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Fusion of the Parastrophic Matrix and Weak Cayley Table

Nathan Perry

Department of Mathematics

Master of Science

The parastrophic matrix and Weak Cayley Tables are matrices that have close

ties to the character table. Work by Ken Johnson has shown that fusion of groups

induces a relationship between the character tables of the groups. In this paper we

will demonstrate a similar induced relationship between the parastrophic matrices

and Weak Cayley Tables of the fused groups.
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1 Introduction

For a subset W of a finite group G let W be the element in CG which is the sum of

all the elements of W . If W = {g1, . . . , gs}, then define W−1 = {g−1
1 , . . . , g−1

s } [9].

An S-ring (sometimes referred to as a Schur ring) is a subalgebra of CG which has

as basis {ω1, ω2, . . . , ωm}, for some partition G = ω1 ∪ ω2 ∪ · · · ∪ ωn. Additionally we

impose the following conditions:

1. ω1 = {e}.

2. for all 1 ≤ i ≤ m, ω−1
i = ωj for some 1 ≤ j ≤ m.

The quantities ω1, . . . , ωm are the basic sets while ω1, . . . , ωm are the basic elements

of the S-ring. An S-ring isomorphim is an algebra isomorphism which maps basic

elements to basic elements. For early work on S-rings and basic definitions see [16],

chapter IV.

The conjugacy classes, C1, . . . , Ck, of G form a partition of G and the corre-

sponding C1, . . . , Ck of CG form a basis for a particular S-ring over G which is called

the class algebra. It is a well known fact that the class algebra is the center of CG.

It is also known as the centralizer S-ring of G. The class algebra is useful because it

determines, and is determined by, the character table of G, see [10] chapter 30.

Let H and G be finite groups. We say that H fuses to G, if there exists a

subalgebra of the class algebra of H which is S-ring isomorphic to the class algebra of

G. In [11] Johnson and Smith showed how fusion relates the character tables of the

groups, with a formulation known as the magic rectangle condition. This condition

was later used in [9] to explore fusions from abelian groups. We will define this

condition in chapter 10.

Example 1.1. Let H = C6, with generator t, and G = S3. The conjugacy classes of
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G are:

C1 = {1},

C2 = {(123), (132)},

C3 = {(12), (13), (23)}.

Let

H1 = 1 = t6,

H2 = t2 + t4,

H3 = t+ t3 + t5.

Since H is abelian we see that CH = Z(CH). Thus R, the S-ring spanned by

{H1, H2, H3}, is a subalgebra of Z(CH). Also it is easy to check that

φ : R 7→ Z(CG),

φ(Hi) = (Ci),

is an isomorphism of S-rings. Thus C6 fuses to S3.

In [8], Frobenius introduced a concept known as the parastrophic matrix. This

matrix was related to the character table but came from a different construction. In

particular the parastrophic matrix intertwines the first and second regular represen-

tations of G ( [2], p. 249). This gave rise to the notion of a Frobenius Algebras,

where the first and second regular representations are equivalent ( [3], [15]). In this

thesis we shall construct a condition similar to the magic rectangle condition, but for

parastrophic matrices instead of the character table. Additionally, we shall see that

fusion also gives us a relationship between linear factors of the determinant of the

parastrophic matrices of the two class algebras.
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In [12], the authors formulate a construction known as the Weak Cayley Ta-

ble. They show that if two groups have the same Weak Cayley Table, they will have

the same character table. Additionally, the Weak Cayley Table gives even more in-

formation about the group. In particular, knowledge of the Weak Cayley Table is

equivalent to knowledge of the one and two characters, one characters being char-

acters under the standard definition, and two characters being a concept originally

introduced by Frobenius [6]. In particular, in [13], the authors showed that the one

and two characters determine the number of involutions in a group, thus the Weak

Cayley Table does as well. In this work we shall explore what the Weak Cayley Table

tells us about fusion. We will again get a magic rectangle type formulation, and a

relationship between the determinants of the matrices.

Our investigation of the determinants of the parastrophic matrix and the Weak

Cayley Table will demonstrate the relationship between the linear factors of these

determinants and the central, orthogonal, idempotents of the S-ring. These results

will demonstrate the duality that exists between the linear factors of the determinant

of the parastrophic matrix and the Weak Cayley Table.

Finally, the last chapter will be a translation of Frobenius’ work Über ver-

tauschbare Matrizen (On commuting Matrices) [7]. We note that there is no English

translation of this paper in the literature. This is one of Frobenius’ five articles that

were published in the 1896 volume of the Sitzungsberichte der Königlich Preussischen

Akademie der Wissenschaften zu Berlin. These five papers are generally regarded as

the birth of representation theory ( [2], p 40). The primary result of the paper, ac-

cording to Frobenius, has to do with the factorability of the determinant of a matrix

into linear factors. It was this work that prompted our work in this paper on the

linear factors of the determinants of the parastrophic matix and Weak Cayley Table.
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2 Irreducible Modules of Commutative Algebras

First let us recall some basic definitions from module theory:

Definition 2.1. A module is irreducible if its only submodules are {0} and itself.

Definition 2.2. A module is completely reducible if it is the direct sum of irreducible

modules.

Now let us recall a basic result from module theory, known as Schur’s lemma,

which we shall state here without proof:

Theorem 2.3 (Schur’s Lemma, [10], 78). Let A be a C-algebra and V and W irre-

ducible A-modules.

(1) If φ : V → W is an A-homomorphism, then either φ is an A-isomorphism, or

φ(v) = 0 for all v ∈ V .

(2) If φ : V → V is an A-homomorphism, then φ is a scalar multiple of the identity

linear transformation 1V .

�

We shall use the second part of this result to prove the following theorem:

Theorem 2.4. Let A be a commutative algebra over C. All irreducible A modules

have dimension 1 with respect to C.

Proof. Let V be an irreducible right A-module. Pick a ∈ A, since A is abelian:

vab = vba, v ∈ V, b ∈ A.

Thus the linear transformation v 7→ va is an A-homomorphism. By Schur’s lemma (2)

this homomorphism is simply a scalar multiple of the identity linear transformation

1V , i.e. va = λav, λa ∈ C. Thus the subspace generated by the element v is in fact

an A-module. But V is irreducible, so vA = vC = V , and V has dimension 1.
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Definition 2.5. If M is an ideal of the algebra A, then the order of M is the

dimension of M with respect to the base field of A.

Corollary 2.6. If A is a commutative algebra over C, and M is a minimal (simple)

ideal of A, then M has order 1.

Proof. First note that M is an A-module with multiplication defined simply by the

multiplication of A. If N is an A-submodule of M , then NA ⊆ N , thus N is an ideal

of A contained in M . Thus N = 0 or N = M , and M is an irreducible A module. So

by the above theorem, M has order 1.

It is worthy of note here that the algebra does not necessarily have to be over

the field C. In the proof of the second part of Schur’s lemma it is only important to

know that all the eigenvalues of φ are contained within the field. Thus one general-

ization of the above theorem, which would still yield the same results, would be that

A is a commutative algebra over the algebraically closed field F .

Other results that we shall rely heavily upon are Maschke’s Theorem and

Wedderburn’s Theorem. These two theorems we shall state here without proof:

Theorem 2.7 (Maschke’s Theorem, [10], p. 70). Let G be a finite group, and let V

be a CG-module. If U is an CG-submodule of V , then there is an CG-submodule W

of V such that

V = U ⊕W.

�

Theorem 2.8 (Wedderburn’s Theorem, [5], p. 854). Let R be a nonzero ring with

an identity. Then the following are equivalent:

1. every R-module is completely reducible.
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2. the ring R, considered as a left R-module, is a direct sum:

R = L1 ⊕ L2 ⊕ · · · ⊕ Ln,

where each Li is a simple module with Li = Rei, for some ei ∈ R, with

(a) eiej = 0 if i 6= j;

(b) e2
i = ei for all i;

(c)
∑n

i=1 ei = 1.

�

Note that we can apply Maschke’s theorem inductively to any finite dimen-

sional CG-module to show that it is completely reducible. We will now use this result

to show that every R-module of our commutative S-ring, R is completely reducible:

Proposition 2.9. Let R be a commutative S-ring over the finite group G, and let V

be an R-module. Then V is a completely reducible R-module.

Proof. Let m be the dimension of V . Let φ be the left representation of the action

of R on V . And let:

Ai = φ(Ci),

where G = C1,∪ · · · ∪ Ck is a partition of G into its conjugacy classes. Since R

is commutative, the Ai matrices commute. Additionally since C−1
i = Cj for some

1 ≤ j ≤ k, we have ATi = Aj. Thus the Ai matrices are normal. Thus we see that

the Ai matrices are simultaneously diagonalizable and that there are vectors vj ∈ V ,

1 ≤ j ≤ m, such that the vj vectors are eigenvectors of Ai for all 1 ≤ i ≤ k:

Aivj = λijvj.
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Let Vj be the subspace of V spanned by vj. Then

CiVj = λijVj = Vj.

Thus Vj is a S-submodule of V and V is completely reducible.

Now that we have shown that every S-ring-module is completely reducible we

can use Wedderburn’s theorem to obtain a decomposition of S-rings into idempotents.

We shall refer to such a decomposition as a Wedderburn decomposition and the set

of idempotents as a Wedderburn basis.

3 First and Second Representations

The contents of this chapter are taken largely from Kiokemeister’s work, [14], although

they originally came from the work of Frobenius. Let A be a linear associative algebra

with basis e1, . . . , en over the field F . We define u to be the vector of basis elements:

u = (e1, e2, . . . , en), u′ =



e1

e2

...

en


.

If a ∈ A then we define:

au = (ae1, . . . , aen), u′a =


e1a

...

ena


For every element a ∈ A, there exist matrices R(a) and S(a), with entries in
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F , satisfying ( [4], p. 6):

au = uR(a), u′a = S(a)u′, (3.1)

The matrices R(a) and S(a) are, respectively, the first and second representations of

the element a. Let Ri = R(ei).

Given an element a in A, a can be written as a unique linear sum of basis

elements: a =
∑n

i=1 αiei. We define â to be the the vector (α1, α2, . . . , αn). Note that

in some literature a is used instead of â, but we will use â as we have already defined

a differently above. By the definition of â we have the following obvious identities:

a = âu′ = uâ′. (3.2)

We also have the following properties:

Proposition 3.3. For elements a, b ∈ A, α ∈ F we have:

(1) α̂a = αâ.

(2) â+ b = â+ b̂.

(3) (âb)′ = R(a)̂b′, âb = âS(b).

Proof. (1) follows from the definition of ĥ and the distributive property of algebras.

(2) is a consequence of the addition in the algebra.

For (3) consider the product ab. By 3.2 and associativity we know:

ab = a(ub̂′) = (au)̂b′.

So by 3.1 we get:

ab = (uR(a))̂b′ = u(R(a)̂b′).

But we know that ab = u(âb)′, thus (âb)′ = R(a)̂b′ because the vector representation
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is unique. The proof that âb = âS(b) is similar.

4 Parastrophic Matrices and Parastrophic Forms

Retain the notation from the previous section. Let R = C[x1, . . . , xn] be a polynomial

ring and let ξ = (x1, x2, . . . , xn) ∈ Rn. Recall that Ri = R(ei).

Definition 4.1. The parastrophic matrix, Q(ξ), of the algebra A is:

Q(ξ) =



ξR1

ξR2

...

ξRn


.

Note that Q is a map from Cn to the n× n matrices over C.

Definition 4.2. The parastrophic form, π(ξ), of A is the determinant of the paras-

trophic matrix.

To prove some results about the parastrophic form we shall use some of the

tools of Kiokemeister [14]. In particular the following construction will be very helpful:

Definition 4.3. If D is a subset of A, let U(D) be the set of all η ∈ F n satisfying

d̂Q(η) = 0 for all d ∈ D. U(D) is called the orthogonal module of D.

Kioekemeister proved a number of results about this construction. In particu-

lar we shall make use of the following two theorems which we shall state here without

proof:

Theorem 4.4 ( [14], p. 149). If A contains a right ideal M of order 1, then

π(η) = g(η)h(η),
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where g is a linear form in x1, x2, . . . , xn, and η is a variable in Cn. The orthogonal

module U(M) consists of all solutions of g(η) = 0.

Theorem 4.5 ( [14], p. 145). If M is a right ideal of A of order r, then U(M) is an

F -module of dimension n− r.

These two results will help us to gain a greater understanding of the factors of

the parastrophic form. In particular we will see that there is a very close connection

between the idempotents of the algebra and the linear factors of the parastrophic

form.

Theorem 4.6. If A is a commutative S-ring of G over C, with basic elements

{e1, . . . , en}, and the Wedderburn decomposition of A is given by

A = Aε1 ⊕ · · · ⊕ Aεm,

with εi =
∑n

j=1 αijej, then n = m and there are n linear factors of the parastrophic

form given by gi =
∑n

j=1 αijxj.

Proof. Since A is an S-ring over a group it is semi-simple. Thus by Wedderburn’s

theorem, we can decompose A:

A = L1 ⊕ L2 ⊕ · · · ⊕ Lm,

where Li = Aεi for some set of orthogonal idempotents ε1, . . . , εm, and each Li is a

minimal (simple) ideal. By Corollary 2.6 each Li has order 1, thus Li has dimension

1 over C and is equal to the span of εi over C. So A = SpanC{ε1, . . . , εm}. Since A

has dimension n, and the εi are linearly independent, we get that m = n.

Now let us choose another basis for A, namely the basic elements of A as an

S-ring of G: {e1, e2, . . . , en}, where e1 = {1}, G =
⋃n
i=1 en, and e−1

i = ej for some 1 ≤
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j ≤ n. Recall that we define u to be the vector of basis elements: u = (e1, e2, . . . , en).

Recall that we defined Ri = R(ei). Let us calculate the first column of all of the Ri’s:

eiu = ei(e1, e2, . . . , en) = (eie1, eie2, . . . , eien) = (ei, eie2, . . . , eien).

Note in particular that the first entry of eiu is simply ei, since e1 = 1. But recall that

eiu = uRi. Thus the first column of Ri must have an one in the i-th row, and zeroes

everywhere else.

Recall

U(Li) = {η ∈ Cn|d̂Q(η) = 0, d ∈ Li}.

But for all d in Li, d = cεi for some c ∈ C. Thus we can write

U(Li) = {η ∈ Cn|ε̂iQ(η) = 0}.

Let η = (η1, η2, . . . , ηn). Since the first column of Ri has a one in the i-th row, and

zeroes everywhere else, the first entry of ηRi must be simply ηi. Then the first column

of

Q(η) =



ηR1

ηR2

...

ηRn


must be the column matrix ηT . But if η is in U(Li), then εiQ(η) must be the zero

column vector. In particular ε times the first column of Q(η) must be a zero. But the

first column vector of Q(η) is simply ηT , thus the dot product ε̂ · η must equal zero.

We can write ε as a sum of the ei’s:

ε =
n∑
i=1

αiei.
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If f is the form

f(x1, x2, . . . , xn) = α1x1 + α2x2 + · · ·+ αnen,

then f(η) = ε̂ · η = 0. Thus all vectors in U(Li) are zeroes of the form f , and thus

U(Li) is contained in the hyperplane, P , defined by f . Since εi is non-zero, f is a

non-zero linear form, so P has dimension n−1. By Theorem 4.5, U(Li) has dimension

n− 1, thus P = U(Li).

By Theorem 4.4, for every Li we get a gi, a linear factor of the parastrophic

form, such that the solutions of gi are precisely U(Li). Thus gi and f both define the

same hyperplane, so gi must be a scalar multiple of f . In particular, up to a common

constant factor, the coefficients of gi are completely determined by the coefficients of

εi. The parastrophic form, π(ξ), is the determinant of an n by n matrix so it must

have degree no greater than n. But for each Li we get a non-zero linear factor gi,

thus π(ξ) = g1g2 . . . gn.

5 Fusion of the Parastrophic Form

Suppose the group H fuses to the group G. Let Z(CH) = Cε1 ⊕ Cε2 ⊕ · · · ⊕ Cεn be

a Wedderburn decomposition of Z(CH). By the fusion, there exists an S-ring R, a

sub-S-ring of Z(CH), that is isomorphic to Z(CG). Let R = Cδ1 ⊕ Cδ2 ⊕ · · · ⊕ Cδm

be a Wedderburn decomposition of R. Since R is contained in Z(CH) we can express

each δi as a unique sum of the εj’s: δi =
∑n

j=1 αijεj. Since the εj’s are orthogonal

idempotents we have

δ2
i =

(∑
j

αijεj

)2

=
∑
j

α2
ijεj.

12



But since δi is an idempotent we also know

δ2
i = δi =

∑
j

αijεj.

By uniqueness of the vector representation, these equations show that αij = α2
ij. Thus

αij must be one or zero. If αij = 1 we shall say that εj is a component of δi.

Proposition 5.1. Let ∆i be the set of the indices of the components of δi and let

N = {1, 2, . . . , n}. Then the ∆i’s are pairwise disjoint, and
⋃m
i=1 ∆i = N .

Proof. We can rewrite each δi:

δi =
∑
j∈∆i

εj.

Now suppose j ∈ N is in ∆i ∩∆k. Then the product

δiδk =

(∑
l∈∆i

εl

)(∑
l∈∆k

εl

)
= · · ·+ εj + · · · 6= 0,

which contradicts the orthogonality of the δi’s unless i = k. Thus the ∆i are pairwise

disjoint. Now, by contradiction, suppose that there exists j ∈ N such that j is not in

∆ =
⋃m
i=1 ∆i. Then by Wedderburn’s Theorem and disjointness of the ∆i’s we have:

1 =
m∑
i=1

δi =
m∑
i=1

∑
j∈Di

εj =
∑
j∈∆

εj.

But we also know that 1 =
∑n

j=1 εj, and thus see that
∑

j∈N−∆ εj = 0, contradicting

the linear independence of the εj’s. We conclude that each εj occurs in one, and

exactly one of the ∆i’s.

Let E = {e1, . . . , en} and D′ = {d′1, . . . , d′m} be the S-ring bases of Z(CH)

and Z(CG) respectively. Let φ be the isomorphism from Z(CG) to R. Since φ is an

S-ring isomorphism, the set D = {φ(d′1), . . . , φ(d′m)} = {d1, . . . , dm} forms an S-ring
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basis for R. By the S-ring properties, we can define a Di for each di =
∑

j∈Di ej,

where each j occurs in precisely one Di. Again we call ej a component of di if j ∈ Di.

Define:

σ : Z(CH) 7→ R,

σ(ej) =
di
|Di|

, if j ∈ Di.

Note this is a module homomorphism but not an algebra homomorphism. Also we

have

σ(di) =
∑
j∈Di

σ(ej) = di

which shows that σ is the identity on R. We can use this homomorphism to define a

homomorphism,

θ : C[x1, . . . , xn] 7→ C[y1, . . . , ym],

θ(xj) = αyi, if σ(ej) = αdi, α ∈ C.

We are now in a position to understand the relationship between the paras-

trophic form of H and the parastrophic form of G. We can write each εi =
∑n

j=1 βijej

and δi =
∑m

j=1 γijdj. We have seen above that the linear factors of the parastrophic

forms of H and G are gi =
∑n

j=1 βijxj and fi =
∑m

j=1 γijyj respectively. Thus:

m∑
l=1

γildl = δi =
∑
j∈∆i

εj =
∑
j∈∆i

n∑
k=1

βjkek.

If we now apply σ, which is the identity on R, we see that

σ

(∑
j∈∆i

n∑
k=1

βjkek

)
=

m∑
l=1

γildl.

This equation in turn shows that θ(
∑

j∈∆i
gj) = fi, which gives us the desired fusion

of parastrophic forms. We state this result as a theorem:
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Theorem 5.2. Using the notation from this section, if the group H fuses to the group

G, then for the linear factors of the parastrophic form we have:

θ(
∑
j∈∆i

gj) = fi,

where the gj’s and fi’s are the linear factors of the parastrophic forms of H and G

respectively.

Example 5.3. Let H = C6 and G = S3. We have previously shown that H fuses to

G. Let t be the generator for H. Let ei = ti for 1 ≤ i ≤ 6. Let J be a primitive third

root of unity. Then the idempotents in the Wedderburn decomposition of Z(CH)

are:

ε1 =
e6 + e1 + e3 + e5 + e2 + e4

6
,

ε2 =
e6 − e1 − e3 − e5 + e2 + e4

6
,

ε3 =
e6 − (1 + J)e1 + e3 + Je5 + Je2 − (1 + J)e4

6
,

ε4 =
e6 + (1 + J)e1 − e3 − Je5 + Je2 − (1 + J)e4

6
,

ε5 =
e6 + Je1 + e3 − (1 + J)e5 − (1 + J)e2 + Je4

6
,

ε6 =
e6 − Je1 − e3 + (1 + J)e5 − (1 + J)e2 + Je4

6
.

Let R be the sub-S-Ring of Z(CH) that is isomorphic to Z(CG). Then the

S-Ring basis for R is:

d1 = e6,

d2 = e1 + e3 + e5,

d3 = e2 + e4.
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The idempotents in the Wedderburn decomposition of R are:

δ1 =
d1 + d2 + d3

6
,

δ2 =
d1 − d2 + d3

6
,

δ3 =
2d1 − d3

3
.

The homomorphism σ : Z(CH) → R, from above has the following form

σ(e6) = d1, σ(ei) = d2
3

for i = 1, 3, 5, and σ(ei) = d3
2

for i = 2, 4. It is easy to

check that σ(ε1) = δ1, σ(ε2) = δ2, and σ(ε3 + ε4 + ε5 + ε6) = δ3. The fusion of the

parastrophic forms of H and G follows immediately by the relationship between the

idempotents and the factors of the parastrophic form.

This result is perhaps easiest to understand in terms of change of basis matri-

ces. If we order the εi’s such that all the components of δj occur together contiguously,

and the ei’s such that all the the components of dj occur contiguously, (see the ex-

ample below). We showed above that σ(
∑

j∈∆i
) = δi. But in our matrix all the

components of δi occur in a block. Thus if we sum across this block we will get∑
j∈∆i

. And if ek is a component of dl then σ(ek) = dl
|Dl|

. Thus in our matrix where

all the components of dl occur in a block, if we now sum across this block and divide

by |Dl|, then the new matrix that we have created will give us the change of basis

matrix from the di basis to the δi basis.

Example 5.4. Continuing the example from above we see that the change of basis
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matrix from the ei basis to the εi basis is:

Q =
1

6



1 1 1 1 1 1

1 −1 −1 −1 1 1

1 −(1 + J) 1 J J −(1 + J)

1 1 + J −1 −J J −(1 + J)

1 J 1 −(1 + J) −(1 + J) J

1 −J −1 1 + J −(1 + J) J


.

Note that lines have been added to show where the contiguous blocks of components

occur. The change of basis matrix from the di basis to the δi basis is:

S =
1

6


1 1 1

1 −1 1

4 0 −2

 .

It is now easy to check that if we sum the entries of the blocks of Q and divide

by the cardinality of Dl we go from Q to S.

6 Fusion of the Parastrophic Matrix

Definition 6.1. Given a finite group G of order n, and an ordering of the elements

of G, {g1, g2, . . . , gn}, the multiplication table matrix, MG, is the matrix in which

(MG)ij = xk if gig
−1
j = gk.

Definition 6.2. Given a finite group G of order n, let C1, C2, . . . , Ck be the conjugacy

classes of G. Then C1, C2, . . . , Ck form a basis for the center of the group ring, Z(ZG).

Thus CiCj =
∑k

m=1 λijkCk for some λijk ∈ Z. The λijk are called the structure

constants. The matrix PG, where (PG)ij =
∑k

m=1 λijkxk, is called the parastrophic

matrix of G.
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Definition 6.3. Let A be an n × n matrix over the indeterminates x1, . . . , xn, and

B be an m × m matrix over the determinates y1, . . . , ym, with n ≥ m. Then a

parastrophic fusion of A to B is determined by:

1. a partition R1, . . . , Ra of N = {1, 2, . . . , n}, thought of as a partition of the rows

(or columns) or A,

2. a function ρ : Q[x1, . . . , xn] 7→ Q[y1, . . . , ym], where ρ(xi) =
yj
kij

for some kij ∈ Z.

For each pair of Ri, Rj, we obtain a block of the matrix MG, which we denote by

R(i,j). Note that R(i,j) will not necessarily be a contiguous block, but rather the set

of all elements which occur in the i∗ row and j∗ column, with i∗ ∈ Ri and j∗ ∈ Rj.

Let R∗(i,j) be the sum of all the entries in R(i,j). This determines a matrix U where

(U)i,j = R∗(i,j). We say that A fuses parastrophically to B if ρ(U) = B.

Example 6.4. The parastrophic matrix for C6 = 〈t〉, the cyclic group of order six,

where C1 = 1, C2 = t2, C3 = t4, C4 = t, C5 = t3, and C6 = t5, is:

PC6 =



x1 x2 x3 x4 x5 x6

x2 x3 x1 x5 x6 x4

x3 x1 x2 x6 x4 x5

x4 x5 x6 x2 x3 x1

x5 x6 x4 x3 x1 x2

x6 x4 x5 x1 x2 x3


.

The parastrophic matrix of S3, where C1 = 1, C2 = {(123), (132)}, and C3 =

{(12), (13), (23)}, is:

PS3 =


w1 w2 w3

w2 2w1 + w2 2w3

w3 2w2 3w1 + 3w2

 .
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We can partition PC6 in the following manner:

PC6 =



x1 x2 x3 x4 x5 x6

x2 x3 x1 x5 x6 x4

x3 x1 x2 x6 x4 x5

x4 x5 x6 x2 x3 x1

x5 x6 x4 x3 x1 x2

x6 x4 x5 x1 x2 x3


.

Now we can make the following identification: ρ(x1) = w1, ρ(xi) = w2

2
for i = 2 or

i = 3 and ρ(xi) = w3

3
for 4 ≤ i ≤ 6. Now we may apply ρ to the block sums to show

that there is a parastrophic fusion from PC6 to PS3 .

Note that through the proper ordering of the elements of G we can obtain

the structure constants through a partitioning of the group matrix. In particular if

C1, C2, . . . , Ck are the conjugacy classes of G, order the elements of G:

G = g11, g21, . . . , g2a2 , . . . , gk1, . . . , gkak ,

such that Ci =
⋃ai
m=1 gim. Now consider the group matrix, XG, of G by this ordering.

Partition XG according to the sizes of the conjugacy classes. In other words all the

elements of C1 will be in the first block, all the elements of C2 will be in the second

block, etc. Now note that if we take the sum of all the elements in the ij-th block,

we will simply get the quantity CiCj. So now if we express this sum in terms of the

Ck’s we will recover the structure constants.

Example 6.5. Put the elements of S3 in the following order:

S3 = {1, (123), (132), (12), (13), (23)}. Note that the conjugacy classes occur in con-

tiguous blocks by this ordering, i.e. C1 = x1, C2 = {x2, x3}, and C3 = {x4, x5, x6}.
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Now consider the group matrix, partitioned by conjugacy class sizes:

XS3 =



x1 x2 x3 x4 x5 x6

x2 x3 x1 x6 x4 x5

x3 x1 x2 x5 x6 x4

x4 x5 x6 x1 x2 x3

x5 x6 x4 x3 x1 x2

x6 x4 x5 x2 x3 x1


.

Now sum over the blocks to get a new matrix, X ′S3
:

X ′S3
=


x1 x2 + x3 x4 + x5 + x6

x2 + x3 2x1 + x2 + x3 2x4 + 2x5 + 2x6

x4 + x5 + x6 2x4 + 2x5 + 2x6 3x1 + 3x2 + 3x3


Now simply substitute in C1, C2, and C3 to get:

X ′S3
=


C1 C2 C3

C2 2C1 + C2 2C3

C3 2C3 3C1 + 3C2

 .

Which by a simple identification yields the parastrophic matrix of S3, which we saw

above.

Theorem 6.6. There exists a parastrophic fusion from PH to PG if H fuses to G.

Proof. Let C1, . . . , Ck be the conjugacy classes of G. Order the elements of G, as

above, according to conjugacy class:

G = g11, g21, . . . , g2a2 , . . . , gk1, . . . , gkak .
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Since there is a fusion from H to G there exists R an S-Ring over H that is isomorphic

to Z(ZG). Thus there exist subsets H1, H2, . . . , Hk of H such that 〈H1, . . . , Hk〉 is

isomorphic to 〈C1, . . . , Ck〉 with isomorphism f . Order the elements of H:

h11, h21, . . . , h2b2 , . . . , hk1, . . . , hkbk ,

such that Hi =
⋃ai
m=1 him. This gives us a map σ from the elements of H to the

elements of G simply by mapping by order, i.e. σ(h11) = g11, σ(h21) = g21, etc.

So now if we partition XH , created using the above ordering, according to the sizes

of the Hi’s then in the ij-th block we will get the quantity H iHj, which has the

same structure constants as CiCj. If we apply σ to the elements of H iHj in the

natural way, we will in fact obtain the quantity CiCj. Thus giving us a partition and

identification that gives us a parastrophic fusion from XH to PG.

Now we must slightly alter this fusion to get a parastrophic fusion from PH

to PG. Let B1, . . . , Bp be the conjugacy classes of H. Note that 〈H1, . . . , Hk〉 is in

Z(ZG), thus each Hi is equal to a union of conjugacy classes of H. We can order the

conjugacy classes, similarly to how we ordered the elements:

B11, B21, . . . , B2c2 , . . . , Bk1, . . . , Bkck ,

such that Hi =
⋃ci
m=1Bim. As we saw above we obtain the parastrophic matrix from

the group matrix by taking sums over a partition determined by the sizes of the

classes, and then a simple identification of variables. Now to get PG we must simply

partition PH by the sizes c1, c2, . . . , ck, so that two classes are in the same block if they

occur in the same Hi. The identification,τ , that we need is simply τ(
∑ci

m=1 Bim) = Ci.

Thus PH fuses parastrophically to PG.
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7 Fusion of the Weak Cayley Table

Let S be a commutative S-ring over the finite group G = {g1 = 1, g2, . . . , gn} with

the partition:

C1 = {1}, C2, . . . , Cr.

Define S1, . . . , Sr ⊂ G × G, where (gj, gk) ∈ Si if gkg
−1
j ∈ Ci. Since gkg

−1
j is in Ci

for some unique i we see that the Si’s form a partition of G × G. Define the n × n

matrices, A1, . . . , Ar by

(Ai)j,k =


1 if (gj, gk) ∈ Si

0 otherwise

.

Note that the Ai’s are the adjacency matrices of the association scheme determined

by S. [1]

Define the structure constants, pki,j, by

CiCj =
∑
k

pki,jCk.

Define the r × r matrices B1, . . . , Br by

(Bi)j,k = pji,k.

The matrices Bi determine a faithful representation of the (left) regular representa-

tion of S. Then ( [1], p. 57) shows that Ai 7→ Bi determines an isomorphism of

matrix algebras. In particular, for each i the matrices Ai, Bi have the same minimal

polynomial. So they have the same eigenvalues.
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Let R = Z[x1, . . . , xr] be a polynomial ring, and let

W (S) =
∑
i

xiAi.

If S = Z(ZG) then we call W (S) the weak Cayley table of the G. Note that this

definition agrees with the definition given by Johnson, Mattarai, and Sehgal. [12]

Now the Bi determine the left regular representation of the S-ring S. [14]

Thus the Ai do also. Since S is commutative, the matrices A1, . . . , Ar commute.

Additionally, since S−1
i = Sj for some j by the properties of S-rings, ATi = Aj, so

the Ai matrices are normal. Thus we see that the Ai matrices are simultaneously

diagonalizable. Therefore there is a n × n matrix P such that Di = PAiP
−1 is a

diagonal matrix for 1 ≤ i ≤ r. Thus

PW (S)P−1 =
∑
i

xiDi

is also a diagonal matrix. This shows that det(W (S)) =det(
∑

i xiDi) is a product

of linear factors. We now describe these linear factors: the fact that A1, . . . , Ar are

simultaneously diagonalizable means that there are subspaces E1, . . . , Er of Cn such

that E1⊕ · · · ⊕Er = Cn and each Ei is an eigenspace for each Ai. Let λij denote the

corresponding eigenvalue.

The above remarks about minimal polynomials show that the B1, . . . , Br are si-

multaneously diagonalizable whereBi is conjugated to the diagonal matrix diag(λi1, . . . , λir).

It follows that the factors of det(W (S)) are the same as the factors of det(
∑

i xiBi)

and that these factors are fj =
∑

i xiλji for 1 ≤ j ≤ r.

Now suppose that S1 and S2 are S-rings over G where S2 ⊂ S1. Let dim

Si = ni. Let {C1, . . . , Cn1} and {C ′1, . . . , C ′n2
} be the corresponding partitions of G.

Let R1 = Z[x1, . . . , xn1 ] and R2 = Z[x′1, . . . , x
′
n2

] be polynomial rings. Since S2 ⊂ S1
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every Ci is a subset of some C ′j(i); define the ring homomorphism φ : R1 → R2 by

φ(xi) = x′j(i). We say that φ is the ring homomorphism determined by the inclusion

of S2 in S1.

Now let W (Si), i = 1, 2, denote the weak Cayley table matrix of Si using the

variables from Ri. Then from the definition of φ and W (S) we see that

φW (S1) = W (S2).

Now suppose that the group H fuses to the group G. Let C1, . . . , Cr denote

the classes in G and let D1, . . . , Dr denote the corresponding partition of H, so that

the correspondence Ci � Di determines the isomorphism of Z(ZG) with the subring

〈D1, . . . , Dr〉 of Z(ZH). Thus if we have CiCj =
∑

k p
k
i,jCk, then we also have

DiDj =
∑

k p
k
i,jDk.

Let B1, . . . , Br denote the faithful representation of the left regular represen-

tation of Z(ZG) = 〈C1, . . . , Cr〉 and let B′1, . . . , B
′
r denote the corresponding matrices

for 〈D1, . . . , Dr〉 ∼= Z(ZG). Then the fusion shows that Bi = B′i, 1 ≤ i ≤ r, and so

determines an equality of algebras:

〈B1, . . . , Br〉 = 〈B′1, . . . , B′r〉.

Let A1, . . . , Ar be the n× n matrices for the D1 . . . Dr’s and let A′1, . . . , A
′
r be

the corresponding matrices for Z(ZG).

Now let S1 = Z(ZH) where the classes of H are F1, . . . , Fs. Let R =

Z[x1, . . . , xs] be a polynomial ring and let S2 = 〈D1, . . . , Dr〉 be the sub-algebra

determined by the fusion. Let R′ = Z[y1, . . . , yr] be another polynomial ring and let

φ : R→ R′ be the ring homomorphism determined by the inclusion of S2 in S1.

Thus we have a fusion of W (S1) to W (S2), where S2
∼= Z(ZG). Further, the
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matrices Bi, B
′
i are equal and have eigenspaces which are one-dimensional. Thus they

are simultaneously diagonalizable to the diagonal matrices D1, . . . , Dr. It follows that

det(
∑

i yiBi) and det(
∑

i yiAi) both factor as a product of linear factors and that these

factors are the same. This gives a fusion of det(W (S1)) to det(W (S2)) as required.

8 Duality of the Parastrophic and Cayley Forms

Let G be a group with conjugacy classes C1, C2, . . . Ck. Let T = CG, and let ρ be the

left regular representation of T . Then the Ai’s defined in the previous section can be

calculated using ρ: Ai =
∑

g∈Ci ρ(g). Or simply Ai = ρ(Ci). If S = Z(CG), recall

the definition of the weak Cayley table: W (S) =
∑k

i=1 xiAi. So we can now express

the Weak Cayley Table in terms of ρ:

W (S) =
k∑
i=1

xiρ(Ci).

Let φ be the left regular representation of S. Then the Bi’s from the previous section

can be calculated:

Bi = φ(Ci).

Definition 8.1. Using the notation from the preceding paragraph we define

V (S) =
k∑
i=1

xiBi

to be the partial weak Cayley table. We define the determinant of V (S) to be the

partial Cayley form. The determinant of W (S) we call the Cayley form.

Definition 8.2. Recall that we defined the weak Cayley table of a group, G, to be the

weak Cayley Table of the algebra Z(CG). Similarly we define the partial Cayley form

of G to be the partial Cayley form of Z(CG).
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In the previous section we showed that W (S) and V (S) have the same eigen-

values, but that in general these eigenvalues occur with different multiplicities. We

shall now proceed to find the eigenvalues of V (S) and then use these to find the

eigenvalues of W (S).

Proposition 8.3. If {e1, . . . , ek} is the S-ring basis for S, and {ε1, . . . , εk} is the Wed-

derburn idempotent basis for S. We can write ei =
∑k

j=1 βijεj. Then the eigenvalues

of V (S) are
∑k

i=1 xiβij for all 1 ≤ j ≤ k.

Proof. First note that by (3.3), we know that êiεk
′ = Biε̂k

′. Thus we see:

Biε̂k
′ = êiεk

′ =

̂(
(
n∑
j=1

βijεj)(εk)

)′
= β̂ikεk

′
= βik ε̂

′
k.

So the vectors ε̂′k are in fact eigenvectors of the Bi with corresponding eigenvalues

βi1, . . . , βik. Since V (S) =
∑k

i=1 xiBi we see:

V (S)ε̂′j =

(
k∑
i=1

xiBi

)
ε̂′j =

k∑
i=1

xiβij ε̂
′
j.

This gives
∑k

i=1 xiβij as an eigenvalue of V (S), and thus a linear factor of the partial

Cayley form of G.

Theorem 8.4. Continuing the notation from the above proposition, the eigenvalues

of W (S) are
∑k

i=1 xiβij, where the multiplicity is equal to the dimension of εjS.

Proof. Let δ1, . . . , δn be a Wedderburn basis for T . Then using an argument identical

to the one in chapter 4, we can show that each δi is a component of one, and exactly

one, εj. In other words εj =
∑

i∈Ej δi, for some properly chosen Ej. Note that now

that we have moved from the sub-algebra S into the larger algebra T , that ε̂i can have

multiple meanings. It can either be the vector representation relative to the S basis

or the vector representation relative to the T basis. In particular Biε̂
′
j only makes
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sense if we use the vector representation relative to the S basis, and similarly Aiε̂
′
j

only makes sense if we use the vector representation relative to the T basis.

Now again by (3.3), we know

êiε
′
j = Biε̂

′
j

and

êiε
′
j = Aiε̂

′
j.

Where in each equation we choose the appropriate meaning of ε̂j. So if Biε̂
′
j = βij ε̂

′
j

then êiε
′
j = βij ε̂

′
j relative to the Z(CG) basis. But of course the choice of basis is not

going to affect the multiplication, thus êiε
′
j = βij ε̂

′
j relative to the CG basis. As a

result, we have Aiε̂
′
j = êiε

′
j = βijεj. Thus βij is an eigenvalue of Ai.

Now for l ∈ Ej, since δl is an idempotent in T , by the same arguments used

above we can show δ̂′l is an eigenvector of Ai. Additionally since ε̂′j =
∑

l∈Ej δ̂
′
l and

ε̂′j is and eigenvector with eigenvalue βij, we see that βij must also be the eigenvalue

of δ̂′l. So the multiplicity of βij as an eigenvalue of Ai must be the cardinality of Ej.

Note that this cardinality can also be found by taking the dimension of εjS.

Now we have the eigenvalues of the Ai’s, and can use them to find the eigen-

values of W (S) =
∑k

i=1 xiAi. Since ε̂′j is an eigenvector of Ai for all 1 ≤ i ≤ k with

corresponding eigenvalues βij, we see:

W (S)ε̂′j =

(
k∑
i=1

xiAi

)
ε̂′j =

k∑
i=1

xiβij ε̂
′
j.

Thus
∑k

i=1 xiβij is an eigenvalue of W (S) and has multiplicity εjS.

Example 8.5. Let T = CS3 and S = Z(CS3). We have already seen that S =
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SpanC{1, (123) + (132), (12) + (13) + (23)}. Let

e1 = 1, e2 = (123) + (132), e3 = (12) + (13) + (23).

Then the idempotents that yield the Wedderburn decomposition are

ε1 =
e1 + e2 + e3

6
, ε2 =

e1 + e2 − e3

6
, ε3 =

2e1 − e2

3
.

So the factors of the parastrophic form are simply

g1 =
x1 + x2 + x3

6
, g2 =

x1 + x2 − x3

6
, g3 =

2x1 − x2

3
.

If we now solve for the ei’s in terms of the εi’s we get

e1 = ε1 + ε2 + ε3, e2 = 2ε1 + 2ε2 − ε3, e3 = 3ε1 − 3ε2.

So the factors of the partial Cayley Form are

f1 = x1 + 2x2 + 3x3 f2 = x1 + 2x2 − 3x3, f3 = x1 − x2.

If we let Q be the change of basis matrix from the ei basis to the εi basis, then

the rows of Q are simply the coefficients of εi expressed as a linear combination of

the ei’s. Thus we can see that the coefficients of the linear factors of the parastrophic

form are just the entries in the rows of Q. The matrix Q−1 will give us a change of

basis from the εi basis to the ei basis. Thus the rows of Q−1 are the coefficients of ei

expressed as a linear combination of the εi’s. So the columns of Q−1 will give us the

coefficients of the linear factors of the partial Cayley form.

Example 8.6. Continuing the example from above, we can use the equations for the
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εi’s to find the change of basis matrix, Q, and then calculate its inverse Q−1:

Q =


1
6

1
6

1
6

1
6

1
6
−1

6

2
3
−1

3
0

 , Q−1 =


1 1 1

2 2 −1

3 −3 0

 .

Note how the coefficients on the columns of the Q−1 matrix give the linear factors of

the partial Cayley form.

The definition of the Ai’s, and thus the definition of W (S), depends on the

underlying group structure. The Bi’s and V (T ) can be defined for arbitrary algebras

and not just for the group algebra. Thus although the terms weak Cayley table and

Cayley form do not make sense in the general case of an algebra, the terms partial

weak Cayley table and partial Cayley form do. Thus the duality of the parastrophic

form is with the partial Cayley form, and not the Cayley form itself. We summarize

these results in the following theorem:

Theorem 8.7. Given an algebra S with basis E = {e1, . . . , ek}. Let ε = {ε1, . . . , εk}

be the idempotents in the Wedderburn decomposition of S. If Q is the change of

basis from the E basis to the ε basis, then the coefficients of the rows of Q give the

coefficients of the linear factors of the parastrophic form. The coefficients of the

columns of Q−1 give the coefficients of the linear factors of the partial Cayley form.

�

9 Fusion of the Partial Cayley Form

The duality of the parastrophic form and the partial Cayley form (8.7), along with

our proof of the fusion of the parastrophic form (5.2), suggest a method for proving
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the fusion of the partial Cayley form. The difficulty arises, however, because a lin-

ear factor of the parastrophic form corresponds to precisely one idempotent of the

Wedderburn basis of the algebra, whereas a linear factor of the partial Cayley form

does not correspond to a particular basis element but rather has coefficients that

come from all the basis elements. As a result we must dig a bit deeper into the inner

workings of the fusion map. Many of the tools that we use, however, are the same as

in the parastrophic form case.

If the group H fuses to the group G let S = Z(CH) and let R be the sub-S-

ring of S that is isomorphic to Z(CG). Let e1, . . . , en be the S-ring basis for S and

d1, . . . , dm be the S-ring basis for R. Let ε1, . . . , εn and δ1, . . . , δm be the Wedder-

burn bases for S and R respectively. If N = {1, . . . , n}, recall that we can define

D1, . . . , Dm ⊆ N and ∆1, . . . ,∆m ⊆ N such that:

di =
∑
j∈Di

ej, δi =
∑
j∈∆i

εj, N =
m⋃
i=1

Di =
m⋃
i=1

∆i.

This setup so far is exactly the same as in chapter 5, so refer to that chapter for the

details.

We can express each ei and di as a sum of the εj’s and δj’s:

ei =
n∑
j=1

αijεj, di =
m∑
j=1

βijδj.

This gives

di =
m∑
j=1

βijδj =
m∑
j=1

βij

∑
k∈∆j

εk

 . (9.1)

30



But

di =
∑
j∈Di

ej =
∑
j∈Di

n∑
k=1

αjkεk. (9.2)

Thus using 9.1 and 9.2 we can equate coefficients to get:

∑
j∈Di

αjk = βil, k ∈ ∆l.

We can renumber the εk idempotents, so that for 1 ≤ k ≤ m, εk is a component of

δk. This gives us that

∑
j∈Di

αjk = γik = βik, 1 ≤ k ≤ m.

In chapter 5, we defined a module-homomorphism, σ : S 7→ R, where if j ∈ Di,

then σ(ej) = di
|Di| . Here we must modify this map slightly to obtain our fusion, namely

we define

Ω : S 7→ R,

Ω(ej) = di, if j ∈ Di.

We use Ω to define a map ν : C[x1, . . . , xn] 7→ C[y1, . . . , ym] where:

ν(xj) = yi, if Ω(ej) = di.

We showed in chapter 8, that the linear factors of the partial Cayley forms of

H and G are respectively:

gi =
n∑
j=1

αjixj, fi =
m∑
j=1

βjiyj. (9.3)
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Thus we see that

fi =
m∑
j=1

∑
k∈Dj

αki

 yj.

Now we can use ν:

fi =
m∑
j=1

∑
k∈Dj

αkiν(xk).

But N is the disjoint union of the Dj’s: N =
⋃m
j=1Dj. Thus we see

fi =
n∑
k=1

ν(αkixk) = ν(gi).

Which gives us our desired fusion. We state this result as a theorem:

Theorem 9.4. Using the notation from this section, if H fuses to G then using a

proper ordering of the linear factors of the parastrophic forms of H we have:

fi = ν(gi), 1 ≤ i ≤ m,

where the gi and fi are the linear factors of the parastrophic forms of H and G

respectively. Additionally for m+ 1 ≤ i ≤ n we have

ν(gi) = fj

where i ∈ ∆j.

10 The Magic Rectangle Condition

In this chapter we shall present the definition of the magic rectangle condition given by

Humphries and Johnson ( [9], pp 1-2). Let the character table of H be Xij = {χi(Cj)},

i.e. χ1, . . . , χr is the set of irreducible characters of the group H. Let di be the degree

of χi, and let kj be the size of the jth conjugacy class Cj. Then the magic rectangle
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condition requires a partition {Bi},

B1 = {e}, B2 = {Ci1 . . . , Cir2}, . . . , Bf = {Cj1 , . . . , Cjrf },

of the conjugacy classes of H, and a partition {ψi},

ψ1 = {e}, ψ2 = {χu1 , . . . , χus2}, . . . , ψf = {χv1 , . . . , χrsf }

of the irreducible characters. Consider the rectangle of the character table consisting

of the columns corresponding to the elements of Bj = {Ct1 , . . . , Ctrj } and the rows

corresponding to the elements of ψi = {χw1 , . . . , χwsi}. Abbreviate χwi by χi and Cti

by Ci. The magic rectangle condition is that for each i the number

τij =

∑rj
m=1 kmχi(m)[∑rj
m=1 km

]
di

is constant and equal to the the common value for each j of

∑si
m=1 dmχm(j)∑si

m=1 d
2
m

.

The fused table is an f × f table which has rows corresponding to the ψi and

classes corresponding to Bj such that the value of ψi on Bj (with slight abuse of

notation) is νiτij where

νi =

√√√√ si∑
m=1

d2
m
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Example 10.1. Let H = C6 with generator t, then the character table of H is

e t2 t4 t t3 t5

χ0 1 1 1 1 1 1

χ3 1 1 1 −1 −1 −1

χ2 1 ω ω2 1 ω ω2

χ4 1 ω2 ω 1 ω2 ω

χ1 1 ω ω2 −1 ρ ρ−1

χ5 1 ω2 ω −1 ρ−1 ρ

.

Here ω = e
2πi
3 and rho = e

2πi
6 . The partitions of the classes and characters are given by

the lines, i.e. B1 = {e}, B2 = {t2, t4}, etc. Now when we fuse using the construction

above we obtain the character table of S3:

{e} {(1, 2, 3)} {(1, 2)}

χ0 1 1 1

χ1 1 1 −1

χ2 2 −1 0

.

11 An Additional Example

All of the examples we have done so far in this thesis have had to do with the fusion

of C6 to S3. In this chapter we shall explore the fusion of C12 to A4. First let H = C12

with generator t, and let G = A4. Then the conjugacy classes of G are:

C1 = {1},

C2 = {(12)(34), (13)(24), (14)(23)},

C3 = {(134), (142), (243), (123)},
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C4 = {(132), (143), (234), (124)}.

To obtain the fusion we let

D1 = 1,

D2 = {t3, t6, t9},

D3 = {t, t4, t7, t10},

D4 = {t2, t5, t8, t11}.

Then one can check that the algebra

R = CD1 ⊕ CD2 ⊕ CD3 ⊕ CD4

is isomorphic to Z(CG), with isomorphism φ : R 7→ Z(CG), where:

φ(Di) = Ci, 1 ≤ i ≤ 4.

The character table of C12 is:
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1 t3 t6 t9 t t4 t7 t10 t2 t5 t8 t11

χ0 1 1 1 1 1 1 1 1 1 1 1 1

χ3 1 ω9 ω6 ω3 ω3 1 ω9 ω6 ω6 ω3 1 ω9

χ6 1 ω6 1 ω6 ω6 1 ω6 1 1 ω6 1 ω6

χ9 1 ω3 ω6 ω9 ω9 1 ω3 ω6 ω6 ω9 1 ω3

χ1 1 ω3 ω6 ω9 ω1 ω4 ω7 ω10 ω2 ω5 ω8 ω11

χ4 1 1 1 1 ω4 ω4 ω4 ω4 ω8 ω8 ω8 ω8

χ7 1 ω9 ω6 ω3 ω7 ω4 ω1 ω10 ω2 ω11 ω8 ω5

χ10 1 ω6 1 ω6 ω10 ω4 ω10 ω4 ω8 ω2 ω8 ω2

χ2 1 ω6 1 ω6 ω2 ω8 ω2 ω8 ω4 ω10 ω4 ω10

χ5 1 ω3 ω6 ω9 ω5 ω8 ω11 ω2 ω10 ω1 ω4 ω7

χ8 1 1 1 1 ω8 ω8 ω8 ω8 ω4 ω4 ω4 ω4

χ11 1 ω9 ω6 ω3 ω11 ω8 ω5 ω2 ω10 ω7 ω4 ω1

where ω is a primitive 12th root of unity. Note that the ordering of the labels of the

table is slightly unconventional, but will allow us to see the fusion more clearly. Using

the the proposition from the last section, we see the coefficients of the idempotents

of Z(CH) are simply the entries of the rows of the character table, normalized by a

constant multiplier of 1
12

, e.g. the first couple of idempotents are:

ε0 =
1

12
(1 + t3 + t6 + t9 + t1 + t4 + t7 + t10 + t2 + t5 + t8 + t11),

ε3 =
1

12
(1 + ω9t3 + ω6t6 + ω3t9 + ω3t+ t4 + ω9t7 + ω6t10 + ω6t2 + ω3t5 + t8 + ω9t11),

...

The character table of A4 is:
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1 (12)(34) (123) (132)

τ1 1 1 1 1

τ2 1 1 J J2

τ3 1 1 J2 J

τ4 3 −1 0 0

where J is a primitive third root of unity. Then the idempotents of Z(CG) are:

δ′1 =
1

12
(C1 + C2 + C3 + C4),

δ′2 =
1

12
(C1 + C2 + JC3 + J2C4),

δ′3 =
1

12
(C1 + C2 + J2C3 + JC4,

δ′4 =
1

4
(3C1 − C2).

Now let S be the sub-S-ring of Z(CH) that is isomorphic to Z(CG). The

S-ring basis for S is:

d1 = 1,

d2 = t3 + t6 + t9,

d3 = t+ t4 + t7 + t10,

d4 = t2 + t5 + t8 + t11.

The Wedderburn basis is

δ1 =
1

12
(d1 + d2 + d3 + d4),

δ2 =
1

12
(d1 + d2 + Jd3 + J2d4),
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δ3 =
1

12
(d1 + d2 + J2d3 + Jd4),

δ4 =
1

4
(3d1 − d2).

Let ei = ti. Then we define σ : Z(CH) 7→ S by

σ(e1) = d1,

σ(ei) =
d2

3
for i = 3, 6, 9,

σ(ei) =
d3

4
for i = 1, 4, 7, 10,

σ(ei) =
d4

4
for i = 2, 5, 8, 11.

Then we can check that σ(ε0) = δ1, σ(ε4) = δ2, σ(ε8) = δ3, and σ(ε1 + ε2 + ε3 + ε5 +

ε6 + ε7 + ε9 + ε10 + ε11) = δ4. Thus this map gives us the fusion of the parastrophic

forms as well as the simplified version of the magic rectangle condition.

12 Translation

As mentioned in the introduction many of the techniques used in this paper were

inspired by work done by Frobenius in his seminal work On Commuting Matrices. As

there is no translation of the work in the literature, we have provided a translation

here. In the translation we have attempted to retain as much of Frobenius’ original

notation and numbering as possible to provide consistency with the original work.

Note that not only does this work provide some of the basis for the development of

character theory, but also gives many standard results in linear algebra. Topics such

as the characteristic and minimal polynomials are covered in detail. In fact this paper

provides one of the first proofs of the Cayley-Hamilton theorem.

38



On Commuting Matrices

In 1884 Weierstrass published his work Zur Theorie der aus n Haupteinheiten gebilditen

complexen Groessen in the Goettinger Nachrichten, the results of which he had al-

ready given in his lectures. In 1885 Dedekind presented his own investigations con-

cerning the subject in a paper of the same name, results which he had already to some

extent shared in the second publication of Dirichlet’s lectures on Number Theory. As

Dedekind points out, however, these findings can also be viewed as consequences of

the following algebraic theorem. This theorem, however, is more general, than the

form it takes in the previous papers and can be expressed in purely algebraic form as

follows:

I. Suppose aαβγ (α, β = 1, 2, . . . n; γ = 1, 2, . . .m) are any mn2 quantities that

satisfy the following condition:

∑
λ

aαλγaλβδ =
∑
λ

aαλδaλβγ,

and let

aαβ =
∑
γ

aαβγxγ.

Then the determinant of n-th degree |aαβ| is a product of n linear functions of m

independent variables x1, x2, . . . xm.

The results of this theorem can be made even more general. In fact Study

pointed out in his paper Ueber Systeme von complexen Zahlen (Goettinger Nachrichten,

1889) that many of these earlier results were different from known theorems regard-

ing linear transformations only in their presentation. I will therefore use the tools

for matrices that I developed for my work Ueber lineare Substitutionen und bilineare

Formen (Crelle’s Journal, Bd. 84), (which I will henceforth cite as L). Using these
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constructions in L, the theorem can be formulated in the following manner:

II. Let f(x,y,z,. . . ) be a function of m variables, let A, B, C, . . . be m matri-

ces that commute with each other, and let a1, a2, a3, . . . (b1, b2, b3, . . . ; c1, c2, c3, . . .

respectively) be roots of the characteristic polynomial of A (B, C respectively). These

roots can be ordered so that the determinant of f(A,B,C,. . . ) is equal to the product

f(a1, b1, c1, . . . )f(a2, b2, c2, . . . )f(a3, b3, c3, . . . ).

This ordering of the roots is in fact independent of the choice of f.

The application of this theorem to the function r − f(x, y, z, . . . ), where r is

a constant, gives the following seemingly more general theorem.

III. The quantities f(a1, b1, c1,. . . ),f(a2, b2, c2, . . . ), f(a3, b3, c3, . . . ). . . are the

roots of the characteristic polynomial of the matrix f(A,B,C,. . . ).

Since the ordering of the roots is the same for every function f, this theorem

gives the method for defining this ordering. Namely, if x, y, z, .. are independent

variables, then the application of the theorem to the matrix Ax + By + Cz + . . . ,

shows that

a1x+ b1y + c1z + . . . , a2x+ b2y + c2z + . . . , a3x+ b3y + c3z + . . . , . . .

are the the roots of the characteristic polynomial of, thus establishing the desired

ordering. This theorem is a generalization of the following theorem developed in L

§3, III:

IV. Let r1, r2, . . . rn be the roots of the characteristic polynomial of the matrix

A, then f(r1), f(r2), . . . f(rn) are the roots of the characteristic polynomial of the

matrix f(A).

If one accepts this simple theorem as proven, then to obtain Theorem III one
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needs only the following special case:

V. Let A and B be commuting matrices, and let x and y be two variables, then

the roots of the characteristic polynomial of the the matrix Ax+By are linear functions

of x and y.

If we accept this theorem as proven, then the determinant of the matrix Ir +

Ax + By is equal to (r + a1x + b1y)(r + a2x + b2y) . . . . Let x = 1 and y = 0,

then a1, a2, . . . are the roots of the characteristic polynomial of A, or for the sake of

brevity, the roots of A. Similarly for b1, b2, . . . and B. If the matrix C commutes with

A and B, then C commutes with Ax + By as well. Therefore the roots a1x + b1y,

a2x + b2y, . . . of Ax + By and the roots c1, c2, . . . of C can be ordered so that the

roots of (Ax + By) + Cz are equal to (a1x + b1y) + c1z, (a2x + b2y) + c2z, . . . . It is

clear that this theorem can be extended to an arbitrary number of matrices, which

all commute with each other. Also by theorem L §1, II the theorem remains valid if

one adds in arbitrary functions of A,B,C, . . . to the system. In particular if one adds

A2 to the system, and if h1, h2, . . . are the roots of A2 in the proper ordering, then

aνx+ bνy+ cν + · · ·+ hνu (ν = 1, 2, . . . n) are the roots of Ax+By+Cz+ · · ·+A2u.

Let y = z = ... = 0, then aνx + hnuu are the roots of Ax + A2u. By theorem IV,

since aνx+ hνu = aνx+ a2
νu, hν = a2

ν . Similarly the roots of the matrix

Ax+By + Cz + · · ·+ A2u+B2v + ABw

are equal to

aνx+ bνy + cνz + · · ·+ a2
νu+ b2

νv + hνw

where h1, h2, . . . hn are the roots of AB = BA in appropriate order. On the other

hand, the roots of the matrix pA+ qB are equal to paν + qbν . Thus the roots of the

matrix Ax+By+Cz+ · · ·+(pA+qB)2 are equal to aνx+bνy+cνz+ · · ·+(paν+qbν)
2.

These two results show that hν = aνbν . By the decomposition of the determinant of
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Ax+By into linear factors, one sees that the ordering a1, a2, . . . , an corresponds to the

ordering b1, b2, . . . , bn. Thus a1b1, a2b2, . . . , anbn is the corresponding ordering of the

roots of AB. Similarly (a1b1)c1, (a2b2)c2, . . . (anbn)cn is the corresponding ordering of

the roots of (AB)C. Thus we obtain theorem III for an arbitrary product of matrices,

and similarly for an arbitrary linear combination of such products.

Thus, as a result of these simple comments, we simply have to worry about

the proof of theorem V. In so doing I will repeat the work of L as little as possible

and simultaneously take the opportunity to prove some of the results of that paper,

that I proved there using infinite series, in a simpler manner.

The above theorems I was already aware of at the time of the publication of

L, as can be seen in some of the implications found therein. A portion of my results

on commuting matrices have been put together in L §7, Theorems XII through XV. I

have not based this paper off of those results for the following reason: If the matrices

A,B,C, . . . are functions of the matrix R, then any two of them commute with each

other. For this case, all the presented theorems are consequences of theorem IV. They

would be trivial assuming the following theorem were true: If the matrices A,B,C . . .

commute with each other, then they can all be represented as functions of a single

matrix R. This theorem would be analogous to the well known theorem of Abel out

of the theory of algebraic equations. In the algebraic version, one can choose an R

that is a function of A,B,C.... But this is not true for the general case. Because if:

A =


0 1 0

0 0 0

0 0 0

 , B =


0 0 1

0 0 0

0 0 0

 ,

then A2 = B2 = AB = BA = 0. Thus every function of A and B has the form

F = aA+ bB + cI, and every function of F has the form pI + qF .

Whether the addition of this requirement would make theorem true, I have
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not been able to determine. Together with this question is another question regarding

commuting matrices, which I have so far not solved, namely the question regarding

the composition of m linear independent matrices (of degree n), which commute with

each other, and the greatest value, that m can have.

§1.

If the determinant a = |A| is nonzero, then there is an inverse matrix A−1,

which is uniquely determined by the conditions:

AA−1 = A−1A = I. (12.1)

Multiply by a, to get the adjoint form aA−1, that will be represented by A. It is made

up of the elements bαβ, where bαβ corresponds to the cofactor of aβα, and therefore

is an integer function of the elements of A, and thus can be constructed when a 6= 0.

The adjoint satisfies the following equations

AA = AA = aI. (12.2)

The determinant

|rE − A| = φ(r) (12.3)

is called the characteristic function. The equation φ(r) = 0 is called the characteristic

equation of A. The adjoint form of rE−A is a matrix F , whose elements are integer

functions of r of the (n− 1)th degree, and that thus can be written as F (r). Then:

(rE − A)F (r) = F (r)(rE − A) (12.4)
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and

(rE − A)F (r) = φ(r)E. (12.5)

Write

F (r) = F0 + F1r + F2r
2 + . . .

according to the powers of r. Then from equation (4.) we get that the matrices

F0, F1, F2, . . . commute with A. Let

φ(r) = a0 + a1r + a2r
2 + · · ·+ anr

n.

Then from equation (5.) we get the equations:

−AF0 = a0I,

−AF1 + F0 = a1I,

−AF2 + F1 = a2I,

. . .

−AFn−1 + Fn−2 = an−1I,

Fn−1 = anI.

IfB is another matrix, then multiply these equations on the right byB0, B1, . . . Bn,

and add them together. Let

F (B) = F0 + F1B + · · ·+ Fn−1B
n−1.
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Then we obtain

−AF (B) + F (B)B = φ(B) (12.6)

Because of the particular difficulty, which forces one in the construction of

F (B) to pay attention to the place of B, this result is only useful when B commutes

with F0, F1, F2 . . . . Thus:

(B − A)F (B) = φ(B). (12.7)

Out of equation (5.) we get another equation, simply by replacing r with a matrix B

that commutes with A and F (r). I made ample use of this principle in my work L.

Let B = A, then one obtains the equation

φ(A) = 0. (12.8)

This fundamental theorem was first found by Cayley, and I believe, was first

published in A Memoir on the Theory of Matrices, Phil. Trans. vol. 148., albeit

without a general proof. The above form was proven by Pasch in, Ueber bilineare

Formen und deren geometrische Anwendung, Math. Ann. Bd. 38, S. 48. Using the

same methods one can obtain the second fundamental theory of matrix theory:

VI. Let ζ(r) be the greatest common divisor of all the co-factors of the (n-1)

degree of the matrix rI-A, and let ψ(r) = φ(r)/ζ(r), then

ψ(A) = 0 (12.9)

is the equation of least degree, for which A is a root. And if χ(A) = 0, then ψ(r)

divides χ(r).
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Define the entire function F of the variables r and s:

(φ(r)− φ(s))/(r − s) = F (r, s) = F (s, r).

From the equation

φ(r)− φ(s) = (r − s)F (s, r),

we get

φ(r)I − φ(A) = (rI − A)F (A, r),

so by (8.) we see that

(rI − A)F (A, r) = φ(r)I (12.10)

and so

(rI − A)−1 = F (A, r)/φ(r). (12.11)

The adjoint matrix of rI −A is thus F (A, r), and is thus an entire function of

A, whose elements are entire functions of r. It follows that F0, F1, F2, . . . are entire

functions of A, so B commutes with all of these matrices as long as B commutes with

A. With this condition we get the following equation (7.):

(B − A)F (A,B) = φ(B).

The elements of the matrix F (A, r) are the cofactors of (n− 1)th degree from

rE − A, and are all divisible by ψ(r). If one orders the determinant (3.) according

to the elements of a row, one realizes, that φ(r) is also divisible by ψ(r). Accordingly
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the elements of the matrix

F (A, r)/ζ(r) = G(A, r)

that is a entire function of A, are entire functions of r. And thus by (10.)

(rI − A)G(A, r) = ψ(r)I.

Using the principle developed in detail above one obtains a proper equation, by re-

placing r with a matrix B that commutes with A. If B = A, then one obtains

equation (9.).

On the other hand if χ(r) is a polynomial satisfying χ(A) = 0. Define H(r, s):

(χ(r)− χ(s))/(r − s) = H(r, s) = H(s, r),

then

χ(r)I − χ(A) = (rI − A)H(A, r),

thus

(rIA)H(A, r) = χ(r)I,

and consequently

χ(r)G(A, r) = ψ(r)H(A, r).

The matrix G(A, r) is made up of n2 elements gαβ(r), that are entire functions of r

and by hypothesis have no common divisors. The elements of H(A, r) are also entire

functions of r. From the n2 equations

χ(r)gαβ(r) = ψ(r)hαβ(r),
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it follows that χ(r) is divisible by ψ(r). Consequently ψ(A) = 0 the equation of least

degree that has A as a root, and every other equation that has A as a root has the

form ψ(A)g(A) = 0, where g(r) is an entire function on r. In particular, ψ(r) divides

φ(r). By differentiating the determinant by r, one notices that every root of ψ(r) = 0

is also a root of φ(r) = 0, and thus a power of ψ(r) is divisible by φ(r).

I first published Theorem VI in L. §3, and proved using infinite series. I alluded

to the preceding proof, however, in L. §3 and particularly in §13. This consequential

theorem has so far received little attention. The special case where ψ(r) is a divisor

of rm− 1, which I paid special attention to in L. §3, VIII, was proven by Lipschitz in

Beweis eines Satzes aus der Theore der Substitution, Acta Math. BD. X. His proof

was similar to the above proof in the important aspects. Kronecker also handled this

theorem in detail in Ueber die Composition der Systeme von n2 Groessen mit sich

selbst, Sitzungber. 1890. These authors failed to notice, however, that I had already

proven this theorem as a special case of theorem VI. Also the English and American

authors, with whom I have worked on matrix theory, have largely ignored my work,

along with the great work by Laguerre, Sur le calcul des systemes lineaires, Journ.

de l’ecole polyt. tom. 25 cah. 42 p. 215. Another, less simple, proof was given by E.

Weyr, Zur Theorie der bilinearen Formen, Monatshefte fuer Math. und Physik, Bd.

1 S. 187.

§2.

If a matrix satisfies the equation Ak = 0, then ψ(r) is a divisor of rk. So

ψ(r) = rm is a power of r, and consequently φ(r) = rn. Conversely, if zero is the only

root of the characteristic polynomial, then An = 0. The following theorem applies to

such matrices. The theorem is a special case of Theorem V, and the same proof from

L. §3, VII is repeated here:
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VII. Let A and B be commuting matrices, and A nilpotent, then the determi-

nant of A+B equals the determinant of B.

From the equation rn = φ(r) = |rI − A| it follows that if r = −1, then

|A+E| = 1. Let s be an arbitrary quantity, then (B + sI)−1 commutes with A. Let

C = (B+sI)−1A, then because of this commutating property Cn = (B+sI)−nAn = 0,

and it follows that |C+E| = 1. Since (B+sI)(C+E) = A+B+sI, |B+sI||C+E| =

|A+B + E|. Let s = 0, then |B| = |A+B|.

The meaningful contributions that Weierstrass made to the work of Cauchy

and Jacobi is that he taught how to decompose even nilpotent matrices, or more

generally matrices whose characteristic equation only has one root, unless the least

power that vanishes is the n-th. Theorem VII makes it possible to continue the

following development without appeal to this decomposition.

§3.

Let a, b, c, . . . be the roots of the characteristic function of A:

φ(r) = (r − a)α(r − b)β(r − c)γ . . . .

Then according to a generalization of Lagrange’s Interpolation Formula there in a

unique entire function of degree n− 1, which is divisible by (r − b)β(r − c)γ . . . , and

for which f(r)−1 is divisible by (r−a)α. Define similarly the functions g(r), h(r), . . .

for the roots b, c, . . . . Then

f(r) + g(r) + h(r) + · · · = 1 (12.1)

because the difference between the left and side is a entire function of degree n − 1,
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that is divisible by (r − a)α, (r − b)β, (r − c)γ, . . . and thus by the entire function of

degree n, φ(r).

The function f(r) can also be defined as the coefficient of (s− a)−1 in

φ(r)− φ(s)

r − s
1

φ(s)
. (12.2)

The coefficient of s−1 is equal to 1. Because the function is infinite for s = a, b, c, . . .

but not for s = r, then the residue theorem gives equation (1.). Because (2.) is an

entire function of r, then the residues of f(r), g(r), h(r), . . . are also entire functions

of degree at most n− 1 of r. The expansion of the second term of the difference

φ(r)

(r − s)φ(s)
− 1

r − s

by powers of s − a includes no negative powers of s − a. The expansion of the first

term is,

φ(r)

(
1

r − a
+

s− a
(r − a)2

+
(s− a)2

(r − a)3
+ . . .

)(
a0

(s− a)α
+

a1

(s− a)α−1
+ . . .

)
,

if the last series is the expansion of 1
φ(s)

. Thus f(r) = φ(r)ζ(r)
(r−a)α

, where ζ(r) is an

entire function of r of degree α− 1. Consequently f(r) is divisible by φ(r)(r − a)−α.

Similarly g(r) is divisible by φ(r)(r−b)−β, . . . . And since every function g(r), h(r), . . .

is divisible by (r − a)α, by (1.) f(r)− 1 is divisible by (r − a)α.

I will now change the notation and denote the n roots of φ(r) by a1, a2, . . . , an,

the distinct roots by a1, a2, . . . , am, and their corresponding functions of degree n− 1

by φ1(r), φ2(r), . . . , φm(r). By equation (1.):

∑
φλ(r) = 1 (12.3)
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and consequently

∑
φλ(A) = E. (12.4)

Further we know that φλ(r)(φλ(r) − 1) is divisible by φ(r), and if χ does not equal

λ, by φχ(r)φλ(r) as well. Therefore:

(φλ(A))2 = φλ(A), φχ(A)φλ(A) = 0. (12.5)

If

∑
aλφλ(A)− A = A0, (12.6)

then by Theorem IV the roots of the characteristic equation of A0 are all zero, and

thus An0 = 0. The characteristics expressed by equations (4.) and (5.) of the ma-

trices φλ(A) were also handled by Study, Recurrirende Reihen und bilineare Formen,

Monatshefte fuer Math. und Physik, Bd. II. I also obtained these results in a different

manner in my work Ueber die schiefe Invariante einer bilinearen oder quadratischen

Form, Crelle’s Jounn. Bd. 86, §6.

If B is a matrix that commutes with A and x1, x2, . . . xm and y are variables,

then

(x1I + yφ1(A)B) (x2I + yφ2(A)B) . . . (xmI + yφm(A)B)

= x1x2 . . . xm

(
I +

yφ1(A)B

x1

+
yφ2(A)B

x2

+ · · ·+ yφm(A)B

xm

)
.

All other elements elements in the development of the product vanish. For example,

φ1(A)Bφ2(A)B = φ1(A)φ2(A)B2 = 0. If one multiplies the matrix on the right hand
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side with
∑
xλφλ(A), then by (5.) we get:

∑
xλφλ(A) + y (φ1(A)B + φ2(A)B + · · ·+ φm(A)B) .

By (4.) then we get

(∑
xλφλ(A)

)∏
(xλI + yφλ(A)B) =

(
yB +

∑
xλφλ(A)

)∏
(xλ), (12.7)

and therefore the determinants of of these two matrices are equal. The determinant

of xλI + yφλ(A)B is the homogeneous characteristic function −φλ(A)B, and is thus

a entire homogeneous function of n-th degree of xλ and y, where the coefficient of

xnλ is equal to 1. The determinant of
∑
xλφλ(A) is by theorem IV a product of n

factors
∑

λ xλφλ(ax). The determinant of the identity does not vanish, because by

(4.) if x1 = x2 = · · · = xm = 1, then the determinant is also 1. Consequently the

determinant of yB+
∑
xλφλ(A) is nonzero and a product of n linear functions of the

variables x1, x2, . . . xm and y. Let xλ = xaλ − r, then by (4.) and (6.)

∑
xλφλ(A) = x

∑
aλφλ(A)− rI = xA− rI + xA0.

Because A0 commutes with xA + yB − rI and An0 = 0, then by §2 the determinant

of xA+ yB − rI + xA0 is equal to the determinant of xA+ yB − rI. Therefore this

determinant is a product of n linear functions of x, y, and r. Thus we get Theorem

V, from which the more general Theorem III follows.

§4.

Let A1, A2, . . . Am be m matrices, which commute with each other. For γ =
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1, 2, . . .m let

aαβγ (α, β = 1, 2, . . . n)

be the elements of the matrix Aγ, then since AγAδ = AδAγ

∑
λ

aαλγaλβδ =
∑
λ

aαλδaλβγ. (12.1)

Then if x1, x2, . . . xm and r are variables:

∣∣∣∣∣∑
γ

Aγxγ − rI

∣∣∣∣∣ =
∏
χ

(r
(χ)
1 x1 + · · ·+ r(χ)

m xm − r) (12.2)

where r
(1)
γ , r

(2)
γ , . . . r

(n)
γ are the roots of the characteristic equation of Aγ. Let

A =
∑
γ

Aγxγ, aαβ =
∑
γ

aαβγxγ,

then

r(χ) =
∑
γ

r(χ)
γ xγ (12.3)

are the roots of A. By formula (2.) the roots of the matrices A1, A2, . . . Am and A

are ordered in a particular manner, and for notational comfort let r
(χ)
γ (r(χ) respec-

tively) be the χ-th root of Aγ (A respectively). Let f(u1, u2, . . . um) be a function of

u1, u2, . . . um, then f(r
(χ)
1 r

(χ)
2 , . . . r

(χ)
m ) is the χ-th root of the matrix f(A1, A2, . . . Am).

By setting coefficients equal to each other we get from (2.)

∑
χ

r(χ) =
∑
α

aαα =
∑
α,λ

aααλxλ
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and

′∑
χ,λ

r(χ)r(λ) =
′∑
α,β

(aααaββ−aαβaβα) =
′∑
α,β

(∑
χ

aααχxχ

)(∑
λ

aββλxλ

)
−

(∑
χ

aαβχxλ

)(∑
l

ambdaaβαλxλ

)
,

consequently we get

∑
χ

(
r(χ)
)2

=
∑
α,β,χ,λ

aαβχaβαλxχxλ. (12.4)

Let

∑
α,β

aαβχaβαλ = cχλ = cλχ, (12.5)

then

∑
χ

(
r(χ)
)2

=
∑
α,β

cαβxαxβ, (12.6)

thus

cαβ =
∑
χ

r(χ)
α r

(χ)
β . (12.7)

Now add to hypotheses (1.) the additional conditions that m = n, and that

the quantities

aαβγ = aαγβ. (12.8)

Then the elements g%σ of the matrix AβAγ = AγAβ equal

g%σ =
∑
α

a%αβaασγ =
∑
α

a%αγaασβ.
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Since the first expression remains unchanged when σ and γ are switched, the same is

true for the second expression. Consequently

g%σ =
∑
%ασ

aαγβ =
∑
α

aαβγa%σα,

thus

AβAγ = AγAβ =
∑
α

aαβγAα. (12.9)

By Theorem III the χ-th root of
∑

α aαβγAα equal to
∑

α aαβγr
(χ)
α and the roots of

AβAγ equal to r
(χ)
β r

(χ)
γ and consequently from (9.):

r
(χ)
β r(χ)

γ =
∑
α

aαβγr
(χ)
α . (12.10)

According to Theorem III the χ-th root of
∑

α aαβγAα equals
∑

α aαβγr
(χ)
α and

the χ-th root of AβAγ equals r
(χ)
β r

(χ)
γ , and consequently from (9.):

r
(χ)
β r(χ)

γ =
∑
α

aαβγr
(χ)
α . (12.11)

The equations

rβrγ =
∑
α

aαβγrα (12.12)

between the unknowns r1, r2, . . . , rn have thus n systems of solutions

r1 = r
(χ)
1 , r2 = r

(χ)
2 , . . . rn = r(χ)

n (χ = 1, 2, . . . n) (12.13)

and no other if one ignores the solution r1 = r2 = · · · = rn = 0, in case this solution
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is not included in (12.). Let
∑
rγxγ = r, then

rβr =
∑
α

aαβrα. (12.14)

Consequently the determinant

|A− rI| =
∏
χ

(R
(χ)
1 x1 + · · ·+ r(χ)

n xn − r)

vanishes. Thus r =
∑
rγxγ is equal to one of the n functions

∑
γ r

(χ)
γ xγ, or is made up

of one of the equations in (12.). These comments lead to the following theorem, that

differs from our previous results, in that no inequality is present in the hypotheses:

VIII. If the n3 quantities aαβγ satisfy the equations

aαβγ = aαγβ,
∑
λ

aαλγaλβδ =
∑
λ

aαλδaλβγ,

then the coefficients of the linear factors, into which the determinant

∣∣∣∣∣∑
γ

aαβγxγ − rIαβ

∣∣∣∣∣ =
∏
χ

(r
(χ)
1 x1 + · · ·+ r(χ)

n xn − r)

decomposes, satisfy the equations

rβrγ =
∑
α

aαβγrα

and are the only solution of the equations.

By formula (7.) we get

|cαβ| = |r(χ)
α |2 (12.15)

from which we get the wonderful theorem of Dedekind:
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IX. If the n3 quantities aαβγ satisfy the equations

aαβγ = aαγβ,
∑
λ

aαλγaλβδ =
∑
λ

aαλδaλβγ,

and if the determinant made up of the quantities

cχλ =
∑
α,β

aαβχaβαλ =
∑
αβ

aααβaβχλ

is nonzero, then the equations

rβrγ =
∑
α

aαβγrα

have exactly n distinct solutions rα = r
(χ)
α , and the determinant made up of these

solutions is nonzero.

If |r(χ)
α | = 0, then one can order the the quantities x1, x2, . . . xn, that are not

all zero, so that the n quantities (3.), that are the roots of the characteristic equation

of A, simultaneously vanish, and consequently a power of A vanishes. The necessary

and sufficient conditions for the determinant to vanish is that there is a matrix in the

representation
∑
Aγxγ which is nilpotent but nonzero (compare Weierstrass, a. a.

O. S. 402).

If |r(χ)
α | = 0, then (s

(χ)
α ) is the complementary system to (r

(χ)
α ), where the

complement comes from inversion. So if eαβ are the elements of the identity matrix

I, then:

∑
χ

r(χ)
α s

(χ)
β = eαβ,

∑
α

r(χ)
α s(λ)

α = eχλ. (12.16)
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Then by (10.) we get

aαβγ =
∑
χ

s(χ)
α r

(χ)
β r(

γχ)) (12.17)

and

s(χ)
α r(χ)

γ =
∑
β

aαβγs
(χ)
β , (12.18)

and thus

s(χ)
α r(χ) =

∑
β

aαβs
(χ)
β . (12.19)

By these equations we can completely describe the behavior of the n quantities

s
(χ)
1 , s

(χ)
2 , . . . s(χ)

n .

Every root, r, of the equation |A − rI| = 0 corresponds to n quantities s1, s2, . . . sn,

whose behavior is described by the equations.

sαr =
∑
β

aαβsβ. (12.20)

Let

|reαβ − aαβ| = φ(r), (12.21)

and let this determinant the cofactors corresponding to the elements reαβ−aαβ equal

φαβ(r). Then if r is a root of the equation φ(r) = 0, then by equations (13.) and

(19.), φαβ = ρrαsβ, where ρ is independent of α and β. However if φ′(r) =
∑
φαα
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then by (15.)
∑
rαsα = 1. Consequently if ρ = φ′(r), then

φαβ(r) = φ′(r)rαsβ. (12.22)

If r is a variable, then by decomposition into partial fractions

φαβ(r)

φ(r)
=
∑
χ

φαβ(r(χ))

φ′(r(χ))

1

r − r(χ)
.

Consequently the determinant (20.) contains

φαβ(r) = φ(r)
∑
χ

r
(χ)
α s

(χ)
β

r − r(χ)
(12.23)

Let r
(χ)
α be a system of n2 quantities, whose determinant is nonzero, then the

aαβγ defined in equation 16 are the most general system that satisfy the conditions

of theorem IX.
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