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ABSTRACT

THE IMPORTANCE OF THE RIEMANN-HILBERT PROBLEM
TO SOLVE A CLASS OF OPTIMAL CONTROL PROBLEMS

Nicholas DeWaal

Department of Mathematics

Master of Science

Optimal control problems can in many cases become complicated and difficult to

solve. One particular class of difficult control problems to solve are singular control

problems. Standard methods for solving optimal control are discussed showing why

those methods are difficult to apply to singular control problems. Then standard

methods for solving singular control problems are discussed including why the stan-

dard methods can be difficult and often impossible to apply without having to resort

to numerical techniques. Finally, an alternative method to solving a class of singular

optimal control problems is given for a specific class of problems.
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The Importance of the Riemann-Hilbert Problem to

Solve a Class of Optimal Control Problems

A Riemann-Hilbert problem is a type of mathematics problem in the complex

plane that is often useful for various applications in applied mathematics. Details

of this problem will be presented later. This paper will show how a certain type of

Riemann-Hilbert problem is useful for solving a class of problems in control theory

that tend to be difficult or even impossible to solve using standard control theory

techniques. Examples are shown why standard control theory techniques can be very

challenging to use on the class of control problems to be discussed.

By assuming that x : R → Rn (or possibly Cn), the following notation will be

used in this document: ẋ := dx(t)
dt

, x′ denotes the transpose of x, x̄ is the complex

conjugate of x, x∗ is the conjugate transpose of x, and x◦ is a function that is optimal

in the context of the given situation. The Fourier Transform of a function f will be

denoted f̂ where the Fourier transform used is f̂(ω) = 1√
2π

∫∞
−∞ f(t)eiωtdt, and the

inverse fourier transform is denoted f(t) = 1√
2π

∫∞
−∞ f̂(ω)e−iωtdω.

One important optimal control problem is that of applying electric fields to control-

ling various states of the changing polarization fields of different types of dielectrics.

The goal is to choose the electric field as a function of time that is applied to the

dielectric such that the energy to go from the initial state to the final desired state is

minimized.

The single Lorentz oscillator with the controller being the choice of a function of

an electric field applied to a dielectric satisfies the differential equation
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P̈ + γṖ + ω2
0P = ωpE(t), (1)

where E(t) is the control function. In order to write this equation in the typical

notation used in control theory, define

x1 := P, x2 := Ṗ , and u(t) := E(t).

This allows equation (1), to be written as a system of first order differential equa-

tions

d

dt



x1

x2


 =




0 1

−ω2
0 −γ






x1

x2


+




0

ωp


u. (2)

By choosing the control u(t) and starting at the initial state x1(0), x2(0), the goal

may be to arrive at a prescribed state at time T namely x1(T ), x2(T ). Of course, for

some control problems governed by ẋ = f(x, u, t), achieving that objective may not

even be possible.

Often the set of allowed controls for u(t) are restricted to a set of allowed values

defined by some set U . Given a target set Υ and a control constrained to u(t) ∈ U

for all t, the controllable set for Υ is defined as the set of all initial points C such that

Υ can be reached in some finite time. A reachable set from any given starting set X

is defined as the set of all points that can be achieved in finite time when starting in

set X. It would be ideal if every point were in the reachable set of every given point.

For equations of the form ẋ = Ax + Bu where A and B are t independent constant

matrices and u(t) is the control, the following theorem holds [1]:

Theorem 1. [2] Given that U = Rnu, and given any initial starting point x ∈ Rn,

then the controllable set of x is R
n if and only if C := [B|AB|A2B . . .AnB] is full

rank.

Hence, the controllable set for all x ∈ R2 is R2 for a system governed by equation

2



(2) because

C =







0

ωp


 |




0 1

−ω2
0 −γ







0

ωp


 |




0 1

−ω2
0 −γ




2 


0

ωp







=




0 ωp −γωp

ωp −γωp (−ω2
0 + γ2)ωp


 .

This matrix can easily be checked to have a rank of two for nonzero γ, ωp, and ω0

making the controllable set for all x ∈ R
2 be R

2 for (2).

Due to the fact that this system is controllable, and because the equation is linear,

calculating any needed control for it can usually be done. However, sometimes serious

problems can arise when trying to find a control that minimizes certain cost functions.

If your goal is to perform the control on a matrix differential equation of the form

ẋ = Ax+Bu (3)

where [B|AB|A2B . . .AnB] is full rank, while trying to minimize

J [u] =

∫ T

0

(x′Cx+ u′Du) dt+ x(T )′Mx(T ) (4)

where C, D, and M are positive definite matrices, then the optimal control can be

found that gives the desired final state via the Hamilton-Jacobi-Bellman equation

which is discussed in detail later.

More generally speaking, the problem can be defined by having the goal to mini-

mize the cost function

J [u] =

∫ T

t0

l(x(τ), u(τ), τ)dτ +m[x(T )]

3



constrained to the initial value problem ẋ = f(x, u(t), t) and x(t0) = a, where u(t) is

the control.

Deciding how close to a prescribed point at time T you want to arrive is decided

by your choice of the function m[x(T )], which is a penalty function that adds more

to the cost function when final states x(T ) are undesirable. More on this will be

discussed later. By defining the function V ◦(x, t) as the minimal possible cost to go,

that is the cost from starting at state x(t) ∈ Rn and time t, and ending at time T ,

then

V ◦(x, t) =

∫ T

t

l(x(τ), u◦(τ), τ)dτ +m[x(T )].

It can be shown [3] that the minimum cost to go function V ◦(x, t) with the given

differential equation as the constraint satisfies the Hamilton-Jacobi-Bellman equation

−∂V ◦(x, t)

∂t
= min

u∈Rnu

{
l(x, u, t) +

[
∂V ◦

∂x

]′
f(x, u, t)

}
,

and final condition

V ◦(x, T ) = m(x)

for all x.

However, the goal is to find the optimal control u◦(t) that gives us the minimum

cost to go: V ◦(x, t). It has also been shown [3] that the u(t) that minimizes the right

hand side of the Hamilton-Jacobi-Bellman equation is also the optimal control that

minimizes J [u]. Therefore, the first step to solving this problem is to first do the

minimization with respect to u which leads to u being some function in the following

form:

u◦ = ψ

(
∂V ◦

∂x
, x, t

)
. (5)

Then after finding this form of u◦, it can be substituted back into the Hamilton-

Jacobi-Bellman equation making it then possible to solve for V ◦. Then after solving

4



for V ◦, you can then easily find ∂V ◦

∂x
, and then substitute that to find

u◦(x, t) = ψ

(
∂V ◦(x, t)

∂x
, x, t

)
=: φ(x, t).

You can now solve ẋ = f(x, u, t) as ẋ = f(x, φ(x, t), t) which then allows the

representation u◦(t) = φ(x(t), t).

For example, assume that our goal is to minimize the integral in (4) constrained

to (3), then we begin finding the optimal control using the Hamilton-Jacobi-Bellman

equation.

This long process can easily introduce many difficult nonlinearities for both ordi-

nary differential equations and partial differential equations that can make the prob-

lem difficult and lead to a need for numerical techniques. One type of problem that is

commonly used in control applications is the specific problem mentioned earlier that

specifies

l(x, u) = x′Qx+ u′Ru, (6)

m(x) = x′Mx, (7)

and

f(x, u) = Ax+Bu.

The first step to solving this control problem is to find the minimization of

x′Qx+ u′Ru+

[
∂V ◦

∂x

]′
(Ax+Bu) (8)

5



with respect to u just as in equation 5. By taking the derivative of (8) with respect

to u, and setting it 0 to get

([
∂V ◦

∂x

]′
B

)′

+ 2Ru = 0. (9)

We can now solve for u◦ to get

u◦ = −1

2
R−1B′∂V

◦

∂x
. (10)

Now we need to find the form of V ◦ to find u◦. Substituting (10) into the Hamilton-

Jacboi-Bellman equation we get the PDE and final condition

−∂V
◦

∂t
= x′Qx+

1

4

(
R−1B′∂V

◦

∂x

)′

RR−1B′∂V
◦

∂x
+

[
∂V ◦

∂x

]′
(Ax−1

2
BR−1B′∂V

◦

∂x
), (11)

and

V ◦(x, T ) = x′Mx. (12)

Solving complicated PDE’s is outside the scope of this project, but it can be shown

[4] that after simplification and other analysis, the solution to (11) and (12) is

V ◦(x, t) = x′P (t)x, (13)

where P (t) is the solution to the matrix ODE

−P ′ = A′P + PA+Q− PBR−1B′P, (14)

P (T ) = M. (15)

This makes the optimal control u◦(t) = −1
2
R−1B′ ∂V ◦

∂x
= −1

2
R−1B′(2P (t)x) =

−R−1B′P (t)x.

6



However, for the optimal control problem involving equation (2) the goal is to

start at the given initial state 

x1(0)

x2(0)




and end at the prescribed state



p1

p2


 at time T , that is



x1(T )

x2(T )


 =



p1

p2




all while minimizing the integral

J [u] =

∫ T

0

ux2dt.

Sometimes it is possible to apply the Hamilton-Jacobi-Bellman method to solve

optimal control problems that require arrival at a prescribed final state at time T. Of

course the process for Hamilton-Jacobi-Bellman requires the minimization of a cost

function of the form:

V =

∫ T

t

l(x, u, τ)dτ +m[x(T )],

for a nonzero function m : Rnx → R. The function m[x(T )] is put into the cost

function to be a positive function that is larger (greater cost) for final state values

that are further away from the desired set of states. This penalizes controls u(t) that

give final states far from desired states. However, the class of control problems we

are interested in solving in this project involves no leniency for approximate arrival

to a final state and so x(T ) must be the prescribed final state. Such is the case for

the example problem specified earlier to control equation (2) which we recall has the

cost function

7



J [u] =

∫ T

0

ux2dt+m[x(T )]

where m is the zero function. This is because the cost functions we want does not

incorporate a function m[x(T )]. However, if you let mj[x(T )] be a sequence of smooth

functions that are zero for the prescribed final state, and approach infinity everywhere

else as j goes to infinity, then the resulting control for each j that minimizes the cost

to go function V is the same in the limit as for a cost to go function V with no

m[x(T )] and a prescribed final state. The main idea behind this is that the cost of

being anywhere but the prescribed final state is infinity which forces the solution to

the prescribed state while minimizing the integral part of the cost function. A good

choice of m that satisfies this property is mj[x(T )] = j(b−x(T )′)Q(b−x(T )) where Q

is a positive definite matrix, and b is the desired final state. If the problem is solved

with this choice of mj [x(T )], then the limit can be taken as j approaches infinity.

This forces the cost function to approach infinity except for at the exact destination

that the final condition prescribes at time T . Hence in the limit, the control should

converge.

The Hamilton-Jacobi-Bellman equation and final condition for problem (2) with

the choice that mj [x(T )] = j(b− x(T )′)Q(b− x(T )) is therefore

−∂V ◦(x, t)

∂t
= min

u∈Rnu





ux2 +

[
∂V ◦

∂x

]′






0 1

−ω2
0 −γ






x1

x2


+




0

ωp


u









and

V ◦(x, T ) = x′jQx

for all x.

This integral presents a nonlinearity between u and x that complicates matters

significantly for finding an optimal control by using the Hamilton-Jacobi-Bellman

8



equation. The reason that it is a difficulty is because on the right hand side of the

equation, the minimum for u(t) is an infinite value. As will be shown later, this is a

singular control problem. I tried to overcome this barrier by taking the various parts of

the Hamilton-Jacobi-Bellman equation, and inserting some sort of nonlinearity times

ǫ that could be taken in the limit to go to zero when everything was done. However,

no such nonlinearity gave a Hamilton-Jacobi-Bellman equation that wouldn’t have

had to be solved numerically.

Here singular optimal control problems will be approached using other techniques

commonly used in control theory, and discussion will include why those methods

can be difficult or impossible for solving many singular control problem. This then

motivates the need for control theorists to consider more seriously the importance of

the Riemann-Hilbert problem, which will been shown to solve an important class of

problems that include an important class of singular control problems.

1 Approach Using The Hamiltonian

Another approach can be applied to the optimal control for ẋ = f(x, u, t) while

minimizing the cost J in the different general form of

J [u] =

∫ T

t0

l(x(τ), u(τ), τ)dτ +m[x(T ), T ]

with the final state constraint that defines the target set as

ψ(x(T ), T ) = 0. (16)

Equation (16) is usually represented in the form x(T ) − b = 0 meaning that the

final state is b.

If the Hamiltonian is defined as the function H : Rnx+nu+1 → R where

9



H(x, u, t) := l(x, u, t) + λ(t)′f(x, u, t)

t ≥ t0,

where

−λ̇ =
∂H(x, u, t)

∂x

t ≤ T,

then the optimal control u : R → Rnu that minimizes J [u] can be shown [5] to be

the u(t) that when substituted into ∂H(x,u,t)
∂u

along with the optimally controlled x◦(t)

satisfies the stationary condition on u:

0 =
∂H(x, u, t)

∂u
.

Solving this stationary condition for u will give a relationship u = φ(x, t). Then

by plugging φ(x, t) in the place of u in ẋ = f(x, u, t) = f(x, φ(x, t), t), x(t) can be

found and substituted to find u◦(t) = φ(x(t), t). And of course using the restriction

of a prescribed starting state: x(t0) = a.

For example [6], suppose that the goal is to find the shortest distance between

two points x(a) = A, x(b) = B ∈ R2. From calculus it is known that the length of a

curve is

L =

∫ b

a

√
1 + ẋ(t)2dt.

In order to make this an optimal control problem, it is written in the simple form

ẋ = u.

10



This then makes

J [u] =

∫ b

a

√
1 + u2dt,

the Hamiltonian being

H =
√

1 + u2 + λu.

So now

0 =
∂H

∂u
= λ+

u√
1 + u2

,

and hence

−λ̇ =
∂H

∂x
= 0.

Therefore λ(t) is a constant which then after solving for u in terms of λ forces u to

also be a constant. Because ẋ = u, x(t) = c1t+ c2. By using the boundary condition

it is easily shown that

x(t) =
(A−B)t+ (aB − bA)

a− b
,

which of course is a straight line as it ought to be.

Now it is possible to try and apply these equations to solve the optimal control

problem that applies to equation (2).

Again for the optimal control to be performed on problem (2),

l(x, u, t) = ux2,

m(x(T ), T ) = 0,

and

ψ(x(T ), T ) = x(T ) −



a

b


 = 0

11



where x(T ) =



a

b


 is the desired final state of the system at T .

In this case the Hamiltonian is

H = ux2 +

[
λ1(t) λ2(t)

]






0 1

−ω2
0 −γ






x1

x2


+




0

ωp


u




= ux2 +

[
λ1(t) λ2(t)

]



x2

−ω2
0x1 − γx2 + ωpu




= ux2 + λ1x2 + λ2(−ω2
0x1 − γx2 + ωpu).

The derivation of the equations that are used to find u(t) was done under the

assumption that the goal is to minimize the Hamiltonian. However, the Hamiltonian

is linear in u which means that when calculating ∂H
∂u

, u drops out making the method

outlined earlier for finding the optimal u break down.

Singular control is defined as a control problem where the derivative of the Hamil-

tonian with respect to u does not depend on u. Just as with the Hamilton-Jacobi-

Bellman equation, this example singular control problem has caused issues in finding

an optimal control using the Hamiltonian approach.

2 Bang-Bang and Bang-off-Bang Control

The approach that is commonly used for singular control problems is bang-bang or

bang-off-bang control. Most practical problems have a bound on the range that

is allowed for the control. However, sometimes it is useful to solve the problem

without a constraint on u. As will be seen, methods for bang-off-bang control are

centered on some type of bounds on u. In order to solve a problem without bounds,

12



a problem should be solved using bang-off-bang first where bounds are defined by

−a ≤ u(t) ≤ a. Then in the end after finding ua(t), the limit as a approaches ∞ of

ua(t) should converge to the control that has no constraint. In order to learn how to

use bang bang and bang-off-bang control, some important theorems and definitions

need to first be presented.

The set of allowed values for the control is defined by the set

U := {u ∈ R
m : h(u) ≥ 0},

where h : Rm → Rnh for some nh. Here stating that a vector is greater than 0 means

that each row is greater than 0.

The terminal set is the set of any final states that would achieve the desired

objective which for some g satisfies will be restricted to the following set

x(T ) ∈ X := {x ∈ R
n : g(x) = 0}

for a given function g : R
n → R

ng .

Here the objective is to minimize a less general form of integral as

J [u] =

∫ T

0

l(x(τ), u(x(τ)))dτ

constrained to ẋ = f(x, u), and some initial state x0. The theory to be presented re-

quires an autonomous ODE ẋ = f(x, u), instead of ẋ = f(x, u, t). Being autonomous

and having l depend only on x and u will allow the optimal control to only depend

on the state x making u strictly a function of x, namely u(x) which because x is a

function of t, u can also be considered a function of t after substitution. That is, after

solving for x(t) from ẋ = f(x, u(x)), substitution gives u(x(t)).

Because the goal is to minimize the cost J [u], the problem can be transformed to

13



minimizing the accumulated cost up to time t being

Vt (u) :=

∫ t

0

l(x(τ), u(x(τ)))dτ.

Minimizing Vt (u) for each t is equivalent to minimizing J [u] because l does not

depend on t, and the system is autonomous. One step further can be taken to say

that x̃(t) := Ṽt(u(x(t))) in order to write

˙̃x(t) = l(x(t), u(x(t))).

This then allows for the system to be augmented to

d

dt



x̃(t)

x(t)


 =



l(x, u)

f(x, u)


 =: F (X, u).

Here x̃(t) is the accumulation of cost over time, and X = {x̃, x1, x2 . . .} making

an n+1 dimensional system of equations. It is legitimate to assume that Vt=0(u) = 0

due to the fact that integration over an empty interval is 0. The goal can now be

stated as choosing u(x) that minimizes x̃(T ) where x(T ) ∈ U .

Of course, the point-wise choice of u(x) is restricted not only by U, but it should

also be piecewise continuous, and piecewise differentiable that yields a unique forward

time solution to ẋ = f(x, u). It must also be possible to reach the objective target

before considering an optimal control. Note that J [u] is minimized when J [u◦(x)] ≤

J [u(x)] for all admissible and feasible u.

Assuming that the function H is defined similarly to the Hamiltonian earlier, but

assuming a bit more generality, H is defined as

H(x, u, λ, λ0) := λ0l(x, u) + λ′f(x, u),

14



where for some existing ρ ∈ R
ng , λ(t) satisfies

λ̇ = −∂H
∂x

− ∂H

∂u

∂u

∂x
,

and

λ(T ) = ρ′
∂g

∂x
|x=x(T ).

It has been shown [7] that the function u(x) that minimizes H point-wise is

equivalent to minimizing J(u(x)) point-wise, which can be shown to minimize the

final objective. This technique differs from techniques used in variational calculus.

This information prepares for the following theorems:

Theorem 2. [8] If H(u◦(x)) ≤ H(u(x)) point-wise in x ∀ u admissible, then ∃γ ∈

Rnh such that for

L(x, u, λ, λ0, γ) := H(x, u, λ, λ0) − γ′h(u)

the following properties hold:

∂L

∂u
|u=u◦ = 0

hi(u
◦) ≥ 0 ∀ i = 1, .., nh

γ′h(u◦) = 0

γj ≥ 0 ∀ j

Theorem 3. [8] If u◦ is an optimal control with respect to minimizing J [u], and u◦

is admissible, satisfying the constraint U point-wise, then ∃ λ : R → Rn piecewise

differentiable and continuous, and ∃ λ0 ≥ 0 (1 or 0) such that (λ′, λ0) 6= 0 and

15



∃ ρ ∈ R
ng such that λ satisfies

λ̇(t) = −∂H
∂x

|u=u◦ ,

such that at the terminal set

g(x(T )) = 0,

λ(T ) satisfies the condition

λ(T ) = ρ′
∂g

∂x
|x=x(T ),

and such that H has a global minimum at every point x(t) caused by u◦ with respect

to all admissible u. Finally,

0 = H [(x(t), u◦[x(t)], λ(t), λ0] = min
u∈U

H [(x(t), u, λ(t), λ0]

for all t ∈ [0, T ].

Note that in Theorem 2, γ can be thought of as a vector of lagrange multipliers.

3 Example of Bang-off-Bang Control [9]

The amount of a crop x in a farmers field satisfies

ẋ =
r

K
x(K − x) − ux

where K is the carrying capacity, r is the intrinsic growth rate, and u(t) is the rate

of harvesting, making it the control. The goal is to optimize the amount of harvest

over a given time period [0, T ]. In other words, the goal is to maximize

∫ T

0

u(t)x(t) dt.

16



However, Theorems 2 and 3 are centered on minimization which means that the

goal is to minimize the negative of the integral we want to maximize. Hence J [u] is

then

J [u] = −
∫ T

0

u(t)x(t) dt.

The harvest effort can never be less than 0, and can never be greater than some

maximum effort= umax.

The control constraint function h(x) must be defined such that the allowed controls

are restricted by the set

U := {u ∈ R
m : h(u) ≥ 0}.

Hence, h(x) is defined as

h1(u) = u ≥ 0

h2(u) = −u+ umax ≥ 0.

In this problem, the Hamiltonian is

H = −ux+ λ
[ r
K
x(K − x) − ux

]
,

which means that

L = H − γ1u− γ2(umax − u)

for some γ =



γ1

γ2


 satisfying the conditions of Theorem 2.

Because of Theorem 2,

∂L

∂u
= −x(1 + λ) − γ1 + γ2 = 0.
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For γ, which varies given the value of u, Theorem 2 says that γ′h(u◦) = 0, and

γ1, γ2 ≥ 0.

In order to maintain the equality −x(1 + λ) − γ1 + γ2 = 0, γ1 must be 0 and

γ2 > 0 whenever −x(1 + λ) is negative. Likewise, γ2 must be 0 and γ1 > 0 whenever

−x(1 + λ) is positive. Now, because γ1u
◦ = 0 and γ2(u

◦ − umax) = 0, then if γ1 = 0

and γ2 > 0, then it must be that u◦ = umax. Likewise, if γ2 = 0 and γ1 > 0, then it

must be that u◦ = 0.

In other words, there should be a maximum harvest effort as long as −x(1+λ) < 0,

and employ no harvest effort when −x(1 + λ) > 0. Because the value of the function

−x(1+λ) being positive or negative decides if the control is one extreme value or the

other (0 or umax), −x(1 + λ) is called the switching function. Whenever bang-bang

or bang-off-bang control is used, it is easy to see that when using Theorem 2, a type

of switching function will be involved. The only problem left to decide is what to do

when the switching function −x(1 + λ) = 0.

According to Theorem 3,

λ̇ = −∂H
∂x

|u=u◦ = u− λ

(
r − 2r

K
x− u

)

and

λ(T ) = ρ
∂g(x)

∂x
|x=x(T ).

However, this information is of little use because the final point of arrival is not

specified because of not knowing ρ. The question that needs to be answered is what

to do when −x(1 + λ) = 0. Well, if it is zero for a significant amount of time, then,

so will its derivatives w.r.t t be zero. That is

− ẋ(1 + λ) − xλ̇ = 0. (17)
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Substituting λ̇, and ẋ, (17) simplifies to

r

K
x(−K + x− λx) =

r

K
x(−K + x+ x− x− λx) =

r

K
x[−K + x+ x− x(1 + λ)] = 0.

Because −x(1 + λ) = 0, the expression simplifies to

r

K
x[−K + 2x] = 0 ⇒ x =

K

2
.

Now, the second derivative of −x(x+ λ) must also be 0, that is

0 = ẍ(1 + λ) − 2ẋλ̇− xλ̈ =
r

K
ẋ[4x−K + −x(1 + λ)] +

r

K
x[−ẋ(1 + λ) − xλ̇].

Because x = K
2
, its derivative is 0. Also using that −x(x + λ) = 0, and −ẋ(1 +

λ) − xλ̇ = 0, the second derivative expression then simplifies to

rK

2

[r
2
− u
]

= 0 ⇒ u =
r

2
.

This then completes the control for any value we need. This example serves for

an understanding of how to use these techniques to solve control problems. It is

easy to see how many of the processes involved can become complicated and often

un-doable–specifically that of finding the control on the intervals where a switching

function is identically zero.

4 Optimal Control Using the Riemann-Hilbert Prob-

lem [11]

The Riemann-Hilbert problem generally speaking is to find a function w(x, y) =

u(x, y)+ iv(x, y) where u and v are real, and w is analytic inside of a region enclosed
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by a contour C, such that

α(t)u(t) + β(t)v(t) = γ(t)

for every t in C where α, β, and γ are given real functions. The specific type of

Riemann-Hilbert problem that will later be shown to apply to control theory has the

contour C as the real axis.

In order to derive a Riemann-Hilbert problem from an optimal control problem,

the following important theorem needs to be used:

Theorem 4. [10] If the Fourier transforms exist for maps f, g : R → R, and both

f, g ∈ L2(R), then 〈f, g〉 = 〈f̂ , ĝ〉 where f̂ is the Fourier transform of f , and the inner

product is defined as

〈f, g〉 :=

∫

R

f ∗(t)g(t)dt.

This theorem will be important in deriving a Riemann-Hilbert problem from a

given control problem. Deriving the Riemann-Hilbert problem starts with the goal

of solving the optimal control problem by trying to simplify the control problem to

working in the complex plane by taking the Fourier transform of the control and state.

Then variational calculus is applied to finding an optimal control. It is almost always

impossible to find simple representations of Fourier transforms of non-linear differen-

tial equations in order to analyze controls in phase space. The theory being discussed

now is restricted to control problems that involve linear differential equations. The

derivation will be shown using the following simple example.

Consider the control objective to minimize J [u] =
∫∞
0
ux[u]dt subject to ẋ =

−x + u with initial state x(0) = a. Then if u+ represent the control supported on

positive times t ∈ [0,∞), then J [u] =
∫∞
−∞ u+x[u−+u+]dt. Here we can suppose some

past control u− which is only supported on negative times, has put the state x of the

system in the current state x(0) = a. Because u∗+(t) = u+(t), and by Theorem 4 if
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x, u ∈ L2,

J [u] =

∫ ∞

−∞
u+(t)x[u− + u+](t)dt =

∫ ∞

−∞
u∗+(t)x[u− + u+](t)dt (18)

=

∫ ∞

−∞
û∗+(ω)x̂[û− + û+](ω)dω.

The following important identity holds for f(t) being a real valued function:

f̂(ω) = f̂(−ω). This is because

f̂(ω) =

∫ ∞

−∞
eiωtf(t)dt, (19)

and

eiwt = ei(a+bi)t = e(ai−b)t = e−bt[cos(at) + i sin(at)]

= e−bt[cos(at) − i sin(at)] = e−bt[cos(−at) + i sin(−at)] = e(−b−ai)t = ei(−a+bi)t = ei(−ω)t.

This makes equation (19)

=

∫ ∞

−∞
[ei(−ω)t]f(t)dt = f̂(−ω).

Therefore, because the integral (18) is over the real line, and by applying û+(ω) =

û+(−ω),

J [u] =

∫ ∞

−∞
û+(−ω)x̂[û−(ω) + û+(ω)]dω

Now, by taking the Fourier transform of ẋ = −x + u, we get −iωx̂ = −x̂ + û.

Solving for x̂ gives

x̂ =
û

−iω + 1
= χ(ω)û,
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where

χ(ω) =
1

−iω + 1
.

Therefore by substituting x̂

J [u] =

∫ ∞

−∞
û+(−ω)

û−(ω) + û+(ω)

−iω + 1
dω. (20)

We want to be able to choose û+ as generally as possible while maintaining that

(20) makes sense and is not infinite. The integrand needs to be O( 1
ω1+ǫ ) as ω → ∞

in order for the integral to not be infinite. This requires û+ ∼ 1
ω

as ω → ∞ which is

not a legitimate requirement because the optimal control may involve delta functions

whose Fourier transforms ∼ O(ω0) as ω → ∞. However we can widen the space of

allowed functions û+ to include the class of possibly needed controls by noting that

if you replace ω with −ω in an integrand where the integral is over all the reals, then

the value of an integral does not change. Using this fact

J [u] =

∫ ∞

−∞
û+(−ω)

û−(ω) + û+(ω)

−iω + 1
dω =

∫ ∞

−∞
û+(−ω)

û−(ω)

−iω + 1
dω

+ 2
1

2

∫ ∞

−∞

û+(−ω)û+(ω)

−iω + 1
dω (21)

=

∫ ∞

−∞
û+(−ω)

û−(ω)

−iω + 1
dω +

1

2

∫ ∞

−∞

û+(−ω)û+(ω)

−iω + 1
dω

+
1

2

∫ ∞

−∞

û+(ω)û+(−ω)

iω + 1
dω (22)

=

∫ ∞

−∞
û+(−ω)

û−(ω)

−iω + 1
dω +

1

2

∫ ∞

−∞
û+(−ω)û+(ω)

(
1

−iω + 1
+

1

iω + 1

)
dω

(23)

=

∫ ∞

−∞
û+(−ω)

û−(ω)

−iω + 1
dω +

∫ ∞

−∞

û+(−ω)û+(ω)

ω2 + 1
dω. (24)
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By using J in the form (24), we can now allow for û+ to go as a constant as long

as û− ∼ O( 1
ωǫ ). This makes sense because it is a legitimate to put the restriction on

an assumed past control.

Now by taking the variational δ of J in it’s form (24) with respect to û+,

δbu+
J =

∫ ∞

−∞

[
δû+(−ω)û−(ω)

−iω + 1
+
δû+(−ω)û+(ω)

ω2 + 1
+
û+(−ω)δû+(ω)

ω2 + 1

]
dω. (25)

The variational is on both u+(−ω) and u+(ω), and it would be convenient if the

variational were on the same term. Noticing that the integral is over all reals, we can

replace ω with −ω everywhere in the second term without changing the value of the

integral giving us that (25) is

δbu+
J =

∫ ∞

−∞

[
δû+(−ω)û−(ω)

−iω + 1
+
δû+(−ω)û+(ω)

ω2 + 1
+
û+(ω)δû+(−ω)

(−ω)2 + 1

]
dω (26)

=

∫ ∞

−∞
δû+(−ω)

[
û−(ω)

−iω + 1
+

2û+(ω)

ω2 + 1

]
dω. (27)

Now because J is minimized when the variational δbu+
J = 0, the optimal control

occurs when

δbu+
J =

∫ ∞

−∞
δû+(−ω)

[
û−(ω)

−iω + 1
+

2û+(ω)

ω2 + 1

]
dω = 0.

This integral would be zero if the integrand were analytic and decaying as ω → ∞

in at least one of the half-planes to take the integral as the limit of half circle paths

whose interior has no poles making the sum of residues zero. In order to have the

integral make sense (be non-infinite), the integrand needs to be decaying on an order

of O( 1
ω1+ǫ ) as ω → ∞ just as for the previous integral, which again constrains the

possible functions u+. The terms in the variation of the integral thankfully do not

add new constraints to û that were previously needed.
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Notice that δû+(ω) is analytic in the upper-half plane which makes δû+(−ω)

analytic in the lower-half plane. Therefore, if

û−(ω)

−iω + 1
+

2û+(ω)

ω2 + 1
= Z−(ω) (28)

for some Z−(ω) analytic in the lower half plane and decaying as ω → ∞, then the

variational of J is zero by integrating over the limit of half circles in the lower half

plane. This is because the integral is over a set with no poles whose sum of residues is

zero. The control û+ that satisfies (28) therefore minimizes J . Finding the function

û+ that satisfies (28) is a form of the Riemann-Hilbert problem. In solving such

a problem the following terminology is used: A plus function is a function that is

analytic and decaying in the upper-half plane. A minus function is defined similarly.

The plan to solving the Riemann-Hilbert problem starts by trying to find some

way to separate the parts of the Riemann-Hilbert problem into a plus function on

one side of the equation, and a minus function on the other side of the equation, then

that would force both sides to be analytic and decaying. By Liouville’s theorem, a

bounded entire function is a constant which would force the plus side of the equation

equal to zero. This then would allow us to solve for û+.

The first step to separating parts of this Riemann-Hilbert problem into plus and

minus parts is using separation of fractions to get

û+(ω)

iω + 1
+

û+(ω)

−iω + 1
+

û−(ω)

−iω + 1
= Z−(ω). (29)

Multiplying (29) by 1
−i

to simplify we get

û+(ω)

ω + i
− û+(ω)

ω − i
+
û−(ω)

ω + i
= Z−(ω). (30)

However for the second term, û+(ω) is a plus function, but the denominator is
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ω− i putting a pole at i, making the middle term neither a plus nor a minus function.

But notice that the middle term is

− û+(ω)

(ω − i)
= − û+(ω) − û+(i)

(ω − i)
− û+(i)

(ω − i)
.

The limit as ω → i of

û+(ω) − û+(i)

(ω − i)
(31)

approaches the derivative of u+ at i due to the fact that u+ is analytic in the upper-

half-plane. This means that (31) has a removable singularity at i making it a plus

function. Using this trick on both the second and third terms,

û+(ω)

(ω + i)
− û+(ω) − û+(i)

(ω − i)
− û+(i)

(ω − i)
+
û−(ω) − û−(−i)

ω + i
+
û−(−i)
ω + i

= Z−(ω).

This makes the first, second, and fifth term plus functions, and all other terms

minus functions. Now by putting the plus functions on one side of the equation and

the minus functions on the other side of the equation we get

û+(ω)

(ω + i)
− û+(ω) − û+(i)

(ω − i)
+
û−(−i)
ω + i

= Z−(ω) +
û+(i)

(ω − i)
− û−(ω) − û−(−i)

ω + i
= 0.

The reason this expression is equal to zero is because one side is a plus function

and the other side is a minus function making both sides entire functions decaying to

zero and bounded, which by Liouville’s theorem makes the function a constant which

is zero. Now solving for û+(ω) we get

û+(ω) =
−1

2i
[−(ω − i)û−(−i) − (ω + i)û+(i)].

Due to the relationship above and due to the fact that û+(ω) must be converge to

a constant at infinity, it must be true that û+(i) = û−(−i) forcing û+(ω) = û−(−i)
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which solves this Riemann-Hilbert problem when û−(−i) is found. Now in order to

find out what the control is, remember that x(0) = a. By taking the Fourier transform

of ẋ = −x+ u we get

−iωx̂(ω) = −x̂(ω) + û(ω) = −x̂(ω) + û−(ω) + û+(ω) = −x̂(ω) + û−(ω) + û−(−i).

Solving for x̂(ω) we get

x̂(ω) =
û−(ω) + û−(−i)

−i(ω + i)
.

Solving the differential equation ẋ = −x+ u gives us

x(t) =

∫ t

−∞
eτ−tu(τ)dτ.

Taking the limit from the left,

a = x(0−) =

∫ 0−

−∞
eτ−tu(τ)dτ =

√
2π

1√
2π

∫ ∞

−∞
eiωτu−(τ)dτ |ω=−i =

√
2πû−(−i).

(32)

This then shows that the optimal control is

û+(ω) = û−(−i) =
−a√
2π
.

5 A Generalization of the Riemann-Hilbert Prob-

lem for Optimal Control

For the general problem, suppose that the goal is to minimize the integral

J [u] =

∫ ∞

0

l(x[u(t)], u(t))dt, (33)
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constrained to the dynamics

ẋ = Ax+Bu (34)

and initial state x(0) = a where the eigenvalues of A have negative real parts. It

is necessary to assume that all eigenvalues of A have a negative real part. This is

a needed condition to solve the optimal control problem using the Riemann-Hilbert

problem on the real line. Further development of applying the Riemann-Hilbert

problem may help us to remove the requirement of A having all eigenvalues with

negative real part by moving the contour C to be above all eigenvalues of A and

modifying the Riemann-Hilbert problem derivations accordingly.

The solution to equation (34) is then

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ =

∫ 0

−∞
eA(t−τ)Bu−(τ)dτ +

∫ t

0

eA(t−τ)Bu+(τ)dτ.

(35)

=

∫ t

−∞
eA(t−τ)B[u−(τ) + u+(τ)]dτ,

where u− is an assumed past control that put the initial state to x(0) = a. Assuming

no two eigenvalues are the same, from this we get

x(0) =

∫ 0−

−∞
e−AτBu−(τ)dτ =

∫ 0−

−∞
Ge−DτG−1Bu−(τ)dτ

=

∫ 0−

−∞




∑
j

∑
k c1jke

−λjτu−,k(τ)
∑

j

∑
k c2jke

−λjτu−,k(τ)

...



dτ =




∑
j

∑
k c1jk

√
2π 1√

2π

∫ 0−
−∞ e−λjτu−,k(τ)dτ

∑
j

∑
k c2jk

√
2π 1√

2π

∫ 0−
−∞ e−λjτu−,k(τ)dτ

...
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=




∑
j

∑
k c1jk

√
2π 1√

2π

∫∞
−∞ eiωτu−,k(τ)dτ |ω=iλj

∑
j

∑
k c2jk

√
2π 1√

2π

∫∞
−∞ eiωτu−,k(τ)dτ |ω=iλj

...




=




∑
j

∑
k c1jk

√
2πû−,k(iλj)

∑
j

∑
k c2jk

√
2πû−,k(iλj)

...



.

(36)

For this general control problem, the relationship for x(0) in (36) can later be used

for finding x̂+(ω) just as the simpler example problem used a simpler form of (87) in

the example for (32).

In order to use Theorem 4 to derive the Riemann-Hilbert problem for minimizing

(33) subject to constraint (34), we need to assume also that l(x, u) = L1u + L2x +

x′L3x + u′L4u + x′L5u. We are most interested in the case where L4 = 0 making

the control problem a singular control problem (again meaning that DuH(x, u) does

not depend on u where H is the Hamiltonian). If L4 is non-zero, then the control

problem is no longer a singular control problem and the problem can be easily solved

using the Hamilton-Jacobi-Bellman equation assuming the dynamics are controllable.

Also it would be rare for there to be an interest in minimizing an integral with terms

L1u + L2x. We will then continue assuming L1, L2, and L4 are zero matrices. Then

the control u constrained to the dynamics and final condition that minimizes

J [u] =

∫ ∞

0

[x′L3x+ x′L5u]dt, (37)

is the same function u that when constrained to the dynamics minimizes

J̃ [u] :=

∫ ∞

−∞
[x′L3x+ x′L5u+]dt

where u+ is the part of u that is supported on positive times, and some assumed past

control u− supported on negative times has put the state at x(0). The function u is
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then the sum of it’s plus and minus part u = u− + u+.

By taking the Fourier transform of the dynamics we get

−iωx̂ = Ax̂+Bû

x̂ = (−iωI − A)−1Bû. (38)

By defining χ(ω) := (−iωI − A)−1B, expression (38) can be simplified to x̂ =

χ(ω)û.

Assuming that u, and x ∈ L2, then by Parseval’s theorem (Theorem 4),

J̃ [u] =

∫ ∞

−∞
[x′[u]L3x[u] + x′[u]L5u+]dt (39)

=

∫ ∞

−∞
[x̂∗[u](ω)L3x̂[u](ω) + x̂∗[u](ω)L5û+(ω)]dω.

Just as was done in the earlier example, we can replace x̂∗[û](ω) with x̂
′

[û](−ω)

which were shown to be equal earlier. Also noting that x̂ = χ(ω)û we can simplify

equation (39) to no longer depend on x̂ as

=

∫ ∞

−∞
[û′(−ω)χ′(−ω)L3χ(ω)û(ω) + û′(−ω)χ′(−ω)L5û+(ω)]dω. (40)

Also, because the integral is over the real line, ω can be replaced with ω giving us

that (40) is

=

∫ ∞

−∞
[û′(−ω)χ′(−ω)L3χ(ω)û(ω) + û′(−ω)χ′(−ω)L5û+(ω)]dω. (41)

Substituting û(ω) = û+(ω) + û−(ω) and factoring, (41) becomes
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=

∫ ∞

−∞
[(û′+(−ω) + û′−(−ω))χ′(−ω)L3χ(ω)(û+(ω) + û−(ω)) + û′(−ω)χ′(−ω)L5û+(ω)]dω

(42)

=

∫ ∞

−∞
[û′−(−ω)(χ′(−ω)L3χ)û−(ω) + û′−(−ω)(χ′(−ω)L3χ + χ′(−ω)L5)û+(ω)

+ û′+(−ω)(χ′(−ω)L3χ)û−(ω) + û′+(−ω)(χ′(−ω)L3χ + χ′(−ω)L5)û+(ω)]dω.

(43)

Assuming that (43) can be transformed to allow for controls û+, and assuming that

there is a minimum of (43), then we can find that minimum by taking the variation

of (43) with respect to û+. (43) will have a minimum if we restrict L3 and χ′(−ω)L5

to be positive semi-definite matrices. Now by taking the variation of J̃ from (43) and

setting it equal to zero in order to minimize J̃ we get

δbu+
J̃ =

∫ ∞

−∞
[û′−(−ω)(χ′(−ω)L3χ+ χ′(−ω)L5)δû+(ω) + δû′+(−ω)(χ′(−ω)L3χ)û−(ω)

+ δû′+(−ω)(χ′(−ω)L3χ+ χ′(−ω)L5)û+(ω)

+ û′+(−ω)(χ′(−ω)L3χ+ χ′(−ω)L5)δû+(ω)]dω. (44)

The integral in (44) is over all reals, so a term in the integral could have ω replaced

by −ω without changing the value of the integral. We want to have the variational

on only one function. By replacing ω by −ω on terms where the variational is on

û+(ω), we then get the variational on one term only with (44) as
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δbu+
J̃ =

∫ ∞

−∞
[û′−(ω)(χ′L3χ(−ω) + χ′L5)δû+(−ω) + δû′+(−ω)(χ′(−ω)L3χ)û−(ω)

+ δû′+(−ω)(χ′(−ω)L3χ+ χ′(−ω)L5)û+(ω)

+ û′+(ω)(χ′L3χ(−ω) + χ′L5)δû+(−ω)]dω. (45)

The variational is still on the transpose of û+(ω) in some places, whereas on other

terms it is not transposed. It would also be helpful to have the variational be only

on the transpose of û+(ω). Transposing a term by itself is simply the transpose of a

scalar which does not effect the integral. Taking advantage of this fact (45) is

δbu+
J̃ =

∫ ∞

−∞
[δû′+(−ω)(χ′(−ω)L′

3χ+ L′
5χ)û−(ω) + δû′+(−ω)(χ′(−ω)L3χ)û−(ω)

+ δû′+(−ω)(χ′(−ω)L3χ+ χ′(−ω)L5)û+(ω) + δû′+(−ω)(χ′(−ω)L′
3χ

+ L′
5χ)û+(ω)]dω (46)

=

∫ ∞

−∞
δû′+(−ω)[(χ′(−ω)L′

3χ + L′
5χ)û−(ω) + (χ′(−ω)L3χ)û−(ω)

+ (χ′(−ω)L3χ+ χ′(−ω)L5)û+(ω) + (χ′(−ω)L′
3χ + L′

5χ)û+(ω)]dω = 0.

(47)

Now δû′+(ω) is a plus function componentwise making δû′+(−ω) a minus function

componentwise. The integral (45) can be forced to zero by requiring the part in (45)

in brackets to be some unknown componentwise minus function Z−(ω). This then

makes the integral zero because integrating as the limit of half circles in the lower half

plane shows that the integral is zero. From this we get a Riemann-Hilbert problem

for the general control problem as:
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(χ′(−ω)L′
3χ+ L′

5χ)û−(ω) + (χ′(−ω)L3χ)û−(ω)

+(χ′(−ω)L3χ+ χ′(−ω)L5)û+(ω) + (χ′(−ω)L′
3χ + L′

5χ)û+(ω) = Z−(ω). (48)

Simplifying, (48) becomes

(χ′(−ω)L′
3χ+ L′

5χ+ χ′(−ω)L3χ)û−(ω)

+(χ′(−ω)L3χ+ χ′(−ω)L5 + χ′(−ω)L′
3χ+ L′

5χ)û+(ω) = Z−(ω). (49)

The solution to (49) is the optimal control because it is the control that minimizes

the variation δbu+
J̃ . This problem can then be solved to find u+ using the same

methods in the example problem earlier.

Notice that

χ(ω) = (−iωI − A)−1B =
adj(−iωI −A)

det(−iωI −A)
B

is a plus function with poles at ω = iλj where λj are eigenvalues of A which were

assumed to be negative. This then makes χ(−ω) a minus function. From this you

can see that some of the terms in the sum for (49) are plus functions, others minus

functions, and others neither. For those that are neither plus nor minus functions we

can use the same trick used earlier to do separation of fractions component-wise on

each vector, and then use the trick of creating removable singularities componentwise.

Then by putting the plus functions on one side of the equation, and minus functions

on the other side, we can then use Liouville’s theorem and continue using the same

methods in the example problems.

Another possible method to solve (49) is to try and factor the matrix to the left of

û+ into two matrices = ρ−ρ+ where ρ− and ρ−1
− are analytic in the lower half plane,
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and ρ+ is analytic in the upper half plane. This could be used as a step for separating

the Riemann-Hilbert problem into plus and minus parts eventually allowing you to

multiply by ρ−1
− to both sides. However, finding such a factorization is a challenging

problem. When a factorization is hard to find, then using the trick to create removable

singularities would be the better option to solving (48).

6 Example Riemann-Hilbert Problem for Dead-

line Optimal Control

Now assume that the goal is to derive a Riemann-Hilbert problem to solve the control

problem of minimizing

J [u] =

∫ T

0

uxdt (50)

constrained to the dynamics ẋ = −x+u, x(0) = a, and the final destination x(T ) = b.

The difference between this problem and the example earlier is that the final state

must be at b at time T which is a harder problem than the earlier example which does

not have the final constraint x(T ) = b. Before solving the problem with x(T ) = b,

we will solve a simpler problem of simply minimizing (50) within [0, T ] without the

requirement that x(T ) = b which will help us to develop the theory to where we can

include the constraint x(T ) = b.

Notice that,

∫ T

0

x[u]udt =

∫ ∞

0

x[u]uTdt =

∫ ∞

−∞
x[u]uTdt =

∫ ∞

−∞
x[u−+u+]uTdt =

∫ ∞

−∞
x[u−+uT ]uTdt

(51)

where uT is the control supported only on the interval [0, T ]. As in the earlier example,

by Parseval’s theorem (requiring that x and u ∈ L2), the fact that f̂(ω) = f̂(−ω) for

f(t) real, and the fact that the integral is over the real line, (51) is
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=

∫ ∞

−∞
x̂[û− + ûT ](−ω)ûT (ω)dt. (52)

Due to the dynamics ẋ = −x+ u, the Fourier transform gives us x̂ = bu
−iω+1

, then

making (52)

=

∫ ∞

−∞

û−(−ω) + ûT (−ω)

iω + 1
ûT (ω)dω. (53)

It is important to make sure that the integral in 53 makes sense and converges.

Hence the integrand must be at least on the order O( 1
ω1+ǫ ). The set of possible func-

tions uT and u− are then restricted in order for the integral to converge. 53 is the

same integral back in (20) with ûT in the place of û+. 53 has the same problem with

ûT as (20) in the manner that it restricted the allowed possible functions û+. Earlier

we converted (20) to (24) which allows the needed space of functions for û+. Using

the the integral (24) replacing û+ with ûT , we can allow for ûT to go as a constant

∼ O(ω0) as ω → ∞. This then allows the time domain for uT to have delta functions.

Now we can take the variation of 53 or (24) either way giving us the same Riemann-

Hilbert problem. Basically (24) shows us that the allowed values for uT will not be

restricted beyond what is necessary.

Taking the variational of 53 gives us

δbuT
J [u] =

∫ ∞

−∞

(û−(−ω) + ûT (−ω))δûT (ω) + ûT (ω)δûT (−ω)

iω + 1
dω.

It would be useful to have the variational on the same function in order to simplify.

Because the integral is over all reals, ω can be replaced by −ω in the first integrand

without changing the value of the integral which then after factoring gives us
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δbuT
J [u] =

∫ ∞

−∞

[
û−(ω) + ûT (ω)

−iω + 1
+
ûT (ω)

iω + 1

]
δûT (−ω)dω

=

∫ ∞

−∞

[
2ûT (ω)

(iω + 1)(−iω + 1)
+

û−(ω)

−iω + 1

]
δûT (−ω)dω = 0. (54)

Here the variational is set to zero in order to find the control that minimizes J .

Note that multiplying a function f̂ in the frequency domain by eiωT gives a function

whose inverse Fourier transform in the time domain is a shifted f(t) being f(t− T ).

Therefore by defining û−T (ω) := e−iωT ûT (ω), we can note that û−T (ω) is then an-

alytic in the lower half plane. Similarly we define δû−T (ω) = e−iωT δûT (ω). Using

δûT (ω) = eiωT δû−T (ω), we then get δûT (−ω) = e−iωT δû−T (−ω) giving another pos-

sible representation for (54) as

=

∫ ∞

−∞

[(
2ûT (ω)

(iω + 1)(−iω + 1)
+

û−(ω)

−iω + 1

)
e−iωT

]
δû−T (−ω)dω = 0. (55)

δûT (ω) is a plus function making δûT (−ω) a minus function. The integral 55 can

be forced to zero by requiring the part in brackets to be Z−(ω) + eiωTZ+(ω) for

some unknown minus function Z−(ω), and plus function Z+(ω). This then makes the

integral zero because then (54) is

∫ ∞

−∞

[
2ûT (ω)

(iω + 1)(−iω + 1)
+

û−(ω)

−iω + 1

]
δûT (−ω)dω

=

∫ ∞

−∞

[
Z−(ω) + eiωTZ+(ω)

]
δûT (−ω)dω = 0. (56)

The integral is zero because Z−(ω)δûT (−ω) is a minus function, making it’s in-

tegral as the limit of half circles in the lower half plane. This forces the integral of

the term to be zero. Similarly Z+(ω)eiωtδûT (−ω) = Z+(ω)δû−T (−ω), making it a

plus function whose integral as the limit of half circles in the upper half plane forces
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the integral of this term to also be zero. Here the reason why Z−(ω) + eiωTZ+(ω)

was chosen is because we want to allow the right hand side of the Riemann-Hilbert

problem to be general enough to solve and find the optimal control uT .

From this we get a Riemann-Hilbert problem for the general control problem as

2ûT (ω)

(iω + 1)(−iω + 1)
+

û−(ω)

−iω + 1
= Z−(ω) + eiωTZ+(ω). (57)

Together equation (57) and the relationship û−T (ω) := e−iωT ûT (ω) define a vector

(multivariate) Riemann-Hilbert problem.

Again as before we want to try and separate the problem into minus functions and

plus functions to take advantage of Liouville’s theorem. Doing separation of fractions

on the first term we get

ûT (ω)

−iω + 1
+
ûT (ω)

iω + 1
+

û−(ω)

−iω + 1
= Z−(ω) + eiωTZ+(ω). (58)

The first term is a minus function, but the second and third are mixed which

requires using the trick used in the earlier example. Note that

ûT (ω)

iω + 1
=
ûT (ω) − ûT (i)

iω + 1
+

ûT (i)

iω + 1
.

In the limit as ω → i, the first term on the right side of the equation converges

to the derivative of ûT which exists due to ûT being analytic in the upper half plane.

This means the term has a removable singularity. The last term is a minus function.

Using this trick we can separate the entire problem piece by piece into plus and minus

functions to allow us to eventually use Liouville’s theorem. Now (58) becomes
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ûT (ω)

−iω + 1
+
ûT (ω) − ûT (i)

iω + 1
+

ûT (i)

iω + 1
+
û−(ω) − û−(−i)

−iω + 1
+

û−(−i)
−iω + 1

= Z−(ω) + eiωTZ+(ω). (59)

In equation (59), the first, second, and fifth terms are now minus functions, and

the other terms are plus functions. Now by putting the plus functions on the left

hand side of the equation, and the minus functions on the right we get

ûT (ω)

−iω + 1
+
ûT (ω) − ûT (i)

iω + 1
+

û−(−i)
−iω + 1

− eiωTZ+(ω)

= Z−(ω) − ûT (i)

iω + 1
− û−(ω) − û−(−i)

−iω + 1
. (60)

Both sided of this equation are then analytic and bounded (assuming the remov-

able singularities are replaced) and going to zero as ω → ∞. Thus by Liouville’s

theorem both sides are a constant, that constant being zero making the right side

ûT (ω)

−iω + 1
+
ûT (ω) − ûT (i)

iω + 1
+

û−(−i)
−iω + 1

− eiωTZ+(ω) = 0. (61)

Now by multiplying both sides of (61) by e−iωT and substituting û−T (ω) =

e−iωT ûT (ω) we get

û−T (ω)

−iω + 1
+
û−T (ω) − e−iωT ûT (i)

iω + 1
+
e−iωT û−(−i)
−iω + 1

= Z+(ω). (62)

The importance of û−T (ω) = e−iωT ûT (ω) is seen in that the shift is needed for

preparing to solve the next step. Now we can take (62) and use the trick of creating

removable singularities to create plus and minus functions. Notice that the third term

has a pole at −i and is analytic in the upper-half-plane. However the exponential in
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that term is decaying in the lower-half-plane and exploding in the upper-half-plane.

For this reason the trick of creating removable singularities is also used for the third

term. (62) is now

û−T (ω) − û−T (−i)
−iω + 1

+
û−T (−i)
−iω + 1

+
û−T (ω) − e−iωT ûT (i)

iω + 1

+ û−(−i)e
−iωT − e−T

−iω + 1
+
û−(−i)e−T

−iω + 1
= Z+(ω)

with removable singularities. Now by putting the minus functions on the left, and

the plus function on the right and again using the convergence to 0 at infinity, we use

Liouville’s theorem to get that

û−T (ω) − û−T (−i)
−iω + 1

+
û−T (ω) − e−iωT ûT (i)

iω + 1
+ û−(−i)e

−iωT − e−T

−iω + 1

= Z+(ω) − û−T (−i)
−iω + 1

− û−(−i)e−T

−iω + 1
,

which then implies

û−T (ω) − û−T (−i)
−iω + 1

+
û−T (ω) − e−iωT ûT (i)

iω + 1
+ û−(−i)e

−iωT − e−T

−iω + 1
= 0. (63)

Simplifying (63) gives

2

(−iω + 1)(iω + 1)
û−T (ω) =

û−T (−i)
−iω + 1

+
e−iωT ûT (i)

iω + 1
− û−(−i)e

−iωT − e−T

−iω + 1
. (64)

Then multiplying both sides of 64 by (−iω + 1)(iω + 1),

2û−T (ω) = (iω+1)û−T (−i)+(−iω+1)e−iωT ûT (i)−û−(−i)(iω+1)(e−iωT −e−T ). (65)

It is useful here to remember that ûT (ω) is analytic and bounded in the upper
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half plane also making û−T (ω) analytic and bounded in the lower half plane. In order

to guarantee that these facts remain true, notice that as ω → −i∞,

2û−T (ω) ∼ iω(û−T (−i) + û−(−i)e−T ).

But û−T (ω) must converge to a constant as ω → −i∞ forcing û−T (−i) = −û−(−i)e−T

in order for the convergence to hold.

Multiplying (65) by eiωT we get

2ûT (ω) = eiωT (iω+ 1)û−T (−i) + (−iω + 1)ûT (i)− û−(−i)(iω + 1)(1− eiωT−T ). (66)

From (66) we get that as ω → +i∞,

2ûT (ω) ∼ iω(−ûT (i) − û−(−i)).

But ûT (ω) must converge to a constant as ω → +i∞ forcing ûT (i) = −û−(−i) in

order for the convergence to hold.

We can plug these relationships into (65) to get

û−T (ω) =
1

2
[−(iω + 1)û−(−i)e−T − (−iω + 1)e−iωT û−(−i)

− û−(−i)(iω + 1)(e−iωT − e−T )]. (67)

Using the fact that û−(−i) = a√
2π

, (67) is then

û−T (ω) =
1

2

[
− (iω + 1)

a√
2π
e−T − (−iω + 1)e−iωT a√

2π

− a√
2π

(iω + 1)(e−iωT − e−T )
]
. (68)
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Finally we can multiply (68) by eiωT to get the final optimal control as

ûT (ω) =
a

2
√

2π
[−(iω + 1)eiωT−T − (−iω + 1) − (iω + 1)(1 − eiωT−T )]

=
−a√
2π
. (69)

We have solved the problem of minimizing J [u] with the extra requirement of

doing so by time T . But we still haven’t done so with the constraint that x(T ) = b.

By now including the constraint x(T ) = b we get that

x(T ) = b =

∫ T

−∞
e−(T−τ)u(τ)dτ = e−T

∫ 0

−∞
eτu−(τ)dτ + e−T

∫ T

0

eτuT (τ)dτ

= e−Ta+ e−T

∫ ∞

−∞
eτuT (τ)dτ = e−Ta+ e−T

√
2π

1√
2π

∫ ∞

−∞
eiωτuT (τ)dτ |ω=−i

= e−Ta+
√

2πe−T ûT (−i).

Solving for ûT (−i) we get

ûT (−i) =
eT b− a√

2π
. (70)

The variation δûT (−ω) back in 55 must be zero at ω = i because any control

ûT must satisfy the constraint (70). Also notice that back in (56) it was shown

that the part of the integrand in brackets could be chosen as general as possible to

make the variation of the integral be zero. We chose Z−(ω) + eiωtZ+(ω) which was a

sufficiently general assumption in order to solve the control problem. However with

the constraint that δûT (−i) = 0, the integrand can be made more general to be

Z−(ω) + eiωT (Z+(ω) + β

ω−i
) for some β. This is because
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∫ ∞

−∞

[
Z−(ω) + eiωT (Z+(ω) +

β

ω − i
)

]
δûT (−ω)dω = 0+

∫ ∞

−∞

eiωTβδûT (−ω)

ω − i
dω = 0 (71)

due to the fact that the integrand has a removable singularity at i. In fact this

generality will be seen later as needed in order to solve the control problem that

includes the constraint x(T ) = b. As was done in (57), we can assume a Riemann-

Hilbert problem, here more generally as

2ûT (ω)

(iω + 1)(−iω + 1)
+

û−(ω)

−iω + 1
= Z−(ω) + eiωT

(
Z+(ω) +

β

ω − i

)
. (72)

As was done earlier on (57) we need to separate this into plus and minus functions

getting

ûT (ω)

−iω + 1
+
ûT (ω) − ûT (i)

iω + 1
+

û−(−i)
−iω + 1

− eiωTZ+(ω) − β
eiωT − e−T

ω − i

= Z−(ω) +
βe−T

ω − i
− ûT (i)

iω + 1
− û−(ω) − û−(−i)

−iω + 1
. (73)

This implies that

ûT (ω)

−iω + 1
+
ûT (ω) − ûT (i)

iω + 1
+

û−(−i)
−iω + 1

− eiωTZ+(ω) − β
eiωT − e−T

ω − i
= 0. (74)

Multiplying (74) by e−iωT we get

û−T (ω)

−iω + 1
+
û−T (ω) − e−iωT ûT (i)

iω + 1
+
e−iωT û−(−i)
−iω + 1

−Z+(ω)− β
1 − e−iωT−T

ω − i
= 0. (75)

Then separating parts into plus and minus function we get
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Z+(ω) =
û−T (ω) − û−T (−i)

−iω + 1
+
û−T (−i)
−iω + 1

+
û−T (ω) − e−iωT ûT (i)

iω + 1

+û−(−i)e
−iωT − e−T

−iω + 1
+ û−(−i) e−T

−iω + 1
− β

1 − e−iωT−T

ω − i
. (76)

Moving the minus functions to one side and applying Liouville’s theorem we get

0 =
û−T (ω) − û−T (−i)

−iω + 1
+
û−T (ω) − e−iωT ûT (i)

iω + 1

+ û−(−i)e
−iωT − e−T

−iω + 1
− β

1 − e−iωT−T

ω − i
. (77)

Solving for û−T (ω),

0 =
û−T (ω)

−iω + 1
− û−T (−i)

−iω + 1
+
û−T (ω)

iω + 1
− e−iωT ûT (i)

iω + 1

+ û−(−i)e
−iωT − e−T

−iω + 1
− β

1 − e−iωT−T

ω − i
.

0 =
2û−T (ω)

(−iω + 1)(iω + 1)
− û−T (−i)

−iω + 1
− e−iωT ûT (i)

iω + 1

+ û−(−i)e
−iωT − e−T

−iω + 1
− β

1 − e−iωT−T

ω − i
.

−2û−T (ω) = −û−T (−i)(iω + 1) − e−iωT ûT (i)(−iω + 1) + û−(−i)(e−iωT − e−T )(iω + 1)

− (−iω + 1)(iω + 1)β
1 − e−iωT−T

ω − i
.

2û−T (ω) = û−T (−i)(iω + 1) + e−iωT ûT (i)(−iω + 1)

− û−(−i)(e−iωT − e−T )(iω + 1) + (ω + i)β(1 − e−iωT−T ). (78)

As ω → −i∞
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2û−T (ω) ∼ iω[û−T (−i) + û−(−i)e−T − iβ].

However in order for û−T (ω) to go as a constant O(ω0) as ω → −i∞, it is necessary

that

û−T (−i) = −û−(−i)e−T + iβ. (79)

Multiplying (78) by eiωT gives us

2ûT (ω) = eiωT û−T (−i)(iω + 1) + ûT (i)(−iω + 1)

−û−(−i)(1 − eiωT−T )(iω + 1) + (ω + i)β(eiωT − e−T ). (80)

As ω → i∞

2ûT (ω) ∼ iω[−ûT (i) − û−(−i) − (−i)βe−T ].

However in order for ûT (ω) to go as a constant O(ω0) as ω → i∞, it is necessary

that

ûT (i) = −û−(−i) + iβe−T .

Substituting these relationships into (80), and using the fact that u−(−i) = a√
2π

we get

2ûT (ω) = eiωT (−û−(−i)e−T + iβ)(iω + 1) + (−û−(−i) + iβe−T )(−iω + 1)

− û−(−i)(1 − eiωT−T )(iω + 1) + (ω + i)β(eiωT − e−T )

= eiωT

(
− a√

2π
e−T + iβ

)
(iω + 1) +

(
− a√

2π
+ iβe−T

)
(−iω + 1)

− a√
2π

(1 − eiωT−T )(iω + 1) + (ω + i)β(eiωT − e−T ). (81)
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The only unknown left to find to get our optimal control is β. Using the relation-

ship uT (ω) = eiωTu−T (ω), (79) becomes

ûT (−i) = −û−(−i)ei(−i)T−T + ei(−i)T iβ = − a√
2π

+ eT iβ. (82)

Now using ûT (−i) = eT b−a√
2π

coming from (70) together with (82) we get

eT b− a√
2π

= − a√
2π

+ eT iβ.

Solving for β we get

β =
−ib√
2π
.

Now we can solve for our optimal control from (81)

ûT (ω) =
1

2
[eiωT (− a√

2π
e−T + i

−ib√
2π

)(iω + 1) + (− a√
2π

+ i
−ib√
2π
e−T )(−iω + 1)

− a√
2π

(1 − eiωT−T )(iω + 1) + (ω + i)
−ib√
2π

(eiωT − e−T )] (83)

=
1

2
√

2π
[eiωT (−ae−T + b)(iω + 1) + (−a + be−T )(−iω + 1)

− a(1 − eiωT−T )(iω + 1) + (−iω + 1)b(eiωT − e−T )] (84)

=
1

2
√

2π
[(eiωT b− a)(iω + 1) + (−a + beiωT )(−iω + 1)]

=
1√
2π

[eiωT b− a].

This finally gives us the optimal control for the deadline control example.
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7 The Riemann-Hilbert Problem for General Op-

timal Control With x(T ) = b

As was done for the general problem without the final constraint x(T ) = b, we will

need J [u] to be (37) for the exact same reasons as before. Again as before the

dynamics are ẋ = Ax+Bu, x(0) = a making x̂ = χû where χ(ω) := (−iωI −A)−1B.

Let uT (t) be the control supported on the interval [0, T ]. Then following the same

steps in taking the variational of J̃ as was done to get (45) with ûT in the place of

û+ we get

δbuT
J̃ =

∫ ∞

−∞
δû′T (−ω)[(χ′(−ω)L′

3χ+ L′
5χ)û−(ω) + (χ′(−ω)L3χ)û−(ω)

+ (χ′(−ω)L3χ + L4 + χ′(−ω)L5)ûT (ω) + (χ′(−ω)L′
3χ+ L′

4 + L′
5χ)ûT (ω)]dω

=

∫ ∞

−∞
δû′T (−ω)[(χ′(−ω)L′

3χ+ L′
5χ+ χ′(−ω)L3χ)û−(ω)

+ (χ′(−ω)L3χ + L4 + χ′(−ω)L5χ
′(−ω)L′

3χ + L′
4 + L′

5χ)ûT (ω)]dω. (85)

This then gives us the Riemann-Hilbert problem

(χ′(−ω)L′
3χ+ L′

5χ+ χ′(−ω)L3χ)û−(ω)

+(χ′(−ω)L3χ+ L4 + χ′(−ω)L5χ
′(−ω)L′

3χ+ L′
4 + L′

5χ)ûT (ω)

= Z− + eiωT

(
Z+ +

∑

j

~βj

ω + iλj

)
, (86)

along with

e−iωT ûT (ω) = û−T (ω).

45



With λj being the eigenvalues of A, the term

∑

j

~βj

ω + iλj

is allowed for the same reason a similar term was allowed in the example deadline

problem–that being that the variation δû′T (−ω) must have zeros at −iλj . The varia-

tion has these zeros due to the fact that the final control ûT must be fixed by

x(T ) = eATx0 + eAT

∫ T

0

e−AτBuT (τ)dτ = eATx0 + eAT

∫ ∞

−∞
Ge−DτG−1BuT (τ)dτ

= eATx0 +

∫ ∞

−∞




∑
j

∑
k c1jke

−λjτuT,k(τ)
∑

j

∑
k c2jke

−λjτuT,k(τ)

...



dτ

= eATx0 +




∑
j

∑
k c1jk

√
2π 1√

2π

∫∞
−∞ e−λjτuT,k(τ)dτ

∑
j

∑
k c2jk

√
2π 1√

2π

∫∞
−∞ e−λjτuT,k(τ)dτ

...




= eATx0 +




∑
j

∑
k c1jk

√
2π 1√

2π

∫∞
−∞ eiωτu−,k(τ)dτ |ω=iλj

∑
j

∑
k c2jk

√
2π 1√

2π

∫∞
−∞ eiωτu−,k(τ)dτ |ω=iλj

...




= eATx0 +




∑
j

∑
k c1jk

√
2πûT,k(iλj)

∑
j

∑
k c2jk

√
2πûT,k(iλj)

...



. (87)

We can now use the relationship
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x(T ) = eATx0 +




∑
j

∑
k c1jk

√
2πûT,k(iλj)

∑
j

∑
k c2jk

√
2πûT,k(iλj)

...




to solve for each βj after solving the Riemann-Hilbert problem (86). Problem (86) is

solved using the same trick to create removable singularities to put plus functions on

one side and minus functions on the other side to use Liouville’s theorem componen-

twise.

Finally, it should be mentioned that there are possibilities to derive a Riemann-

Hilbert problem that takes into account the possibility for restrictions on possible

values for u(t) having allowed values in

U := {u ∈ R
m : h(u) ≥ 0}.

Accounting for this restriction would entail putting restrictions on the variation

δû′T (−ω) which allows (and actually would require) more freedom on the right hand

side of the Riemann-Hilbert problem in (86) to solve the optimal control problem.

8 Overall Conclusion

We have seen the difficulties that arise in solving singular optimal control problems

using standard methods in control theory. Here the beginning to an alternative

method using the Riemann-Hilbert problem has been given which can hopefully be

generalized to include control problems where A can have eigenvalues with positive

real part. Given that singular control problems are difficult to solve using modern

control theory, then typical techniques for solving Riemann-Hilbert problems could

be useful in control theory applications.
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