Brigham Young University BYU ScholarsArchive

The Minimum Rank, Inverse Inertia, and Inverse Eigenvalue Problems for Graphs

Mark Condie Kempton
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd
Part of the Mathematics Commons

BYU ScholarsArchive Citation

Kempton, Mark Condie, "The Minimum Rank, Inverse Inertia, and Inverse Eigenvalue Problems for Graphs" (2010). All Theses and Dissertations. 2182.
https://scholarsarchive.byu.edu/etd/2182

The Minimum Rank, Inverse Inertia, and Inverse Eigenvalue Problems for Graphs

Mark C. Kempton

A thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of
Master of Science

Wayne Barrett, Chair
Darrin Doud
Rodney Forcade

Department of Mathematics
Brigham Young University
August 2010

Copyright © 2010 Mark C. Kempton
All Rights Reserved

Abstract

The Minimum Rank, Inverse Inertia, and Inverse Eigenvalue Problems for Graphs

Mark C. Kempton
Department of Mathematics
Master of Science

For a graph G we define $\mathcal{S}(G)$ to be the set of all real symmetric $n \times n$ matrices whose offdiagonal zero/nonzero pattern is described by G. We show how to compute the minimum rank of all matrices in $\mathcal{S}(G)$ for a class of graphs called outerplanar graphs. In addition, we obtain results on the possible eigenvalues and possible inertias of matrices in $\mathcal{S}(G)$ for certain classes of graph G. We also obtain results concerning the relationship between two graph parameters, the zero forcing number and the path cover number, related to the minimum rank problem.

Acknowledgments

Many thanks to my advisor Dr. Barrett for his diligent proofreading of the many drafts of this thesis, and for his continual guidance and help. He has made my graduate studies very enjoyable. Thanks to John Sinkovic for his work with me on outerplanar graphs. Also to Dr. Barrett's undergraduate researchers, Curtis Nelson, Seth Gibelyou, Nicole Thiesemann, William Sexton, and Edward Law. And finally, to my family, and particularly my parents, for their constant support and encouragement in all that I have done.

Contents

1 Introduction 1
1.1 Preliminaries 2
1.2 Separations of Graphs 6
1.3 Minimum Positive Semidefinite Rank 10
2 Zero Forcing and Path Covers 11
2.1 Basic Facts and Definitions 11
2.2 Vertex Sums and Cactuses 16
2.3 Consequences, Counterexamples, and Open Questions 18
3 Minimum Rank of Outerplanar Graphs 20
3.1 Clique-Cover Number and Other Covers 21
3.2 Outerplanar Graphs 24
3.3 Minimum Positive Semidefinite Rank of Outerplanar Graphs 32
3.4 Path Covers and Maximum Nullity of Outerplanar 2-Trees 34
4 Inverse Inertia for Certain Graphs 37
4.1 Facts About Inertia 37
4.2 Inertia of Outerplanar Graphs 41
4.3 Partial k-Paths 43
4.4 Graphs of Minimum Rank $n-2$ 45
5 Some Results on the Inverse Eigenvalue Problem 49
5.1 Stars 50
5.2 Graphs of Clique Cover Number Two 52
5.3 Complete Bipartite Graphs 57
5.4 Clique-Stars 62

List of Figures

1.1 The Full House Graph 4
1.2 A Star, A Cycle, The Diamond, and A Double Cycle 6
1.3 The Bowtie 9
2.1 The Pinwheel 19
2.2 A Graph with a Non-Z-induced Minimal Path Cover 20
3.1 The Gem, the Supertriangle, and the 2-gem 34
4.1 Exceptional Maximum Nullity 2 Graphs 46
4.2 The H-Graph 47

Chapter 1. Introduction

Given a graph $G=(V, E)$ on n vertices we define $\mathcal{S}(G)$ to be the set of all real symmetric $n \times n$ matrices whose off-diagonal zero/nonzero pattern is given by the graph (and no condition is put on the diagonal entries). That is

$$
\mathcal{S}(G)=\left\{A \in M_{n \times n} \mid A \text { is symmetric, and } a_{i j} \neq 0, i \neq j \text { if and only if } i j \in E(G)\right\}
$$

The Inverse Eigenvalue Problem asks the following question: given n real numbers and a graph G on n vertices, is there a matrix in $\mathcal{S}(G)$ with those numbers as its eigenvalues? This question has proven to be extremely difficult to answer. Some results in connection to this problem can be found in [1]. A simpler, related question that has received a great deal of attention recently is the Minimum Rank Problem: what is the smallest possible rank among matrices in $\mathcal{S}(G)$ for a given graph G ? Knowing the minimum rank gives information on the possible multiplicities of eigenvalues. A good introduction to the minimum rank problem can be found in [2].

The inertia of a matrix A is the triple $(\pi(A), \nu(A), \delta(A))$ where $\pi(A), \nu(A), \delta(A)$ denote the number of positive eigenvalues, number of negative eigenvalues, and the multiplicity of 0 as an eigenvalue of A respectively. Another problem, whose difficulty lies between that of the minimum rank and inverse eigenvalue problems, is the Inverse Inertia Problem: what are the possible inertias of matrices in $\mathcal{S}(G)$ for a given graph G ? Good introductions to the inverse inertia problem can be found in [3] and [4]. In this thesis, we obtain results for all three of these problems, and investigate some graph parameters related to the minimum rank problem.

1.1 Preliminaries

In this section we introduce some of the basic definitions and important results and ideas related to the minimum rank problem.

Definition 1.1. Let F be any field. Given a graph $G=(V, E)$ on n vertices, define

$$
\mathcal{S}^{F}(G)=\left\{F \text {-valued symmetric } n \times n \text { matrices } A \mid a_{i j} \neq 0, i \neq j \text { if and only if } i j \in E(G)\right\} .
$$

The minimum rank over F of G, denoted $\operatorname{mr}^{F}(G)$, is the smallest rank among matrices in $\mathcal{S}^{F}(G)$. That is

$$
\operatorname{mr}^{F}(G)=\min \left\{\operatorname{rank} A \mid A \in \mathcal{S}^{F}(G)\right\}
$$

Likewise, we define the maximum nullity over F of $G, M^{F}(G)$, by

$$
M^{F}(G)=\max \left\{\text { nullity } A \mid A \in \mathcal{S}^{F}(G)\right\} .
$$

Note that reordering the vertices of the graph equates to a similarity transformation by a permutation matrix for all the matrices in $\mathcal{S}^{F}(G)$. Thus the minimum rank is invariant under reordering of the vertices. The same is true for all questions of eigenvalues and inertia that we will address later on.

We note the following:

Observation 1.2. Given a graph G on n vertices, for any field F,

$$
\operatorname{mr}^{F}(G)+M^{F}(G)=n
$$

so finding the minimum rank and the maximum nullity are equivalent problems.

We will be primarily concerned with the minimum rank over the real field. Whenever we do not specify the field we are working over, it will be assumed that we are working over the real field. In particular, we will typically write just $\operatorname{mr}(G)$ in place of $\mathrm{mr}^{\mathbb{R}}(G)$.

We give as a simple illustration a well known example.

Example 1.3. We will compute the minimum rank for the complete graph on n vertices, $K_{n}, n>1$, over any field. Define J_{n} to be the $n \times n$ matrix all of whose entries are 1 . Notice that $\operatorname{rank}\left(J_{n}\right)=1$ and $J_{n} \in \mathcal{S}^{F}\left(K_{n}\right)$. Therefore $\operatorname{mr}^{F}\left(K_{n}\right) \leq 1$. For any graph with an edge, every corresponding matrix has a nonzero entry, so of course $\mathrm{mr}^{F}\left(K_{n}\right)>0$. Hence $\operatorname{mr}^{F}\left(K_{n}\right)=1$, and so by Observation $1.2, \mathrm{M}^{F}\left(K_{n}\right)=n-1$. Of course, for $n=1$, the zero matrix is in $\mathcal{S}^{F}\left(K_{1}\right)$ so $\mathrm{mr}^{F}\left(K_{1}\right)=0$.

It is well known that $K_{n}, n \geq 2$, are in fact the only connected graphs whose minimum rank is 1 .

Definition 1.4. Given a vertex v of the graph G we define the rank spread, $r_{v}(G)$, of v in G by

$$
r_{v}(G)=\operatorname{mr}(G)-\operatorname{mr}(G-v) .
$$

Likewise, the edge spread of an edge e of G is

$$
\operatorname{mr}(G)-\operatorname{mr}(G-e)
$$

Rank spread and edge spread can be thought of as how much a vertex or edge increases the minimum rank when added to a graph. We have the following well-known fact concerning rank spreads and edge spreads.

Lemma 1.5. [5, Proposition 2.1] Let F be any field. For any vertex v in $V(G)$,

$$
\operatorname{mr}^{F}(G-v)+2 \geq \operatorname{mr}^{F}(G) \geq \operatorname{mr}^{F}(G-v)
$$

Figure 1.1: The Full House Graph

For any edge e in $E(G)$,

$$
\operatorname{mr}^{F}(G-e)+1 \geq \operatorname{mr}^{F}(G) \geq \operatorname{mr}^{F}(G-e)-1
$$

In other words, the rank spread of any vertex is between 0 and 2, and the edge spread of any edge between -1 and 1.

Sometimes the field that we are working over does make a difference in questions of minimum rank. However, there are graphs whose minimum rank is the same no matter what field we are working over. We say that such graphs have field independent minimum rank. Trees are an example of a class of graphs whose minimum rank is known to be field independent. In Example 1.3 we saw that K_{n} is another example whose minimum rank is field independent. In chapter 3, we will prove field independence of the minimum rank of a class of graphs known as outerplanar graphs. Knowing that a graph's minimum rank is field independent can be significant computationally. While computing the minimum rank over the real field is an infinite problem, to find the minimum rank over a finite field, say \mathbb{F}_{2} for example, requires the computation of the rank of only finitely many matrices.

The smallest graph whose minimum rank is not field independent is the graph on five vertices known as the full house, pictured in Figure 1.1.

It is known (see [6, Proposition 2]) that if G is the full house, then $\mathrm{mr}^{F}(G)=2$ for any $F \neq \mathbb{F}_{2}$, but $\mathrm{mr}^{\mathbb{F}_{2}}(G)=3$.

We include one result that we will need later on.

Theorem 1.6. [7, Theorem 2.5] Let F be a field, let G be a graph, let e be an edge adjacent to a vertex of degree at most 2, and let G_{e} be the graph obtained by subdividing e once. Then $\operatorname{mr}^{F}\left(G_{e}\right)=\operatorname{mr}^{F}(G)+1$.

We will include a few simple examples that we will need later on.

Example 1.7. The star on $n \geq 3$ vertices, denoted S_{n}, is the graph with one central vertex, and $n-1$ pendant vertices adjacent to that vertex. The star S_{5} is shown in Figure 1.2. Label the vertices of S_{n} so the central vertex is first. Then the $n \times n$ matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
\vdots & & \ddots & \\
1 & 0 & \cdots & 0
\end{array}\right] \in \mathcal{S}\left(S_{n}\right)
$$

and has rank 2 over any field. Since $n \geq 3, S_{n}$ is not a complete graph, so its minimum rank is not 1 . Thus $\mathrm{mr}^{F}\left(S_{n}\right)=2$ for any field F.

Example 1.8. The cycle on n vertices, denoted C_{n} is the graph obtained by subdividing an edge of $K_{3} n-3$ times. The cycle C_{5} is shown in Figure 1.2. By Example 1.3 and Theorem 1.6, $\mathrm{mr}^{F}\left(C_{n}\right)=n-2$ over any field F.

Example 1.9. A double cycle is a graph obtained by successive edge subdivisions of exterior edges of the diamond graph, shown in Figure 1.2. A double cycle is also shown in Figure 1.2. The matrix

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

is a rank 2 matrix over any field corresponding to the diamond. It is not a complete graph,

Figure 1.2: A Star, A Cycle, The Diamond, and A Double Cycle
so its minimum rank over any field is 2 . Then by Theorem 1.6, the minimum rank of a double cycle on n vertices over any field is $n-2$ (we subdivide $n-4$ times).

A table containing the minimum rank of all graphs on seven or fewer vertices can be found at www.aimath.org/pastworkshops/matrixspectrum.html. It also gives the minimum rank of some basic families of graphs. We will reference this table from time to time when we need to use the minimum rank of a graph that is already known.

1.2 Separations of Graphs

A separation $\left(G_{1}, G_{2}\right)$ of a graph G is a pair of subgraphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ such that $V_{1} \cup V_{2}=V, E_{1} \cup E_{2}=E$, and $E_{1} \cap E_{2}=\emptyset$. The order of a separation is $\left|V_{1} \cap V_{2}\right|$. A k-separation is a separation of order k. If $\left(G_{1}, G_{2}\right)$ is a separation of G, with $R=V_{1} \cap V_{2}$, then we will sometimes write

$$
G=G_{1} \underset{R}{\oplus} G_{2} .
$$

If $R=\{v\}$ (so we have a 1 -separation) then we call G the vertex sum of G_{1} and G_{2} and write

$$
G=G_{1} \underset{v}{\oplus} G_{2} .
$$

The vertex v in a vertex sum is called a cut vertex.
An important formula for the minimum rank of the vertex sum of two graphs is given in the following theorem.

Theorem 1.10. [8, Theorem 2.3] Let G_{1} and G_{2} be graphs on at least 2 vertices, each with
a vertex labelled v, and let F be any field. Then

$$
\operatorname{mr}^{F}\left(G_{1} \underset{v}{\oplus} G_{2}\right)=\min \left\{\operatorname{mr}^{F}\left(G_{1}\right)+\operatorname{mr}^{F}\left(G_{2}\right), \operatorname{mr}^{F}\left(G_{1}-v\right)+\operatorname{mr}^{F}\left(G_{2}-v\right)+2\right\} .
$$

It was verified in [6] that this formula holds over any field.

This theorem is extremely useful in that, for graphs with a cut vertex, the computation of minimum rank is reduced to the computation of the minimum ranks of smaller graphs.

There is also a similar (but more complicated) formula for a 2 -separation. This formula involves adding edges and contracting edges, which may give rise to a multigraph, that is, a graph with parallel edges. In [9], $\mathcal{S}^{F}(G)$ is extended to allow for graphs with parallel edges.

Definition 1.11. Let $G=(V, E)$ be a multigraph graph with $V=\{1,2, \ldots, n\}$. If F is a field unequal to \mathbb{F}_{2}, we define $\mathcal{S}^{F}(G)$ as the set of all F-valued symmetric $n \times n$ matrices $A=\left[a_{i j}\right]$ with
(i) $a_{i j}=0$ if $i \neq j$ and i and j are not adjacent,
(ii) $a_{i j} \neq 0$ if $i \neq j$ and i and j are connected by exactly one edge,
(iii) $a_{i j} \in F$ if $i \neq j$ and i and j are connected by multiple edges, and
(iv) $a_{i i} \in F$ for all $i \in V$.

If $F=\mathbb{F}_{2}$, we define $\mathcal{S}^{\mathbb{F}_{2}}(G)$ as the set of all \mathbb{F}_{2}-valued symmetric $n \times n$ matrices $A=\left[a_{i j}\right]$ with
(i) $a_{i j} \neq 0$ if $i \neq j$ and i and j are connected by an odd number of edges,
(ii) $a_{i j}=0$ if $i \neq j$ and i and j are connected by an even number of edges, and
(iii) $a_{i i} \in \mathbb{F}_{2}$ for all $i \in V$.

For a graph G with parallel edges, let \mathcal{G} be the set of all simple graphs obtained from G by deleting all or all but one of the parallel edges. Then $\operatorname{mr}^{F}(G)=\min \left\{\operatorname{mr}^{F}(H) \mid H \in \mathcal{G}\right\}$. Thus finding the minimum rank of a graph with parallel edges is reduced to finding the minimum rank of simple graphs.

Theorem 1.12. [9, Corollary 15] Let $\left(G_{1}, G_{2}\right)$ be a 2-separation of G, let H_{1} and H_{2} be obtained from G_{1} and G_{2}, respectively, by adding an edge between the vertices of $R=\left\{r_{1}, r_{2}\right\}=$ $V\left(G_{1}\right) \cap V\left(G_{2}\right)$, and let $\overline{G_{1}}$ and $\overline{G_{2}}$ be obtained from G_{1} and G_{2}, respectively, by identifying r_{1} and r_{2}. Then

$$
\begin{aligned}
\operatorname{mr}^{F}(G) & =\min \left\{\mathrm{mr}^{F}\left(G_{1}\right)+\mathrm{mr}^{F}\left(G_{2}\right)\right. \\
& \operatorname{mr}^{F}\left(G_{1}-r_{1}\right)+\operatorname{mr}^{F}\left(G_{2}-r_{1}\right)+2 \\
& \operatorname{mr}^{F}\left(G_{1}-r_{2}\right)+\operatorname{mr}^{F}\left(G_{2}-r_{2}\right)+2 \\
& \operatorname{mr}^{F}\left(G_{1}-R\right)+\operatorname{mr}^{F}\left(G_{2}-R\right)+4, \\
& \operatorname{mr}^{F}\left(H_{1}\right)+\operatorname{mr}^{F}\left(H_{2}\right) \\
& \left.\operatorname{mr}^{F}\left(\overline{G_{1}}\right)+\operatorname{mr}^{F}\left(\overline{G_{2}}\right)+2\right\} .
\end{aligned}
$$

Any graph which has a vertex of degree 2 has a 2 -separation of the form $G=\left(G_{1}, P_{3}\right)$ where the endpoints of P_{3} are the vertices in common. The following result gives a simplification of Theorem 1.12 in this situation.

Theorem 1.13. [9, Corollary 18] Let G be a graph and let u be a vertex of degree two in G with neighbors v and w. Let H_{1} be the graph obtained from G by deleting u and adding an edge between v and w. Let $\overline{G_{1}}$ be the graph obtained from G by deleting u and identifying v and w. Then

$$
\operatorname{mr}^{F}(G)=\min \left\{\mathrm{mr}^{F}\left(H_{1}\right)+1, \operatorname{mr}^{F}\left(\overline{G_{1}}\right)+2\right\}
$$

Lemma 1.14. [9, Lemma 10] Let G be a graph and let v_{1}, v_{2} be vertices of G. Let \bar{G} be obtained from G by identifying v_{1} and v_{2}. Then $\operatorname{mr}^{F}(\bar{G}) \geq \mathrm{mr}^{F}(G)-2$.

Figure 1.3: The Bowtie

We include one consequence of the 2-separation formula, due to John Sinkovic, that we will need later on. It involves a graph known as the bowtie shown in Figure 1.3.

Lemma 1.15. Let $\left(G_{1}, G_{2}\right)$ be a 2-separation of G such that G_{2} is the bowtie and the common vertices are two vertices of degree 2 which are not adjacent in G_{2}. Then

$$
\operatorname{mr}^{F}(G)=\operatorname{mr}^{F}\left(G_{1}\right)+2
$$

Proof. Since G has a 2-separation we apply Theorem 1.12 to $G=\left(G_{1}, G_{2}\right)$. For the values of the minimum ranks of the graphs associated with G_{2}, and to verify that they are indeed field independent, we simply cite the online database of graphs up through 7 vertices (see the remark at the end of Section 1.1). Let $R=\left\{r_{1}, r_{2}\right\}$, where r_{1} and r_{2} are non-adjacent vertices of degree two in G_{2}. Now $\mathrm{mr}^{F}\left(G_{2}\right)=\mathrm{mr}^{F}\left(G_{2}-r_{i}\right)=\mathrm{mr}^{F}\left(G_{2}-R\right)=2$.

Let H_{2} be the graph obtained from adding the edge $r_{1} r_{2}$ to G_{2}. Then $\mathrm{mr}^{F}\left(H_{2}\right)=3$. The graph $\overline{G_{2}}$, obtained by identifying r_{1} and r_{2} together, is the diamond with an extra edge between the vertices of degree 3 . In order to compute $\mathrm{mr}^{F}\left(\overline{G_{2}}\right)$ when $F \neq \mathbb{F}_{2}$, we must consider two graphs, the diamond, and C_{4}. The minimum rank of either graph over any field F is two. When $F=\mathbb{F}_{2}$, we delete the pair of edges obtaining C_{4}. Thus $\mathrm{mr}^{F}\left(\overline{G_{2}}\right)=2$ for any field F.

Filling in the appropriate values we obtain,

$$
\begin{gathered}
\operatorname{mr}^{F}(G)=\min \left\{\operatorname{mr}^{F}\left(G_{1}\right)+2, \operatorname{mr}^{F}\left(G_{1}-r_{1}\right)+4, \operatorname{mr}^{F}\left(G_{1}-r_{2}\right)+4,\right. \\
\left.\operatorname{mr}^{F}\left(G_{1}-R\right)+6, \operatorname{mr}^{F}\left(H_{1}\right)+3, \operatorname{mr}^{F}\left(\overline{G_{1}}\right)+4\right\}
\end{gathered}
$$

We will now show that each of the last five terms is greater then or equal to $\mathrm{mr}^{F}\left(G_{1}\right)+2$. By the first part of Lemma 1.5, $\mathrm{mr}^{F}\left(G_{1}-r_{i}\right) \geq \operatorname{mr}^{F}\left(G_{1}\right)-2$. Thus $\mathrm{mr}^{F}\left(G_{1}-r_{i}\right)+4 \geq$ $\mathrm{mr}^{F}\left(G_{1}\right)+2$ for $i=1,2$. Applying the same lemma twice, $\mathrm{mr}^{F}\left(G_{1}-R\right) \geq \operatorname{mr}^{F}\left(G_{1}\right)-4$. Thus $\operatorname{mr}^{F}\left(G_{1}-R\right)+6 \geq \operatorname{mr}^{F}\left(G_{1}\right)+2$.

If $r_{1} r_{2} \notin E\left(G_{1}\right)$. Then H_{1} and G_{1} differ by an edge. Applying the second part of Lemma 1.5, $\mathrm{mr}^{F}\left(H_{1}\right) \geq \mathrm{mr}^{F}\left(G_{1}\right)-1$. Thus $\mathrm{mr}^{F}\left(H_{1}\right)+3 \geq \mathrm{mr}^{F}\left(G_{1}\right)+2$. In the case where $r_{1} r_{2} \in E\left(G_{1}\right), H_{1}$ has two edges between r_{1} and r_{2}. Thus $\operatorname{mr}^{F}\left(H_{1}\right)=\operatorname{mr}^{F}\left(G_{1}\right)$ or $\mathrm{mr}^{F}\left(H_{1}\right)=\mathrm{mr}^{F}\left(G_{1}-r_{1} r_{2}\right)$. In the latter case, if we apply the same lemma, $\mathrm{mr}^{F}\left(G_{1}-r_{1} r_{2}\right) \geq$ $\mathrm{mr}^{F}\left(G_{1}\right)-1$. Thus in both cases $\mathrm{mr}^{F}\left(H_{1}\right)+3 \geq \mathrm{mr}^{F}\left(G_{1}\right)+2$.

By Lemma 1.14, $\mathrm{mr}^{F}\left(\overline{G_{1}}\right) \geq \mathrm{mr}^{F}\left(G_{1}\right)-2$. Thus $\mathrm{mr}^{F}\left(\overline{G_{1}}\right)+4 \geq \mathrm{mr}^{F}\left(G_{1}\right)+2$.

1.3 Minimum Positive Semidefinite Rank

A question related to the minimum rank question that has also received a great deal of attention is that of finding the minimum rank among positive semidefinite matrices corresponding to a graph.

Definition 1.16. For a graph G, the minimum positive semidefinite rank, denoted $\mathrm{mr}_{+}(G)$, is defined as

$$
\operatorname{mr}_{+}(G)=\min \{\operatorname{rank} A \mid A \in \mathcal{S}(G) \text { and } A \text { is positive semidefinite }\} .
$$

The maximum positive semidefinite nullity, $M_{+}(G)$, is defined analogously.

When computing mr_{+}or M_{+}for a graph, we are taking the minimum or maximum over a smaller set of matrices than when simply computing the minimum rank or maximum nullity. Thus we have the following observation.

Observation 1.17. For any graph $G, \operatorname{mr}_{+}(G) \geq \operatorname{mr}(G)$ and $\mathrm{M}_{+}(G) \leq \mathrm{M}(G)$.

In some cases, computing the minimum positive semidefinite rank of a graph is easier than computing the minimum rank, which can sometimes give a useful bound on the minimum rank.

We have formulas for mr_{+}for graphs with 1-separations and 2-separations, similar to the formulas for minimum rank, but simpler.

Theorem 1.18. [10, Corollary 2.4] Let $\left(G_{1}, G_{2}\right)$ be a 1-separation of a graph G. Then

$$
\mathrm{mr}_{+}(G)=\mathrm{mr}_{+}\left(G_{1}\right)+\mathrm{mr}_{+}\left(G_{2}\right)
$$

Theorem 1.19. [10, Corollary 2.9] Let $\left(G_{1}, G_{2}\right)$ be a 2-separation of a graph G, and let H_{1} and H_{2} be obtained from G_{1} and G_{2} respectively by adding an edge between the vertices of the separation. Then

$$
\operatorname{mr}_{+}(G)=\min \left\{\mathrm{mr}_{+}\left(G_{1}\right)+\mathrm{mr}_{+}\left(G_{2}\right), \mathrm{mr}_{+}\left(H_{1}\right)+\mathrm{mr}_{+}\left(H_{2}\right)\right\}
$$

Theorem 1.18 has the following consequence.
Theorem 1.20. [10, Theorem 2.6] If T is a tree on n vertices, $M_{+}(G)=1$ and $\mathrm{mr}_{+}(G)=$ $n-1$.

Chapter 2. Zero Forcing and Path Covers

2.1 Basic Facts and Definitions

We now describe an important tool in determining the maximum nullity of a graph called the zero forcing number. The idea of zero forcing and its importance is introduced in [11].

Definition 2.1. Let G be a graph in which every vertex is colored either black or white. We will describe a procedure for changing the color of vertices in G.

- Color Change Rule: If the vertex u of G is black, and has only one white neighbor v, then color v black. We say u forces v and we write $u \rightarrow v$.
- Given a coloring of G, the derived coloring is the coloring of G obtained by repeatedly applying the color change rule until no more forces are possible.
- A zero forcing set is a subset Z of $V(G)$ such that if every vertex of Z is colored black and each vertex not in Z is white, then the derived coloring of G is all black.
- The zero forcing number of G, denoted $Z(G)$ is the size of the smallest zero forcing set. Any zero forcing set of size $Z(G)$ is called a minimal zero forcing set.

The significance of the zero forcing number to the minimum rank problem is shown in the following result.

Proposition 2.2. [11, Proposition 2.4] For any graph G and any field $F, M^{F}(G) \leq \mathrm{Z}(G)$.

Thus, the zero forcing number gives an upper bound on the maximum nullity. This is especially significant since the bound is valid over any field.

Another graph parameter that has proven useful in the minimum rank problem is the path cover number. A path is a graph that can be obtained by repeated edge subdivision of the complete graph K_{2}. An induced subgraph of a graph G is a subgraph of G that can be obtained by repeated deletion of vertices of G. In other words, an induced subgraph of G contains a subset of the vertex set of G and every edge that occurs in G between those vertices.

Definition 2.3. A path cover of a graph G is a set of disjoint paths that occur as induced subgraphs of G whose union includes all the vertices of G. The path cover number of G, denoted $P(G)$, is the smallest number of paths in a path cover.

The following is a well-known and important result. In particular, it establishes the field independence of the minimum rank of a tree.

Theorem 2.4. [11, Proposition 4.2] [12] If T is a tree and F any field, then

$$
Z(T)=P(T)=M^{F}(T)
$$

While the path cover number is helpful in many cases (as in when we are working with trees), there is no general theorem analogous to Proposition 2.2 comparing the path cover number and the maximum nullity (see [13] and [14] for some results on this). In this chapter, we investigate the relationship between the path cover number and the zero forcing number, showing equality $P(G)=Z(G)$ for a certain class of graphs called cactuses. We will also investigate examples where equality does not occur.

Definition 2.5. Let Z be a zero forcing set of a graph G. The forcing sequence is the list of forces in the order they occur when constructing the derived coloring of G. A forcing chain is a sequence $\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ of vertices such that v_{i} forces v_{i+1} for $i=1, \cdots k-1$. A maximal zero forcing chain is a forcing chain that is not a proper subset of another zero forcing chain.

The following gives an important relationship between the zero forcing number and the path cover number.

Lemma 2.6. [15, Lemma 4.2] If $\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ is a forcing chain corresponding to some zero forcing set of the graph G, then the subgraph induced by the vertices v_{1}, \cdots, v_{k} of G is a path.

Corollary 2.7. For any graph $G, P(G) \leq Z(G)$.
Proof. Let $Z \subseteq V(G)$ be a zero forcing set of size $Z(G)$. Then each vertex of Z is the first vertex of a forcing chain, and by Lemma 2.6, each of these chains is an induced path. Since Z is a zero forcing set, these paths cover all the vertices of G, and are clearly disjoint since any vertex can only force once in the zero forcing sequence, so this gives a path cover of G of size $Z(G)$. Thus $P(G) \leq Z(G)$.

Definition 2.8. A path cover \mathcal{P} of a graph G is called Z-induced if there is some zero forcing set that induces it as in Corollary 2.7.

Definition 2.9. Let Z be a zero forcing set for the graph G. The reversal of G is the set of last vertices in the maximal zero forcing chains of a forcing sequence for Z. Notice that the number of vertices in the reversal of Z is the same as that in Z.

Proposition 2.10. [16, Theorem 2.6][15, Theorem 3.3] If Z is a zero forcing set for a graph, then so is the reversal of G.

Proposition 2.11. [16, Theorem 2.9][15, Theorem 3.4] Given any vertex v of a connected graph G on more than one vertex, there is a minimal zero forcing set Z of G that does not contain v. In other words, no vertex is required to be in a minimal zero forcing set for such a graph.

The following lemma will be used several times in this section and the next.

Lemma 2.12. If G is a graph with the property that every path cover is Z-induced, then $Z(G)=P(G)$.

Proof. We have $P(G) \leq Z(G)$ by Corollary 2.7. For the reverse inequality, let \mathcal{P} be a path cover of size $P(G)$. Then since \mathcal{P} is Z-induced, there is a zero forcing set Z of size $P(G)$, hence $Z(G) \leq P(G)$ and the result follows.

The proof of the following result comes from [11, Proposition 4.2]. We reproduce their proof here, with slight modifications, to point out a slightly stronger result than is mentioned there.

Theorem 2.13. Let T be a tree. Let $\mathcal{P}=\left\{P_{1}, P_{2}, \cdots, P_{k}\right\}$ be any path cover of of T, and for $i=1,2, \cdots, k$, let u_{i} be either endpoint of P_{i}. Then $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ is a zero forcing set for T. In particular, any path cover of T is Z-induced.

Proof. We proceed by induction on $k=|\mathcal{P}|$. For $k=1$, the path cover has a single path, which implies that T is a path, thus coloring either endpoint black is a zero forcing set.

Now assume this is true for path covers of size less than k and suppose $|\mathcal{P}|=k$. Note that the number of edges in any path P_{i} is $\left|V\left(P_{i}\right)\right|-1$, so since the paths are disjoint, induced, and cover T, the total number of edges in the path cover is

$$
\sum_{i=1}^{k}\left(\left|V\left(P_{i}\right)\right|-1\right)=n-k
$$

where $n=|V(T)|$.
Define \widetilde{T} to be that graph with \mathcal{P} as its vertex set and an edge between P_{i} and P_{j} if and only if there is an edge of T with one vertex in P_{i} and the other in P_{j}. Clearly \widetilde{T} has k vertices and is connected since T is connected. Notice that the edges of \widetilde{T} are in one to one correspondence with the edges not in \mathcal{P} since T is a tree. So since T has $n-1$ edges, and the path cover has a total of $n-k$ edges, \widetilde{T} has $n-1-(n-k)=k-1$ edges. Thus \widetilde{T} is a tree. Therefore it has a pendant vertex, say P_{j}. Call the path P_{j} in T a pendant path. Notice that there is only one edge in T connecting P_{j} to the rest of the graph.

The graph $T-P_{j}$ is a tree with path cover $\mathcal{P}-\left\{P_{j}\right\}$ of size less than k, so by the induction hypothesis, it is Z-induced, with $Z=\left\{u_{1}, \cdots, u_{j-1}, u_{j+1}, \cdots, u_{k}\right\}$. Then in T, color each of the vertices in Z and u_{j} black. Now, there is only one vertex in P_{j} incident to an edge not in the path; call it v_{j}. Then since this is the only edge coming out of P_{j}, the vertex u_{j} in P_{j} can force the vertices of this path until we get to v_{j} (including v_{j}). Now, since this is the only edge connecting P_{j} to the rest of the graph, and v_{j} is now black, then Z can force $T-P_{j}$ since it is a zero forcing set. Now since all of $T-P_{j}$ is black, v_{j} can force the rest of the path P_{j} to be black. Thus, $\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ is a zero forcing set for T that induces the path cover \mathcal{P}.

Lemma 2.12 and Theorem 2.13 have the immediate consequence, already stated in The-
orem 2.4:

Corollary 2.14. If T is a tree, then $Z(T)=P(T)$.

2.2 Vertex Sums and Cactuses

The result in Corollary 2.14 has been well-known since the publication of [11]. In this section we will generalize this result to a larger class of graphs known as cactuses. We develop first an important tool.

Lemma 2.15. Let G_{1} and G_{2} be two graphs for which every path cover is Z-induced. Let

$$
G=G_{1} \underset{v}{\oplus} G_{2}
$$

be the vertex sum at some vertex v of G_{1} and G_{2}. Then every path cover of G is Z-induced, and hence $Z(G)=P(G)$.

Proof. Let \mathcal{P} be a path cover of G. Let P_{k} be the path containing the vertex v.
Case 1: Suppose P_{k} lies entirely within G_{1} or G_{2}. Without loss of generality, suppose P_{k} lies entirely in G_{1}. Then define \mathcal{P}_{1} to contain the paths of \mathcal{P} that are in G_{1}, and \mathcal{P}_{2} the paths of \mathcal{P} that are in G_{2} along with the path that is the single vertex v. Then \mathcal{P}_{1} is a path cover of G_{1} and \mathcal{P}_{2} is a path cover of G_{2}. Then both \mathcal{P}_{1} and \mathcal{P}_{2} are Z-induced, say by Z_{1} and Z_{2} respectively. We claim that

$$
Z_{1} \cup\left(Z_{2}-\{v\}\right)
$$

is a zero forcing set for G. This is because the forcing sequence of Z_{1} is unaffected by G_{2} until we have forced v. Once v is black, because it is a single vertex path, and no vertex of $G_{2}-v$ is adjacent to a vertex of $G_{1}-v, Z_{2}-\{v\}$ can force the vertices of $G_{2}-v$ to be black. (If $v \in Z_{1}$, so v is black to begin with, then $Z_{2}-\{v\}$ can force $G_{2}-v$ at the outset.) Then,
Z_{1} can finish forcing G_{1}. So this is a zero forcing set, and clearly induces the path cover \mathcal{P}.
Case 2: Suppose P_{k} intersects both G_{1} and G_{2} in more than just v. Let P_{1}^{*} be the subpath of P_{k} in G_{1} and P_{2}^{*} the sub-path of P_{k} in G_{2}. Define \mathcal{P}_{1} to be the paths from \mathcal{P} that are entirely in G_{1} along with P_{1}^{*}, and \mathcal{P}_{2} to be the paths from \mathcal{P} that are entirely in G_{2} along with P_{2}^{*}. Then \mathcal{P}_{1} and \mathcal{P}_{2} are path covers of G_{1} and G_{2} respectively, and are thus Z-induced. Since v is an endpoint of a path in both these path covers, then by Proposition 2.10, taking reversals if necessary, we can choose a zero forcing set Z_{1} of G_{1} such that $v \notin Z_{1}$, and a zero forcing set Z_{2} of G_{2} such that $v \in Z_{2}$, where Z_{1} and Z_{2} induce \mathcal{P}_{1} and \mathcal{P}_{2} respectively. (Note that v is not a path by itself, since this puts us in Case 1.) Then

$$
Z_{1} \cup\left(Z_{2}-\{v\}\right)
$$

is a zero forcing set for G, since, as in Case $1, Z_{1}$ can force in G_{1} until we get to v, and then since v was the end of a path in G_{1}, it does not need to force anything else in G_{1}, it just needs to be black, so Z_{1} can force all of G_{1}. Then since v is black, now Z_{2} can force G_{2}. Again, this clearly induces the path cover \mathcal{P}. Lemma 2.12 then gives the final statement of the lemma.

Definition 2.16. A block of a graph is a maximal subgraph with no cut vertex. A cactus is a graph in which every block is either a cycle or K_{2}. Equivalently, a cactus is a graph in which any edge is in at most one cycle.

A cactus has also been referred to as a block-cycle graph, and some results concerning the maximum nullity of such graphs can be found in [13].

Lemma 2.17. Every path cover of a cycle C_{n} is Z-induced.

Proof. Let $\left\{P_{1}, P_{2}, \cdots, P_{k}\right\}$ be any path cover of C_{n}. Then we must have two paths with adjacent endpoints. Color those two adjacent endpoints black, and then these can force along the cycle to the ends of the paths. Then color the endpoints of the paths following those
black, and those can force the rest of their paths. Continue in this way, and the zero forcing set consisting of the endpoints of the paths we colored black induces the path cover.

Theorem 2.18. If G is a cactus, then $Z(G)=P(G)$.

Proof. It is known that a cactus can be built by vertex summing trees and cycles, so by induction and Theorem 2.13, Lemma 2.17, and Lemma 2.15, we see that any path cover of a cactus is Z-induced and thus $P(G)=Z(G)$.

2.3 Consequences, Counterexamples, and Open Questions

In this section, we discuss some of the consequences of the above results, and look into possible generalizations of them.

The following theorem is known.

Theorem 2.19. [13, Corollary 5.3] If G is a unicyclic graph, then $0 \leq P(G)-M(G) \leq 1$.

In other words, the maximum nullity and path cover number differ by at most one for a unicyclic graph (the path cover number never being smaller). In fact, [13] gives a complete characterization of which unicyclic graphs attain equality, and which have $M(G)=P(G)-1$. The latter case occurs only if the trimmed form is an odd n-sun, $n>3$ (see [13] for a description of trimming a graph and the definition of an n-sun).

Since any unicyclic graph is clearly a cactus, then this result and Theorem 2.18 give us the same result for the zero forcing number:

Corollary 2.20. If G is a unicyclic graph, then $0 \leq Z(G)-M(G) \leq 1$.

It was the investigation of the relationship between the zero forcing number and maximum nullity for unicyclic graphs that led us to the result in Theorem 2.18.

There is in fact a generalization of Theorem 2.19 for cactus graphs in [13] (although there they are referred to as block-cycle graphs).

Figure 2.1: The Pinwheel
Theorem 2.21. [13, Corollary 6.4] If G is a cactus, then $0 \leq P(G)-M(G) \leq c o(G)$ where $c o(G)$ denotes the number of odd cycles of length greater than 3 in G.

Hence, Theorem 2.18 implies the same relationship between Z and M for cactuses.
We note in passing a general result concerning the relationship between maximum nullity and path cover number for outerplanar graphs. (See Definition 3.9 for the definition of an outerplanar graph.)

Theorem 2.22. [14, Theorem 2.8] If G is an outerplanar graph, then $M(G) \leq P(G)$.

Theorem 2.18 generalizes the equality $Z(G)=P(G)$ from the class of trees (for which this equality was already known) to the class of cactuses. This leads us to ask how far this generalization can be taken. In light of Theorem 2.22, a natural question to ask is whether $P(G)=Z(G)$ for any outerplanar graph. The answer to this is no, as seen in the following counterexample, due to Leslie Hogben.

Example 2.23. Consider the graph G in Figure 2.1 known as the pinwheel. Here $P(G) \leq 3$, but the zero forcing number $Z(G)=4$ (see [16, Example 2.11]). The first graph in the figure indicates a minimal zero forcing set, while the second indicates a minimal path cover.

In all of the proofs from the preceding section, we showed the equality $P(G)=Z(G)$ by means of Lemma 2.12 by showing that every path cover is Z-induced. This leads us to ask if this is the case for all graphs where the path cover number is equal to the zero forcing number. The answer is, again, no.

Figure 2.2: A Graph with a Non-Z-induced Minimal Path Cover

Example 2.24. Let G be the graph in Figure 2.2. We will argue that $P(G)=3$. The second picture in the figure shows a path cover of size 3 , so $P(G) \leq 3$. If there were a path cover of size 2 , then one of the paths must have at least 6 vertices. However, any choice of 6 successive vertices around the exterior of the graph would contain a triangle, and would thus not be an induced path. But any path of 6 or more vertices that uses an interior edge and that does not contain a triangle cuts the graph into two nontrivial pieces, so they cannot be covered with a single path that is disjoint with the first path. Thus $P(G)=3$. The first picture in the figure indicates a zero forcing set of size 3 , and since $Z(G) \geq P(G), Z(G)=3$ as well. However, the path cover indicated is not induced by any zero forcing set, as can be verified by checking all possible combinations of coloring one endpoint of each path black.

We have, thus, some open questions:

Question. Is there an outerplanar graph on fewer than 12 vertices with $Z(G)>P(G)$?
Question. Can we characterize all graphs G for which $Z(G)=P(G)$?
We suspect the answer to the first question to be no. The second could be very difficult to answer.

Chapter 3. Minimum Rank of Outerplanar Graphs

In this chapter, we will give a result that solves the minimum rank problem for a certain class of graphs called outerplanar graphs. This will be done by way of a generalization of a well-known tool in the minimum rank problem known as the clique-cover number. We
will also look at some results specifically related to the maximum nullity of an outerplanar graph. The results of this chapter were all done in joint work with John Sinkovic.

3.1 Clique-Cover Number and Other Covers

Definition 3.1. Let G be a graph. A clique in G is a complete graph occurring as a subgraph of G. The clique-cover number of G is the minimum number of cliques needed to cover every edge of G.

It is well known (see [11, Observation 1.1]) that, for any graph $G, \operatorname{mr}(G) \leq \operatorname{cc}(G)$, making the clique cover number a useful tool in the minimum rank problem. A graph is called chordal if it has no cycles of length more than 3 occurring as induced subgraphs. We also have the following theorem, making the clique cover number especially useful for the minimum semidefinite rank problem.

Theorem 3.2. [17, Theorem 3.6] If G is a connected chordal graph, then $\operatorname{mr}_{+}(G)=\operatorname{cc}(G)$.

We will generalize the idea of the clique cover number to covers of graphs using other graphs whose minimum rank is known.

Definition 3.3. Let G be a graph on n vertices. For a collection \mathcal{C} of subgraphs of G, we say that \mathcal{C} covers G, or that \mathcal{C} is a cover of G, if every vertex and every edge of G is in at least one graph in \mathcal{C}. A cover \mathcal{C} is non-overlapping if every edge of G is in exactly one of the subgraphs of \mathcal{C}.

We define the rank sum of a cover, denoted $\operatorname{rs}(\mathcal{C})$, to be the sum of all the minimum ranks of the graphs in the cover.

Definition 3.4. Let T be a collection of graphs. A cover \mathcal{C} is of type T if all subgraphs of \mathcal{C} belong to T.

Lemma 3.5. If G is a graph then $\operatorname{mr}(G) \leq \operatorname{rs}(\mathcal{C})$ for any cover \mathcal{C} of G.

Proof. Let G_{1}, \cdots, G_{m} be the graphs in \mathcal{C}. Choose $A_{k} \in \mathcal{S}\left(G_{k}\right)$ such that $\operatorname{rank}\left(A_{k}\right)=$ $\operatorname{mr}\left(G_{k}\right), k=1, \cdots, m$. Define \hat{A}_{k} to be the $|G| \times|G|$ matrices $\hat{A}_{k}=\left[\hat{a}_{i j}^{(k)}\right]$ where $\hat{a}_{i j}^{(k)}$ is $a_{i j}^{(k)}$ if $i, j \in V\left(G_{k}\right)$ and is 0 otherwise. Let $A=c_{1} \hat{A_{1}}+\cdots+c_{m} \hat{A_{m}}$ where c_{1}, \cdots, c_{m} are nonzero constants chosen so that no nonzero off-diagonal entries of the \hat{A}_{k} 's cancel in the sum. Thus $A \in \mathcal{S}(G)$ and

$$
\operatorname{mr}(G) \leq \operatorname{rank}(A) \leq \operatorname{rank}\left(\hat{A_{1}}\right)+\cdots+\operatorname{rank}\left(\hat{A_{m}}\right)=\operatorname{mr}\left(G_{1}\right)+\cdots+\operatorname{mr}\left(G_{m}\right)=\operatorname{rs}(\mathcal{C})
$$

Note that the proof above may require us to work in an infinite field in order to choose the constants c_{k} so that no off-diagonal entry cancels in the sum to guarantee $A \in \mathcal{S}(G)$. Such c_{k} 's may not exist in a finite field. However, if the cover is non-overlapping, then in the above proof, we can simply take $A=A_{1}+\cdots+A_{m}$, and no off-diagonal entries will cancel since they will be non-zero in only one of the A_{k} 's. Hence, we obtain the following result.

Lemma 3.6. If G is any graph, F any field, and \mathcal{C} any non-overlapping cover, then $\mathrm{mr}^{F}(G) \leq$ rs (\mathcal{C}).

Our goal will be to prove equality for certain classes of graphs and certain types of covers. Whenever we have a cover \mathcal{C} for a graph G with $\operatorname{mr}(G)=\operatorname{rs}(\mathcal{C})$, we will say that \mathcal{C} is a minimal cover of G. We will begin with some preliminary lemmas.

Lemma 3.7. Let F be a field, let G be the vertex sum at v of G_{1}, G_{2}, and T a cover type that includes all stars. If G_{i} and $G_{i}-v$ all have non-overlapping covers of type T whose rank sum is the minimum rank, then so does G.

Proof. By Theorem 1.10

$$
\operatorname{mr}^{F}(G)=\min \left\{\mathrm{mr}^{F}\left(G_{1}\right)+\mathrm{mr}^{F}\left(G_{2}\right), \operatorname{mr}^{F}\left(G_{1}-v\right)+\mathrm{mr}^{F}\left(G_{2}-v\right)+2\right\}
$$

For $i=1,2$, let \mathcal{C}_{i} be a non-overlapping cover of G_{i} with $\operatorname{rs}\left(\mathcal{C}_{i}\right)=\operatorname{mr}^{F}\left(G_{i}\right)$ and \mathcal{C}_{i}^{\prime} a nonoverlapping cover of $G_{i}-v$ with $\operatorname{rs}\left(\mathcal{C}_{i}^{\prime}\right)=\operatorname{mr}^{F}\left(G_{i}-v\right)$. Then

$$
\operatorname{mr}^{F}(G)=\min \left\{\operatorname{rs}\left(\mathcal{C}_{1}\right)+\operatorname{rs}\left(\mathcal{C}_{2}\right), \operatorname{rs}\left(\mathcal{C}_{1}^{\prime}\right)+\operatorname{rs}\left(\mathcal{C}_{2}^{\prime}\right)+2\right\}
$$

If $\operatorname{mr}^{F}(G)=\operatorname{rs}\left(\mathcal{C}_{1}\right)+\operatorname{rs}\left(\mathcal{C}_{2}\right)$, then define $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$. This is a non-overlapping cover of G since G_{1} and G_{2} do not share any edges, and

$$
\mathrm{rs}(\mathcal{C})=\mathrm{rs}\left(\mathcal{C}_{1}\right)+\mathrm{rs}\left(\mathcal{C}_{2}\right)=\mathrm{mr}^{F}(G) .
$$

If $\mathrm{mr}^{F}(G)=\operatorname{rs}\left(\mathcal{C}_{1}^{\prime}\right)+\operatorname{rs}\left(\mathcal{C}_{2}^{\prime}\right)+2$, let \mathcal{C} be a cover of G consisting of all the graphs in \mathcal{C}_{1}^{\prime} and \mathcal{C}_{2}^{\prime} and the star induced in G by v and all its neighbors. Then \mathcal{C} is non-overlapping since $G_{1}-v$ and $G_{2}-v$ do not share any edges with the star. Then

$$
\mathrm{rs}(\mathcal{C})=\mathrm{rs}\left(\mathcal{C}_{1}^{\prime}\right)+\mathrm{rs}\left(\mathcal{C}_{2}^{\prime}\right)+2=\mathrm{mr}^{F}(G)
$$

Lemma 3.8. Let F be a field. Let G be a graph with a 2-separation $\left(G_{1}, G_{2}\right)$ such that G_{2} is the bowtie, and the common vertices are two vertices of degree 2 which are not adjacent in G_{2} (as in Lemma 1.15). Let T be any cover type including cliques. Then if there is a non-overlapping cover of type T for G_{1} whose rank sum is equal to the minimum rank, then the same is true for G.

Proof. By Lemma 1.15, $\mathrm{mr}^{F}(G)=\operatorname{mr}^{F}\left(G_{1}\right)+2$. Let \mathcal{C}_{1} be a non-overlapping cover of G_{1}. Define \mathcal{C} to contain all the graphs of \mathcal{C}_{1} as well as the two cliques of the bowtie. Then \mathcal{C} is a non-overlapping cover of type T for G and

$$
\mathrm{rs}(\mathcal{C})=\mathrm{rs}\left(\mathcal{C}_{1}\right)+2=\mathrm{mr}^{F}\left(G_{1}\right)+2=\operatorname{mr}^{F}(G)
$$

3.2 Outerplanar Graphs

Definition 3.9. A graph G is outerplanar if G has a planar embedding such that every vertex is adjacent to the unbounded face.

A minor of a graph G is a graph obtained from G by successive deletion of vertices or edges, and contraction of edges. It is known that a graph is outerplanar if and only if it has no K_{4} or $K_{2,3}$ minor. In particular, the class of outerplanar graphs is closed under the operations of deleting vertices and edges, and contracting edges.

Definition 3.10. A graph G is said to be k-connected if there is no set of $k-1$ vertices in G whose removal gives a disconnected graph. By convention, K_{n} is $(n-1)$-connected.

It is well known that a nontrivial outerplanar graph always has a vertex of degree one or two. Thus an outerplanar graph is never 3-connected.

Definition 3.11. In a 2 -connected outerplanar graph, a terminal cycle is a cycle in which only one edge is contained in any other cycle. A partially terminal cycle is a non-terminal cycle adjacent to at most one other non-terminal cycle.

Recall that a double cycle with n vertices has minimum rank $n-2$ (see Example 1.9).

Lemma 3.12. Any 2-connected outerplanar graph G is either a cycle, a double cycle, or has a terminal cycle and a partially terminal cycle.

Proof. Let H be the "interior tree" corresponding to G, that is, the graph obtained by taking a vertex for each interior face of the graph, and an edge between two vertices if the corresponding faces share an edge. Since G is outerplanar, it can be drawn with every vertex adjacent to the exterior face so that interior faces share only a single edge. If H were to contain a cycle, then there would be a vertex in G corresponding to the interior of that cycle
of H that would not be adjacent to the exterior face, contradicting that G is outerplanar. So H is a tree. If H is K_{1} or K_{2}, then G is a cycle or a double cycle. It is known (see [18, Lemma 13]) that a tree has a pendant vertex and a vertex adjacent to at most one non-pendant neighbor. These correspond to a terminal cycle and a partially terminal cycle in G respectively.

Lemma 3.13. Let C be a cycle in a 2-connected outerplanar graph, and \mathcal{C} be a minimal cover of G consisting of stars, cliques, cycles, and double cycles, such that two edges of C are covered by graphs in \mathcal{C} other than C. Then C is not needed in the minimal cover of G. That is, there is a minimal cover \mathcal{C}^{\prime} of the graph that does not contain C. Similarly, C does not need to be covered by a double cycle.

Proof. Suppose $C \in \mathcal{C}$. Then C contributes $k-2$ to the rank sum. Now, two of the edges of C are already covered by some other graphs of \mathcal{C}, so let \mathcal{C}^{\prime} be the collection of subgraphs of G consisting of the graphs in \mathcal{C} except for C, and the $k-2 K_{2}$'s for the rest of the edges of C not already covered. Each of these contributes 1 to the rank sum of \mathcal{C}^{\prime}, so that $\mathrm{rs}\left(\mathcal{C}^{\prime}\right) \leq \operatorname{rs}(\mathcal{C})$. Since \mathcal{C} was a minimal cover, so is \mathcal{C}^{\prime}. Similarly, suppose a double cycle on r vertices covers C in \mathcal{C}. This contributes $r-2$ to the rank sum. Create \mathcal{C}^{\prime} by replacing the double cycle with the other cycle in the double cycle (this has $r-k+2$ vertices, and so contributes $r-k$ to the rank sum), and the $k-2$ edges not covered by the other graphs. Then $\mathrm{rs}\left(\mathcal{C}^{\prime}\right) \leq \mathrm{rs}(\mathcal{C})$ as above.

Proposition 3.14. Let G be an outerplanar graph, and Θ the cover type consisting of cliques, stars, cycles, and double cycles. Then there is a non-overlapping cover \mathcal{C} of G of type Θ such that $\operatorname{mr}(G)=\operatorname{rs}(\mathcal{C})$.

Proof. We proceed by induction on $|G|$. For our base cases, note that the result is clear for any clique, star, cycle, or double cycle. So assume this to be true for all outerplanar graphs of order less than $|G|$.

If G is disconnected, we simply take a minimal cover for each component. It is clear that the union is a minimal cover of G. If G has a 1 -separation $\left(G_{1}, G_{2}\right)$, it is clear that $G_{1}, G_{2}, G_{1}-v$, and $G_{2}-v$ are still outerplanar. So by the induction hypothesis and Lemma 3.7, the result follows. So suppose G is 2-connected. We will look at several different cases.
I. Suppose G has a terminal cycle C_{k} of length $k \geq 4$. Let G^{\prime} be a graph with a terminal cycle C of length 3 such that G can be obtained from G^{\prime} by $k-3$ edge subdivisions of edges in the terminal cycle. Let e and f be the edges of C contained in no other cycle of G, and u the degree 2 vertex. By Theorem 1.6, $\operatorname{mr}(G)=\operatorname{mr}\left(G^{\prime}\right)+k-3$. By the induction hypothesis, we can find a non-overlapping cover \mathcal{C}^{\prime} of G^{\prime} with $\operatorname{rs}\left(\mathcal{C}^{\prime}\right)=\operatorname{mr}\left(G^{\prime}\right)$. We can assume that e and f are not covered by a star centered at u, since a star at a degree two vertex can simply be replaced by two K_{2} 's. We will thus naturally identify the edges e and f of G^{\prime} with edges of C_{k} in G that are incident to vertices not of degree two.

Case 1. If e and f are not covered by a cycle or double cycle in \mathcal{C}^{\prime}, then \mathcal{C}^{\prime} covers all of G (including the copies of e and f in G) except for $k-3$ edges in the terminal cycle. Let \mathcal{C} be \mathcal{C}^{\prime} along with the $k-3$ copies of K_{2}. Then \mathcal{C} is a non-overlapping cover of G whose rank sum is $\operatorname{mr}\left(G^{\prime}\right)+k-3$, hence $\operatorname{mr}(G)=\operatorname{rs}(\mathcal{C})$.

Case 2. If $C \in \mathcal{C}^{\prime}$, then let $\mathcal{C}=\mathcal{C}^{\prime}-\{C\} \cup\left\{C_{k}\right\}$. Then \mathcal{C} is a non-overlapping cover of G with

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime}\right)-1+(k-2)=\operatorname{mr}\left(G^{\prime}\right)+k-3=\operatorname{mr}(G) .
$$

Case 3. If C is covered by a double cycle, B^{\prime} in \mathcal{C}^{\prime}, let B be the double cycle in G obtained by replacing C in B^{\prime} with C_{k}. Then let $\mathcal{C}=\mathcal{C}^{\prime}-\left\{B^{\prime}\right\} \cup\{B\}$ so \mathcal{C} is a non-overlapping cover of G with

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime}\right)+k-3=\operatorname{mr}\left(G^{\prime}\right)+k-3=\operatorname{mr}(G)
$$

II. Suppose every terminal cycle in G is of length 3 . Let C_{k} be a partially terminal cycle. Consider G as the union of P_{3} and G_{1} where the P_{3} is taken from a terminal triangle that is next to C_{k}. Let u be the degree two vertex in P_{3}, and v, w its neighbors. Then by Theorem
1.13, $\operatorname{mr}(G)=\min \left\{\operatorname{mr}\left(H_{1}\right)+1, \operatorname{mr}\left(\overline{G_{1}}\right)+2\right\}$ where H_{1} and $\overline{G_{1}}$ are defined in Theorem 1.13. Notice that H_{1} has a multiple edge between v and w so let H_{1}^{\prime} be the graph not including the edge $v w$ and $H_{1}^{\prime \prime}$ the graph including $v w$. Each of $H_{1}^{\prime}, H_{1}^{\prime \prime}$, and $\overline{G_{1}}$ are outerplanar graphs on fewer vertices, so by the induction hypothesis, we can obtain a non-overlapping cover of type Θ for each whose rank sum equals the minimum rank.

Case 1. $\operatorname{mr}(G)=\operatorname{mr}\left(H_{1}^{\prime}\right)+1$. Notice that G can be thought of as the union of H_{1}^{\prime} and the K_{3} induced by u, w, v. These do not share any edges. Then let \mathcal{C}^{\prime} be a minimal non-overlapping cover for H_{1}^{\prime} and let $\mathcal{C}=\mathcal{C}^{\prime} \cup\left\{K_{3}\right\}$, where the K_{3} covers u, v, and w. Then \mathcal{C} is a non-overlapping cover of G, with

$$
\mathrm{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime}\right)+1=\operatorname{mr}\left(H_{1}^{\prime}\right)+1=\operatorname{mr}(G)
$$

and the result follows.
Case 2. $\operatorname{mr}(G)=\operatorname{mr}\left(H_{1}^{\prime \prime}\right)+1$. Again, G can be thought of as the union of $H_{1}^{\prime \prime}$ and the K_{3} induced by u, v, w. These do share edges, so we will need to work a little harder to obtain a non-overlapping cover. Let $\mathcal{C}^{\prime \prime}$ be a minimal non-overlapping cover for $H_{1}^{\prime \prime}$. We will look at what covers the edge $w v$ in $\mathcal{C}^{\prime \prime}$.

If $w v \in \mathcal{C}^{\prime \prime}$, define $\mathcal{C}=\mathcal{C}^{\prime \prime}-\{w v\} \cup\left\{K_{3}\right\}$. Then \mathcal{C} is a non-overlapping cover of G with

$$
\operatorname{mr}(G) \leq \operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime \prime}\right)-1+1=\operatorname{mr}\left(H_{1}^{\prime \prime}\right)<\operatorname{mr}(G)
$$

a contradiction. So this case does not occur. This is expected since if that single edge needs to belong to a minimal cover, then H_{1}^{\prime} will have smaller minimum rank than $H_{1}^{\prime \prime}$.

If $w v$ is covered by a star S at v in $H_{1}^{\prime \prime}$, then define S^{\prime} to be the star in G at v that includes all the edges in S and the edge $u v$. Define $\mathcal{C}=\mathcal{C}^{\prime \prime}-\{S\} \cup\left\{S^{\prime}, u w\right\}$. Then \mathcal{C} is a
non-overlapping cover of G with

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime \prime}\right)-2+2+1=\operatorname{mr}\left(H_{1}^{\prime \prime}\right)+1=\operatorname{mr}(G)
$$

If $w v$ is covered by the partially terminal C_{k}, then let G_{2} be the double cycle induced by C_{k} and u, v, w. Let $\mathcal{C}=\mathcal{C}^{\prime \prime}-\left\{C_{k}\right\} \cup\left\{G_{2}\right\}$. Then \mathcal{C} is a non-overlapping cover of G with

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime \prime}\right)-(k-2)+(k+1-2)=\operatorname{mr}\left(H_{1}^{\prime \prime}\right)+1=\operatorname{mr}(G)
$$

If $w v$ is covered by some double cycle in $H_{1}^{\prime \prime}$, let B be that double cycle. Then B consists of the cycle C_{k} and some other cycle C. Let C have r vertices, so B has $r+k-2$ vertices. Define $\mathcal{C}=\mathcal{C}^{\prime \prime}-\{B\} \cup\left\{C, u v w\right.$, the $k-2$ other edges of $\left.C_{k}\right\}$. Then \mathcal{C} is a non-overlapping cover of G with

$$
\mathrm{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime \prime}\right)-((r+k-2)-2)+(r-2)+1+(k-2)=\operatorname{mr}\left(H_{1}^{\prime \prime}\right)+1=\operatorname{mr}(G)
$$

Thus, no matter what covers $w v$ in the minimal cover, we can construct a minimal non-overlapping cover of G, and the result follows for this case.

Case 3. $\operatorname{mr}(G)=\operatorname{mr}\left(\overline{G_{1}}\right)+2$. Depending on how many vertices are in the partially terminal cycle, we may or may not get multiple edges in $\overline{G_{1}}$, so we will look at two cases.

Subcase 1. Suppose the partially terminal cycle has length 3 . We will distinguish the cases where the partially terminal cycle has only one terminal triangle next to it, or where it has more than one.

If there is more than one, then we actually have a 2 -separation with a bowtie. By the induction hypothesis and Lemma 3.8, the result follows.

If there is only one terminal triangle, it is the triangle $u v w$. Let x be the other vertex of the partially terminal triangle. When we identify v and w to obtain $\overline{G_{1}}$, we get a double edge between w and x. Let ${\overline{G_{1}}}^{\prime}$ be the graph without this edge, and ${\overline{G_{1}}}^{\prime \prime}$ the graph with this
edge. Then we get two more cases within this case.
a. $\operatorname{mr}(G)=\operatorname{mr}\left({\overline{G_{1}}}^{\prime}\right)+2$. Think of G as the union of ${\overline{G_{1}}}^{\prime}$ and the diamond induced by u, v, w, x. These do not share any edges, so let \mathcal{C}^{\prime} be a minimal non-overlapping cover of ${\overline{G_{1}}}^{\prime}$ and let $\mathcal{C}=\mathcal{C}^{\prime} \cup\{$ diamond $\}$. Then \mathcal{C} is a non-overlapping cover of G with

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime}\right)+2=\operatorname{mr}\left({\overline{G_{1}}}^{\prime}\right)+2=\operatorname{mr}(G)
$$

b. $\operatorname{mr}(G)=\operatorname{mr}\left({\overline{G_{1}}}^{\prime \prime}\right)+2$. Think of G as the union of ${\overline{G_{1}}}^{\prime \prime}$, the K_{2} induced by $v x$, and the K_{3} induced by u, v, w. None of these share an edge, so let $\mathcal{C}^{\prime \prime}$ be a minimal non-overlapping cover of ${\overline{G_{1}}}^{\prime \prime}$ and let $\mathcal{C}=\mathcal{C}^{\prime \prime} \cup\left\{K_{2}, K_{3}\right\}$. Then \mathcal{C} is a non-overlapping cover of G, with

$$
\mathrm{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime \prime}\right)+2=\operatorname{mr}\left({\overline{G_{1}}}^{\prime \prime}\right)+2=\operatorname{mr}(G) .
$$

Subcase 2. Now assume that the partially terminal C_{k} has 4 or more vertices, so $\overline{G_{1}}$ does not have any double edges. Let z be the vertex of $\overline{G_{1}}$ obtained by the identification of v and w. Notice that $\overline{G_{1}}$ has a terminal or partially terminal C_{k-1}. Let $\overline{\mathcal{C}}$ be a minimal non-overlapping cover for $\overline{G_{1}}$. We will look at what possibly covers z in this cover.

If $\overline{\mathcal{C}}$ contains a star S with central vertex z, then we may assume that star will cover two edges of C_{k-1} in $\overline{G_{1}}$, so by Lemma 3.13 we can assume $C_{k-1} \notin \overline{\mathcal{C}}$ and that C_{k-1} is not covered by a double cycle in $\overline{\mathcal{C}}$. Let S^{\prime} be the star of G consisting of w and all its neighbors, and $S^{\prime \prime}$ the star consisting of v and all its neighbors except the edge $w v$. Let $\mathcal{C}=\overline{\mathcal{C}}-\{S\} \cup\left\{S^{\prime}, S^{\prime \prime}\right\}$. This then covers G, since it covers everything from G_{1}, as well as the terminal triangle, and is non-overlapping. Also,

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}(\overline{\mathcal{C}})+2=\operatorname{mr}\left(\overline{G_{1}}\right)+2=\operatorname{mr}(G) .
$$

If the cycle $C_{k-1} \in \overline{\mathcal{C}}$, then let B be the double cycle in G consisting of C_{k} and the terminal triangle. Then $\operatorname{mr}(B)=\operatorname{mr}\left(C_{k-1}\right)+2$. Let $\mathcal{C}=\overline{\mathcal{C}}-\left\{C_{k-1}\right\} \cup\{B\}$. Then \mathcal{C} is a
non-overlapping cover of G with

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}(\overline{\mathcal{C}})+2=\operatorname{mr}\left(\overline{G_{1}}\right)+2=\operatorname{mr}(G) .
$$

If C_{k-1} is part of a double cycle B in $\overline{\mathcal{C}}$, then let C_{r} be the other cycle in that double cycle, and consider the K_{3} that is the terminal triangle. Define $\mathcal{C}=\overline{\mathcal{C}}-\{B\} \cup\left\{C_{r}, K_{3},(k-2) K_{2}\right\}$ where the $k-2$ copies of K_{2} cover the remaining edges of C_{k}. Notice that B has $(k-1)+r-2$ vertices, so $\operatorname{mr}(B)=k+r-5$. Then \mathcal{C} is a non-overlapping cover of G with

$$
\mathrm{rs}(\mathcal{C})=\operatorname{rs}(\overline{\mathcal{C}})-(k+r-5)+(r-2)+1+(k-2)=\operatorname{rs}(\overline{\mathcal{C}})+2=\operatorname{mr}\left(\overline{G_{1}}\right)+2=\operatorname{mr}(G)
$$

Suppose $\overline{\mathcal{C}}$ does not contain a star centered at z, C_{k-1}, or a double cycle that includes C_{k-1}. Then z is covered only by cliques or stars not centered at z in $\overline{\mathcal{C}}$. Then just take \mathcal{C} to be everything in $\overline{\mathcal{C}}$ along with the terminal triangle. This will be a non-overlapping cover of G, and

$$
\operatorname{mr}(G) \leq \operatorname{rs}(\mathcal{C})<\operatorname{rs}(\overline{\mathcal{C}})+2=\operatorname{mr}\left(\overline{G_{1}}\right)+2=\operatorname{mr}(G),
$$

a contradiction. So this is another case that does not actually occur. This is expected, since if a star at z, C_{k-1}, or a double cycle is not needed in a minimal cover of $\overline{G_{1}}$, then the cover we do have of $\overline{G_{1}}$ can also cover H_{1}^{\prime}, so $\operatorname{mr}\left(H_{1}^{\prime}\right)+1$ will be smaller than $\operatorname{mr}\left(\overline{G_{1}}\right)+2$.

Note that the double cycles can simply be covered with two cycles to achieve the same rank sum, so they are not really necessary in computing the minimum rank. We include them to obtain a non-overlapping cover which will help us prove a field independence result later. But for the real field we have the following immediate consequence.

Corollary 3.15. If G is an outerplanar graph, and C the cover type consisting of stars, cliques, and cycles, then there is a (not necessarily non-overlapping) cover of G of type C
whose rank sum is the minimum rank of G.

This result allows us to compute the minimum rank of any outerplanar graph by finding a minimal cover. We will now use this to obtain a field independence result for outerplanar graphs.

Theorem 3.16. [9, Proposition 16] Let G be a graph with no subgraph homeomorphic to K_{4}. Then $\operatorname{mr}_{F}(G)$ is the same over any field $F \neq \mathbb{F}_{2}$.

Lemma 3.17. If G is outerplanar, then $\operatorname{mr}^{\mathbb{F}_{2}}(G) \leq \operatorname{mr}(G)$.

Proof. By Proposition 3.14 we can obtain a non-overlapping cover \mathcal{C} of G with $\operatorname{mr}(G)=\operatorname{rs}(\mathcal{C})$ and by Lemma $3.6 \mathrm{mr}^{\mathbb{F}_{2}}(G) \leq \mathrm{rs}(\mathcal{C})=\operatorname{mr}(G)$.

Lemma 3.18. If G is outerplanar, then $\operatorname{mr}^{\mathbb{F}_{2}}(G) \geq \operatorname{mr}(G)$.

Proof. We proceed by induction on $|G|$. For the base cases, the result is clear for $K_{1}, 2 K_{1}$, or K_{2} (see Example 1.3). Assume the result for all graphs of order less than $|G|$. If G is disconnected, then the result is clear. If G has a cut vertex, then since the formula in Theorem 1.10 works over any field, the result follows. So assume G is 2-connected. Since G is outerplanar, it has a 2-separation. Notice that, when we start with a simple graph, performing the operations of adding an edge or contracting an edge, the only parallel edges that can result are double edges (no triple or higher edges). Then notice in Definition 1.11, when we compute the minimum rank over \mathbb{F}_{2} of a graph with a double edge, we simply compute the minimum rank of the corresponding graph with no edge in that position. Thus, in the formula from Theorem 1.12 , when we compute the minimum rank over \mathbb{F}_{2}, we take the minimum over fewer graphs in the last two terms when dealing with double edges than when working over other fields. Each summand of the other terms has minimum rank over \mathbb{F}_{2} larger than or equal to the minimum rank over \mathbb{R} by the induction hypothesis. Thus $\operatorname{mr}^{\mathbb{F}_{2}}(G) \geq \operatorname{mr}(G)$.

Theorem 3.19. If G is an outerplanar graph, F is any field, and C is the cover type consisting of cycles, stars, and cliques, then there is a cover of G of type C whose rank sum is $\mathrm{mr}^{F}(G)$.

Proof. By Corollary 3.15, the result holds over the real field. It is well known that K_{4} is not a minor of an outerplanar graph, thus by Theorem 3.16, the result follows for any field not equal to \mathbb{F}_{2}. Then Lemma 3.17 and Lemma 3.18 give the result over any field.

Corollary 3.20. If G is a tree, F is any field, and S is the cover type consisting of stars and cliques, then there is a cover of G of type S whose rank sum is $\mathrm{mr}^{F}(G)$.

This corollary also follows from results in [3], but our proof is different.

3.3 Minimum Positive Semidefinite Rank of Outerplanar Graphs

In this section, we will prove a result similar to that of the previous section, but for minimum positive semidefinite rank. Because the formulas for 1 -separations and 2 -separations for minimum positive semidefinite rank are so much simpler than those for minimum rank, the result and proof are correspondingly nicer.

Definition 3.21. If \mathcal{C} is a cover of a graph G, define the positive semidefinite rank sum of $\mathcal{C}, \mathrm{rs}_{+}(\mathcal{C})$, to be the sum of the minimum positive semi-definite ranks of the graphs in the cover.

Lemma 3.22. If G is any graph and \mathcal{C} is any cover of G, then $\mathrm{mr}_{+}(G) \leq \mathrm{rs}_{+}(\mathcal{C})$.
Proof. We proceed exactly as in the proof of Lemma 3.5, choosing positive semi-definite A_{k} 's and positive constants c_{k}. Then the same proof works since the sum of positive semidefinite matrices is positive semidefinite.

Theorem 3.23. Let G be outerplanar, and let O be the cover type consisting of cliques and cycles (alternatively think of these as just edges and cycles since G is outerplanar). Then there is a cover of type O of G with $\mathrm{mr}_{+}(G)=\mathrm{rs}_{+}(\mathcal{C})$.

Proof. We will proceed by induction on the order of G. For our base cases, note that the result is clear for cliques and cycles. If G is disconnected, simply take a minimal cover for each component, then it is clear that the union is a minimal cover for G. So assume G is connected.

If G has a 1 -separation, $G=\left(G_{1}, G_{2}\right)$, by Theorem 1.18 we have $\mathrm{mr}_{+}(G)=\mathrm{mr}_{+}\left(G_{1}\right)+$ $\mathrm{mr}_{+}\left(G_{2}\right)$. For $i=1,2$ each G_{i} is still outerplanar, so by the induction hypothesis, there is a cover \mathcal{C}_{i} of type O for G_{i}, with $\operatorname{mr}_{+}\left(G_{i}\right)=\operatorname{rs}_{+}\left(\mathcal{C}_{i}\right)$. Let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$. Then \mathcal{C} is a cover for G with

$$
\mathrm{rs}_{+}(\mathcal{C})=\mathrm{rs}_{+}\left(\mathcal{C}_{1}\right)+\mathrm{rs}_{+}\left(\mathcal{C}_{2}\right)=\mathrm{mr}_{+}\left(G_{1}\right)+\mathrm{mr}_{+}\left(G_{2}\right)=\mathrm{mr}_{+}(G) .
$$

If G does not have a cut vertex, then G has a 2-separation $\left(G_{1}, G_{2}\right)$ where G_{2} is a terminal cycle C_{k}. By Theorem 1.19, $\mathrm{mr}_{+}(G)=\min \left\{\mathrm{mr}_{+}\left(G_{1}\right)+\mathrm{mr}_{+}\left(G_{2}\right), \mathrm{mr}_{+}\left(H_{1}\right)+\mathrm{mr}_{+}\left(H_{2}\right)\right\}$. If $\mathrm{mr}_{+}(G)=\mathrm{mr}_{+}\left(G_{1}\right)+\mathrm{mr}_{+}\left(G_{2}\right)$ then proceed exactly as in the case where G has a cut vertex. So suppose $\mathrm{mr}_{+}(G)=\mathrm{mr}_{+}\left(H_{1}\right)+\mathrm{mr}_{+}\left(H_{2}\right)=\mathrm{mr}_{+}\left(H_{1}\right)+\mathrm{mr}_{+}\left(C_{k}\right)=\mathrm{mr}_{+}\left(H_{1}\right)+(k-2)$. Let H_{1}^{\prime} be H_{1} with the edge between the vertices of the 2 -separation, and $H_{1}^{\prime \prime}$ the graph without. Then $\operatorname{mr}_{+}(G)=\min \left\{\mathrm{mr}_{+}\left(H_{1}^{\prime}\right)+k-2, \mathrm{mr}_{+}\left(H_{1}^{\prime \prime}\right)+k-2\right\}$. Let \mathcal{C}^{\prime} be a minimal cover of H_{1}^{\prime} and $\mathcal{C}^{\prime \prime}$ a minimal cover for $H_{1}^{\prime \prime}$. Then, for either case, either $\mathcal{C}=\mathcal{C}^{\prime} \cup\left\{C_{k}\right\}$ or $\mathcal{C}=\mathcal{C}^{\prime \prime} \cup\left\{C_{k}\right\}$, is a cover for G which adds $k-2$ to the rank sum. So

$$
\mathrm{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime}\right)+k-2=\mathrm{mr}_{+}\left(H_{1}^{\prime}\right)+k-2=\mathrm{mr}_{+}(G)
$$

or

$$
\operatorname{rs}(\mathcal{C})=\operatorname{rs}\left(\mathcal{C}^{\prime \prime}\right)+k-2=\mathrm{mr}_{+}\left(H_{1}^{\prime \prime}\right)+k-2=\mathrm{mr}_{+}(G)
$$

Figure 3.1: The Gem, the Supertriangle, and the 2-gem

3.4 Path Covers and Maximum Nullity of Outerplanar 2-Trees

The following theorem of John Sinkovic gives an important relationship between the maximum nullity and the path cover number of an outerplanar graph.

Theorem 3.24. [14, Theorem 2.8] If G is an outerplanar graph, then $M(G) \leq P(G)$.

He also proves equality for a class of graphs known as partial 2-paths.

Definition 3.25. A 2-tree is a graph defined recursively as follows: a triangle is a 2 -tree, and a new 2-tree can be obtained from an old one by attaching a vertex to two adjacent vertices. A partial 2-tree is a subgraph of a 2 -tree. A 2-path is a 2 -tree with exactly two vertices of degree two. A partial 2-path is a subgraph of a 2-path.

A straightforward induction argument shows that 2-trees are chordal.

Theorem 3.26. [14, Theorem 3.17] If G is a partial 2-path, then $M(G)=P(G)$.

In this same paper, it is conjectured that this equality can be generalized to the class of outerplanar 2-trees. In this section, we prove a special case of this conjecture, namely when the outerplanar 2-tree does not contain a subgraph we call the 2-gem.

Definition 3.27. The gem is the graph on five vertices in Figure 3.1, the supertriangle is the graph on six vertices the same figure, and the 2-gem is the graph on eight vertices in the same figure.

Note that all these graphs are outerplanar 2-trees. The 2-gem can be thought of as two gems connected along an edge, or alternatively, as two supertriangles that overlap.

The idea here is that we can obtain a clique cover of an outerplanar 2-tree by including each triangle except for the central triangles of supertriangles as long as the supertriangles do not overlap so that these central triangles share an edge. Thus we have an observation:

Observation 3.28. Let G be a 2-gem free outerplanar 2-tree, let the the number of triangles that are in G, and let s be the number of supertriangles that occur as subgraphs of G. Then $\operatorname{cc}(G) \leq t-s$.

Definition 3.29. A terminal gem in a 2-tree is a subgraph isomorphic to the gem that is connected to the rest of the graph along the single exterior edge not incident to a degree two vertex. A terminal diamond in a 2-tree is a subgraph isomorphic to a diamond that is connected to the rest of the graph along a single exterior edge.

Lemma 3.30. Any outerplanar 2-tree on more than four vertices has either a terminal gem or a terminal diamond.

Proof. We proceed by induction on the order of G. The only 2 -tree on 5 vertices is the gem which has a terminal diamond. Since G is an outerplanar 2-tree, it has a degree two vertex v. By the induction hypothesis, $G-v$ has either a terminal diamond or a terminal gem, since $G-v$ is still an outerplanar 2-tree. If v is not adjacent to this terminal diamond or gem, then the diamond or gem is still terminal in G. If v is adjacent to one of the degree two vertices of the terminal diamond or gem in $G-v$, then v along with the triangle of that degree two vertex gives a terminal diamond. Otherwise, v is adjacent to only non-degree two vertices in the terminal diamond. Then adding v back in turns this terminal diamond into a terminal gem.

Lemma 3.31. If G is an outerplanar 2-tree on $n \geq 4$ vertices, then the number of degree two vertices in G is equal to the number of supertriangles in G plus two.

Proof. We proceed by induction on the order of G. If G is an outerplanar 2-tree on four vertices, then it is the diamond, which has no supertriangle and two degree two vertices.

So suppose G has more than 4 vertices. Then we can find a terminal gem or a terminal diamond. If it is a gem, then it is part of a supertriangle, so deleting a degree two vertex decreases the number of degree two vertices by one, and the number of supertriangles by one. If it is a diamond, then the degree two vertex is not part of a supertriangle, and deleting the degree two vertex does not decrease the number of degree two vertices or the number of supertriangles. Thus by induction, the result follows.

Lemma 3.32. Let G be an outerplanar 2-tree and let d be the number of degree two vertices in G. Then $P(G) \leq d$.

Proof. Since G is outerplanar, we can draw G in the plane so that each vertex is adjacent to the unbounded face. We can then construct a path cover of G by choosing a degree two vertex, and following a path along the exterior of the graph that terminates at the vertex just before the next degree two vertex. Continuing in this manner, we obtain d paths. These paths are disjoint since a 2 -tree is 2 -connected. Note that any triangle in G either has two interior edges, or a vertex that has degree two in G. Since these paths stopped at the degree two vertices and only include exterior edges, we do not induce any triangle. Since G is chordal, we do not induce any larger cycle either. Thus each is an induced path. Thus we have a path cover of d paths, so $P(G) \leq d$.

Theorem 3.33. If G is a 2-gem free outerplanar 2-tree, then

$$
M(G)=P(G) \text { and } \operatorname{mr}(G)=\operatorname{cc}(G)
$$

Proof. Let $n=|G|$. If $n=3, G=K_{3}$ and the result is clear. So let $n \geq 4$. Let d be the number of degree two vertices, t the number of triangles in G, and s the number of supertriangles in G. Observe that $n=t+2$ (this is a straightforward induction argument). By Observation 3.28, $\operatorname{mr}(G) \leq \operatorname{cc}(G) \leq t-s$, and by Theorem 3.24, Lemma 3.32, and

Lemma 3.31, $M(G) \leq P(G) \leq d=s+2$. Then

$$
n=\operatorname{mr}(G)+M(G) \leq(t-s)+(s+2)=t+2=n
$$

Thus we get equality in each case, so in particular $M(G)=P(G)$ and $\operatorname{mr}(G)=\operatorname{cc}(G)$.

Corollary 3.34. If G is a 2-gem free outerplanar 2-tree on $n \geq 4$ vertices, then $P(G)=d$ and $c c(G)=t-s$. In particular, there is a minimal path cover of G consisting of only exterior paths, and a minimal clique cover of G that includes each triangle of G except for the central triangle of each supertriangle.

Chapter 4. Inverse Inertia for Certain Graphs

4.1 Facts About Inertia

In this chapter we address the inverse inertia problem as mentioned in the introduction. Our results from Chapter 3 will lead to some consequences about this problem for outerplanar graphs. We will also solve this problem for any k-connected partial k-path, and any graph whose minimum rank is $n-2$. We will begin with some preliminary definitions and known results. Most of these can be found in [4].

Definition 4.1. Given a matrix A we define the inertia of A as the triple $(\pi(A), \nu(A), \delta(A))$ where $\pi(A)$ denotes the number of positive eigenvalues of $A, \nu(A)$ the number of negative eigenvalues of A, and $\delta(A)$ the multiplicity of 0 as an eigenvalue of A.

Notice that $\pi(A)+\nu(A)+\delta(A)=n$, where n is the order of the matrix. Thus, if we know the size of the matrix that we are dealing with, then knowing any two entries of the inertia determines the third. This motivates the following definition.

Definition 4.2. The partial inertia of a matrix A, denoted $\operatorname{pin}(A)$, is the ordered pair $(\pi(A), \nu(A))$ where π and ν are as in Definition 4.1.

Definition 4.3. Given a graph G, the inertia set of G, denoted $\mathcal{I}(G)$, is the set of all possible partial inertias that can be obtained by matrices in $\mathcal{S}(G)$. That is

$$
\mathcal{I}(G)=\{(r, s) \in \mathbb{N} \times \mathbb{N} \mid \operatorname{pin}(A)=(r, s) \text { for some } A \in \mathcal{S}(G)\}
$$

(Here we include the number 0 in \mathbb{N}.)

We note that for any matrix $A, \pi(A)+\nu(A)=\operatorname{rank} A$, and thus if G is a graph on n vertices and $(r, s) \in \mathcal{I}(G)$, then $\operatorname{mr}(G) \leq r+s \leq n$. With this in mind, we give the following definition.

Definition 4.4. The k-line is the subset of $\mathbb{N} \times \mathbb{N}$ whose coordinates add up to k, i.e. $\{(r, s) \in \mathbb{N} \times \mathbb{N} \mid r+s=k\}$. The minimum rank line for a graph G is the k-line where $k=\operatorname{mr}(G)$. The trapezoid from the l-line to the k-line, denoted $T[l, k]$, is the set

$$
T[l, k]=\{(r, s) \in \mathbb{N} \times \mathbb{N} \mid l \leq r+s \leq k\} .
$$

A few simple observations are in order.

Observation 4.5. Let G be a graph on n vertices.
(i) $\mathcal{I}(G) \subseteq T[\operatorname{mr}(G), n]$.
(ii) There is at least one point in the inertia set on the minimum rank line.
(iii) The point $\left(\operatorname{mr}_{+}(G), 0\right)$ is the first point of $\mathcal{I}(G)$ on the x-axis, and $\left(0, \mathrm{mr}_{+}(G)\right)$ is the first point on the y-axis.
(iv) If $(r, s) \in \mathcal{I}(G)$, then $(s, r) \in \mathcal{I}(G)$. Thus the inertia set of G is symmetric over the line $y=x$.

Definition 4.6. A graph G on n vertices is called trapezoidal if $\mathcal{I}(G)=T[\operatorname{mr}(G), n]$. In other word, a graph is trapezoidal if it can have every possible partial inertia not forbidden by the minimum rank or number of vertices.

Definition 4.7. Let \mathbb{N}^{2} denote $\mathbb{N} \times \mathbb{N}$, and let $Q, R \subseteq \mathbb{N}^{2}$. We define the following:

- $\mathbb{N}_{\leq k}^{2}=\left\{(r, s) \in \mathbb{N}^{2} \mid r+s \leq k\right\}$.
- $Q+R=\left\{\left(r_{1}+r_{2}, s_{1}+s_{2}\right) \mid\left(r_{1}, s_{1}\right) \in Q,\left(r_{2}, s_{2}\right) \in R\right\}$.
- $Q^{\rightarrow}=Q+\{(1,0)\}$.
- $Q^{\uparrow}=Q+\{(0,1)\}$.
- For n a positive integer, $[Q]_{n}=Q \cap \mathbb{N}_{\leq n}^{2}$.
- The northeast expansion of $Q, Q^{\nearrow}=Q+\mathbb{N}^{2}$.

The following lemma, known as the Northeast Lemma, is one of the most useful in determining inertia sets.

Lemma 4.8. [3, Lemma 1.1](Northeast Lemma) Let G be a graph on n vertices and suppose $A \in \mathcal{S}(G)$ with $\operatorname{pin}(A)=(\pi, \nu)$. Then for every pair of integers (r, s) with $r \geq \pi$ and $s \geq \nu$, $r+s \leq n$, there exists a matrix $B \in \mathcal{S}(G)$ with $\operatorname{pin}(B)=(r, s)$.

Another way of stating the Northeast Lemma is to say that the northeast expansion of any point in the inertia set, up to the n-line, is also in the inertia set. That is, if $Q \subseteq \mathcal{I}(G)$, then $\left[Q^{\nearrow}\right]_{n} \subseteq \mathcal{I}(G)$.

Proposition 4.9. [3, Proposition 2.3] If G is any graph on n vertices, $T[n-1, n] \subseteq \mathcal{I}(G)$. In other words, the inertia set of any graph contains the $(n-1)$-line and the n-line.

Definition 4.10. A matrix A is inertially balanced if $|\pi(A)-\nu(A)| \leq 1$. A graph G is inertially balanced is there is an inertially balanced $A \in \mathcal{S}(G)$ with $\operatorname{rank}(A)=\operatorname{mr}(G)$.

An example of a graph that is not inertially balanced is given in [3].
At this point, a simple example is in order to illustrate some of these ideas.

Example 4.11. We will determine the inertia set for any complete graph $K_{n}, n>1$. We saw in Example 1.3 that $\operatorname{mr}\left(K_{n}\right)=1$. Thus, by Observation 4.5, there is some point along the 1 -line in the inertia set for K_{n}. Since $(1,0)$ and $(0,1)$ are the only points on the 1 -line, then the symmetry part of this same observation gives us that $\mathcal{I}\left(K_{n}\right)$ contains the entire 1-line. Indeed, the all ones matrix J_{n} and $-J_{n}$ are matrices in $\mathcal{S}\left(K_{n}\right)$ that attain these partial inertias. Then by the Northeast Lemma, we find that $T[1, n] \subseteq \mathcal{I}\left(K_{n}\right)$, so in fact, $\mathcal{I}\left(K_{n}\right)=T[1, n]$ for $n>1$. Of course, for $n=1$ we have $\mathcal{I}\left(K_{1}\right)=T[0,1]$. In particular, K_{n} is trapezoidal and inertially balanced for all n.

We now include some known results that will be useful to us later on.

Lemma 4.12. [4, Proposition 3.9] (Subadditivity of Inertia) Let A, B, and C be real symmetric $n \times n$ matrices with $A+B=C$. Then

$$
\pi(C) \leq \pi(A)+\pi(B) \text { and } \nu(C) \leq \nu(A)+\nu(B)
$$

Theorem 4.13. [4, Theorem 6.1] Let G be a graph and e and edge of G. Let G_{e} be the graph obtained from G by subdividing the edge e. If $(r, s) \in \mathcal{I}(G)$, then $(r+1, s)$ and $(r, s+1)$ are contained in $\mathcal{I}\left(G_{e}\right)$.

Corollary 4.14. [4, Corollary 6.3] Let G be a graph with edge e and G_{e} the graph that results from subdivision of e. Then $\mathcal{I}(G)^{\uparrow} \cup \mathcal{I}(G) \rightarrow \subseteq \mathcal{I}\left(G_{e}\right)$.

Theorem 4.15. [4, Theorem 8.1] Let G and H be connected, trapezoidal graphs, so $\mathcal{I}(G)=$ $T[\operatorname{mr}(G),|G|]$ and $\mathcal{I}(H)=T[\operatorname{mr}(H),|H|]$. If $\operatorname{mr}(G \cup H)=\operatorname{mr}(G)+\operatorname{mr}(H)$, then

$$
\mathcal{I}(G \cup H)=T[\operatorname{mr}(G)+\operatorname{mr}(H),|G \cup H|] .
$$

These results are useful in that they give the inertia sets for graphs in terms of smaller graphs.

The paper [4] computes the inertia set for every graph on six or fewer vertices, and for several families of graphs. We include some examples here that we will need later.

Example 4.16. The cycle C_{n} can be obtained from edge subdivisions of K_{3}, thus, since $\operatorname{mr}\left(C_{n}\right)=n-2$, by Theorem 4.13, $\mathcal{I}\left(C_{n}\right)=T[n-2, n]$. In particular, C_{n} is trapezoidal and inertially balanced.

The star S_{n} has $\operatorname{mr}\left(S_{n}\right)=2$ and $\mathrm{mr}_{+}\left(S_{n}\right)=n-1$ (see Example 1.7 and Theorem 1.20). Thus $\mathcal{I}\left(S_{n}\right)=\{(1,1)\}^{\nearrow} \cup T[n-1, n]$. So for $n \geq 4, S_{n}$ is not trapezoidal, but S_{n} is inertailly balanced for all n.

4.2 Inertia of Outerplanar Graphs

We will now use our results on the minimum rank of an outerplanar graph in terms of the subgraph covers from Chapter 3 to obtain some results about the inertia sets of outerplanar graphs.

Corollary 4.17. (to Theorem 3.19) If G is an outerplanar graph, then G is inertially balanced.

Proof. Let \mathcal{C} be a cover of G with $\operatorname{mr}(G)=\operatorname{rs}(\mathcal{C})$ consisting of m cliques G_{1}, \cdots, G_{m}, p stars H_{1}, \cdots, H_{p}, and q cycles F_{1}, \cdots, F_{q}. Each of these graphs is inertially balanced, so we can choose $A_{i} \in \mathcal{S}\left(G_{i}\right)$ such that $\operatorname{pin}\left(A_{i}\right)=(1,0)$ or $(0,1), B_{i} \in \mathcal{S}\left(H_{i}\right)$ such that $\operatorname{pin}\left(B_{i}\right)=(1,1)$ and $C_{i} \in \mathcal{S}\left(F_{i}\right)$ such that $\operatorname{pin}\left(C_{i}\right)$ is balanced. Then we can choose the $A_{i}{ }^{\prime}$'s, B_{i} 's, and C_{i} 's so that

$$
\begin{aligned}
0 \leq & \left(\pi\left(A_{1}\right)-\nu\left(A_{1}\right)\right)+\cdots+\left(\pi\left(A_{m}\right)-\nu\left(A_{m}\right)\right) \\
& +\left(\pi\left(B_{1}\right)-\nu\left(B_{1}\right)\right)+\cdots+\left(\pi\left(B_{p}\right)-\nu\left(B_{p}\right)\right) \\
& +\left(\pi\left(C_{1}\right)-\nu\left(C_{1}\right)\right)+\cdots+\left(\pi\left(C_{q}\right)-\nu\left(C_{q}\right)\right) \leq 1 .
\end{aligned}
$$

Then pad these matrices with zeros in the appropriate way (see Lemma 3.5), and let $A \in$ $\mathcal{S}(G)$ be the sum of all of them. By Lemma 4.12,

$$
\pi(A) \leq \sum_{i=1}^{m} \pi\left(A_{i}\right)+\sum_{i=1}^{p} \pi\left(B_{i}\right)+\sum_{i=1}^{q} \pi\left(C_{i}\right)
$$

and

$$
\nu(A) \leq \sum_{i=1}^{m} \nu\left(A_{i}\right)+\sum_{i=1}^{p} \nu\left(B_{i}\right)+\sum_{i=1}^{q} \nu\left(C_{i}\right) .
$$

Adding these inequalities, we have

$$
\begin{aligned}
\operatorname{mr}(G) & \leq \pi(A)+\nu(A) \\
& \leq \sum_{i=1}^{m}\left(\pi\left(A_{i}\right)+\nu\left(A_{i}\right)\right)+\sum_{i=1}^{p}\left(\pi\left(B_{i}\right)+\nu\left(B_{i}\right)\right)+\sum_{i=1}^{q}\left(\pi\left(C_{i}\right)+\nu\left(C_{i}\right)\right) \\
& =\sum_{i=1}^{m} \operatorname{mr}\left(G_{i}\right)+\sum_{i=1}^{p} \operatorname{mr}\left(H_{i}\right)+\sum_{i=1}^{q} \operatorname{mr}\left(F_{i}\right) \\
& =\operatorname{rs}(\mathcal{C})=\operatorname{mr}(G)
\end{aligned}
$$

so we get equality in each case. Thus $0 \leq \pi(A)-\nu(A) \leq 1$, so G is inertially balanced.

Theorem 4.18. If G is any graph such that the minimum rank is equal to the rank sum of some cover consisting only of graphs whose inertia sets are trapezoids, then $\mathcal{I}(G)$ is a trapezoid.

Proof. Let $\operatorname{mr}(G)=r$ and let $\mathcal{C}=\left\{G_{1}, \cdots, G_{k}\right\}$ be such a cover of G with $\operatorname{mr}\left(G_{i}\right)=r_{i}$ so $\sum_{i=1}^{k} r_{i}=r$. We will show that the point $(m, r-m) \in \mathcal{I}(G)$ for $m \leq r$. Each $\mathcal{I}\left(G_{i}\right)$ is trapezoid, thus we have the points $\left(j, r_{i}-j\right) \in \mathcal{I}\left(G_{i}\right)$ for all i, where j ranges from 0 to r_{i}. Then since $r_{1}+\cdots+r_{k}=r$ and $0 \leq m \leq r$ and the j 's range from 0 to r_{i}, then for $i=1, \cdots, k$ choose j_{1}, \cdots, j_{k} such that $j_{1}+\cdots+j_{k}=m$. Then let $A_{i} \in \mathcal{S}\left(G_{i}\right)$ with $\operatorname{pin}\left(A_{i}\right)=\left(j_{i}, r_{i}-j_{i}\right)$. Pad these matrices with zeroes as above, and let $A \in \mathcal{S}(G)$ be their
sum. Then

$$
\pi(A) \leq \sum_{i=1}^{k} \pi\left(A_{i}\right)=\sum_{i=1}^{k} j_{i}=m
$$

and

$$
\nu(A) \leq \sum_{i=1}^{k} \nu\left(A_{i}\right)=\sum_{i=1}^{k}\left(r_{i}-j_{i}\right)=r-m .
$$

Then since $\operatorname{rank} A=\pi(A)+\nu(A) \leq(r-m)+m=r=\operatorname{mr}(G)$ we have equality in both cases, so $\operatorname{pin}(A)=(m, r-m)$. So $(m, k-m) \in \mathcal{I}(G)$. Then by the Northeast Lemma, the full trapezoid is in $\mathcal{I}(G)$.

Corollary 4.19. If G is an outerplanar graph, then $\mathcal{I}(G)$ is a trapezoid if and only if there is a cover of G consisting of only cliques and cycles whose rank sum is the minimum rank (so a star is not necessary to achieve the minimum rank).

Proof. (\Rightarrow) If $\mathcal{I}(G)$ is a trapezoid, then $\operatorname{mr}(G)=\mathrm{mr}_{+}(G)$. Then by Theorem 3.23, there is a cover \mathcal{C} consisting of only cliques and cycles with $\mathrm{rs}_{+}(\mathcal{C})=\mathrm{mr}_{+}(G)$. Then

$$
\mathrm{mr}_{+}(G)=\operatorname{mr}(G) \leq \mathrm{rs}(\mathcal{C}) \leq \mathrm{rs}_{+}(\mathcal{C})=\mathrm{mr}_{+}(G)
$$

so we get equality. Thus the minimum rank is attained by a minimal cover of only cliques and cycles.
(\Leftarrow) By Examples 4.11 and 4.16, the inertia sets of complete graphs and cycles are trapezoids. Thus by Theorem 4.18, $\mathcal{I}(G)$ is a trapezoid.

4.3 Partial k-Paths

In this section, we determine the inertia sets for partial k-paths that are k-connected. Our computations will rely heavily on known results concerning the maximum nullity of such graphs.

Definition 4.20. A k-tree is a graph that can be described recursively as follows. K_{k} is a k-tree, and new k-trees can be built from old ones by adding a new vertex attaching it to a K_{k} in the old graph. A partial k-tree is a subgraph of a k-tree.

Notice in particular that a tree is a 1-tree. A k-tree can be thought of a a tree of K_{k+1} 's. Also notice that each new vertex added has degree k, motivating our next definition.

Definition 4.21. A k-path is a k-tree that has exactly two vertices of degree $k . K_{k+1}$ is also considered a (degenerate) k-path. A partial k-path is a subgraph of a k-path.

So a 1-path is just a path, and a k-path can be thought of as a path of K_{k+1} 's.
We have the following important result on the maximum nullity of a partial k-path.

Theorem 4.22. [19, Theorem 12] If G is a k-connected partial k-path, then $M(G)=k$.

In particular, this result implies that the minimum rank of a k-connected partial k-path is $n-k$. This will allow us to determine the inertia sets of such graphs.

Theorem 4.23. If G is a k-connected partial k-path on n vertices, then

$$
\mathcal{I}(G)=T[n-k, n] .
$$

In particular, a k-connected partial k-path is trapezoidal.

Proof. We proceed by induction on $n=|G|$. The smallest k-connected partial k-path is the complete graph K_{k+1}. Example 4.11 gives us the result for this base case. So assume G has more than $k+1$ vertices. Notice that since G is a partial k-path, it is not $(k+1)$-connected, so since it is k-connected, G has a k-separation. So we can write

$$
G=G_{1} \cup G_{2}
$$

where G_{1} and G_{2} are both k-connected partial k-paths on strictly fewer vertices than G, and

$$
\left|G_{1} \cap G_{2}\right|=k
$$

Let $l=\left|G_{1}\right|$ and $m=\left|G_{2}\right|$ so that $n=l+m-k$. By induction, $\mathcal{I}\left(G_{1}\right)=T[l-k, l]$ and $\mathcal{I}\left(G_{2}\right)=T[m-k, m]$. Then

$$
\operatorname{mr}\left(G_{1}\right)+\operatorname{mr}\left(G_{2}\right)=(l-k)+(m-k)=(l+m-k)-k=n-k=\operatorname{mr}(G) .
$$

So by Theorem 4.15, $\mathcal{I}(G)=T[n-k, n]$.

4.4 Graphs of Minimum Rank $n-2$

In this section, we will use the result from the previous section, in addition to other tools we have discussed, to determine the inertia sets for all graphs whose minimum rank is $n-2$. This will be possible because of an important result characterizing such graphs found in [20]. First we need a definition.

Definition 4.24. A graph $G \neq P_{n}$ is a graph of two parallel paths if there exist two disjoint induced paths of G that cover all the vertices of G and such that any edges between the two paths can be drawn without crossing.

Graphs of two parallel paths are precisely those graphs whose zero forcing number is 2 .

Theorem 4.25. [20, Theorem 5.1] For a graph $G, M(G)=2$ if and only if G is a graph of two parallel paths or is one of a list of a few exceptional graphs.

The exceptional graphs that are not graphs on two parallel paths that have maximum nullity two are shown in Figure 4.1, where the dashed line indicates an edge that may or may not be there, and the bold line indicates an edge that may be subdivided arbitrarily many times.

Figure 4.1: Exceptional Maximum Nullity 2 Graphs

Corollary 4.26. (to Theorem 4.23) If G is a 2-connected partial 2-path, then $\mathcal{I}(G)=$ $T[n-2, n]$. In particular, a 2-connected partial 2-path is trapezoidal.

Before we can determine the inertia sets of all graphs of two parallel paths, we need the following result from [3].

Observation 4.27. Let P_{n} denote the path on n vertices. Then $\mathcal{I}\left(P_{n}\right)=T[n-1, n]$.

This also follows readily from Theorem 1.6, Example 4.11, and Theorem 4.13 applied to $K_{2}\left(=P_{2}\right)$.

Theorem 4.28. If G is any graph of two parallel paths on n vertices that is not a tree, then $\mathcal{I}(G)=T[n-2, n]$.

Proof. We proceed by induction on n. The base case K_{3} follows from Corollary 4.26, so assume the result for graphs on less than n vertices. If G is 2-connected we are done again by Corollary 4.26. If G is not 2 -connected, then notice that we can write

$$
G=P_{k} \underset{v}{\oplus} G^{\prime}
$$

where G^{\prime} is a graph of two parallel paths that is not a tree. Let $l=\left|G^{\prime}\right|$, so $l<n$, and $\mathcal{I}\left(G^{\prime}\right)=T[l-2, l]$ by the induction hypothesis. Also, we know that $\mathcal{I}\left(P_{k}\right)=T[k-1, k]$ by Observation 4.27. Notice that

$$
\operatorname{mr}\left(P_{k}\right)+\operatorname{mr}\left(G^{\prime}\right)=(k-1)+(l-2)=(k+l-1)-2=n-2=\operatorname{mr}(G)
$$

Figure 4.2: The H-Graph
so by Theorem 4.15, $\mathcal{I}(G)=T[n-2, n]$.

Theorem 4.29. If G is any of the exceptional graphs of maximum multiplicity 2 , then

$$
\mathcal{I}(G)=T[n-2, n]
$$

where $n=|G|$.

Proof. Notice that all of the exceptional graphs (see Figure 4.1) can be written as

$$
G=G^{\prime} \oplus P_{k}
$$

where P_{k} is a path on k vertices and G^{\prime} is a graph satisfying the hypotheses of Theorem 4.28. Let $n=|G|, m=\left|G^{\prime}\right|$ and notice $n=m+k-1$. We have $\operatorname{mr}(G)=n-2, \operatorname{mr}\left(P_{k}\right)=k-1$, and $\operatorname{mr}\left(G^{\prime}\right)=m-2$. Also, $\mathcal{I}\left(P_{k}\right)=T[k-1, k]$ and by Theorem 4.28, $\mathcal{I}\left(G^{\prime}\right)=T[m-2, m]$. Thus,

$$
\operatorname{mr}\left(G^{\prime}\right)+\operatorname{mr}\left(P_{k}\right)=(m-2)+(k-1)=(m+k-1)-2=n-2=\operatorname{mr}(G)
$$

so by Theorem 4.15, $\mathcal{I}(G)=T[n-2, n]$.

Notice that a tree T is a graph on two parallel paths if and only if $P(T)=2$.

Theorem 4.30. Let T be a tree on two parallel paths (i.e. any tree for which $M(T)=2$)
with n vertices. Then

$$
\mathcal{I}(T)=T[n-1, n] \cup\{(n-3,1), \cdots,(1, n-3)\} .
$$

Proof. By Proposition 4.9 we have $T[n-1, n] \subseteq \mathcal{I}(T)$ and since $M(T)=2, \operatorname{mr}(T)=n-2$ so we do not have any inertias below the $(n-2)$-line. So it suffices to show that the minimum rank line consists of exactly $\{(n-3,1), \cdots,(1, n-3)\}$.

In [4] this is confirmed for such trees on up to six vertices. Any tree with path cover number two on more than six vertices can be obtained by successive edge subdivisions of either the star S_{4}, or the H-graph (Figure 4.2). Now, again by [4], we know $\mathcal{I}\left(S_{4}\right)=T[3,4] \cup$ $\{(1,1)\}$ and $\mathcal{I}(\mathrm{H}$-graph $)=T[5,6] \cup\{(3,1),(2,2),(1,3)\}$ so by Corollary 4.14, repeated edge subdivision yields $\{(n-3,1), \cdots,(1, n-3)\} \subseteq \mathcal{I}(T)$. Now since T is a tree, $\operatorname{mr}_{+}(T)=n-1$ by Theorem 1.20 , so $(n-2,0),(0, n-2) \notin \mathcal{I}(G)$ and the result follows.

Theorems 4.28, 4.29, and 4.30 thus give, by Theorem 4.25, the inertia sets of all graphs whose minimum rank is $n-2$. In particular, the inertia sets of each of these graphs contain all points that are not already ruled out by the constraints imposed by the minimum rank and the minimum positive semidefinite rank. We can also see that graphs satisfying the hypotheses of Theorems 4.28 and 4.29 are exactly those graphs whose inertia set is the trapezoid $T[n-2, n]$. This motivates the following:

Question. Given a subset of $I \subseteq \mathbb{N}^{2}$, can we characterize all graphs G such that $\mathcal{I}(G)=I$?
We suspect that this question could be very difficult to answer without results similar to Theorem 4.25 that characterize all graphs with a given minimum rank or maximum nullity.

Chapter 5. Some Results on the Inverse Eigenvalue Problem

We have seen how knowledge of the minimum rank of a graph is helpful in determining what partial inertias can be achieved by the graph. In this chapter, we will investigate what the minimum rank and inertia set can tell us about possible eigenvalues of a graph. Very little has been done on this problem, and our results are indicative of many of the difficulties that arise in this problem. We will be concerned primarily with the possible eigenvalues that can be attained by minimum rank matrices for a graph.

We note in passing one result on the inverse eigenvalue problem for paths proven by Hald in [1] (although we will word it slightly differently).

Theorem 5.1. [1, Theorem 2] Given any n distinct real numbers, there is a matrix in $\mathcal{S}\left(P_{n}\right)$ with those numbers as its eigenvalues.

Since $M\left(P_{n}\right)=1,0$ can never be an eigenvalue of multiplicity 2 for a path, and hence no number can be an eigenvalue of multiplicity 2 for a path. Thus this theorem completely characterizes the possible eigenvalues for a path.

Hald's proof depends on the solution to recurrence relations involving the characteristic polynomials for matrices corresponding to a path. This proof is very specific to the structure of these matrices, and is thus very hard to apply to other graphs. We will need to turn to other techniques to handle such graphs. We will look particularly at graphs whose minimum rank is two.

Before beginning, we include some standard results from matrix theory.

Lemma 5.2. A symmetric $n \times n$ matrix M has partial inertia (r, s) with $r+s=k$ if and
only if M has a factorization

where A is an $n \times k$ matrix, and we have 1 occurring r times on the diagonal, and -1 occurring s times.

Lemma 5.3. [21, Theorem 1.3.20] Suppose A is $m \times n$ and $B n \times m$ with $m \leq n$. Then $B A$ has the same eigenvalues as $A B$, counting multiplicity, together with an additional $n-m$ eigenvalues equal to 0 .

Lemma 5.4. [21, Theorem 2.5.4] Given a matrix A, the Frobenius norm $\|A\|_{F}$ is defined to be $\sum_{i, j}\left|a_{i j}\right|^{2}$. If A is symmetric with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$, then

$$
\|A\|_{F}^{2}=\sum_{i=1}^{n}\left|\lambda_{i}\right|^{2}
$$

5.1 Stars

Let S_{n} denote the star on n vertices, $n \geq 3$. We know that $\operatorname{mr}\left(S_{n}\right)=2$ and that for $n \geq 4$, $(1,1)$ is the only partial inertia on the minimum rank line for S_{n} (see Example 4.16). Assume $n \geq 4$. Let

$$
A=\left[\begin{array}{ll}
d & b \\
b^{T} & 0
\end{array}\right] \in \mathcal{S}\left(S_{n}\right)
$$

where d is a real number and $b \in \mathbb{R}^{n-1}$. Notice that $\operatorname{rank} A=2=\operatorname{mr}\left(S_{n}\right)$. Let $p(x)$ denote the characteristic polynomial of A. Notice that $\operatorname{tr}(A)=d$ so the coefficient of x^{n-1} in p is $-d$. Also note that the only nonzero 2×2 principal minors of A are of the form

$$
\left|\begin{array}{ll}
d & b_{i} \\
b_{i} & 0
\end{array}\right|=-b_{i}^{2}
$$

so the coefficient of x^{n-2} in p is $-\left(b_{1}^{2}+\cdots+b_{n-1}^{2}\right)=-\|b\|^{2}$. Note that any larger principal minors are 0 since A has rank 2. Thus we have the characteristic polynomial of A is

$$
x^{n}-d x^{n-1}-\|b\|^{2} x^{n-2}=x^{n-2}\left(x^{2}-d x-\|b\|^{2}\right)
$$

So A has eigenvalue 0 with multiplicity $n-2$. If r, s are the nonzero eigenvalues of A, we see that $r+s=d$, and $r s=-\|b\|^{2}$. Therefore, r and s must have opposite signs, which we knew from the inertia set for a star.

Now, if we are given any two numbers r, s with opposite signs, then we see that if we choose any $b \in \mathbb{R}^{n-1}$, none of whose entries are 0 , such that $\|b\|^{2}=|r s|$, and let $d=r+s$, then the eigenvalues of the matrix A above are r and s. So we can find a rank minimizing matrix in $\mathcal{S}\left(S_{n}\right)$ that has any two eigenvalues of opposite sign that we wish. In other words, the only restriction on the possible eigenvalues for a minimum rank matrix in $\mathcal{S}\left(S_{n}\right)$ is the restriction given by the inertia set.

For S_{3}, we also get inertia $(2,0)$ and $(0,2)$, but notice that S_{3} is just a path P_{3}, so the inverse eigenvalue problem for this graph follows from the result on paths in Theorem 5.1, although it will also follow from what we will do in the next section.

The star S_{2} is just the clique K_{2}. But of course, the inverse eigenvalue problem for rank minimizing matrices for cliques is trivial. The inertia must be either $(1,0)$ of $(0,1)$, so simply take a multiple of the all ones matrix J or of $-J$ to attain any positive or any negative eigenvalue that we wish.

In summary, any star can achieve any spectrum allowed by the inertia set for the graph.

5.2 Graphs of Clique Cover Number Two

Let G be a graph on n vertices such that $\operatorname{cc}(G)=2$. Then G can be thought of as the union of 2 cliques. Since $\operatorname{cc}(G)=2$ and G is not a complete graph, we can see that $\operatorname{mr}(G)=2$, and by Theorem 4.18, the inertia set $\mathcal{I}(G)$ is the trapezoid $T[2, n]$. Suppose the two cliques have l vertices in common, the first has k other vertices, and the other has m other vertices. So G has a total of $n=k+l+m$ vertices. Number the vertices of G so that the first k are the k vertices only in the first clique, the next l are the l vertices of the overlap, and the last m are the vertices only in the other clique. We will first look at the positive semidefinite (partial inertia $(2,0)$) case.

Consider the matrix

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{k}} & 0 \\
\vdots & \vdots \\
\frac{1}{\sqrt{k}} & 0 \\
x & x \\
\vdots & \vdots \\
x & x \\
0 & \frac{1}{\sqrt{m}} \\
\vdots & \vdots \\
0 & \frac{1}{\sqrt{m}}
\end{array}\right]
$$

where the first row is repeated k times, the next l times, and the last m times, $x \neq 0$. Then $A A^{T} \in \mathcal{S}(G)$, has rank 2 , and is positive semidefinite.

Now, notice that

$$
A^{T} A=\left[\begin{array}{cc}
1+l x^{2} & l x^{2} \\
l x^{2} & 1+l x^{2}
\end{array}\right]=\left[\begin{array}{ll}
l x^{2} & l x^{2} \\
l x^{2} & l x^{2}
\end{array}\right]+I
$$

The matrix $A^{T} A$ has the same nonzero eigenvalues as $A A^{T}$ by Lemma 5.3. Since

$$
\left[\begin{array}{ll}
l x^{2} & l x^{2} \\
l x^{2} & l x^{2}
\end{array}\right]
$$

has rank 1 and trace $2 l x^{2}$, its eigenvalues are 0 and $2 l x^{2}$. Therefore the eigenvalues of $A^{T} A$ are $1,1+2 l x^{2}$, and so these are the nonzero eigenvalues of $A A^{T}$ as well. Then by scaling, we can get any two distinct positive eigenvalues we wish for rank 2 matrices in $\mathcal{S}(G)$.

We now examine whether it is possible to have two equal positive eigenvalues for a rank 2 matrix in $\mathcal{S}(G)$. Suppose M is any positive semidefinite matrix of rank two in $\mathcal{S}(G)$. Then M can be decomposed as the product $B B^{T}$ where B is a $n \times 2$ matrix. Note that since $B B^{T} \in \mathcal{S}(G)$, the first k rows of B must be orthogonal to the last m rows. So the first k rows are all multiples of the first row, and the last m rows are all multiples of the last row. Let Q be the rotation matrix on \mathbb{R}^{2} that rotates, by multiplication on the right, these two orthogonal row vectors into the position so that the first is of the form $(a, 0)$ and the other of the form $(0, b), a, b \neq 0$. Then $M=B Q Q^{T} B^{T}$ and the columns of $B Q$ are supported on the cliques. Thus, without loss of generality, we may assume that M can be written as a product $B B^{T}$ where the columns of B are supported on the cliques.

Case 1: Suppose $l=1$, that is, G is the vertex sum of two cliques. Then

$$
B^{T}=\left[\begin{array}{lll}
u & x & 0 \\
0 & y & v
\end{array}\right]
$$

where $u \in \mathbb{R}^{k}, v \in \mathbb{R}^{m}$. Then

$$
B^{T} B=\left[\begin{array}{cc}
u \cdot u+x^{2} & x y \\
x y & v \cdot v+y^{2}
\end{array}\right] .
$$

Suppose that $B B^{T}$ has a positive eigenvalue of multiplicity two. Then $B^{T} B$ does as well. But this is a 2×2 matrix, so $B^{T} B$ must be similar to a multiple of the identity, and therefore must be a multiple of the identity. Therefore $x y=0$ which implies $x=0$ or $y=0$. But then when we multiply $B B^{T}$ we will get 0 in entries where there is an edge adjacent to the cut vertex. This matrix is no longer in $\mathcal{S}(G)$, a contradiction. So in this case, we cannot have a positive eigenvalue of multiplicity two.

Case 2: Suppose $l>1$. Choose B so that

$$
B^{T}=\left[\begin{array}{cccccccccc}
u_{1} & \cdots & u_{k} & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & a & \cdots & a & -(l-1) a & v_{1} & \cdots & v_{m}
\end{array}\right]
$$

where a is chosen so that there will be no cancellation when we multiply $B B^{T}$ (we need $1-(l-$ 1) $a^{2} \neq 0$), and $u_{1}, \cdots, u_{k}, v_{1}, \cdots, v_{m}$ are chosen so that the vectors ($u_{1}, \cdots, u_{k}, 1, \cdots, 1,1,0, \cdots, 0$) and $\left(0, \cdots, 0, a, \cdots, a,-(l-1) a, v_{1}, \cdots, v_{m}\right)$ have the same magnitude. Let b denote that magnitude. Then

$$
B^{T} B=\left[\begin{array}{cc}
b^{2} & 0 \\
0 & b^{2}
\end{array}\right]
$$

This has a positive eigenvalue of multiplicity two, thus $B B^{T}$ does as well. Our choice of a, and the fact that $l>1$, guarantees that $B B^{T} \in \mathcal{S}(G)$. By scaling, we can achieve any positive eigenvalue of multiplicity two that we wish.

In summary, if G is a graph with $\operatorname{cc}(G)=2$, then we can find a positive semidefinite matrix in $\mathcal{S}(G)$ with rank two that has any two distinct positive eigenvalues we wish. If G does not have a cut vertex, then we do not need to require them to be distinct, but if G does
have a cut vertex, we need that restriction.
Of course, the analogous result for the negative semidefinite case follows from this as well.

Now we will look at rank 2 matrices in $\mathcal{S}(G)$ that have partial inertia $(1,1)$, that is, exactly one positive and one negative eigenvalue. Consider

$$
\left[\begin{array}{cc}
a_{1} & 0 \\
\vdots & \vdots \\
a_{k} & 0 \\
b_{1} & c_{1} \\
\vdots & \vdots \\
b_{l} & c_{l} \\
0 & d_{1} \\
\vdots & \vdots \\
0 & d_{m}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ccccccccc}
a_{1} & \cdots & a_{k} & b_{1} & \cdots & b_{l} & 0 & \cdots & 0 \\
0 & \cdots & 0 & c_{1} & \cdots & c_{l} & d_{1} & \cdots & d_{m}
\end{array}\right] .
$$

This has rank two and partial inertia (1,1), and will be in $\mathcal{S}(G)$ provided $b_{i} b_{j}-c_{i} c_{j} \neq 0$ for $1 \leq i<j \leq l$. Let A denote the first matrix, and M the matrix in the middle. Multiplying in the other order gives

$$
M A^{T} A=\left[\begin{array}{cc}
a_{1}^{2}+\cdots+a_{k}^{2}+b_{1}^{2}+\cdots+b_{l}^{2} & b_{1} c_{1}+\cdots+b_{l} c_{l} \\
-\left(b_{1} c_{1}+\cdots+b_{l} c_{l}\right) & -\left(c_{1}^{2}+\cdots+c_{l}^{2}+d_{1}^{2}+\cdots+d_{m}^{2}\right)
\end{array}\right]
$$

which has the same non-zero eigenvalues as $A M A^{T}$. Let $x>0, t \geq 0$, and choose the entries
of A as follows:

$$
\begin{aligned}
a_{i} & =\sqrt{\frac{1}{k} x+\frac{1}{k} t}, \quad i=1, \cdots, k \\
b_{i} & =\sqrt{\frac{2}{l} x}, \quad i=1, \cdots, l \\
c_{i} & =\sqrt{\frac{1}{2 l} x}, \quad i=1, \cdots, l \\
d_{i} & =\sqrt{\frac{5}{2 m} x}, \quad i=1, \cdots, m
\end{aligned}
$$

We make this choice so that the b_{i} and c_{i} are distinct, ensuring that $A M A^{T}$ is in $\mathcal{S}(G)$, and so that $M A^{T} A$ will be relatively nice. This gives

$$
M A^{T} A=\left[\begin{array}{cc}
3 x+t & x \\
-x & -3 x
\end{array}\right]
$$

This has characteristic polynomial

$$
\lambda^{2}-t \lambda-\left(8 x^{2}+3 x t\right)
$$

so the eigenvalues are

$$
\frac{1}{2}\left(t \pm \sqrt{t^{2}+12 x t+32 x^{2}}\right)
$$

Note that t is the trace of the matrix. For $t \geq 0$, the + always gives a positive number and the - a negative number (we knew this at the outset since a matrix of the form we chose must have partial inertia $(1,1))$. The gap between the two eigenvalues is then $\sqrt{t^{2}+12 x t+32 x^{2}}$. Given any $\lambda_{1}>0$ and $\lambda_{2}<0$, where without loss of generality, $\left|\lambda_{2}\right| \leq \lambda_{1}$, set $t=\lambda_{1}+\lambda_{2}$ and choose x so that $\sqrt{t^{2}+12 x t+32 x^{2}}=\lambda_{1}-\lambda_{2}$. Notice that since $\lambda_{2}<0$, this is larger than $t=\lambda_{1}+\lambda_{2}$. Thus this choice of x is possible since the range of $\sqrt{t^{2}+12 x t+32 x^{2}}$ for $x \in(0, \infty)$ is (t, ∞). This choice of x and t gives λ_{1} and λ_{2} as eigenvalues.

5.3 Complete Bipartite Graphs

We will now look at complete bipartite graphs $K_{m, n}$, which also have minimum rank 2. It was shown in [4, Theorem 4.2] that if either of $m, n \geq 3$, then $\operatorname{mr}_{+}\left(K_{m, n}\right) \geq 3$ as well, so $(1,1)$ is the only point in the inertia set on the minimum rank line. The complete bipartite graphs $K_{1, m}$ are stars, which we have already done, so we need to consider the class $K_{m, n}$, $m, n \geq 2$. We will look specifically at $K_{2,2}$ later.

First, we will look at possible eigenvalues for minimum rank matrices for a complete bipartite graph $K_{2, m}$. For $m \geq 3$ such a matrix must have rank 2 and partial inertia (1,1). Hence, it has a factorization

$$
A\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] A^{T}
$$

where A is an $(m+2) \times 2$ matrix. Consider

$$
A=\left[\begin{array}{cc}
\sqrt{t+s} & 0 \\
0 & \sqrt{s} \\
\sqrt{s} & -\sqrt{s} \\
\vdots & \vdots \\
\sqrt{s} & -\sqrt{s}
\end{array}\right]
$$

for $s>0$ and $t \geq 0$. Then

$$
A\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] A^{T}=\left[\begin{array}{ccccc}
t+s & 0 & \sqrt{s(s+t)} & \cdots & \sqrt{s(s+t)} \\
0 & -s & s & \cdots & s \\
\sqrt{s(s+t)} & s & 0 & \cdots & 0 \\
\vdots & \vdots & & \ddots & \\
\sqrt{s(s+t)} & s & 0 & \cdots & 0
\end{array}\right] \in \mathcal{S}\left(K_{2, m}\right)
$$

Multiplying in the other order, we have

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] A^{T} A=\left[\begin{array}{cc}
t+(m+1) s & -m s \\
m s & -(m+1) s
\end{array}\right]
$$

which has the same nonzero eigenvalues. This has characteristic polynomial

$$
\lambda^{2}-t \lambda-\left((m+1) s t+(2 m+1) s^{2}\right)
$$

so the eigenvalues are

$$
\frac{1}{2}\left(t \pm \sqrt{t^{2}+4\left((m+1) s t+(2 m+1) s^{2}\right)}\right) .
$$

Note that t here is the trace of the matrix. So, for $\lambda_{1}>0$ and $\lambda_{2}<0$, where, without loss of generality, assume $\left|\lambda_{2}\right| \leq \lambda_{1}$, set $t=\lambda_{1}+\lambda_{2}$ and then choose s so that the gap between the eigenvalues, $\sqrt{t^{2}+4\left((m+1) s t+(2 m+1) s^{2}\right)}=\lambda_{1}-\lambda_{2}$. This can be done because the range of $\sqrt{t^{2}+4\left((m+1) s t+(2 m+1) s^{2}\right)}$ for $s \in(0, \infty)$ is (t, ∞), and since λ_{2} is negative, $\lambda_{1}-\lambda_{2}>\lambda_{1}+\lambda_{2}=t$. This choice of s and t will then guarantee λ_{1} and λ_{2} as eigenvalues.

Thus, we can find a minimum rank matrix in $\mathcal{S}\left(K_{2, m}\right)$ attaining any positive and any negative eigenvalue that we wish. In other words, the inertia set gives the only restriction on possible eigenvalues for the minimum rank case.

Now we will consider the general complete bipartite graph $K_{m, n}$ where both $m, n \geq 3$. This case is actually much more restricted in terms of what possible eigenvalues can be attained. We will first argue that each diagonal entry of a rank minimizing matrix for such a graph must be zero. Label the vertices of $K_{m, n}$ so that the first m are the independent set of size m, and the remaining n are the independent set of size n. Then any matrix M in
$\mathcal{S}\left(K_{m, n}\right)$ is of the form

$$
M=\left[\begin{array}{cc}
D_{1} & A \\
A^{T} & D_{2}
\end{array}\right]
$$

where D_{1}, D_{2} are square diagonal matrices of size m and n respectively, and A is an $m \times n$ block, all of whose entries are nonzero. Suppose M has rank 2. Notice that if three (or more) diagonal entries within a single set of the bipartition are nonzero, then taking the three corresponding rows and columns, we get the following submatrix in M :

$$
\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right]
$$

where the $*$ indicates a nonzero entry (but not necessarily the same nonzero entry each time). This has rank three, contradicting that M has rank 2 . So M can have at most two nonzero diagonals within a given set. Suppose M has exactly two nonzero diagonal entries within a given set. Then take the submatrix of M corresponding to those two rows and columns, some other row from within the same set (here is where we need $m, n \geq 3$), and a column of A whose entries are taken from these rows. Then we get a submatrix of the form

$$
\left[\begin{array}{lll}
0 & 0 & * \\
* & 0 & * \\
0 & * & *
\end{array}\right]
$$

or some permutation of this matrix. This is a combinatorially invertible form, again contradicting that M has rank 2 . Now suppose M has exactly one nonzero diagonal entry within
a given set. Then there is a submatrix of the form

$$
\left[\begin{array}{lll}
0 & * & * \\
* & * & 0 \\
* & 0 & 0
\end{array}\right]
$$

or some permutation of this. This is again combinatorially invertible, contradicting that M has rank 2 .

Thus M must have all diagonal entries equal to 0 . This implies that the trace of M is 0 , so the two nonzero eigenvalues of M must be opposites. Taking the appropriate multiple of M, we can attain any two opposite eigenvalues we wish for a rank 2 matrix in $\mathcal{S}\left(K_{m, n}\right)$.

More specifically,

$$
M=\left[\begin{array}{cc}
0 & A \\
A^{T} & 0
\end{array}\right]
$$

has eigenvalues $\lambda,-\lambda$, and 0 with multiplicity $m+n-2$ if and only if A has rank 1 and $\|A\|_{F}^{2}=\lambda^{2}$ (see Lemma 5.4). So we not only know that all such spectra are attainable, but we also know every matrix in $\mathcal{S}\left(K_{m, n}\right)$ that attains it.

We have thus done the inertia $(1,1)$ case for every complete bipartite graph ($K_{1, n}$ is a star which we did previously). However, there is one complete bipartite graph, $K_{2,2}\left(=C_{4}\right)$ that has $(2,0)$ and $(0,2)$ in its inertia set as well. To handle this case, consider the matrix

$$
A=\left[\begin{array}{cc}
t & 0 \\
0 & 1 \\
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Then

$$
A A^{T}=\left[\begin{array}{cccc}
t^{2} & 0 & t & -t \\
0 & 1 & 1 & 1 \\
t & 1 & 2 & 0 \\
-t & 1 & 0 & 2
\end{array}\right]
$$

This is in $\mathcal{S}\left(K_{2,2}\right)$, is positive semidefinite, and has rank 2.

$$
A^{T} A=\left[\begin{array}{cc}
t^{2}+2 & 0 \\
0 & 3
\end{array}\right]
$$

has the same nonzero eigenvalues. The eigenvalues are clearly 3 and $t^{2}+2$. Then for $t \in[1, \infty)$, we get eigenvalues that are arbitrarily far apart. Multiplying by the appropriate scalar, we can attain any set of two positive eigenvalues that we wish. More specifically, given positive real numbers $\lambda_{1}, \lambda_{2}, \lambda_{1} \geq \lambda_{2}$, set

$$
A=\left[\begin{array}{cc}
\sqrt{\lambda_{1}-\frac{2 \lambda_{2}}{3}} & 0 \\
0 & \sqrt{\frac{\lambda_{2}}{3}} \\
\sqrt{\frac{\lambda_{2}}{3}} & \sqrt{\frac{\lambda_{2}}{3}} \\
-\sqrt{\frac{\lambda_{2}}{3}} & \sqrt{\frac{\lambda_{2}}{3}}
\end{array}\right] .
$$

Then $A A^{T} \in \mathcal{S}\left(K_{2,2}\right)$ and

$$
A^{T} A=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

so the positive eigenvalues of $A A^{T}$ are λ_{1} and λ_{2}. Of course, the negative semidefinite case follows from this as well.

5.4 Clique-Stars

Another important class of graphs whose minimum rank is 2 is the class of clique-stars:

Definition 5.5. The clique-star $K S_{m, n}$ is the graph $K_{m} \vee n K_{1}$.

The clique-star $K S_{m, n}$ can be thought of as the complete bipartite graph $K_{m, n}$ with the independent set of size m filled in to form a clique. Notice that for $n \leq 2, K S_{m, n}$ is either a clique or a graph of clique cover number 2, so we have already done those cases. We will thus consider only the case $n \geq 3$. It was shown in [4, Theorem 4.4] that for $n \geq 3,(1,1)$ is the only point on the minimum rank line for $K S_{m, n}$.

A rank minimizing matrix can thus be factored as

$$
A\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] A^{T}
$$

where A is an $(m+n) \times 2$ matrix. Consider,

$$
A=\left[\begin{array}{cc}
\sqrt{\frac{t}{m}} & 0 \\
\vdots & \vdots \\
\sqrt{\frac{t}{m}} & 0 \\
r & r \\
\vdots & \vdots \\
r & r
\end{array}\right]
$$

where $t>0, r \neq 0$, the first row is repeated m times, and the other row n times. Then

$$
A\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] A^{T}=\left[\begin{array}{cccccc}
\frac{t}{m} & \cdots & \frac{t}{m} & r \sqrt{\frac{t}{m}} & \cdots & r \sqrt{\frac{t}{m}} \\
\vdots & & \vdots & \vdots & \cdots & \vdots \\
\frac{t}{m} & \cdots & \frac{t}{m} & r \sqrt{\frac{t}{m}} & \cdots & r \sqrt{\frac{t}{m}} \\
r \sqrt{\frac{t}{m}} & \cdots & r \sqrt{\frac{t}{m}} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \ddots & \\
r \sqrt{\frac{t}{m}} & \cdots & r \sqrt{\frac{t}{m}} & 0 & \cdots & 0
\end{array}\right] \in \mathcal{S}\left(K S_{m, n}\right)
$$

Multiplying in the other order, we have

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] A^{T} A=\left[\begin{array}{cc}
t+n r^{2} & n r^{2} \\
-n r^{2} & -n r^{2}
\end{array}\right]
$$

which has the same nonzero eigenvalues. This has characteristic polynomial

$$
\lambda^{2}-t \lambda-n r^{2} t
$$

so the non-zero eigenvalues are

$$
\frac{1}{2}\left(t \pm \sqrt{t^{2}+4 n r^{2} t}\right)
$$

Note that t here is the trace of the matrix. Suppose $\lambda_{1}>0$ and $\lambda_{2}<0$, where, without loss of generality, we assume $\left|\lambda_{2}\right| \leq \lambda_{1}$. First suppose $\left|\lambda_{2}\right|<\lambda_{1}$. Set $t=\lambda_{1}+\lambda_{2}$ and then choose r so that the gap between the eigenvalues, $\sqrt{t^{2}+4 n r^{2} t}=\lambda_{1}-\lambda_{2}$. This can be done because the range of $\sqrt{t^{2}+4 n r^{2} t}$ for $r \in(0, \infty)$ is (t, ∞), and since λ_{2} is negative, $\lambda_{1}-\lambda_{2}>\lambda_{1}+\lambda_{2}=t$. This choice of r and t will then guarantee λ_{1} and λ_{2} as eigenvalues.

Now suppose $\lambda_{1}=-\lambda_{2}$. Consider the matrix

$$
M=\left[\begin{array}{ccccccc}
m-1 & 1 & \cdots & 1 & \sqrt{m}-1 & \cdots & \sqrt{m}-1 \\
1 & -1 & \cdots & -1 & 1 & & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\
1 & -1 & \cdots & -1 & 1 & & 1 \\
\sqrt{m}-1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & & \vdots & & & \ddots & \\
\sqrt{m}-1 & 1 & \cdots & 1 & 0 & \cdots & 0
\end{array}\right] \in \mathcal{S}\left(K S_{m, n}\right) .
$$

This matrix has only 3 distinct rows, and multiplying the second row by $-(\sqrt{m}-1)$ and adding it to the first row gives \sqrt{m} times the last row. Thus, M has rank 2 , and has trace 0 by construction. Thus, it has one positive and one negative eigenvalue which are opposite. So by multiplying M by the appropriate scalar, we can attain any two opposite eigenvalues we wish.

In summary, for minimum rank matrices for $K S_{m, n}$, we can have any positive and any negative eigenvalues we wish. In other words, the inertia set gives the only restrictions on possible eigenvalues.

Bibliography

[1] Ole H. Hald. Inverse eigenvalue problems for Jacobi matrices. Linear Algebra and its Applications, 14:63-85, 1976.
[2] Shaun M. Fallat and Leslie Hogben. The minimum rank of symmetric matrices described by a graph: A survey. Linear Algebra and its Applications, 426:558-582, 2007.
[3] Wayne Barrett, H. Tracy Hall, and Raphael Loewy. The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample. Linear Algebra and its Applications, 431:1147-1191, 2009.
[4] Wayne Barrett, Camille Jepsen, Robert Lang, Emily McHenry, Curtis Nelson, and Kayla Owens. Inertia sets for graphs on six or fewer vertices. Electronic Journal of Linear Algebra, 20:53-78, 2010.
[5] Peter M. Nylen. Minimum-rank matrices with prescribed graph. Linear Algebra and its Applications, 248:303-316, 1996.
[6] Wayne Barrett, Jason Grout, and Raphael Loewy. The minimum rank problem over the finite field of order 2: Minimum rank 3. Linear Algebra and its Applications, 430:890923, 2009.
[7] Wayne Barrett, Ryan Bowcutt, Mark Cutler, Seth Gibelyou, and Kayla Owens. Minimum rank of edge subdivisions of graphs. Electronic Journal of Linear Algebra, 18:530563, 2009.
[8] Francesco Barioli, Shaun Fallat, and Leslie Hogben. Computation of minimal rank and path cover number for certain graphs. Linear Algebra and its Applications, 392:289-303, 2004.
[9] Hein van der Holst. The maximum corank of graphs with a 2-separation. Linear Algebra and its Applications, 428:1587-1600, 2008.
[10] Hein van der Holst. On the maximum positive semi-definite nullity and the cycle matroid of graphs. Electronic Journal of Linear Algebra, 18:192-201, 2009.
[11] AIM Minimum Rank Special-Graphs Work Group. Zero forcing sets and the minimum rank of graphs. Linear Algebra and its Applications, 428:1628-1648, 2008.
[12] C.R Johnson and Antonio Leal Duarte. The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree. Linear and Multilinear Algebra, 46:39-144, 1999.
[13] Francesco Barioli, Shaun Fallat, and Leslie Hogben. On the difference between the maximum multiplicity and path cover number for tree-like graphs. Linear Algebra and its Applications, 409:13-31, 2005.
[14] John Sinkovic. Maximum corank of outerplanar grpahs and path cover number. Linear Algebra and its Applications, 432:2052-2060, 2010.
[15] Kayla Owens. Properties of the zero forcing number. Master's thesis, Brigham Young University, 2009.
[16] Francesco Barioli, Wayne Barrett, Shaun M. Fallat, H. Tracy Hall, Leslie Hogben, Bryan Shader, P. van den Driessche, and Hein van der Holst. Zero forcing parameters and minimum rank problems. Linear Algebra and its Applications, 433:401-411, 2010.
[17] Mathew Booth, Philip Hackney, Benjamin Harris, Charles R. Johnson, Margaret Lay, Lon H. Mitchell, Sivaram K. Narayan, Amanda Pascoe, Kelly Steinmetz, Brian D. Sutton, and Wendy Wang. On the minimum rank among positive semidefinite matrices with a given graph. SIAM Journal on Matrix Analysis and Applications, 30:731-740, 2008.
[18] John Sinkovic. The relationship between the minimal rank of a tree and the rank-spreads of the vertices and edges. Master's thesis, Brigham Young University, 2006.
[19] Hein van der Holst. Three-connected graphs whose maximum nullity is at most three. Linear Algebra and its Applications, 429:625-632, 2008.
[20] Charles R. Johnson, Raphael Loewy, and Paul Anthony Smith. The graphs for which the maximum multiplicity of an eigenvalue is two. Linear and Multilinear Algebra, 57:713-736, 2009.
[21] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

