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ABSTRACT

Topics in Analytic Number Theory

Kevin Powell

Department of Mathematics

Master of Science

The thesis is in two parts. The first part is the paper “The Distribution of k-

free integers” that my advisor, Dr. Roger Baker, and I submitted in February 2009.

The reader will note that I have inserted additional commentary and explanations

which appear in smaller text. Dr. Baker and I improved the asymptotic formula for

the number of k-free integers less than x by taking advantage of exponential sum

techniques developed since the 1980’s. Both of us made substantial contributions to

the paper. I discovered the exponent in the error term for the cases k = 3, 4, and

worked the case k = 3 completely. Dr. Baker corrected my work for k = 4 and

proved the result for k = 5. He then generalized our work into the paper as it now

stands. We also discussed and both contributed to parts of section 3 on bounds for

exponential sums.

The second part represents my own work guided by my advisor. I study the zeros

of derivatives of Dirichlet L-functions. The first theorem gives an analog for a result

of Speiser on the zeros of ζ ′(s). He proved that RH is equivalent to the hypothesis

that ζ ′(s) has no zeros with real part strictly between 0 and 1
2
. The last two theorems

discuss zero-free regions to the left and right for L(k)(s, χ).
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1 The Distribution of k-free integers

Abstract

Let k ∈ {3, 4, 5}. Let

Rk(x) =
∑

n≤x
n is k-free

1 − x

ζ(k)
.

We give new upper bounds for Rk(x) conditional on the Riemann hypothesis,

improving work of S.W. Graham and J. Pintz. The method stays close to

that devised by H.L. Montgomery and R.C. Vaughan, with the improvement

depending on exponential sum results.

1.1 Introduction

Let k ≥ 2. A positive integer n is said to be k-free if n is not divisible by the k-th

power of a prime. Let

Rk(x) =
∑

n ≤ x

n is k-free

1 − x

ζ(k)
.

An elementary argument yields

Rk(x) ≪ x1/k.

In the opposite direction,

Rk(x) = Ω(x1/2k).

(See [10] or [22]).

Assuming the Riemann hypothesis (RH), Montgomery and Vaughan [20] obtained

Rk(x) ≪ x1/(k+1)+ǫ. (1.1)
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Here ǫ is an arbitrarily small positive number. The exponent in (1.1) has been im-

proved for every value of k. For k ≥ 3, see Graham and Pintz [14]. For k = 2, there

have been papers by Graham [12], Baker and Pintz [6] and Jia [18]; the exponent in

[18] is 17/54 + ǫ.

No-one has yet been able to improve the approximation in Theorem 1 of [20] under

RH: for N ≥ 1,

Rk(x) = −
∑

n≤yk

µ(n)ψ(xn−k) + O(x1/2+ǫy
(1−k)/2
k + y

1/2+ǫ
k ). (1.2)

Here ψ(w) = w − [w] − 1/2. Once (1.2) is applied, exponential sums dominate the

discussion.

Montgomery and Vaughan’s result

Let

an =
∑

dk|n

µ(n).

Then an is the indicator function of whether or not the k-th power part of n is 1 or

greater than 1. That is an =







1, n is k-free;

0, n is not k-free.

It follows that an is the n-th coefficient of the series ζ(s)
ζ(ks) . Then, Qk(x) =

∑

n≤x an.

The standard estimate for such a coefficient sum of a Dirichlet series may be obtained

using an inverse Mellin transform, i.e. Perron’s formula

′
∑

n≤x

an =
1

2πi

∫ c+iT

c−iT

ζ(s)

ζ(ks)

xs

s
ds+R

where R → ∞ as T → ∞, c > 1, and the dash signifies that if x is an integer, it only

has weight 1
2 in the sum (See [21, Theorem 5.2]).

Instead of using Perron’s formula directly, Montgomery and Vaughan used a different

approach [20] dependent on RH. They break Qk(x) into two sums depending on a
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variable yk which they introduce.

Qk(x) =
∑

n≤x

∑

dk|n

µ(n) =
∑

n≤x

∑

dk|n

d>yk

µ(n) +
∑

n≤x

∑

dk|n

d≤yk

µ(n).

In this first sum, they interpret bn =
∑

dk|n
d>yk

µ(n) as the nth coefficient of the Dirichlet

series ζ(s)
∑

d>yk
µ(d)d−ks and apply a version of Perron’s formula using a contour

integral and residue calculus. They use an estimate for ζ(s) and ζ(s)−1 dependent

on RH. The other sum is manipulated using the estimate
∑

d≤yk
µ(d) = O(y

1/2+ǫ
k )

dependent on RH. Putting the pieces together, Montgomery and Vaughan proved (1.2).

In section 4 below, we choose the value of yk.

Jia’s paper, which appeared after [14], contains an estimate for exponential sums

which has found several applications. Abstractions of the estimate are given by Wu

[30]. The exponential sum estimate devised by Heath-Brown [17] is crucial in [6],

[14], [18]; it is abstracted in Baker [2]. In the present paper we combine these results

with theorems from Robert and Sargos [23] and Baker [4]. The former paper is a

natural culmination of the work of Fouvry and Iwaniec [11]; the starting point is the

double large sieve. The latter paper is related to earlier work of Baker and Kolesnik

[5]. Actually, we shall adapt the results from [4], [30] a little.

Theorem. Assume RH. We have

Rk(x) ≪ xθk+ǫ (k = 3, 4, 5)

where

θ3 =
17

74
= 0.2297..., θ4 =

17

94
= 0.1808..., θ5 = 0.15.

For comparison, θk replaces 7/(6k + 8) in [9], and we have

7

30
= 0.2333...,

7

38
= 0.1842...,

7

46
= 0.1521....
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In contrast with [20], [12], [6], [14], [18], we apply Heath-Brown’s “generalized

Vaughan identity” [17], or more precisely, the variant provided in [4]. We add a new

result on the application of this decomposition (the case 1
6
< a ≤ 1

5
of Lemma 3(iii)

below) which may be of independent interest.

Overview of Method

We concentrate most of our efforts on the sum S(x) =
∑

n≤yk
µ(n)ψ(xn−k) in (1.2).

In section 4, we indicate that

∣

∣

∣

∣

∑

D<n≤2D

µ(n)ψ(xn−k)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∑

0<|h|≤H

ah

∑

D<n≤2D

µ(n)e(hxn−k)

∣

∣

∣

∣

+
∑

|h|≤H

bh
∑

n∼D

e(hxn−k)

where ah, bh are explicitly determined and H is an introduced parameter (for details

see section 4). Thus S(x) is approximated by exponential sums of the type

∑

n∼D

µ(n)e(hxn−k).

These are broken down into subsums by the Heath-Brown Decomposition below. Com-

binatorially, all these subsums can be classified as having a certain trait or not, that is

being Type I and summed over a certain range or Type II and summed over another

(See lemma 3). In our work, we determine cases when exponential sum estimates,

stated in section 3, give the bound xθk for both traits, and therefore for the whole

case. These cases piece together so that every subsum has the bound xθk . The decom-

position only introduces a log factor and so we arrive at the bound xθk+ǫ for S(x). For

the remaining terms in Rk(x), we choose yk so that they are ≪ xθk+ǫ

Note: We arrived at the bound xθk+ǫ by finding which cases the exponential sum

results we examined gave a bound of xθ−δ where δ > 0 and θ was the previous record.

Then we pieced the puzzle together, optimizing our value of δ. We modified some of

the exponential sum results when needed (see Lemmas 6 and 7).

We close this section with a few remarks on notation. Implied constants depend

at most on k and ǫ, except in section 3 where they may depend on u, v, α, β, γ, κ
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and λ. We write “A ≍ B” if A ≪ B ≪ A. We write “n ∼ N” for N < n ≤ 2N . As

usual, e(z) = e2πiz . The cardinality of a finite set E is written |E|.

1.2 Decomposition of sums involving the Möbius function

Let 2 ≤ D < D′ ≤ 2D and let f be a complex function on [D,D′]. The sum

∑

D<n≤D′

µ(n)f(n)

can be decomposed into O((logD)2l−1) sums of the form

∑

ni∼Ni

D<n1...n2l−1≤D′

µ(nl)...µ(n2l−1)f(n1...n2l−1). (2.1)

Here Ni >
1
2
,
∏2l−1

i=1 Ni ≍ D and

2Ni ≤ (2D)1/l if i ≥ l. (2.2)

This is the variant of the Heath-Brown Decomposition given by Baker [4, Section 2].

I discuss it below:

The Decomposition

Let g(s) =
∑

n≤Y µ(n)n−s where Y is chosen later. First, we derive an identity for

µ(n). Trivially,

ζ(s)−1 = ζ(s)−1 − ζ(s)−1(1 − ζ(s)g(s))l + ζ(s)−1(1 − ζ(s)g(s))l.

Expanding the first product,

−ζ(s)−1
l

∑

j=0





l

j



 (−1)jζ(s)jg(s)j =

l
∑

j=0





l

j



 (−1)j−1ζ(s)j−1g(s)j .

5



This becomes:

−ζ(s)−1 +

l
∑

j=1





l

j



 (−1)j−1ζ(s)j−1g(s)j .

Therefore,

ζ(s)−1 =

l
∑

j=1





l

j



 (−1)j−1ζ(s)j−1g(s)j + ζ(s)−1(1 − ζ(s)g(s))l. (*)

Since we may equate the coefficients of n−s the two Dirichlet series on either side, we

have an identity for µ(n). Choose Y = (2D)1/l. Note that

ζ(s)g(s) =
∑

j≥1

(

∑

n|j

n≤Y

µ(n)
)

j−s = 1 +
∑

j>Y

(

∑

n|j

n≤Y

µ(n)
)

j−s.

Then the last term of (*) makes no contribution to the coefficient of n−s on the right

side if n ≤ 2D.

Putting this identity for µ(n) into the sum
∑

D<n≤D′ f(n)µ(n) we obtain the above

decomposition.

To apply the decomposition, we need results of the following kind. The numbers

αi (1 ≤ i ≤ r) in Lemma 1 arise as exponents for which Ni ≍ Dαi . (To be precise,

let r = 2l − 1, N0 = 22l−1N1...N2l−1 and define αi by

2Ni = Nαi
0 for 1 ≤ i ≤ 2l − 1.)

Lemma 1. Let 0 ≤ α1 ≤ ... ≤ αr, α1 + ... + αr = 1. For S ⊆ {1, ..., r}, we write

σs =
∑

i∈S αi.

(i) Let h be an integer, h ≥ 3. Suppose that αr ≤ 2
h+1

. Then some σs ∈ [ 1
h
, 2

h+1
].

(ii) Let λ ≥ 2
3
. Suppose that αr ≤ λ. Then some σs ∈ [1 − λ, λ].

Proof. See [4, Lemma 1].

6



The following lemma and Lemma 3(iii) are based on a result in Heath-Brown [4],

which it strengthens in the case 1
6
< a ≤ 1

5
.

Lemma 2. Make the hypotheses of Lemma 1.

(i) Let 1
5
< a ≤ 1

3
. Suppose that αr ≤ 1−a

2
. Then some σs ∈ [a, 2a].

(ii) Let 0 < a ≤ 1
5
. Suppose that αr ≤ 1−a

2
. Then some σs ∈ [a, 1

3
].

Proof. (i) We have 1
h+1

< a ≤ 1
h

for some natural number h, which must be 3 or 4.

Now

αr ≤
1 − a

2
<

2

5
≤ 2

h+ 1
.

By Lemma 1(i), some σs ∈ [ 1
h
, 2

h+1
] ⊆ [a, 2a].

(ii) Suppose that no σs ∈ [a, 1
3
]. Let

T = {j : αj ≤
1

3
− a} , U = {j :

1

3
− a < αj < a}

(U is empty if a ≤ 1
6
), and

V = {j : αj >
1

3
}.

Thus

σT + σU + σV = 1. (2.3)

Clearly

|V | ≤ 2 , σV ≤ |V |
(

1 − a

2

)

≤ 1 − a. (2.4)

Suppose for a moment that U is nonempty. Then for any j ∈ U ,

σT + αj < a. (2.5)

7



To see this suppose the contrary, and take the smallest σW ≥ a − αj with W ⊆ T .

Then

σW − αk < a− αj

for any k ∈ W . Hence a ≤ σW + αj < a + αk ≤ 1
3
, contrary to our hypothesis. A

similar argument gives σT < a if U is empty, and it follows that

σT + σU < a+ max(0, |U | − 1)a = max(1, |U |)a. (2.6)

Suppose for a moment that |U | ≥ 2. Take αi, αj in U , i 6= j. Then

αi + αj >
2

3
− 2a > a.

Consequently, αi + αj >
1
3
. This yields

If |U | ≥ 2, then σU >
|U |
2

1

3
=

|U |
6
. (2.7)

In particular, |U | ≤ 5.

We now consider all possibilities for |U |.

Suppose |U | = 0 or 1. From (2.6),

σT + σU < a,

and from (2.4),

σT + σU + σV < 1,

which is absurd.

8



Suppose |U | = 2 or 3. Then σU > 1
3

from (2.7), and so σV < 2
3

and |V | ≤ 1,

σV ≤ 1 − a

2
.

In conjunction with (2.6), this yields

σT + σU + σV < 3a+
1 − a

2
≤ 1,

which is absurd.

Suppose finally that |U | = 4 or 5. From (2.6) and (2.7),

2

3
< σT + σU < 5a ≤ 1,

so that σV ∈ (0, 1
3
). This is absurd and the lemma is proved.

Lemma 3. Let f be a complex function on (D,D′] where 2 ≤ D < D′ ≤ 2D.

(i) Suppose that
∑

m∼M

∑

n∼N
D<mn≤D′

ambnf(mn) ≪ B (2.8)

whenever |am| ≤ 1, |bn| ≤ 1 and

D1/h ≪ N ≪ D2/(h+1)

where h is a natural number, h ≥ 3. Suppose further that

∑

m∼M

am

∑

n∼N
D<mn≤D′

f(mn) ≪ B (2.9)

whenever |am| ≤ 1 and

N ≫ D2/(h+1).

9



Then
∑

D<d≤D′

µ(d)f(d) ≪ BDǫ. (2.10)

(ii) Let λ ≥ 2
3
. Suppose that (2.8) holds whenever |am| ≤ 1, |bn| ≤ 1 and

D1−λ ≪ N ≪ D1/2,

while (2.9) holds whenever |am| ≤ 1 and

N ≫ Dλ.

Then (2.10) holds.

(iii) Let 0 < a ≤ 1
3
. Let b = 2a if a > 1

5
and b = 1

3
if a ≤ 1

5
. Suppose that (2.8)

holds whenever |am| ≤ 1, |bn| ≤ 1 and

Da ≪ N ≪ Db,

while (2.9) holds whenever |am| ≤ 1 and

N ≫ D(1−a)/2.

Then (2.10) holds.

Proof. We prove (iii); the other proofs are similar. Take l = 4 in the decomposition

into sums (2.1). We may suppose that D is large. Given one of the sums (2.1), let N0

and α1, ..., α2l−1 have the values assigned before Lemma 1. We claim that the sum

(2.1) is O(BN ǫ/2). If we can group the variables as

n =
∏

i∈S

, m =
∏

i6∈S

ni

10



with σS ∈ [a, b], then from (2.8) the sum in (2.1) is O(BN ǫ/2), since the corresponding

coefficients am, bn are O(N ǫ/2). If this grouping is not possible, then by Lemma 2

there is an αj >
1−a
2

. Now we group the variables as

m =
∏

i6=j

ni , n = nj.

Note that j < l from (2.2). It follows from (2.9) that the sum in (2.1) is O(BN ǫ/2).

Now (iii) follows at once.

1.3 Lemmas on Exponential Sums

We quote two preliminary lemmas from Graham and Kolesnik [13].

Lemma 4. (Kusmin-Landau) If the real function f is continuously differentiable, and

f ′ is monotonic with

0 < λ ≤ |f ′| ≤ 1

2

on the interval I, then
∑

n∈I

e

(

f(n)

)

≪ λ−1.

Proof. See [13, Theorem 2.1].

Lemma 5. Let

E(H) =

u
∑

i=1

AiH
ai +

v
∑

j=1

BjH
−bj

where Ai, Bj, ai and bj are positive. Let 0 ≤ H1 ≤ H2. Then there is some H ∈

(H1, H2] with

E(H) ≪
u

∑

i=1

v
∑

j=1

(Ai
bjBj

ai)1/(ai+bj) +

u
∑

i=1

AiH
ai
1 +

v
∑

j=1

BjH2
−bj .

Proof. This follows at once from [13, Lemma 2.4].

11



A brief, non-rigorous synopsis of the theory of Exponent Pairs and the A- and

B-processes

An exponent pair is a pair (λ, κ) such that if f meets certain requirements, then

S =
∑

n∈I e(f(n)) ≪ LkN l where I = (a, b] ⊂ [N, 2N ] and f ′ ≍ L. Applying the

A-process or the B-process yields estimates for S which can be expressed as LκNλ. In

particular, these processes yield a method for obtaining new exponent pairs. Suppose

that (k, l) is an exponent pair. Note that in the following couple paragraphs, the

estimates mentioned for the A- and B-processes contain an inner exponential sum.

The exponent pair will apply to that inner sum and then simplifying, we may write

(λ, κ) in terms of (l, k). Specifically, if we denote (λ, κ) = A(k, l) or B(k, l),

A(k, l) =

(

k

2k + 2
,
k + l + 1

2k + 2

)

B(k, l) =

(

l − 1

2
, k +

1

2

)

For more details see [13, Sections 3.1, 3.3-3.5]

A-Process (Weyl Shift, or enriched Cauchy’s inequality)

This arises as Cauchy’s inequality applied to the sum
∑

a<n≤b e(f(n)) [13, Lemma 2.5].

For H > 0,

H
∑

a<n≤b

e(f(n)) =

H
∑

k=1

∑

a<n≤b

e(f(n)) =
∑

a−H<n≤b−1

H
∑

k=1

e(f(n+ k)).

Cauchy’s inequality |v · u|2 ≤ |v|2|u|2 is now applied:

H2|
∑

a<n≤b

e(f(n))|2 ≤ (H + |b− a|)
∑

a−H<n≤b−1

|
H

∑

k=1

e(f(n+ k))|2.

After some manipulating and a change of variable, we arrive at

|S|2 ≤ 2|I|2
H

+
4|I|
H

∑

1≤h≤H

|S1(h)|

where

S1(h) =
∑

a<n≤b−h

e(f(n+ h) − f(n)).

12



The estimates for the A-process are based off of this inequality and [13, Theorem 2.2].

B-Process (Poisson Summation)

Let F (x) = e(f(x)) for a < x ≤ b. Otherwise, set F (x) = 0. Then

F̂ (ν) =

∫ b

a

e(f(t) − νt)dt.

By Poisson summation [27, 6.3 Theorem 4],

∑

a<n≤b

e(f(n)) =
∑

ν∈Z

∫ b

a

e(f(t) − νt)dt.

We assume that f (2) < 0 on I and set α = f ′(b), β = f ′(a). Graham and Kolesnik in

[13, Lemma 3.4] give an estimate for the integral when α ≤ ν ≤ β as

e(− 1
8 − f(xν) − νxν)

|f (2)(xν)|1/2
+O(E)

where xν is chosen so that f ′(xν) = ν where ν ∈ [α, β]. (Note that xν exists by choice

of α, β). This gives the summands in the main term of the B-process technique plus an

error. The other terms can be bounded using [13, Lemma 3.1] and interpreting F̂ (ν)

as 1
2πiν F̂

′(ν). Graham and Kolesnik actually don’t directly apply Poisson summation

as above. Through the use of Riemann-Stieljes integration and the Fourier expansion

of ψ(x), they achieve:

∑

n∈I

e(f(n)) =
∑

α≤ν≤β

e(− 1
8 − f(xν) − νxν)

|f (2)(xν)|1/2
+O(log(BN−2 + 2) +B−1/2N)

where B is related to the sizes of the second, third and fourth derivatives of f [13,

Lemmas 3.5, 3.6].

In the remainder of this section, we write L = log(D+2). Our first lemma is a variant

of [4, Theorem 5].

Lemma 6. Let (κ, λ) be an exponent pair. Let α, β be real constants, β 6= 0, β < 1,

13



α < 0. Suppose that

X > 0,
1

2
≤ N ≪M,MN ≍ D,D < D′ ≤ 2D. (3.1)

Let

S1 =
∑

m∼M

am

∑

n∼N
D≤mn<D′

bne

(

Xmαnβ

MαNβ

)

(3.2)

where |am| ≤ 1, |bn| ≤ 1. Then

S1 ≪ L7/4

(

DN−1/2 +DM−1/4 +D5/4X−1/4N−3/4 +D5/4X−1/4M−3/8 (3.3)

+(D11+10κX1+2κN2(λ−κ))1/(14+12κ) + (D5+4κNλ−κ)1/(6+4κ)

)

.

Proof. In [4], proof of Theorem 5, it is shown that

L−7S4
1 ≪ D4

Q2
+D3

((

XQ3

D

)1/2+κ

Nλ−κ +N +D2X−1Q−3

)

(3.4)

for any natural number Q ≤ min(c2N, cM−1/2). Here and in the remainder of the

paper, c is a small positive constant. With a little thought we see that (3.4) is true

for any real Q with 0 < Q ≤ min(c2N, cM−1/2). Now Lemma 5 yields

L−7S4
1 ≪ D4N−2 +D4M−1 + (D4)(3+6κ)/(7+6κ)(D5/2−κX1/2+κNλ−κ)4/(7+6κ)

+(D5X−1)(3+6κ)/(9+6κ)(D5/2−κX1/2+κNλ−κ)6/(9+6κ)

+D5X−1M−3/2 +D5X−1N−3.

After some simplification, we obtain (3.3).
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Our next lemma improves (2.2) of [30, Theorem 2]; the term (X−1M14N23)1/22

has been dropped.

Lemma 7. Let α, β be real constants, αβ(α − 1)(β − 1) 6= 0. Suppose that (3.1)

holds and |am| ≤ 1, |bn| ≤ 1. The sum S1 in (3.2) satisfies

S1 ≪ L3

(

(XM3N4)1/5 + (X4M10N11)1/16 + (XM7N10)1/11 +MN1/2 +X−1/2MN

)

.

(3.5)

Proof. Define S0 in the same way as S1 but without the condition D < mn ≤ D′. It

suffices to prove (3.5) with S1, L
3 replaced by S0, L

2, as explained in Harman [15,

pp. 49-50].

If X ≤M , the double large sieve [11, Theorem 2] yields

S0 ≪ L

(

(XMN)1/2 +MN1/2 +X−1/2MN

)

which is satisfactory since (XMN)1/2 ≪MN1/2.

Suppose now that X > M . We follow the proof of [30, Theorem 2] to save space.

Obviously we may assume that N > L3, since S0 ≪ MN ≪ MN1/2L3/2 otherwise.

The first step (a Weyl shift) gives

S2
0 ≪ (MN)2

Q
+ LM3/2NQ−1|S(Q1)| (3.6)

where Q ∈ [L, N
L

] is a parameter at our disposal, and 1 ≤ Q1 ≤ Q. Here

S(Q1) =
∑

q1∼Q1

∑

n+q1,n∼N

bn+q1 b̄n
∑

m∼M

m−1/2e

(

Amαt(n, q1)

)

,

A =
X

MαNβ
, t(n, q1) = (n+ q1)

β − nβ.

15



Suppose initially that

X(MN)−1Q ≥ c. (3.7)

The next step (a B process) yields

L−1S(Q1) ≪ (XM−1N−1Q1)
1/2S∗(Q1) (3.8)

+(XM−1N−1Q3
1)

1/2 +M−1/2NQ1 + (X−1MNQ1)
1/2 + (X−2MN4)1/2.

Here

S∗(Q1) =
∑

n∼N

∣

∣

∣

∣

∑

q1∼Q1

bn+q1e

(

θq1 + α̃(At)γl1−γ

)∣

∣

∣

∣

,

θ is a real constant, l ≍ X(MN)−1Q1, γ = 1
1−α

and α̃ = |1 − α||α|α/(1−α).

For the next step, suppose for the moment that Q1 ≥ L. A Weyl shift yields

S∗(Q1)
2 ≪ (NQ1)

2Q−1
2 +NQ1Q

−1
2

∑

1≤q2≤Q2

|S2(q2)| (3.9)

where Q2 is chosen below, Q2 ≤ c
√
Q1, and

S2(q2) =
∑

n∼N

∑

q1+q2,q1∼Q1

b̄n+q1bn+q1+q2e

(

t1(n, q1, q2)

)

with

t1(n, q1, q2) = α̃Aγl1−γ(t(n, q1 + q2)
γ − t(n, q1)

γ).

Note that Wu uses the incorrect expression S2(q1, q2) in place of S2(q2).

The final step in [30], another Weyl shift, yields

(

S2(q2)

L

)2

≪ (NQ1)
2Q−2

2 +NQ1Q
−2
2

∑

1≤q3≤Q2
2

∑

q1∼Q1

|S3(q1, q2, q3)| (3.10)
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with

S3(q1, q2, q3) =
∑

n′∼N

e

(

f(n′)

)

for an f (depending on the qi) with

f ′(n′) ≍ XN−2Q−1
1 q2q3 (n′ ∼ N).

We choose

Q2 = cmin(Q
1/2
1 , (X−1N2Q1)

1/3),

so that

|f ′(n′)| ≤ 1

2
for n′ ∼ N

and

S3(q1, q2, q3) ≪ (XN−2Q−1
1 q2q3)

−1

(Lemma 4). From (3.10),

(

S2(q2)

L

)2

≪ (NQ1)
2Q−2

2 +NQ2
1Q

−2
2 (XN−2Q−1

1 q2)
−1

∑

1≤q3≤Q2
2

q−1
3 ,

L−3S2(q2)
2 ≪ N2Q2

1Q
−2
2 +X−1N3Q3

1Q
−2
2 q−1

2 .

Now (3.9) yields

L−3/2S∗(Q1)
2 ≪ N2Q2

1Q
−1
2 +NQ1Q

−1
2

∑

q2≤Q2

(NQ1Q
−1
2 +X−1/2N3/2Q

3/2
1 Q−1

2 q
−1/2
2 )

≪ N2Q2
1Q

−1
2 +N5/2Q

5/2
1 Q

−3/2
2 X−1/2

≪ N2Q
3/2
1 +N4/3Q

5/3
1 X1/3 +N5/2Q

7/4
1 X−1/2,

where we used the value of Q2 in the last step.
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Recalling (3.8),

L−7/4S(Q1) ≪ (3.11)

(XM−1N−1Q1)
1/2(NQ

3/4
1 +N2/3Q

5/6
1 X1/6 +N5/4Q

7/8
1 X−1/4)

+X1/2M−1/2N−1/2Q
3/2
1 +M−1/2NQ1 +X−1/2M1/2N1/2Q

1/2
1 +X−1M1/2N2

≪ X1/2M−1/2N1/2Q
5/4
1 +X2/3M−1/2N1/6Q

4/3
1 +X1/4M−1/2N3/4Q

11/8
1 +X−1M1/2N2.

We were able to discard three of the first last four terms in the first bound in

(3.11):

X1/2M−1/2N−1/2Q
3/2
1 ≪ X1/2M−1/2N1/2Q

5/4
1 , since Q1 < N ;

M−1/2NQ1 ≪ X1/2M−1/2N1/2Q
5/4
1 , since X1/2N1/2 ≫ N ;

X−1/2M1/2N1/2Q
1/2
1 < X1/2M−1/2N1/2Q

5/4
1 , since M < X.

Recalling (3.6),

L−7/4S2
0 ≪ (MN)2

Q
+ LM3/2NQ−1

(

X1/2M−1/2N1/2Q
5/4
1 +

X2/3M−1/2N1/6Q
4/3
1 +X1/4M−1/2N3/4Q

11/8
1 +X−1M1/2N2

)

Thus,

L−7/4S2
0 ≪ (3.12)

L
(MN)2

Q
+ LMN3/2X1/2Q1/4 + LMN7/6X2/3Q1/3 + LMN7/4X1/4Q3/8.
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Here we used

LM3/2NQ−1(X−1M1/2N2) = LM2N3X−1Q−1 < LMN3Q−1 ≪ LM2N2Q−1.

The inequality (3.12) remains valid if Q1 < L. For then (3.6) yields trivially

S2
0 ≪ (MN)2

Q
+ L2M2N2Q−1 ≪ L2(MN)2Q−1.

Suppose now that X(MN)−1Q < c. We remove m−1/2 from S(Q1) by partial

summation and apply Lemma 4, since

d

dm

(

Amαt(n, q1)

)

<
1

2
(m ∼ M)

for all relevant n, q1. Now (3.6) yields

S2
0 ≪ (MN)2

Q
+
MN

Q

∑

1≤q1≤Q

(

X(MN)−1q1

)−1

≪ (MN)2

Q
+ LM2N2Q−1X−1 ≪ L(MN)2

Q

since M < X. Thus (3.12) always holds, and indeed remains valid for Q ∈ (0, L]. An

application of Lemma 4 with H1 = 0, H2 = N
L

yields

L−11/4S2
0 ≪M2N + (MN3/2X1/2)4/5(M2N2)1/5 + (MN7/6X2/3)3/4(M2N2)1/4

+(MN7/4X1/4)8/11(M2N2)3/11.

This gives the required variant of (3.5) for S0 and completes the proof.

Lemma 8. Let α, β, γ be real constants with α < 1, αβγ 6= 0. Let (κ, λ) be an
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exponent pair. Let M , M1, M2 be real numbers ≥ 1
2

and X ≥M1M2. Let

S2 =
∑

m∼M

∑

m1∼M1

D≤mm1<D′

∑

m2∼M2

ambm1,m2e

(

Xmαmβ
1m

γ
2

MαMβ
1 M

γ
2

)

where |an| ≤ 1, |bm1,m2 | ≤ 1. Then

S2 ≪MM1M2(log 12MM1M2)
2{(M1M2)

−1/2 +

(

X

M1M2

)κ/(2+2κ)

M−(1+κ−λ)/(2+2κ)}.

Proof. By a similar remark to that at the beginning of the last proof, this follows

from [2, Theorem 2].

Lemma 9. Let α, β, γ be real constants with α(α− 1)βγ 6= 0. Let H, M , N be real

numbers ≥ 1
2
, let X > 0 and

S =
∑

h∼H

∑

m∼M

max

∣

∣

∣

∣

N2
∑

n=N1

e

(

Xmαhβnγ

MαHβNγ

)∣

∣

∣

∣

where the maximum is taken over 1 ≤ N1 ≤ N2 ≤ N . Then

S ≪ (HNM)1+ǫ

((

X

HMN2

)1/4

+
1

N1/2
+

1

X

)

.

Proof. See [23, Theorem 3].

1.4 Proof of Theorem

Throughout this section, k ∈ {3, 4, 5}. We write

yk = x(1−2θk)/(k−1),
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so that (1.2) yields

Rk(x) = −
∑

n≤yk

µ(n)ψ(xn−k) +O(xθk+ǫ).

Accordingly it suffices to prove that

∑

n∼D

µ(n)ψ(xn−k) ≪ xθk+3ǫ/4 (4.1)

for

xθk < D < x(1−2θk)/(k−1). (4.2)

((4.1) is trivial for smaller D.)

Let H ≥ 1. Vaaler [29] (see also [13, Appendix]) gave the approximation

∣

∣

∣

∣

ψ(w) −
∑

0<|h|≤H

ahe(hw)

∣

∣

∣

∣

≤ B(w),

where B(w) =
∑

|h|≤H bhe(hw) is non-negative; the ah, bh are given explicitly and

satisfy

ah ≪ 1

h
, bh ≪ 1

H
. (4.3)

It follows that

∣

∣

∣

∣

∑

n∼D

µ(n)ψ(xn−k) −
∑

0<|h|≤H

ah

∑

n∼D

µ(n)e(hxn−k)

∣

∣

∣

∣

≤
∑

|h|≤H

bh
∑

n∼D

e(hxn−k).

We select H = [Dx−θk ]. The contribution to the right-hand side from h = 0 is

≪ DH−1 ≪ xθk
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from (4.3). Accordingly, after a splitting-up argument, we need to show that

∑

h∼K

ch
∑

n∼D

µ(n)e(hxn−k) ≪ Kxθk+2ǫ/3 (4.4)

whenever (4.2) holds, |ch| ≤ 1 and

1

2
≤ K ≤ Dx−θk ; (4.5)

for our proof will show that (4.4) remains valid with 1 in place of µ(n).

In the rest of this section, we write

SI(D,K,N) =
∑

h∼K

ch
∑

m∼M

am

∑

n∼N
mn∼D

e

(

hx

(mnk)

)

,

SII(D,K,N) =
∑

h∼K

∑

m∼M

am

∑

n∼N
mn∼D

bne

(

hx

(mnk)

)

,

where ch, am, bn are unspecified numbers of absolute value ≤ 1, andD, K are assumed

to satisfy (4.2), (4.5).

Lemma 10. (i) Suppose that

SII(D,K,N) ≪ Kxθk+ǫ/3 (4.6)

whenever

D2x−2θk ≪ N ≪ D1/2. (4.7)

Then (4.4) holds.

(ii) Suppose that

K < x5θk−1Dk−7/2. (4.8)
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Then (4.4) holds.

(iii) Suppose that

KD8−k < x10θk−1. (4.9)

Then (4.4) holds.

Proof. (i) Since θk > 5/(6k + 4), we deduce from (4.2) that

D2x−2θk ≪ D1/3−c. (4.10)

We can thus apply Lemma 3(ii) with the choice

Dλ = x2θkD−1 , D1−λ = D2x−2θk .

Our hypothesis gives (4.6) for the range

D1−λ ≪ N ≪ D1/2.

We claim that

SI(D,K,N) ≪ Kxθk+ǫ/3 (4.11)

for

N ≫ x1−4θkD3−k. (4.12)

This is a consequence of Lemma 9; we must show that

KD

(

x

N1/4Dk+1

)1/4

+KDN−1/2 +KD(KxD−k)−1 ≪ Kxθk .

The first term on the left gives rise to the condition (4.12). The second term produces

the condition

N ≫ D2x−2θk . (4.13)
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Moreover, (4.2) gives

D2x−2θk < x1−4θkD3−k,

so that (4.13) follows from (4.12). Finally, it is easy to see that

x−1D1+k ≪ xθk ,

so that the third term gives no difficulty, proving our claim.

Now

Dλ > x1−4θkD3−k,

or equivalently,

D4−k < x6θk−1.

For k = 3, this follows from θ3 > 3/14. For k = 4, we use θ4 > 1/6, and for k = 5,

we require D > x1/10, which is a consequence of (4.2). We conclude that (4.11) holds

for N ≫ Dλ, and (i) follows at once.

(ii) We apply Lemma 7 to show that (4.6) holds in the range (4.7) under the

hypothesis (4.8). Treating the variable h trivially, this reduces to verifying that

(KxD−kM3N4)1/5 + (KxD−kM10N11)1/16 + (KxD−kM7N10)1/11

+MN1/2 + (KxD−k)−1/2D ≪ xθk .

The term MN1/2 gives rise to the lower bound for N in (4.7). Next,

(KxD−k)−1/2D ≪ Dk/2+1x−1/2 ≪ xθk

follows from (4.2), because

θk > 3/(4k + 2).
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The condition

(KxD−kM3N4)1/5 ≪ xθk

may be rewritten

KN ≪ x5θk−1Dk−3. (4.14)

In this form, it follows from (4.8) for N ≪ D1/2.

The condition

(KxD−kM10N11)1/16 ≪ xθk

may be rewritten

KN ≪ x16θk−1Dk−10.

Now

x5θk−1Dk−3 < x16θk−1Dk−10

from (4.2), because

θk > 7/(11k + 3).

Finally, the condition

(KxD−kM7N10)1/11 ≪ xθk

may be rewritten

K1/3N ≪ x(11θk−1)/3D(k−7)/3.

To show that this follows from (4.14), it suffices to verify that

x5θk−1Dk−3 < x(11θk−1)/3D(k−7)/3,

and this in turn follows from (4.2). This completes the proof of (ii).
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(iii) Similarly, on applying Lemma 6 with κ = λ = 1/2, we must show that (4.7)

and (4.9) together imply

DN−1/2 +DM−1/4 +D5/4(KxD−k)−1/4N−3/4

+D5/4(KxD−k)−1/4M−3/8 +D4/5(KxD−k)1/10 +D7/8 ≪ xθk .

To begin with, we observe that (4.9) implies

D ≪ x(10θk−1)/(8−k). (4.15)

Thus

D7/8 ≪ x(70θk−7)/(64−8k) < xθk

because

θk < 7/(6 + 8k). (4.16)

Since M ≫ D1/2, it follows also that

DM−1/4 ≪ xθk .

As before, the term DN−1/2 gives rise to the lower bound on N in (4.7). Next,

D4/5(KxD−k)1/10 = (KD8−k)1/10x1/10 < xθk

from (4.9). Next,

D5/4(KxD−k)−1/4N−3/4 ≪ (D5+kx−1)1/4(D2x−2θk)−3/4

= (Dk−1x−1+6θk)1/4 < xθk
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from (4.2).

Finally, since M ≫ D1/2,

D5/4(KxD−k)−1/4M−3/8 ≪ (D5+kx−1)1/4D−3/16 = (D17+4k)1/16x−1/4 ≪ xθk .

To see this, we use (4.15):

D17+4k ≪ xq , where

q = (17 + 4k)(10θk − 1)/(8 − k) < 16θk + 4,

as a consequence of (4.16). This completes the proof of (iii).

We have yet to use Lemma 8, which is capable of extending the range (4.7) on

the left.

Lemma 11. Suppose that

K−1D2x−2θk ≪ N ≪ min(Dk−4x6θk−1, D1/2). (4.17)

Then (4.6) holds.

Proof. We apply Lemma 8 with N , K in place of M1, M2, and κ = λ = 1/2. The

condition X ≫M1M2 reduces to

xD−k ≫ N.

Since N ≪ D1/2, this reduces in turn to θk ≥ 3/(4k + 2), which was used earlier.

Now we need to show that (4.17) implies

KD(NK)−1/2 +KD(xD−kN−1)1/6M−1/3 ≪ Kxθk .
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The term KD(NK)−1/2 gives rise to the lower bound for N in (4.17). The condition

KD(xD−kN−1)1/6M−1/3 ≪ Kxθk

is equivalent to

D6

(

x

Dk+2

)

N ≪ x6θk ,

which reduces to the upper bound for N in (4.17).

Guide to the proof: intervals with the bound xθk+ǫ

(Below: λ ≥ 2
3 . This may be different for different cases.)

Let K < x5θk−1Dk−7/2.

For k=3,4,5:

(Type I) N ≫ Dλ where λ ≥ 2
3 (Lemma 9).

(Type II) D1−λ ≪ N ≪ D1/2 (Lemma 7).

Let K ≥ x5θk−1Dk−7/2.

For k=3:

(Type I) N ≫ D2/5 (Lemma 9).

(Type II) D1/4 ≪ N ≪ D2/5 (Lemma 8).

For k=4, D ≥ x9/47:

(Type I) N ≫ D2/5 (Lemma 9).

(Type II) D1/4 ≪ N ≪ D2/5 (Lemma 8).

For k=4, D < x9/47:
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(Type I) N ≫ Dλ where λ ≥ 2
3 (Lemma 9).

(Type II) D1−λ ≪ N ≪ D1/2 (Lemma 6).

For k = 5, kD3 < x1/2

(Type I) N ≫ Dλ where λ ≥ 2
3 (Lemma 9).

(Type II) D1−λ ≪ N ≪ D1/2 (Lemma 6).

For k = 5, kD3 ≥ x1/2

(Type I) N ≫ D(1−a)/2 where λ ≥ 2
3 (Lemma 9).

(Type II) Da ≪ N ≪ Db where a, b are as in Lemma 3(iii) (Lemma 8).

Proof of the Theorem. Let D, K satisfy (4.2), (4.5). We must show that (4.4) holds.

Suppose first that k = 3. If

K < x11/74D−1/2

then we are done, by Lemma 10(ii). Suppose now that

K ≥ x11/74D−1/2. (4.18)

We apply Lemma 3(i). Thus it suffices to prove (4.6) for

D1/4 ≪ N ≪ D2/5 (4.19)

and (4.11) for

N ≫ D2/5. (4.20)

Lemma 11 gives (4.6) in the range

K−1D2x−17/37 ≪ N ≪ min(D−1x14/37, D1/2).
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From (4.18), (4.2),

K−1D2x−17/37 ≤ D5/2x−45/74 < D1/4,

D−1x14/37 > D2/5.

Thus (4.6) holds in the required range.

As shown in the proof of Lemma 10, (4.11) holds in the range (4.12), which

becomes

N ≫ x3/37

for k = 3. Since x3/37 < D2/5 from (4.2), the discussion of the case k = 3 is complete.

Now let k = 4. From Lemma 10(ii), we may suppose that

K ≥ x−9/94D1/2. (4.21)

As above, it suffices to prove (4.6) in the range (4.19), and (4.11) in the range (4.20).

Lemma 11 gives (4.6) in the range

K−1D2x−17/47 ≪ N ≪ x4/47, (4.22)

since D1/2 > x17/188 > x4/47. Now

K−1D2x−17/47 < x−25/94D3/2 < D1/4,

since D < x10/47 from (4.2). Moreover,

x4/47 > D2/5,

also from (4.2). This gives (4.6) in the desired range.
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As for (4.11), the range (4.12) becomes

N ≫ x13/47D−1. (4.23)

If D ≥ x9/47, then we obtain (4.11) in the desired range by combining the ranges

(4.22) and (4.23).

It remains to prove (4.4) in the case D < x9/47. In this case, (4.5) yields

KD4 ≤ D5x−17/94 < x73/94,

and (4.4) follows from Lemma 10(iii).

Finally, let k = 5. In view of Lemma 10(ii), (iii), we may suppose that

K ≥ x−1/4D3/2 (4.24)

and

KD3 ≥ x1/2. (4.25)

We may apply Lemma 3(iii) with

Da = K−1D2x−3/10,

which was shown in (4.10) to be smaller than D1/3. We must show that (4.6) holds

for

K−1D2x−3/10 ≪ N ≪ max(D1/3, K−2D4x−3/5),

and that (4.11) holds for

N ≫ K1/2D−1/2x3/20.
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We apply Lemma 11. We have to show that

max(D1/3, K−2D4x−3/5) ≪ Dx−1/10

(since Dx−1/10 < D1/2 from (4.2)). The bound

D1/3 < Dx−1/10

follows from (4.2). Also,

K−2D4x−3/5(Dx−1/10)−1 = K−2D3x−1/2 ≤ 1

from (4.24). This gives (4.6) in the required range.

As for (4.11), the range (4.12) satisfies our requirements, because we obtain

x2/5D−2 ≤ K1/2D−1/2x3/20

on rearranging (4.25). This finishes the discussion for k = 5, and completes the proof

of the Theorem.
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2 Zeros of L(k)(s, χ)

This part of the thesis discusses the zeros of certain Dirichlet series that have an

analytic continuation over the whole complex plane. A Dirichlet Series is a series of

the type
∞

∑

n=1

an

ns
.

The function ζ(s) provides a common example. Let σ denote the real part of s. These

series absolutely converge for σ > σ0 and diverge for σ < σ0 for some σ0 called the

abscissa of absolute convergence.

They are useful for multiplicative counting problems. Here is an example: The

n-th coefficient of (ζ(s))2 is equal to
∑

ab=n 1 which is the number of divisors of n.

The question then that comes into play is one of analysis–determining the coefficients

of the series. (In a similar manner, power series may be used for additive problems,

such as in the number of representations a number has as a sum of two squares). See

[21, Chp. 1].

A Dirichlet L-function L(s, χ) is a Dirichlet series whose coefficients are given by

χ(n) where χ is a multiplicative character to some modulus q. In other words, χ is

a homomorphism χ : Z×
q → S1 ⊂ C where χ(n) = χ(n̄). Further, for (n, q) 6= 1, we

define χ(n) = 0. Thus, χ is a function from Z to S1
⋃

{0}.

A character to the modulus q is primitive if it does not have a period less than q.

A character χ to the modulus q is induced by χ1 to the modulus q1 if

χ(n) =











χ1(n), if (n,q)=1;

0, otherwise.

Every character χ is induced by one and only one character χ1 which is primitive [21,

Theorem 9.2].
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Dirichlet L-functions, in particular are useful for multiplicative counting problems

in arithmetic progressions. An example is counting the number of primes in the

arithmetic progression {a + qk : k ∈ Z} that are ≤ x. Let ψ(x, χ) represent the sum

of the coefficients n ≤ x of −L′

L
(s, χ). Then by orthogonal relations of characters

we can relate ψ(x, χ) to
∑

pm≤x
pm≡d(q)

log(p) which then by partial summation yields the

estimate. See [21, Sections 6.2, 11.3].

In the case of counting primes in arithmetic progressions, greater knowledge of

the zeros of L(s, χ) can help us in the analysis of ψ(x, χ). Perron’s formula, used for

partial sums of coefficients, yields:

ψ(x, χ) =
−1

2πi

∫ c+iT

c−iT

L′

L
(s, χ)

xs

s
ds+R

where R → ∞ as T → ∞ where c > 1 [21, Theorem 11.16]. The integral is evaluated

by means of a contour integral. It is not surprising then that knowledge of the zeros

gives improved estimates. In particular, due to the analytic continuation of L(s, χ),

knowledge of the zeros in the critical strip 0 ≤ σ ≤ 1 is particularly helpful.

The Generalized Riemann Hypothesis (GRH) states: L(s, χ) only has nontrivial

zeros with real part = 1
2
. For counting primes in arithmetic progressions, the estimate

for
∑

pm≤x
pm≡d(q)

log(p) is improved from x
φ(q)

+ OA(xe−c1
√

logx) to x
φ(q)

+ O(x1/2(log x)2) on

GRH (the former estimate assumes q ≤ (log x)A) [21, Cor. 11.19, 13.8].

In the results that follow, I provide a partial equivalence to GRH and I also discuss

zero-free regions to the left and right for derivatives of Dirichlet L-functions.

The first theorem generalizes Speiser’s result (1934) [24] that the Riemann hy-

pothesis is equivalent to ζ ′(s) having no zeros in the left half of the critical strip.

Theorem 1. For primitive characters χ, L(s, χ) only has finitely many zeros in the

critical strip with σ 6= 1
2

if and only if L′(s, χ) has finitely many with 0 < σ < 1
2
. In

particular, if χ(−1) = −1 and q > 2πe17/6, then L(s, χ) is zero-free in the critical
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strip with σ 6= 1
2

if and only if L′(s, χ) has no zeros for 0 < σ < 1
2
.

Theorem 2. For each ǫ > 0, L(k)(s, χ) 6= 0 in the region determined by σ < −ǫ,

|t| > ǫ, and |s| > l(k, q) where l(k, q) is determined completely by k and q where q is

the modulus of χ. This result holds for primitive and imprimitive characters χ.

A zero-free region to the right is immediate from general results on Dirichlet

series [1, Theorems 11.3, 11.4]. Here, I give an explicit zero-free region on the right

for L(k)(s, χ):

Theorem 3. Let l = min{n : n > 1, (q, n) = 1}. Then L(k)(s, χ) 6= 0 in the region

σ ≥ l + 1 + kl1/2

log1/2 l
.

Note that the right side of the inequality in Theorem 3 is an increasing function

of k. For odd q, L′(s, χ) is zero-free in the region σ ≥ 4.6986....

2.1 Theorem 1: Zeros in the critical strip of L′(s, χ)

Assume throughout the following, unless otherwise stated that χ is a primitive char-

acter. I do not classify the principal character as primitive or imprimitive.

The goal of the first lemma is to find an explicit constant for the asymptotic

formula of Γ′

Γ
in the region σ > 0 and s 6= 0.

Let | arg s| < π. N.G. de Bruijn gives an estimate for log Γ(s) based on the

Euler-Maclaurin summation formula applied to Sn(z) =
∑n

k=1 log(z + k − 1) [8, p.

47]. From Euler’s product formula for Γ(s), he gives that log Γ(z) = limn→∞[(z −

1) logn+ Sn(1) − Sn(z)]. The estimate obtained is:

log Γ(s) = (s− 1

2
) log(s) − s+ ω1(s) + 1 − ω1(1) (1)

where
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ω1(s) =
1

12s
− 1

2

∫ ∞

0

(s+ x)−2B2(x− [x])dx

(B2(x) is the second Bernoulli polynomial).

Define ω(s) = −ω1(s) + 1
12s

.

We also have from [8, p. 48] that 1 − ω1(1) = 1
2
log(2π).

Thus we have

Γ(s) =
√

2πe−sss−1/2e1/(12s)−ω(s). (2)

Let Ω be the region in C such that s 6= 0 and σ ≥ 0.

Lemma 1. For j ≥ 0 and s ∈ Ω, ω(j)(s) = O

(

1
|s|j+1

)

. In particular, |ω(j)(s)| ≤
B2

2
(j + 1)!(1 + 1

j+1
)|s|−1−j. (B2 = 1

6
is the second Bernoulli number).

Proof. I follow the same reasoning as in [25]. Consider first the integral

∫ ∞

0

|s+ x|−kdx

where k > 1. Note that if | arg s| < π (s 6= 0), this integral converges.

We have
∫ ∞

0

|s+ x|−kdx =

∫ ∞

0

((σ + x)2 + t2)−k/2dx

=

∫ ∞

0

(σ2 + t2 + x2 + 2xσ)−k/2dx ≤
∫ ∞

0

(|s|2 + x2)−k/2dx.

Note that this last inequality depends on σ ≥ 0.

Since min(|s|−k, x−k) ≥ (|s|2 + x2)−k/2, we have:

∫ ∞

0

(|s|2 + x2)−kdx ≤
∫ |s|

0

|s|−kdx+

∫ ∞

|s|
x−kdx = (1 +

1

k − 1
)|s|1−k.

Note that B2(x − [x]) ≤ B2. The above calculations show that if F (s, x) =

(s+x)−kB2(x− [x]) for k > 1, then
∫ ∞
0

|F (s, x)|dx ≤ B2(1+ 1
k−1

)|s|−1 for s ∈ Ω. Note
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then that in compact subsets of Ω,
∫ ∞
0

|F (s, x)|dx is bounded. We may then apply

[3, Lemma 4.1], an easy application of Fubini’s, Morera’s and Cauchy’s theorems, so

that f(s) =
∫ ∞
0
F (s, x)dx is holomorphic in Ω and f ′(s) =

∫ ∞
0
Fs(s, x)dx.

By a simple induction,

|ω(j)(s)| = |1
2

∫ ∞

0

(s+ x)−2−j(−1)j(j + 1)!B2(x− [x])dx| ≤

B2

2
(j + 1)!(1 +

1

j + 1
)|s|−1−j = O(

1

|s|j+1
)

From this lemma, if s ∈ Ω, then Γ′

Γ
(s) = log(s)− 1

2s
− 1

12s2 +A where |A| ≤ 1
4
|s|−2.

Thus, by the triangle inequality:

Γ′

Γ
(s) = log(s) − 1

2s
+R where |R| ≤ 1

3
|s|−2 (3)

Lemma 2. A list of facts about L(s, χ) for nonprincipal, primitive characters χ:

(i) L(s, χ) has an analytic continuation over the entire plane.

(ii) If ρ is a zero of L(s, χ) and not a pole of Γ(1
2
(s+ ã)), or if it is, has multiplicity

at least two, then L(1 − ρ̄) = 0.

(iii) L(s, χ) is zero-free for σ = 1.

(iv) If χ(−1) = −1, L(s, χ) has zeros at s = −1,−3,−5, ... corresponding to the

simple poles of Γ(1
2
(s+ ã)).

(v) If χ(1) = 1, L(s, χ) has zeros at s = −2,−4,−6, ... corresponding to the simple

poles of Γ(1
2
(s+ ã)).

(vi) All zeros that correspond to the poles of Γ(1
2
(s+ ã)) are simple. All other zeros,

the zeros of ξ(s, χ), are called nontrivial and satisfy 0 < Rρ < 1.
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Proof. Statements (i),(iv), and (v) follow from the fact that

ξ(s, χ) = (
π

q
)−(1/2)(s+ã)Γ(

1

2
(s+ ã))L(s, χ)

is an integral function [9, pgs. 69-71].

The hypothesis in statement (ii) is equivalent to saying ξ(ρ, χ) = 0. From the

functional equation, ξ(1− ρ̄, χ) = iãq1/2

τ(χ)
ξ(ρ̄, χ̄) [9, p. 71]. By the equations at the top

of [9, p. 69] and at the foot of [9, p. 70], it is clear that ξ(ρ̄, χ̄) = ξ(ρ, χ). It therefore

follows that ξ(1 − ρ̄, χ) = 0 and therefore L(1 − ρ̄, χ) = 0.

Statement (iii) follows from the fact that L(1, χ) 6= 0 [9, pgs. 31-34] and a zero-

free region on the right in the critical strip [9, p. 93]. Note that [9, p. 93] states that

for real χ, there may be a possible zero in part of the region given. Thus, I include

the result that L(1, χ) 6= 0.

From the Euler product formula of L(s, χ), L(s, χ) has no zeros for σ > 1 It

follows that ξ(s, χ) has no zeros in this region since Γ(s) has no zeros. Then, by the

contrapositive of (ii), L(s, χ) has only simple zeros for σ < 0 and ξ(s, χ) has no zeros

for σ < 0. From (iii) and the contrapositive of (ii), we therefore obtain that all the

zeros of ξ(s, χ), the nontrivial zeros, are in the region 0 < σ < 1.

For a primitive character χ,

R
L′(s, χ)

L(s, χ)
= −1

2
log(

q

π
) − 1

2
R

Γ′(1
2
(s + ã))

Γ(1
2
(s+ ã))

+ R

∑

ρ

1

s− ρ
(4)

where ρ runs over all the nontrivial zeros of L(s, χ) [9, p. 83]. Let

I = R

∑

ρ

1

s− ρ
.

From lemma 2(ii), if ρ = β + iγ and β < 1
2
, then 1 − ρ̄ = 1 − β + iγ is also a zero.
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Then, we have

R

∑

β 6=1/2

1

s− ρ
= R

∑

β<1/2

(

1

s− ρ
+

1

s− 1 + ρ̄

)

.

Note that:

R

(

1

s− ρ
+

1

s− 1 + ρ̄

)

= R
(s− 1 + ρ̄+ s− ρ)(s̄− ρ̄)(s̄− 1 + ρ)

|s− ρ|2|s− 1 + ρ̄|2

= R
[(2σ − 1) + 2(t− γ)i][(σ − β) + (γ − t)i][(σ + β − 1) + (γ − t)i]

|s− ρ|2|s− 1 + ρ̄|2

=
(2σ − 1)(σ − β)(σ + β − 1) − (2σ − 1)(γ − t)2 − 2(σ − β)(t− γ)2 + 2(σ + β − 1)(t− γ)2

|s− p|2|s− 1 + ρ̄|2

= (2σ − 1)

(

(σ − β)(σ + β − 1) − (γ − t)2 + 2(γ − t)2

|s− ρ|2|s− 1 + ρ̄|2
)

= (2σ − 1)

(

(σ2 − σ + 1
4
) − 1

4
− (β2 − β + 1

4
) + 1

4
+ (γ − t)2

|s− ρ|2|s− 1 + ρ̄|2
)

.

Thus,

R

(

1

s− ρ
+

1

s− 1 + ρ̄

)

= −2(
1

2
− σ)

(t− γ)2 + (σ − 1
2
)2 − (1

2
− β)2

|s− ρ|2|s− 1 + ρ̄|2 .

And we may write:

R

∑

β 6=1/2

1

s− ρ
= −2(

1

2
− σ)

∑

β<1/2

(t− γ)2 + (σ − 1
2
)2 − (1

2
− β)2

|s− ρ|2|s− 1 + ρ̄|2

Further note that R(s̄− ρ̄) = σ − 1
2

so that

R

∑

β=1/2

1

s− ρ
= −(

1

2
− σ)

∑

β=1/2

1

|s− ρ|2 .
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Thus, factoring out −(1
2
− σ) and labeling

I1 = 2
∑

β<1/2

(t− γ)2 + (σ − 1
2
)2 − (1

2
− β)2

|s− ρ|2|s− 1 + ρ̄|2 +
∑

β=1/2

1

|s− ρ|2 , (5)

we obtain that

I = −(
1

2
− σ)I1. (6)

Note that (5) and (6) are identical to [19, (2.2) and (2.3)].

The following lemma then trivially follows:

Lemma 3. Suppose L(s, χ) 6= 0. If σ = 1
2
, I = 0. If σ ≤ 0, I < 0.

Proof. For the first part, see (6). For the second part see both (5) and (6) noting

that (σ − 1
2
)2 > (1

2
− β)2 in this case.

Lemma 4. Suppose L(s, χ) 6= 0 and 0 ≤ σ ≤ 1
2
. If

(i) |t| > 2π
q
e17/6 or

(ii) χ(−1) = −1 and q > 2πe17/6, then

−1

2
log

(

q

π

)

− 1

2
R

Γ′

Γ

(

1

2
(s+ ã)

)

< 0.

Proof. From (3) noting that R
1

2( 1
2
)(s+ã)

= σ+ã
|s+ã|2 ,

R
Γ′

Γ

(

1

2
(s+ ã)

)

= log |1
2
(s+ ã)| − σ + ã

|s+ ã|2 + RR

where

|R| ≤ 1

3|1
2
(s+ ã)|2 =

4

3|s+ ã|2 .

So,

log

(

q

π

)

+ R
Γ′

Γ

(

1

2
(s+ ã)

)

≥ log(
q

π
) +

(

log |1
2
(s+ ã)| − σ + ã

|s+ ã|2 − 4

3|s+ ã|2
)

.
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Thus, it suffices if

log | q
2π

(s+ ã)| > σ + ã

|s+ ã|2 +
4

3|s+ ã|2

or

q

2π
|(s+ ã)| > e(3σ+3ã+4)/(3|s+ã|2).

Suppose that |t| > 1. Then, it suffices if q
2π
|t| > e17/6 or |t| > 2π

q
e17/6.

Suppose that χ(−1) = −1 so that ã = 1. Then it suffices if q
2π

> e17/6 or

q > 2πe17/6.

Let H1, H2 ∈ R. Also, suppose H1 < H2. Define

Dχ(H1, H2) = {ρ}c
⋂

{s : 0 ≤ σ ≤ 1

2
and H1 ≤ t ≤ H2}

where {ρ}c is the complement of the set of nontrivial zeros.

Lemma 5. Let H1 and H2 be such that no zero of L(s, χ) has imaginary part H1 or

H2. Suppose

−1

2
log

(

q

π

)

− 1

2
R

Γ′

Γ

(

1

2
(s+ ã)

)

< 0

everywhere in Dχ(H1, H2). Given ǫ > 0, there exists a simple contour η : [0, 1] → C

such that

η([0, 1]) ⊂ Dχ(H1, H2),

Rη(s) >
1

2
− ǫ,

η(0) =
1

2
+ iH1, η(1) =

1

2
+ iH2 and

R
L′

L
(η(u), χ) < 0 (u ∈ [0, 1]).

Proof. For s ∈ {ρ}c such that σ = 1
2
, I = 0 from (6).
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Let a1, ...am denote the zeros of L(s, χ) with real part 1
2

in Dχ(H1, H2). The term

|s−ai|−2 in (5) can be made arbitrarily large for s close to ai. So there exists a small

semicircle of radius ǫi about ai in Dχ(H1, H2) such that I1 > 0 which implies I < 0.

We may choose ǫi < ǫ, ǫi <
1
2
min{|Iai − Iaj | : i 6= j} and ǫi < min{|Iai −Hj| : j =

1, 2}. Thus, the desired contour is on σ = 1
2

indented by the semicircles of radius ǫi

about each ai.

Lemma 6. Assume all the hypotheses of lemma 5. Also suppose if χ(−1) = 1 that

either H1 < H2 < 0 or 0 < H1 < H2. Then given ǫ > 0, there exists a simple closed

contour λ : [0, 1] → C such that

λ([0, 1]) ⊂ Dχ(H1, H2),

L(s, χ) and L′(s, χ) are both nonzero on λ,

λ(u) = 1 − 2u+ iH2 u ∈ [
1

4
,
1

2
],

λ(u) = 2u− 3

2
+ iH1 u ∈ [

3

4
, 1],

λ encloses all the zeros of L(s, χ) and L′(s, χ) in the region H1 < t < H2, 0 < σ < 1
2
,

and

R
L′

L
(λ(u), χ) < 0 u ∈ [0,

1

4
]
⋃

[
1

2
,
3

4
].

Proof. We form a contour traversed in the counter clockwise direction. From the

hypotheses of lemma 5, we may choose the lines t = H2 and t = H1 as the top

(u ∈ [1
4
, 1

2
]) and bottom (u ∈ [3

4
, 1]) pieces of the contour as described in the statement

of the lemma. The sides we construct will begin and end at corners of the rectangle.

If we choose δ > 0 so that there are no zeros of L(s, χ) or L′(s, χ) in the region

1
2
− δ < σ < 1

2
, then by lemma 5, there exists a contour η in Dχ(H1, H2) with real
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part greater than 1
2
− δ for which R

L′

L
(s, χ) < 0 for s ∈ η. We may choose η as the

right piece of the contour.

Now L(s, χ) 6= 0 on the line σ = 0, H1 ≤ t ≤ H2 by lemma 2 and the hypothesis

if χ(−1) = 1. So by lemma 3, R
L′

L
(it, χ) < 0 (H1 ≤ t ≤ H2). We choose this as

the left piece of the contour. Note that since L(s, χ) is zero-free on the boundary

of the closure of Dχ(H1, H2) by lemma 2 and the hypothesis if χ(−1) = −1. Since

R
L′

L
(s, χ) < 0 on the contour we have chosen and all zeros of L(s, χ) and L′(s, χ) are

in the interior of the contour, L′(s, χ) and L(s, χ) are both nonzero on the contour.

The following lemma is of independent interest. The main ideas for its statement

and proof are due to Roger Baker:

Lemma 7. Suppose h is analytic inside and on a closed contour η : [0, 1] → C and

that h(η(u)) 6= 0 and h′(η(u)) 6= 0 for u ∈ [0, 1]. Also suppose R
h′

h
(η(u)) < 0 for

u ∈ [0, c] (0 ≤ c ≤ 1). Let N be the number of zeros of h inside η and let N ′ be the

number of zeros of h′ inside η. Then if the length of the curve η|[c,1] is L, we have:

|N −N ′| ≤ 1

2
+

1

2π
CL (7)

where C = max
u∈[c,1]

h′

h
(η(u)).

Proof. From the argument principle,

N =
1

2π
(arg h(η(1)) − arg h(η(0)))

and

N ′ =
1

2π
(arg h′(η(1)) − arg h′(η(0))).
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Note that

arg h(η(u)) = arg h(η(0)) + I

∫ u

0

h′(η(v))

h(η(v))
dη(v)

is a continuous function of u. Similarly, arg h′(η(u)) is a continuous function of u.

Thus, the function

arg
h′

h
(η(u)) = arg h′(η(u)) − arg(h(η(u))

is continuous. Since h′

h
is in the left half plane for u ∈ [0, c],

arg
h′

h
(η(u)) ∈ (

π

2
,
3π

2
) (mod 2π) for u ∈ [0, c].

By continuity,

| arg
h′(η(u2))

h(η(u2))
− arg

h′(η(u1))

h(η(u1))
| < π

for all u1, u2 ∈ [0, c]. So this in particular holds when u1 = 0 and u2 = c as will be

used below.

So,

2π(N −N ′) = [arg h(η(1)) − arg h(η(0))] − [arg h′(η(1)) − arg h′(η(0))]

= [arg h′(η(0)) − arg h(η(0))] − [arg h′(η(1)) − arg h(η(1))]

And this is:

=

(

[arg h′(η(0)) − arg h(η(0))] − [arg h′(η(c)) − arg h(η(c))]

)

−
(

[arg h′(η(1)) − arg h(η(1))] − [arg h′(η(c)) − arg h(η(c))]

)

.
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This in turn is

= K − I

∫ 1

c

h′

h
(η(v))η′(v)dv

where |K| < π from above. Since h′(η(v))
h(η(v))

is continuous on [c, 1], it achieves a maximum

C. so that

|
∫ 1

c

h′

h
(η(v))η′(v)dv| ≤ C

∫ 1

c

|η′(v)|dv = CL

where L is the length of the curve η from u = c to u = 1.

Lemma 8. Let σ ≥ α for some fixed α. Then, as t → ∞, L(s, χ) = Oq(|t|A) and

L′(s, χ) = Oq(|t|B).

Proof. This follows the same line of reasoning as given in [28, Sections 4.12, 5.1] for

the Riemann Zeta function. For σ ≥ 1
2
,

L(s, χ) = s

∫ ∞

1

∑

n≤x

χ(n)x−s−1dx.

The character sum is trivially bounded by φ(q). Thus,

|L(s, χ)| ≤ |s|
∫ ∞

1

φ(q)x−σ−1dx = |s|φ(q)

σ

= φ(q)

√

1 +
t2

σ2
≤ φ(q)

√
1 + 4t2 ≤ (1 + 2|t|)φ(q).

Thus, for σ ≥ 1
2
, we have that L(s, χ) = Oq(|t|).

Without loss of generality, we may assume that α < 1
2

and so consider the region

α ≤ σ < 1
2
. We use the functional equation in the form

L(s, χ) =
τ(χ)

iã
(
2π

q
)s sec(

π

2
(s− ã))

1

Γ(s)
L(1 − s, χ).
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From (1) and lemma 1,

log Γ(s) = (s− 1

2
) log s− s+

1

2
log 2π +O(

1

|s|).

Note that

log(σ + it) = log(it(
σ

it
+ 1)) = log(it) + log(1 − iσ

t
).

And

| log(1 − iσ

t
)| = |

∑

n≥1

1

n

(

iσ

t

)n

| ≤
∑

n≥1

∣

∣

∣

∣

σ

t

∣

∣

∣

∣

n

=

∣

∣

∣

∣

σ

t

∣

∣

∣

∣

1

1 − |σ
t
| = O(

1

|t|)

for large t since σ is restricted to a finite interval. So,

log(σ + it) = log(it) +O(
1

|t|).

Trivially, −s+O( 1
|s|) = −it− σ + O( 1

|t|). Thus,

log Γ(s) = (σ + it− 1

2
)(log it) − it+ (

1

2
log 2π − σ) +O(

1

|t|)

= (σ + it− 1

2
)(log i+ log t) − it+ (

1

2
log 2π − σ) +O(

1

|t|)

= (σ + it− 1

2
)(
π

2
i) + (σ + it− 1

2
) log t− it+ (

1

2
log 2π − σ) +O(

1

|t|)

So:

Γ(s) = tσ+it− 1
2e−(π/2)t−i(π/2)(σ−1/2)−ite

1
2

log 2π−σ(1 +O(
1

|t|))

where eO(1/|t|) = 1 +O( 1
|t|) by the Maclaurin expansion of ez.

Now consider

cos(
π

2
(s− ã))Γ(s) =

1

2

(

e−(π/2)t+i(π/2)(σ−ã)Γ(s) + e(π/2)t−i(π/2)(σ−ã)Γ(s)

)

.
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Note that:

e−(π/2)t+i(π/2)(σ−ã)Γ(s) = tσ+it− 1
2 e−πt+i(1/2−ã−t)e

1
2

log 2π−σ(1 +O(
1

|t|))

and

e(π/2)t−i(π/2)(σ−ã)Γ(s) = tσ+it− 1
2 ei(1/2+(π/2)ã−πσ−t)e

1
2

log 2π−σ(1 +O(
1

|t|))

Note that

∣

∣

∣

∣

1

e
1
2

log 2π−σ(1 +O( 1
|t|))e

−πt+i(1/2−ã−t) + e
1
2

log 2π−σ(1 +O( 1
|t|))e

i(1/2+(π/2)ã−πσ−t)

∣

∣

∣

∣

≤ 1

e
1
2

log 2π−σ

∣

∣

∣

∣

|(1 +O( 1
|t|))| − |(1 +O( 1

|t|))|e−πt

∣

∣

∣

∣

= O(e−
1
2

log 2π+σ)

for large |t| (for large t < 0 this still holds). So,

sec(
π

2
(s− ã))

1

Γ(s)
= 2t−σ+1/2−itO(1) = O(|t|−σ+1/2).

Trivially, τ(χ)
iã

(2π
q

)s = Oq(1) for α ≤ σ < 1
2
. Since L(1 − s, χ) = Oq(|t|), L(s, χ) =

Oq(|t|3/2−σ) = Oq(|t|3/2−α).

Last, we show L′(s, χ) = Oq(|t|B). From above, for σ > α − 2, L(s, χ) =

Oq(|t|7/2−α). Let σ > α and t be large. Then, on a circle of radius 1 about s,

L(s, χ) = O(|t ± 1|7/2−α) = Oq(|t|7/2−α) (± depending on whether 7
2
− α is > 0 or

< 0). By Cauchy’s estimates, we have that L′(s, χ) = Oq(|t|7/2−α) for large t.

Lemma 9. The change in argL(σ+it, χ) and in argL′(σ+it, χ) from σ = 0 to σ = 1
2

for large |t| is Oq(log |t|) where L(σ + it, χ) 6= 0 and L(σ + it) 6= 0 for 0 ≤ σ ≤ 1
2
.

Proof. This proof follows a similar construction that can be found in [7] or in [28,

Section 9.4]. Consider L(s, χ). The proof for L′(s, χ) is identical. Let lT be the line
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segment along t = T for 0 ≤ σ ≤ 1
2
. Suppose that L(s, χ) has no zeros on lT . Let

m denote the number of zeros of RL(s, χ) on lT . These zeros subdivide lT into at

most m + 1 intervals. The sign of RL(s, χ) on each of these is constant. Therefore,

the change of argument on each subinterval is at most π. Thus the total change in

argument on lT is bounded by (m+ 1)π.

Let

g(z) =
1

2
(L(z + iT, χ) + L(z̄ + iT, χ)).

Note that this is an analytic function in a radius where L(z + iT, χ) is analytic.

To see this, suppose L(z + iT, χ) =
∑∞

n=0 cn(z − a)n is a power series representation

centered at a ∈ R. Then,

L(z̄ + iT, χ) =

∞
∑

n=0

cn(z̄ − a)n =

∞
∑

n=0

c̄n(z − a)n.

Note for z = σ real, g(σ) = RL(σ + iT, χ).

Thus, m denotes the number of zeros of g(σ) for 0 ≤ σ ≤ 1
2
.

We apply Jensen’s formula, noting that g(z) is analytic on the entire plane. Denote

by C the circle of radius 1 about 1
2
. Let n(r) be the number of zeros of g(z) in and

on a circle of radius r centered at 1
2
. Then

∫ 1

0

n(r)

r
dr ≥ n(

1

2
)

∫ 1

1/2

dr

r
= n(

1

2
) log 2.

Thus,

m ≤ n(
1

2
) ≤ 1

2π log 2

∫ π

−π

log |g(1
2

+
1

2
eiθ)|dθ − 1

log 2
log |g(1

2
)| (8)

using Jensen’s formula.

From the fact that L(s, χ) is Oq(|t|A) (σ ≥ −1
2
), we obtain that on the circle of

radius 1 about 1
2

+ iT , L(s, χ) = Oq(|T ± 2|A) = Oq(|T |A). Thus, g(z) = Oq(|T |A)

48



on C. Thus the integral in (8) is bounded by 1
log 2

log |MTA| = Oq(log |T |) for some

constant M depending on q. Similarly, log |g(1
2
)| = Oq(log |T |).

Thus, m = Oq(log |T |) so that the variation of the argument of L(s, χ) on lT is

Oq(log |T |).

Notation:

Let N−(a, b, χ) and N−
1 (a, b, χ) denote the number of zeros of L(s, χ) and L′(s, χ)

respectively contained in the interior of the rectangle a ≤ t ≤ b and 0 ≤ σ ≤ 1
2
.

Put together, the following two lemmas are an analog to [19, Theorem 1].

Lemma 10. Suppose there exists a set of positive, increasing real numbers {Tj}∞j=1

and a set of negative, decreasing real numbers {Pj}∞j=1 such that limj→∞ Tj = ∞ and

limj→∞ Pj = −∞. Also suppose that R
L′

L
(σ + iTj) < 0 and R

L′

L
(σ + iPj) < 0 for

0 ≤ σ ≤ 1
2

and each j. Then

N−
1 (Pi, Tj, χ) = N−(Pi, Tj, χ) +Oχ(1)

for i, j ≥ 1. If in particular, χ(−1) = −1, q > 2πe17/6, then

N−
1 (Pi, Tj , χ) = N−(Pi, Tj , χ)

for i, j ≥ 1.

Proof. Let K = min
i
{Ti : Ti >

2π
q
e17/6}. Also, let K ′ = max

i
{Pi : Pi >

2π
q
e17/6}. Note

that K and K ′ depend on χ. Choose Tj > K. Then applying lemma 6 with H1 = K

and H2 = Tj , there exists a contour λ enclosing all the zeros of L(s, χ) and L′(s, χ)

in the interior of the rectangle 0 ≤ σ ≤ 1
2

and K ≤ t ≤ Tj . Also, on λ, R
L′(s,χ)
L(s,χ)

< 0.

This also implies L(s, χ) 6= 0 and L′(s, χ) 6= 0 on λ. So, since the absolute value of

49



the change of argument of L′

L
(s, χ) is less than π, the change of argument must be 0.

Therefore N−
1 (K, Tj, χ) = N−(K, Tj, χ). Similarly, N−

1 (Pj , K
′, χ) = N−(Pj , K

′, χ).

Since there are only finitely many zeros in the interior of the rectangle K ′ ≤ σ ≤ 1
2
,

0 ≤ t ≤ K, we have the first statement of the lemma.

For the second statement, we use the hypothesis χ(−1) = −1, q > 2πe17/6 and set

H1 = K ′ and H2 = K in lemma 6 to obtain a contour with the same properties we

mentioned for λ. It follows that N−
1 (K ′, K, χ) = N−(K ′, K, χ).

Lemma 11. If neither a sequence like {Tj} nor {Pj} in lemma 10 exists, then

N−(−T, T, χ) ≥ T +Oχ(1) for sufficiently large T > 0.

Proof. Without loss of generality, suppose that a set {Tj} as in lemma 10 does not

exist. Then:

(i) for all sufficiently large t > 0, there exists 0 ≤ σ ≤ 1 such that R
L′

L
(σ + it, χ) is

nonnegative.

(ii) From Lemma 4 we have, for sufficiently large t > 0 that

−1

2
log

(

q

π

)

− 1

2
R

Γ′

Γ

(

1

2
(s+ ã)

)

< 0

so that we must have I > 0 or I1 < 0. At least one term in the expression for I1

must then be negative. This only happens when for some β < 1
2
, we have (1

2
− β)2 >

(t− γ)2 + (σ− 1
2
)2. Note that (1

2
− β) ≤ 1

2
so that |t− γ| < 1

2
. Thus, if t is an integer

n, |t− n| < 1
2

so that for each sufficiently large positive integer, there is at least one

zero with imaginary part differing by less than 1
2
. So, if t > c implies that conditions

(i) and (ii) hold, we have N−(−T, T, χ) ≥ T − c or N−(T, χ) ≥ T + Oχ(1) since c

depends on χ.

Lemma 12. N−
1 (−T, T, χ) = N−(−T, T, χ) +Oχ(logT ).

50



Proof. We use the notation in the proof of Lemma 9, of lT to denote the line segment

at t = T with 0 ≤ σ ≤ 1
2
. By lemma 9, there exists T ′

0 > 0 dependent on χ such that

for t > T ′
0

|∆lt arg
L′

L
(s)| < Kq log |t|

for some constantKq > 0. Thus, there Let T0 be such that 0 < T0−max{T ′
0,

2π
q
e17/6} <

1, and L(s, χ) is zero-free on lT0 and l−T0 . From dependence on χ,

N−
1 (−T0, T0, χ) = Oχ(1).

Let T > T0. By lemma 4,

−1

2
log

(

q

π

)

− 1

2
R

Γ′

Γ

(

1

2
(s+ ã)

)

< 0

in Dχ(T0, T ). By lemma 6, there exists a closed contour λ ⊂ Dχ(T1, T ) enclosing all

the zeros of L(s, χ) and L′(s, χ) in the region T0 < t < T , 0 < σ < 1
2
. This contour

has lT0 as its bottom piece and lT as the top piece. Elsewhere on λ, R
L′(s,χ)
L(s,χ)

< 0

on two disjoint intervals. Thus the total change of argument on these two disjoint

intervals together is < 2π. So

∆λ arg
L′

L
(s, χ) = Oq(logT )

on λ. So, N−
1 (T0, T, χ) = N−(T0, T, χ) + Oχ(log T ). Similarly, N−

1 (−T,−T0, χ) =

N−(−T,−T0, χ) +Oχ(logT ).

Proof of Theorem 1.

Proof. Suppose first that there are only finitely many zeroes in the critical strip with

σ 6= 1
2
. Then, by the contrapositive to lemma 11, there exist sets {Tj} and {Pj}

with properties as stated in Lemma 10. Then applying Lemma 10, N−
1 (Pi, Tj, χ) =
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N−(Pi, Tj, χ) + Oχ(1) for i, j ≥ 1. Consequently, L′(s, χ) has Oχ(1) zeros with 0 <

σ < 1
2
.

Now if χ(−1) = −1 and q > 2πe17/6, assuming there are no zeros in in the critical

strip with σ 6= 1
2
, lemma 11 again gives sequences {Tj} and {Pj} with properties stated

as in lemma 10. Lemma 10 then gives N−
1 (Pi, Tj , χ) = N−(Pi, Tj, χ) for i, j ≥ 1. So

L′(s, χ) has no zeros for 0 < σ < 1
2
.

Now suppose conversely that L′(s, χ) has only finitely many zeros with 0 < σ <

1
2
. Then by lemma 12 we have that N−(−T, T, χ) = Oχ(logT ). Lemma 11 yields

sets {Tj} and {Pj} as given in lemma 10. Lemma 10 then gives N−
1 (Pi, Tj, χ) =

N−(Pi, Tj, χ)+Oχ(1) for i, j ≥ 1. So L(s, χ) has only finitely many zeros with σ 6= 1
2

by symmetry.

Similarly, if χ(−1) = −1 and q > 2πe17/6, the same reasoning applies as in the

preceding paragraph only lemma 10 gives N−
1 (Pi, Tj , χ) = N−(Pi, Tj , χ) for i, j ≥ 1.

Thus, if L′(s, χ) has no zeros in the region 0 < σ < 1
2
, by symmetry L(s, χ) has no

zeros in the critical strip with σ 6= 1
2
.

2.2 Theorem 2: A zero-free region to the left for L(k)(s, χ)

The approach used here to prove theorem 2, follows the same flavor and general idea of

[26, Section 2]. Suppose χ is imprimitive. Then, there is a unique primitive character

χ1 that induces it. We have from the Euler product that L(s, χ) = P (s)L(s, χ1)

where P (s) =
∏

p|q(1 − χ1(p)p
−s) [9, p. 37]. If χ is primitive, we may define χ1 = χ

and P (s) = 1. In either case χ1 is primitive and so we may consider the functional

equation associated to L(s, χ1).

Lemma 13.
P (n)(s)

P (s)
= Oq,ǫ,n(1) for n ≥ 0 in the region σ < −ǫ.

Proof. We proceed by induction on n and we only consider the case when P (s) 6= 1.

52



In the case n = 0, the result is trivial. For the case n = 1, we have the identity

P ′(s) = P (s)
∑

p|q

χ1(p) log(p)p−s

1 − χ1(p)p−s

obtained by logarithmic differentiation.

Multiplying by each term in the sum respectively by χ̄1(p)ps

χ̄1(p)ps we obtain:

P ′(s) = P (s)
∑

p|q

log(p)

χ̄1(p)ps − 1
(9)

Thus,

|P
′(s)

P (s)
| ≤

∑

p|q

log(p)

1 − pσ
≤

∑

p|q

log(p)

1 − p−ǫ
.

So, we have, P ′(s)
P (s)

= Oq,ǫ(1).

Suppose now that the result holds for k < n and that n > 1. Then, by Leibniz’s

rule using (9),

P (n)(s) =

n−1
∑

j=0







n− 1

j






P (j)(s)G(k−j)(s)

where G(s) =
∑

p|q
log(p)

χ̄1(p)ps−1
. By the inductive hypothesis, dividing by P (s), it suffices

to show that G(j)(s) = Oq,ǫ,j(1) for j ≤ n− 1.

As seen above, G(s) = P ′(s)
P (s)

= Oq,ǫ(1) in the region σ < − ǫ
4
. Then, let Cs be

a circle of radius ǫ
2

about s. (Note that the only poles of G(s) occur when σ = 0.)

There exists a constant K depending on ǫ and q such that |G(s)| < K in the region

σ < − ǫ
4
. By Cauchy’s integral formula,

|G(j)(s)| = | j!
2πi

∫

Cs

G(ζ)

(ζ − s)j+1
dζ | ≤ j!

2π
(2π

ǫ

2
)

K

( ǫ
2
)j+1

=
2jKj!

ǫj
.

That proves the lemma.
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We use the following notation:







n

n1, j2, ..., nr






=

n!

n1!n2!...nr!
.

Recall from (2), Γ(s) =
√

2πe−sss−1/2e1/(12s)−ω(s) where by Lemma 1, ω(j)(s) =

O( 1
|s|j+1 ).

Lemma 14. For j ≥ 0, we have:

Γ(j)(s)

Γ(s)
=

∑

j1+j2+j3=j







j

j1, j2, j3






(−1)j1(logj2 s+

j2−1
∑

m=0

Ej2m logm s)Fj3

where Fj is a polynomial in 1/s and the first j derivatives of ω(s) and Ejm is a

polynomial in 1/s.

Proof. We consider Γ(s) =
√

2πe−sss−1/2e1/(12s)−ω(s).

By the multinomial generalization of Leibniz’s derivative rule, we have:

Γ(j)(s) =
√

2π
∑

j1+j2+j3=j







j

j1, j2, j3






(−1)j1e−s(ss−1/2)(j2)(e1/(12s)−ω(s))(j3)

Dividing by Γ(s),

Γ(j)(s)

Γ(s)
=

∑

j1+j2+j3=j







j

j1, j2, j3






(−1)j1

(ss−1/2)(j2)

(ss−1/2)

(e1/(12s)−ω(s))(j3)

(e1/(12s)−ω(s))

We claim that (ss−1/2)(j) = (hj(s) + logj s)ss−1/2 where hj(s) =
∑j−1

m=0Ejm logm s

and Ejm is a polynomial in 1/s. The 0th case is trivial. For the rest, we pro-

ceed by induction. Rewrite ss−1/2 as elog(s)(s−1/2). Then if the j − 1st derivative is

(hj−1(s)+ logj−1 s)elog(s)(s−1/2), the jth derivative is (h′j−1(s)+ j−1
s

logj−2 s+(1− 1
2s

+
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log s)(hj−1(s) + logj−1 s))elog(s)(s−1/2). The claim is evident.

Further note that (e1/(12s)−ω(s))(j) = Fje
1/(12s)−ω(s) where Fj is a polynomial in

1/s and the first j derivatives of ω(s) which is also seen by induction: Fj = F ′
j−1 +

(−1/(12s2) − ω′(s))Fj−1(s). Note that F0 = 1.

Combining these two facts we have the lemma.

Lemma 15. If |t| > ǫ,

(cos( sπ
2
− πã

2
))(j)

cos( sπ
2
− πã

2
)

= Oǫ(1)

Proof. Note that

(cos( sπ
2
− πã

2
))(j)

cos( sπ
2
− πã

2
)

=











(−1)j/2(π
2
)j, j is even;

(−1)(j+1)/2(π
2
)j(tan( sπ

2
− πã

2
)), j is odd.

| tan(
sπ

2
− πã

2
)| =

∣

∣

∣

∣

etπ/2+(σ−ã)πi/2 − e−tπ/2−(σ−ã)πi/2

etπ/2+(σ−ã)πi/2 + e−tπ/2−(σ−ã)πi/2

∣

∣

∣

∣

≤ etπ/2 + e−tπ/2

etπ/2 − e−tπ/2
=

etπ + 1

etπ − 1
=

2

etπ − 1
+ 1 = Oǫ(1)

in the region |t| > ǫ.

The following lemma stated without proof follows from repeated integration by

parts (a less generalized version was used by [26, Section 1]):

Lemma 16.
∫ ∞

c

logj x

xσ
dx =

c1−σj!

(σ − 1)j+1

j
∑

m=0

(logm c)(σ − 1)m

m!
.

Lemma 17.

L(j)(s, χ̄1)

L(s, χ̄1)
= Oq,ǫ,j(1)

in the region σ > 1 + ǫ.
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Proof. Note that logj x
xσ is monotonically decreasing, (by differentiation) when j −

σ log x is negative or x > ej/σ. Since ej/(1+ǫ) > ej/σ, it suffices if x > ej/(1+ǫ) for logj x
xσ

to be decreasing. Let c = [ej/(1+ǫ) + 1]. Then:

|L(j)(s, χ̄1)| = |
∞

∑

n=2

χ̄1(n) logj n

ns
| ≤

c
∑

n=2

logj n

nσ
+

∞
∑

n=c+1

logj n

nσ
≤ Oǫ,j(1) +

∫ ∞

c

logj x

xσ
dx

= Oǫ,j(1) +
c1−σj!

(σ − 1)j+1

j
∑

m=0

(logm c)(σ − 1)m

m!
= Oǫ,j(1).

We also have that

| 1

L(s, χ̄1)
| = |

∞
∑

n=1

µ(n)χ̄1(n)

ns
| < ζ(σ) ≤ 1 +

∫ ∞

1

dx

xσ

which is bounded in the region σ > 1 + ǫ.

Proof of Theorem 2.

Proof. Using the unsymmetric form of the functional equation for L(s, χ̄1), we have:

L(1 − s, χ) = P (1 − s)L(1 − s, χ1)

L(1 − s, χ) = P (1 − s) 2iã

τ(χ̄1)
( q

2π
)s cos(π

2
(s− ã))Γ(s)L(s, χ̄1).

Before continuing, we note that P (1−s)( q
2π

)s cos(π
2
(s− ã))Γ(s)L(s, χ̄1) is nonzero

for σ > 1 + ǫ.

Now, by the multinomial version of Leibniz’s rule, we obtain:

(−1)kL(k)(1 − s, χ)

P (1 − s) 2iã

τ(χ̄1)
( q

2π
)s cos(π

2
(s− ã))Γ(s)L(s, χ̄1)

= (10)

∑

P5
i=1 ri=k







k

r1, r2, r3, r4, r5







(−1)r1P (r1)(1 − s)

P (1 − s)

(( q
2π

)s)(r2)

( q
2π

)s

(cos(π
2
(s− ã)))(r3)

cos(π
2
(s− ã))

Γ(r4)(s)

Γ(s)

L(r5)(s, χ̄1)

L(s, χ̄1)
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=
k

∑

r=1







k

r







Γ(r)(s)

Γ(s)
Hr(s)

where Hr(s) is a linear combination (the number of terms is bounded by the number

of partitions of k − r). By lemmas 13, 15, 17, and since

(( q
2π

)s)(j)

( q
2π

)s
= logj(

q

2π
) = Oq,k(1) for j ≥ k,

each term in Hr(s) is Oǫ,q,k(1). So, Hr(s) = Oǫ,q,k(1).

Using lemma 14, write the right side of (10) in the form:

k
∑

r=1







k

r






Hr(s)

∑

j1+j2+j3=r







r

j1, j2, j3






(−1)j1(logj2 s+

j2−1
∑

m=0

Ej2m logm s)Fj3 .

Dividing by logk−1(s), we obtain:

k
∑

r=1







k

r






Hr(s)

∑

j1+j2+j3=r







j

j1, j2, j3






(−1)j1(logj2−k+1 s+

j2−1
∑

m=0

Ej2m logm−k+1 s)Fj3

All powers of log s in this sum are at most 0 except for when j2 = r = k and

j1 = j3 = 0. Hence Fj3 = 1 from the proof of lemma 14. Note further that Hk(s) = 1

so that the (0, 0, 0, k, 0) term in the right side of (10) divided by logk−1 s is log s +
∑k−1

m=0 Ekm logm−k+1 s. This being so, we obtain that

(−1)kL(k)(1 − s, χ)

logk−1(s)P (1 − s) 2iã

τ(χ̄1)
( q

2π
)s cos(π

2
(s− ã))Γ(s)L(s, χ̄1)

= log s+Oq,ǫ,k(1)

in the region σ > 1 + ǫ.

Then, by the triangle inequality, there exists l(k, q) such that |s| > l(k, q) implies
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that L(k)(s, χ) 6= 0 if σ < −ǫ and |t| > ǫ.

2.3 Theorem 3: A zero-free region to the right for L(k)(s, χ)

The proof here is almost identical to the proof of [26, Theorem 2] only with a few

adjustments.

Proof of Theorem 3.

Proof. Note that l = min{n : n > 1, (q, n) = 1} = min{n : n > 1, χ(n) 6= 0}. Also

note that k
log l

< l + 1 + kl1/2

log1/2 l
. Suppose σ ≥ k

log l
.

Differentiating k times,

L(k)(s, χ) =
∞

∑

n=2

χ(n) logk n

ns
=
χ(l) logk l

ls
+

∞
∑

n=l+1

χ(n) logk n

ns
.

Thus,

|L(k)(s, χ)| ≥ logk l

lσ
−

∞
∑

n=l+1

logk n

nσ
.

Note that

d

dx

logk x

xσ
=

(xσ−1 logk−1 x)(k − σ log x)

x2σ
.

Since k − σ log l < 0,

|L(k)(s, χ)| > logk l

lσ
−

∫ ∞

l

logk x

xσ

=
logk l

lσ
− l1−σk!

(σ − 1)k+1

k
∑

j=0

(logj l)(σ − 1)j

j!

by the application of Lemma 16. The right side of the inequality is:

l1−σk!

(σ − 1)k+1

(

logk+1 l(σ − 1)k+1

(l log l)k!
−

k
∑

j=0

(logj l)(σ − 1)j

j!

)

.
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Let z = (log l)(σ − 1). Then we require that

zk+1

(l log l)k!
−

k
∑

j=0

zj

j!
≥ 0. (11)

Note that
k

∑

j=0

zj

j!
≤ zk

k!
+

kzk−1

(k − 1)!
=
zk−1

k!
(z + k2).

Thus, (11) is true if

zk−1

k!

(

z2

l log l
− (z + k2)

)

≥ 0.

So, we require that

z2

l log l
− z − k2 ≥ 0. (12)

From the quadratic formula, equality in 12 holds when

z =
1 ±

√

1 + 4k2

l log l

2
l log l

.

Since (12) represents a parabola opening upward, (12) will hold true for

(log l)(σ − 1) = z ≥
1 +

√

1 + 4k2

l log l

2
l log l

.

Simplifying,

σ − 1 ≥

(

1 +
√

1 + 4k2

l log l

)

l

2
.

From the inequality
√
a2 + b2 < a+ b for a, b > 0,

√

1 +
4k2

l log l
≤ 1 +

2k

l1/2 log1/2 l
.
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Thus, it suffices to consider

σ − 1 ≥

(

2 + 2k

l1/2 log1/2 1

)

l

2

or

σ ≥ l + 1 +
kl1/2

log1/2 l
.
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