 30 72 12 9 3 100
66 24 4 52 54 4 8 18 16 58 12 12 15 72 8 4 66 17 8 24 & 8 18 74 19 60
67 2 4 2r 2 30 12 10 28 15 12 31 30 6 32 3 10 134 4 24 6 8 4 36 36 30
69 16 2 52 6 20 8 20 10 5 4 31 10 8 8 4 10 68 16 46 8 6 2 6 19 4
70 16 14 52 18 5 28 20 30 60 2 30 15 42 32 7 10 17 16 22 14 72 12 72 36 10
71 36 28 54 36 20 4 20 4 2 4 62 30 12 8 28 20 66 36 44 4 7v1 12 18 36 20
73 18 14 54 9 12 8 9 3 60 2 3 32 24 & 14 12 3 18 11 8 35 3 146 18 2
74 36 6 54 4 12 12 36 7 29 4 5 32 12 32 6 12 68 18 24 6 7 4 18 74 20
T 16 4 13 4 22 14 12 10 20 4 20 32 28 8 4 44 22 16 4 T 10 4 24 3 20
78 18 26 4 18 30 12 20 28 29 6 31 10 6 32 78 10 68 18 22 6 36 12 37 18 30
79 18 12 6 6 12 12 20 30 58 4 62 16 6 4 12 12 68 36 6 12 35 4 18 38 20
82 18 6 13 3 30 8 9 7 60 6 62 15 8 32 6 5 33 18 11 24 72 4 18 38 6
83 8 28 27 6 3 § 18 28 15 12 60 32 8 32 21 6 66 8 24 24 35 4 74 36 15
85 34 14 18 1 20 2 3 10 29 10 62 32 1 16 70 4 68 34 11 10 & 2 12 3 50
86 1 14 27 9 4 12 10 28 58 4 20 32 3 32 28 2 66 2 8 12 35 12 74 36 20
87 16 12 54 18 6 4 3 58 58 12 31 30 12 16 12 6 68 16 11 12 35 12 74 38 30
89 8 14 2 36 5 § 20 10 12 4 62 32 24 8 14 20 33 8 24 8 35 12 9 38 4
91 18 52 52 18 2 28 20 28 20 4 31 16 42 32 26 2 3 36 24 14 70 12 72 38 10
93 16 14 52 3 5 2 6 4 20 2 62 62 2 16 14 5 22 16 11 2 24 2 74 38 5
94 8 12 54 18 4 4 4 28 58 4 2 1, 12 8 12 4 68 8 22 4 3 6 37 38 20
95 36 4 52 36 30 6 76 15 29 20 5 15 12 16 20 12 68 18 44 30 35 12 74 36 100
97 18 4 26 9 30 8 20 10 20 6 30 5 24 8 42 5 68 18 8 24 72 3 36 38 30

Table 8: 51 <m < 75, and 51 < N < 100
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Table 9: 76 < m < 100, and N < 51

N(m) |m=76 77 78 79 8 8 82 83 84 8 8 8 8 8 90 91 92 93 94 95 96 97 98 99 100
N=2 20 12 28 13 24 108 5 84 12 24 44 20 12 44 12 42 22 60 23 60 16 48 21 12 30
3 20 40 12 80 24 162 14 82 24 18 22 30 20 90 18 24 44 96 46 15 48 16 56 90 60
5 3 40 28 13 20 36 20 28 8 30 44 28 10 22 20 56 8 20 16 30 & 98 56 20 50
6 18 24 42 80 8 54 42 v 24 36 42 84 12 10 12 56 22 96 23 36 48 12 8 6 20
7 36 84 14 40 12 54 42 82 28 6 44 28 12 45 6 14 12 30 46 18 4 49 98 12 60
10 4 24 3 39 40 27 20 41 8 90 21 30 12 44 30 24 24 15 48 20 16 98 56 12 50
11 12 66 14 39 8 27 42 82 12 36 42 15 44 44 12 21 24 32 48 12 16 24 42 66 20
13 20 8§ 26 13 4 9 14 28 8 8 7T 14 4 30 2 104 11 32 16 20 8 98 56 4 10
14 20 70 12 10 4 108 7 28 28 36 42 12 10 45 12 8 12 12 23 20 8 7 49 60 20
15 20 30 42 40 20 27 42 42 12 80 14 30 20 45 30 42 24 24 48 20 24 98 42 30 100
17 9 8§ 12 16 6 108 42 41 8 102 21 60 4 44 12 24 24 32 23 18 4 98 56 12 30
19 76 24 2 39 8 54 42 42 8 4 22 30 12 90 12 8 8§ 6 48 76 16 98 56 6 20
21 10 28 14 26 4 27 40 41 14 16 14 5 4 88 12 14 8 16 23 20 8 98 98 12 20
22 10 22 12 3 24 54 42 21 2 18 22 28 44 44 6 12 24 32 16 15 16 48 7 66 30
23 36 30 12 13 4 108 10 8 12 18 42 28 20 9 12 12 92 16 6 18 4 49 6 60 20
26 18 40 52 39 8 108 42 41 8 4 44 60 20 90 12 104 22 32 48 9 16 98 56 60 10
29 20 4 4 80 4 4 14 41 4 6 44 116 4 30 4 2 11 32 16 20 8 98 7 4 )
30 18 12 12 80 40 162 42 82 6 8 11 42 4 30 90 12 6 96 24 45 48 49 42 36 50
31 4 10 2 39 4 54 10 8 4 36 42 10 20 45 12 2 44 62 24 4 4 48 14 30 20
33 20 88 42 80 12 54 40 41 24 48 44 84 22 30 6 56 4 30 3 60 24 48 56 66 30
34 20 20 14 8 8 54 21 12 4 68 44 28 20 44 12 28 6 8 23 20 16 49 28 30 20
35 36 42 12 80 40 108 42 84 28 80 42 28 12 18 60 42 44 20 12 90 16 32 98 12 100
37 20 15 14 80 12 27 20 41 3 18 44 6 10 30 6 42 24 32 23 60 8 98 3 15 30
38 38 40 12 39 24 27 42 82 8§ 24 42 28 20 90 3 24 8 5 48 114 16 98 56 30 6
39 18 12 78 10 4 8 40 84 6 1222 15 12 88 36 78 11 30 16 36 24 98 6 36 4
41 20 24 28 80 2 108 82 41 8 6 21 60 12 90 12 56 11 60 48 20 4 98 56 12 10
42 18 70 12 78 24 9 40 14 42 48 44 42 20 88 6 28 24 48 23 18 48 98 98 30 6
43 36 6 12 8 24 18 10 21 12 24 8 30 12 30 6 12 8 32 48 18 16 24 42 6 60
46 20 122 13 4 54 20 28 6 12 44 30 12 45 12 6 2 4 24 20 8 49 21 12 20
47 12 10 28 20 12 108 14 12 4 24 42 60 20 11 12 14 44 60 94 6 4 3 14 60 60
51 20 6 12 39 8 54 20 82 12 68 22 8 12 90 12 12 24 30 46 20 48 98 14 6 4
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gn(m) |m=76 77 78 79 8 8 82 8 8 8 8 & 8 8 90 91 92 93 94 95 96 97 98 99 100

N =53 20 5) 4 80 4 36 14 28 4 4 7 28 10 44 4 1 8§ 32 23 20 8 16 7 20 2
95 9 88 12 39 20 54 v &8 8 8 44 30 22 4 30 24 22 8 46 90 8 98 56 66 50
o7 38 12 42 40 4 81 40 28 6 9 6 84 12 88 9 42 24 24 48 38 24 98 42 36 10
58 18 3 2 80 24 9 42 28 6 18 21 58 4 30 6 6 22 32 48 18 16 98 21 1 30
99 20 40 14 8 8 54 10 82 8 § 14 28 20 90 12 56 4 30 46 20 16 98 56 30 20
61 3 8 1 80 4 9 5 41 8 6 44 10 4 10 2 8 8 32 23 6 8§ 16 56 4 10
62 18 12 12 39 6 36 20 8 4 18 44 28 12 15 12 12 22 124 24 18 4 48 28 12 6
65 20 1252 39 10 108 42 41 12 90 4 28 12 10 60 78 & 32 23 20 4 48 21 12 &0
66 18 88 12 8 4 162 10 21 24 8 6 30 22 18 36 8 24 30 48 36 12 48 56 198 20
67 20 30 2 13 24 6 42 21 12 3 42 28 20 44 6 3 24 30 16 30 16 98 42 10 60
69 20 40 2 16 4 18 14 41 8 16 44 10 10 8 4 8§ 46 10 8 20 4 7 56 10 4
70 20 70 14 8 8 54 42 8 14 16 22 30 20 30 6 14 22 30 24 20 16 32 98 30 10
71 20 10 28 40 4 108 42 84 4 36 44 4 20 22 12 14 44 60 46 20 4 49 14 60 20
73 9 24 14 13 2 2t 20 &4 8 18 44 30 12 1 6 56 11 32 48 18 4 48 8 12 2
74 18 12 12 8 8 12 20 84 12 18 1 28 12 90 4 6 24 32 23 18 16 98 3 1210
T 6 154 4 8 2 1240 41 28 16 11 20 22 5 4 28 22 32 16 3 4 49 49 44 10
78 20 30 26 8 24 54 8 41 6 18 42 28 20 8 6 78 22 10 12 60 16 49 42 30 30
79 20 12 12 79 4 18 14 84 12 36 42 30 12 11 4 12 12 16 46 20 4 24 42 12 20
82 18 40 6 8 24 9 82 84 8 8 44 7 20 90 6 24 22 15 16 18 16 98 56 5 6
83 36 24 14 13 24 9 4 166 8 24 14 28 12 90 6 56 24 32 46 18 16 14 56 3 60
85 3 4 14 80 20 3 2 4 1 170 44 10 4 4 10 14 11 32 16 30 8 8 7 4 50
86 10 6 7 8 8 27 20 82 6 4 8 28 4 90 12 21 8 32 48 20 16 16 21 6 20
87 12 1212 78 12 27 40 82 4 48 42 58 12 8 6 12 44 30 48 6 8§ 14 28 6 60
89 20 40 28 39 2 108 42 28 8 8§ 44 20 5 178 12 56 24 32 23 20 4 48 8 60 1
91 20 14 26 80 8 54 40 84 28 18 22 28 4 8 6 182 24 16 6 20 16 96 98 6 20
93 6 10 14 5 4 9 741 2 16 22 4 10 88 1 14 22 62 16 6 § 16 14 5 10
94 4 4 12 10 4 54 3 82 4 8§ 44 28 4 44 12 12 22 30 47 4 4 24 28 12 20
95 38 6 4 3 20 108 7 8 12 90 14 60 6 45 60 12 22 60 46 190 8 96 42 12 50
97 20 40 14 39 6 27 42 84 8 8 21 10 5 44 6 56 8 5 23 60 4 194 56 15 30

Table 10: 76 < m < 100, and 51 < N < 100



A.2 Maple Code

Following are a list of commands, which can be useful for computing solutions of
Pell’s equation, and gy(m). These commands have been written for Maple software

version 12.02.
To begin we need the following packages:
restart; with(numtheory)

The command NGen takes an integer (preferably square free) and returns the

generator of GG as a list.
NGen := proc (N::integer)
local cf, z, x, y, j, test, 1i;

cf := cfrac(sqrt(N));

x := nthnumer(cf, 1);

y := nthdenom(cf, 1);
test := false; i := 1;

false do

while test
if x"2-Nxy~2 =1

true

then test
else 1 := i+1;

cf := cfrac(sqrt(N), 1i);
X := nthnumer(cf, i);

y := nthdenom(cf, i)

end if

end do;

return [x, y]

end proc:

The command NMult accepts as input two lists (these should be solutions to (1))
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and an integer (V). It multiplies the two lists according to the binary operation
defined for GG, and returns the product as a list. The command mMult accepts as
input two lists (these should be solutions to (1)) and an integer (/N) and an integer
(m). It performs the multiplication mod m, and then returns the product as a list.

NMult := proc (x1::list, x2::1list, N)
return [x1[1]1*x2[1]+N*x1[2]*x2[2], x1[1]*x2[2]+x1[2]*x2[1]]
end proc:

mMult := proc (x1::1list, x2::1ist, N::integer, m::integer)
return [mod(x1[1]*x2[1]+N*x1[2]*x2[2], m), mod(x1[1]*x2[2]+x1[2]*x2[1],
m) ]
end proc:

The command mGroup accepts as input two integers. The first is N, and the
second is the integer m, which will be used in reduction mod m. It returns a list of
group elements (each presented as a list with two elements), gy(m), N, and m.

mGroup := proc (N::integer, m::integer)

local g, group, h;

group := [];
g := NGen(N);
h := mMult(g, [1, 0], N, m);

while not h = [1, 0] do

group := [op(group), hl;

h := mMult(h, g, N, m)

end do;

group := [op(group), hl;

return [group, nops(group), N, m]
end proc:

The command GN accepts the same input as the previous command. It returns
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the order of the group red,,(G).
GN := proc (N::integer, m::integer)

local g, k, h;

g := NGen(N);

h := mMult(g, [1, 0], N, m);

k :=1; while not h = [1, 0] do
h := mMult(h, g, N, m)

k:= k+1

end do;

return k

end proc:

The command mGroup can take some time to run, because of the inherent difficulty
in finding the generator for the group G. If the generator is known, then mGroupGen
will accept two integers (N and m) and a generator as input, and build the group
generated by this element. It performs a check that the alleged generator is in fact a
solution of (1). This command can save on time if the generator for G is difficult to
compute. It returns the same as the previous command.

mGroupGen := proc (N::integer, m::integer, gen::list)
local group, h;
group := [];
if gen[1]"2-N*gen[2]"2 = 1
then h := mMult(gen, [1, O], N, m);
while not h = [1, 0] do
group := [op(group), hl;

h := mMult(h, gen, N, m)
end do;

group := [op(group), hl;
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return [group, nops(group), N, m]
else print("The input should be a solution to Pell’s equation")
end if

end proc:

B Dirichlet’s Unit Theorem

In Lagrange’s proof we saw that the study of the Pell equation naturally leads to
the study of quadratic field extensions of Q. Consider the quadratic field extention
Q(V/N) = {a—l— bV Nla,b € Q}. There is an injective map from G to the set I =
{{L’ +yVNlz,y € Z}. In fact, if we restrict the image to the set {1’ +yVN € I|z? — Ny? = j:l},
then the map is actually a group homomorphism. Because of this natural relation,

we can use Dirichlet’s Unit Theorem to describe the group structure of G.

Before we can state Dirichlet’s Unit Theorem, we will need more background in
quadratic fields. Then we will state and prove Dirichlet’s Unit Theorem for quadratic

fields of the form Q(v/N) where N > 1 is a square-free integer.

It is not hard to check that Q(v/N) is a field. In fact, if & = a + bv/N, then

_1_a—b\/N

¢ T 2eN

Now if & = a + bv/N is an element of our field, Q(v/N), then we define the

conjugate of a to be

a=a—bVN.

There is an associated norm N : Q(v/N) — Q defined by

N(a) = aa = a® — Nb*.
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We also want to define the trace function Tr : Q(v/N) — Q by
Tr(a) = a + & = 2a.
Now we put A = Z[w] = {a + bw|a,b € Z}, where w is defined to be

VN if N=2,3 (mod 4)

YN if N =1 (mod 4)

It is straightforward to show that A is a ring. Also, it is clear that if N = 2,3 (mod 4),
then for a € A, N(«) and Tr(«) are integers. If N =1 (mod 4), and o € A, we can

write « = a+bw = (a—|— %b)+%\/ﬁ Therefore a = (a+%b)—% N = a+bw. Hence

N(a) = ad = a® + b(w + ©) + b*wi

Tr(a) = a+a = 2a + b(w + ).

Now,
N=iv -

AN,

o=1_
WWw = ;

which is an integer, since N =1 (mod 4). Also,

So no matter how we choose N, we have o € A satisfying the polynomial
z® — Tr(a)z + N(a) = 0,

which is a monic polynomial with integer coefficients. We call A the ring of integers

of the field Q(v/N).
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Definition 20. For any ring R with unity, the group of units, R* is the set of

invertible elements of R, i.e.

R* = {u € RJuv =1 for some v € R}

It is straightforward to show that R* forms a group under the operation multipli-

Lis clearly

cation. The identity of R is clearly a unit. Further, if r is a unit, then r~
a unit, and given two units r, and s, it is clear that (rs)™* = r~'s7!, so the product
rs is also a unit.

We have seen that our norm function restricts to N : A — Z. Now if « is a unit
of A there exists § € A, such that o = 1. Now our norm function is multiplicative,
so we have N(a) N(8) = N(af) = N(1) = 1. Since N(«) is an integer, N(«) = £1.

Conversely, if N(a) = 1, we have aa = 1, and if N(a) = —1, then a(—a) = 1. In
either case a is a unit. Thus we see that A* = {a € A|N(«a) = +1}.

We need to know the structure of A*. The structure is given by Dirichlet’s unit

theorem. We will give a proof of Dirichlet’s Theorem for quadratic fields. This

generalizes to arbitrary number fields, for which proof, we refer to [1].

Theorem 21 (Dirichlet). The group of units A* is isomorphic to {+1} x Z.

We will need a few lemmas, before we can prove this theorem.

Lemma 22. For any constant ¢ > 0, there are only finitely many elements a € A,
such that

la] < ¢, and |a] <c.

Proof. For any element o« € A, we can write o = a + bw where a,b € Z. Similarly we
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can write & = a + bw. So we define the matrix

1 w a
P = , €T =
1 @ b
o
Then we see that Pz = . Clearly P is invertible. The inverse is
Q
1 W  —w

pt=__—

Q@
and so we have z = P~} , or in other words, v Na = av—aw, and vV Nb = a—a.

(67

Hence, if |a| < ¢ and |a] < ¢, then

VNla| < |a|l] + |al|w]
< 2cw
VN < |a] + o

< 2c.

Now we have a bound for a and b, independent of our choice of a. Since a and b are

necessarily integers, there are only finitely such «. O

Definition 23. We say a subgroup I' C R is discrete if for every ¢ > 0, there are

only finitely many elements g € I" such that |g| < c.

Lemma 24. Any non-trivial discrete subroup I' C R is isomorphic to the infinite

cyclic group, 7.
Proof. Since T' is discrete and non-trivial, we can find a smallest positive element
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g € I'. Let IV be the infinite cyclic group generated by ¢g. Clearly IV C I". We need
to show the reverse, i.e. I' C I'. We can write any element v € I" as 7 = ng + r, with
0 <r < g. Since I' is a group, we see that » € I". Since g is the smallest positive

element, we must have r = 0, i.e. v = ng. O

Lemma 25. Given two real numbers ay,as, let a = |ai| + |as|. If t > 1 is an integer,

then there exist non-zero integers xy, xa, such that if y = a1x1 + asxs,

max {|z1|, |z2|} < tand |y| < 2at™

Proof. Let h be an integer with t* < h < (t+1)%. Subdivide the interval [—at, at] into
h equal parts. There are (t + 1)? pairs of integers zy, ¥ such that z; € {0,1,...,t}.
There must be two pairs (£1,&2), and (1, m2) with a1&; + asés and aym; + asns in the

same subinterval. So now |y| = |a1(& — m) + a2(& — m2)| < 22 < 2at™ O

Lemma 26. There is a constant ¢ > 0 depending only on N, such that given an

integer t > 1, there is a non-zero algebraic integer o with

ct <ol <ctlandc 't < |a| <ct

Proof. By the previous lemma, there are integers z;, xs such that |z;| < t, and |z +

row| < 2at™t, where a = |1| + |w|. Let o = z; + xpw. Clearly
lo| < 2at™tand |a| = |71 + 220] < et
where ¢; = max {1,w}. Let ¢ = max {2a,c;}. Then we have
1 < N(a) = |o[a|

So from our previous calculations, we have |a| > ¢~ ', and |a| > ¢ 171 O
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Now we can prove the theorem.

Proof of Dirichlet’s Unit Theorem. Define the homomorphism

A A SR

by A(a) = log |r|. Here we think of R as an additive group. To see that this is indeed

a homomorphism of groups, suppose «a, f € A*. Then we have

AMaB) = log |aB| = log |a| + log |].

Now consider ker A. If € € ker A, then logle] = 0, i.e. |e] = 1. But recall
A* = {e€ A|Ne==+1}. Therefore |ee| = | N(¢)| = 1, and so |¢| = 1 as well. So by
lemma 22, we see that ker A is finite. Since the kernel is a subgroup, every element
in the kernel has finite order.

Conversely, suppose that u € A* has finite order, i.e. there is an integer k, such
that u* = 1. Then we have |u*| = |u|* = 1, and so |u] = 1. So we see that u € ker .
So the kernel is exactly the set of elements of finite order. Since Q(v/N) C C every
element of the kernel is a root of unity. Furthermore, Q(v/N) is a real extension of
Q, therefore it contains exactly two roots of unity, £1. Clearly {£1} C A*, therefore
ker A = {£1}.

We will now show that A(A*) is a discrete subgroup of R. To this end, suppose
we are given ¢ > (0. We must show that there are only finitely many o € A* with the

property that |log |al| < ¢, i.e.

e ¢ <la| <€

Because N(a) = 1, we know that |a| = |a|™!. Hence e™¢ < |a| < e°. Lemma 22 again

shows that there are finitely many such «. So now we know that \(A*) is a discrete
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subgroup of R. We need to show that the image is non-trivial.

To show that A(A*) is non-trivial, we will show that there exists an element
e € A* with |e| > 1.

Let ¢ be as in Lemma 26. We can choose an integer M > 2. Let t; > 1 be an
integer, and let ¢;,; = Mt; for each ¢ > 1. Then for each t;, the previous lemma

shows that there is an algebraic integer oy, such that

|| < ety = (M) < T < oyl

|54i+1| > C_ltH_l = C_lMti > ct; > |5£2|

Also we have | N(o;)| < (ct; ')(ct;) = . By a previous theorem there are only finitely
many non-associate a such that | N(a)| < ¢?, hence o, = ea, for p > v and some

unit €. So we have

« «
le] = | =& <1and|e|:‘—” > 1
a

v v

O

Now in order to see that G is cyclic, we notice that there is a group homomorphism
G — A* defined by sending (x,y) — x + yv/N. The kernel of this map is the set

{(1,0)}, hence the map is injective.

73



References

[1] J.S. Chahal. Topics in Number Theory. Plenum Press, 1988.

[2] Leonhard Euler. Elements of Algebra, with additions of M. de LaGrange. Long-

man, Reeves, Hurst and Co, 3rd edition, 1822.

[3] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Claren-
don Press, 1960.

[4] T.L. Heath, editor. The Works of Archimedes. Dover Publications, 2002.

[5] Ivor Thomas. Selections Illustrating the History of Greek Mathematics: with an

english translation by Ivor Thomas, volume 2. Harvard University Press, 1941.

[6] V.S. Varadarajan. Algebra in Ancient and Modern Times. American Mathemat-

ical Society, 1998.
[7) Andre Weil. Number Theory: An approach through history. Birkhauser, 1906.

[8] H.C. Williams, R.A. German, and C.R. Zarnke. Solution of the cattle problem of
archimedes. Mathematics of Computation, 19:671-674, 1965.

74



	Brigham Young University
	BYU ScholarsArchive
	2009-07-08

	Some Congruence Properties of Pell's Equation
	Nathan C. Priddis
	BYU ScholarsArchive Citation


	Front Matter
	Title Page
	Copyright Page
	Graduate Committee Approval
	Final Reading Approval and Acceptance
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables

	Introduction
	Diophantine Equations
	Algebraic Groups
	Algebraic Tori
	Dirichlet's Unit Theorem

	History
	The Cattle Problem
	Cakravala
	More Recent History

	Group Structure
	Continued Fractions
	Lagrange's Proof

	Main Result
	Proof of Main Result

	Tables and Maple Code
	Tables
	Maple Code

	Dirichlet's Unit Theorem
	References

