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abstract

Planar CAT(k) Subspaces

Russell M. Ricks

Department of Mathematics

Master of Science

Let M2
k be the complete, simply connected, Riemannian 2-manifold of constant curvature

k ≤ 0. Let E be a closed, simply connected subspace of M2
k with the property that every

two points in E are connected by a rectifiable path in E. We show that E is CAT(k) under
the induced path metric.
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Chapter 1. Introduction

Part of geometric group theory is the study of CAT(k) spaces, in particular CAT(0) spaces.

The Russian geometer A. D. Alexandrov gave a characterization for a geodesic metric space

to have curvature bounded above by some k ∈ R. This characterization describes how “fat” a

geodesic triangle can be in the space, and it is now called the CAT(k) inequality (the letters

C, A, and T being chosen in honor of Cartan, Alexandrov, and Toponogov). A geodesic

triangle which satisfies the CAT(k) inequality is called CAT(k), and a geodesic space in

which all geodesic triangles are CAT(k) is called a CAT(k) space.

The CAT(k) inequality gives a surprising amount of information about the overall large-

scale geometry of a CAT(k) space, especially for k ≤ 0. Since for k < k′, every CAT(k)

space is also a CAT(k′) space, a negative value of k gives more information about the space,

while a positive value gives less information. In particular, a CAT(k) space with k < 0 is in

a sense negatively curved, and its geometry inherits some important properties of hyperbolic

geometry. Similarly, a CAT(0) space is nonpositively curved, and its geometry inherits some

important properties that both Euclidean and hyperbolic geometry have. A CAT(k) space

with k > 0 may have some positive curvature, and its geometry may reflect some spherical

properties, but the upper bound still provides some control on the wildness of the space.

Because of the extra information gained by knowing that a space is CAT(k), an important

part of the study of CAT(k) spaces is to provide theorems that recognize whether a given

space is CAT(k). One goal of these theorems is to provide a way to more easily construct

examples of CAT(k) spaces, by determining when a certain type of construction yields a

CAT(k) space. The goal of this paper is to provide another class of easily-constructed

examples for CAT(k) spaces with k ≤ 0. In particular, the main theorem is the following.
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Theorem 1.1. Let M2
k be the complete, simply connected, Riemannian 2-manifold of con-

stant curvature k ≤ 0. Let E be a closed, simply connected subspace of M2
k with the property

that every two points in E are connected by a rectifiable path in E. Then E is CAT(k) under

the induced path metric.

The simplest case of this construction is with k = 0, where the resultant spaces are

“reasonable” subspaces of the Euclidean plane. These spaces are therefore easy to visualize,

and they look very CAT(0). However, proving “obvious” theorems in the plane is not always

as trivial as one might expect. For example, the Jordan Curve Theorem states that a simple

closed curve in the plane bounds exactly two open regions, one of which is bounded, and

the curve is precisely the boundary of each region; though the Jordan Curve Theorem looks

obvious, it is actually fairly difficult (and long) to prove. The proof we give of Theorem 1.1

relies heavily on the Jordan Curve Theorem.

For Theorem 1.1, one could easily forget the necessity of establishing the equivalence of

the obvious notion of angles in the space with the more frequently-used Alexandrov angle

(this is proven in Theorem 3.11). Section 3.3 is devoted almost entirely to proving the

equivalence and, in fact, represents more than half of the new material (by space consumed,

at least) in the paper. On the other hand, the results in Section 3.2, needed to even define

the “obvious” angles of Section 3.3, all seem fairly obvious and have simple proofs, yet they

were much harder to find (both their statements and their proofs).

See [2] for an alternate treatment of Theorem 1.1 with k = 0, and where E is the set of

finite-distance points in the homeomorphic image of a closed disk.
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Chapter 2. Properties of CAT(k) Spaces

2.1 The Euclidean Plane and the Hyperbolic Plane

Let M2
k be the complete, simply connected, Riemannian 2-manifold of constant curvature k.

Then M2
0 is the Euclidean plane E2 (R2 with the standard Euclidean metric). For k < 0, the

space M2
k can be obtained from the hyperbolic plane H2 = M2

−1 by multiplying all distances

by 1/
√
−k. Thus in many computations for k ≤ 0, only the cases k = 0 and k = −1 are

necessary.

The following standard results give a way to compute lengths and angles in E2 and H2;

the angles used here are the standard angles in the spaces. First, recall the Euclidean law

of cosines and the Euclidean law of sines.

Proposition 2.1 (Law of Cosines). Suppose a, b, and c are the side lengths of a Euclidean

triangle; let θ be the angle opposite the side of length c. Then

c2 = a2 + b2 − 2ab cos θ.

Proposition 2.2 (Law of Sines). Suppose a, b, and c are the side lengths of a Euclidean

triangle; let A, B, and C be the angles opposite the sides of length a, b, and c, respectively.

Then

sinA

a
=

sinB

b
=

sinC

c
.

In hyperbolic space, we have the following hyperbolic law of cosines. Both [3] and [4]

give a proof.

Proposition 2.3 (Hyperbolic Law of Cosines). Suppose a, b, and c are the side lengths of

3



a hyperbolic triangle; let θ be the angle opposite the side of length c. Then

cosh c = cosh a cosh b− sinh a sinh b cos θ.

Also, we have the following hyperbolic law of sines (proven in [4]).

Proposition 2.4 (Hyperbolic Law of Sines). Suppose a, b, and c are the side lengths of a

hyperbolic triangle; let A, B, and C be the angles opposite the sides of length a, b, and c,

respectively. Then

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
.

Another classical fact of Euclidean geometry is that, given any line L and point p not on

L, there is a unique line L′ parallel to L (i.e., L′ does not intersect L) that passes through

the point p. Moreover, the metric distance d(L,L′) = inf x∈L
y∈L′

d(x, y) between L and L′ equals

the distance between p and L′, and the line segment from p to the point q ∈ L closest to p

meets both L and L′ at an angle of π/2.

Hyperbolic geometry has parallel (non-intersecting) lines, but they are not uniquely de-

fined by a line and a point, as in Euclidean geometry. However, given a line L ⊂ H2 and

a point p ∈ H2 \ L, let K be the line segment from p to the point q ∈ L closest to p; then

there is a unique line L′ in H2 such that p ∈ L′ and the angle between L′ and K is π/2 on

both sides. As a result, the metric distance between L and L′ equals the distance between

p and q. We will use this construction to simplify our arguments later (see Definition 3.3).

Finally, the following result is often useful in constructing CAT(k) spaces. The statement

here follows [3, pp. 25-26], where it is also proved; however, here we consider only k ≤ 0,

which simplifies the statement slightly.

Proposition 2.5 (Alexandrov’s Lemma). Consider four distinct points A,B,B′, C ∈ M2
k .

Suppose that B and B′ lie on opposite sides of the line through A and C.

4



Consider the geodesic triangles 4 = 4(A,B,C) and 4′ = 4(A,B′, C). Let α, β, γ (resp.

α′, β′, γ′) be the angles of 4 (resp. 4′) at the vertices A,B,C (resp. A,B′, C). Assume that

γ + γ′ ≥ π. Then,

d(B,C) + d(B′, C) ≤ d(B,A) + d(B′, A).

Let 4 be a triangle in M2
k with vertices A,B,B

′
such that d(A,B) = d(A,B), d(A,B

′
) =

d(A,B′) and d(B,B
′
) = d(B,C) + d(C,B′). Let C be the point of [B,B

′
] with d(B,C) =

d(B,C). Let α, β, β
′

be the angles of 4 at the vertices A,B,B
′
. Then,

α ≥ α + α′, β ≥ β, β
′ ≥ β′ and d(A,C) ≤ d(A,C);

any on equality implies the others, and occurs if and only if γ + γ′ = π.

Figure 2.1: Alexandrov’s Lemma
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2.2 The CAT(k) Condition

Let 4 be a geodesic triangle (in some metric space) with side lengths a, b, and c. A geodesic

triangle in M2
k is called a comparison triangle for 4 in M2

k if the lengths of its sides are a,

b, and c. To describe the CAT(k) inequality, we will use the following fact (see [3, p. 24] for

a proof).

Proposition 2.6 (Existence of Comparison Triangles in M2
k ). Let a, b, and c be nonnegative

real numbers such that a ≤ b+c, b ≤ a+c, and c ≤ a+b. For every k ≤ 0, there exists some

geodesic triangle in M2
k with side lengths a, b, and c. Furthermore, this triangle is unique

up to isometry of M2
k .

Let 4 be a geodesic triangle with vertices p, q, and r. Let 4 be a comparison triangle

for 4 in M2
k with corresponding vertices p, q, and r. If x lies on the edge between p and q,

x lies on the edge between p and q, and d(x, p) = d(x, p), then x is called a comparison point

for x on 4.

Definition 2.7 (CAT(k) Inequality). Let 4 be a geodesic triangle in the metric space X,

and let 4 be the comparison triangle for 4 in M2
k . Then 4 is said to satisfy the CAT(k)

inequality if

d(x, y) ≤ d(x, y)

for all x, y ∈ 4 with comparison points x, y, respectively, on 4. If X is a geodesic space in

which all geodesic triangles are CAT(k), then X is said to be CAT(k).

The concept of a CAT(k) space is closely related to the Alexandrov angle at the vertex

of a geodesic triangle. Let X be a geodesic space, and let ∠(k)
p (q, r) be the angle at p in

the comparison triangle 4(p, q, r) in M2
k for 4(p, q, r). (Note that although the geodesics

between p, q, and r may not be unique, the lengths of all geodesics are equal, hence ∠(k)
p (q, r)

is also well-defined.) Now suppose σ : [0, 1] → X and τ : [0, 1] → X are constant-speed
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Figure 2.2: The CAT(k) Inequality

geodesic line segments emanating from the point p ∈ X, with σ(1) = q and τ(1) = r. The

Alexandrov angle between σ and τ is defined as

∠p(σ, τ) = lim
ε→0

sup
0<t,t′<ε

∠(0)
p (σ(t), τ(t′)).

If X is uniquely geodesic, then we say the Alexandrov angle at p between q and r is

∠p(q, r) = lim
ε→0

sup
0<t,t′<ε

∠(0)
p (σ(t), τ(t′)).

Although the Alexandrov angle is defined only in terms of comparison triangles in M2
0 = E2,

using comparison triangles in M2
k for any k would give the same result (see [3, p. 25]):

Proposition 2.8. Let X be a geodesic space and suppose σ : [0, 1] → X and τ : [0, 1] → X

are constant-speed geodesic line segments emanating from the point p ∈ X, with σ(1) = q

and τ(1) = r. Then for any k ∈ R,

∠p(q, r) = lim
ε→0

sup
0<t,t′<ε

∠(k)
p (σ(t), τ(t′)).
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The following fact about the Alexandrov angle is often very useful (see [3, p. 10]).

Proposition 2.9 (Triangle Inequality for Angles). Let X be a metric space and let c, c′ and

c′′ be three geodesic paths in X issuing from the same point p. Then,

∠(c, c′) ≤ ∠(c, c′′) + ∠(c′′, c′).

The CAT(k) inequality is equivalent to other conditions involving the Alexandrov angles

in geodesic triangles (see [3, p. 161-162]). We will use the following one.

Theorem 2.10. Let X be a geodesic metric space and k ≤ 0. Then X is CAT(k) if and

only if ∠p(q, r) ≤ ∠(k)
p (q, r) for every triple of distinct points p, q, r ∈ X.

For more on CAT(k) spaces, we refer the reader to [3] or [1].

Chapter 3. Planar Subspaces

Our goal in this section is to prove the main result (stated in the introduction):

Theorem (1.1). Let M2
k be the complete, simply connected, Riemannian 2-manifold of con-

stant curvature k ≤ 0. Let E be a closed, simply connected subspace of M2
k with the property

that every two points in E are connected by a rectifiable path in E. Then E is CAT(k) under

the induced path metric.

Note the following convention.

Convention. We will use the terms line and line segment to refer to standard geodesic lines

and geodesic line segments in M2
k . We will use geodesic and geodesic segment to refer to the

geodesics and geodesic segments in E under the induced path metric.

8



3.1 Unique Geodesics

Let E be a closed, simply connected subspace of M2
k with the property that every pair of

points in E are connected by a rectifiable path in E. Let d be the induced subspace metric

and d̄ the induced path metric on E. We will write Bd(p, r) and Bd(p, r), respectively, for

the open and closed balls of radius r about p ∈ E in the standard metric on M2
k .

Since E is closed in M2
k , we know (E, d) is complete. The proofs of the following two

more general results are provided for completeness.

Lemma 3.1. The induced path metric on a complete metric space is complete.

Proof. Let (X, d) be a complete metric space and (X, d̄) be the induced path metric on X.

Suppose {xn}∞n=1 is a Cauchy sequence in (X, d̄). Since d̄(x, y) ≥ d(x, y) for all x, y ∈ X, we

know {xn} is also Cauchy in (X, d). Hence xn converges under d to some x ∈ X. Now a

Cauchy sequence converges if and only if it has a convergent subsequence, so we may assume,

by passing to a subsequence if necessary, that d̄(xn, xm) < 2−m for all m,n with n > m.

So for each m there exists a path cm : [0, 1] → X from xm to xm+1 with l(cm) ≤ 2−m by

assumption. By linear reparameterization, we have paths pm : [1 − 2−m+1, 1 − 2−m] → X

from xm to xm+1 with l(pm) ≤ 2−m. Pasting these paths together and setting p(1) = x, we

have a continuous map p : [0, 1] → X. Thus p is a path from xm to x of length at most∑∞
j=m 2−j = 2−m+1, so d̄(xm, x) ≤ 2−m+1. Therefore, xm → x under d̄.

Corollary 3.2. Suppose X is a complete metric space, and every two points in X are

connected by a rectifiable path. Then the induced path metric on X is geodesic.

Proof. By definition of path length, every pair of points x, y ∈ X has approximate midpoints

(see [3, p. 164]). Thus X, being complete, is geodesic.

The following construction gives us a useful notion of parallel lines in M2
k .

9



Figure 3.1: The line parallel to L at p

Definition 3.3. Let L be a line in M2
k and p be a point in M2

k \ L. Let K be the line

segment from p to the point q ∈ L closest to p. There is a unique line L′ in M2
k such that

p ∈ L′ and the angle between L′ and K is π/2 on both sides. We call L′ the line parallel to

L at p and write par(L, p) for L′.

Note that the metric distance between L and L′ equals the distance between p and q in

the above definition.

Lemma 3.4. (E, d̄) is uniquely geodesic.

Proof. Suppose σ : [a, b] → E and τ : [a, b] → E are distinct unit-speed geodesics with p =

σ(a) = τ(a) and q = σ(b) = τ(b). Note that since both are unit-speed geodesics, σ(t) is in

the image of τ if and only if σ(t) = τ(t), and similarly for τ(t). Since σ and τ are distinct,

there is some t0 ∈ (a, b) such that σ(t0) 6= τ(t0), hence σ(t0) is not in the image of τ . Taking

the last a′ ∈ [a, t0] and the first b′ ∈ [t0, b] such that p′ = σ(a′) and q′ = σ(b′) are both in the

image of τ , we have that C = σ([a′, b′]) ∪ τ([a′, b′]) is a simple closed curve in E.

Let L be the line in M2
k between p′ and q′. Let R be the maximum distance from L to C,

and let t1 be the first point of [a′, b′] such that either d(σ(t1), L) = R or d(τ(t1), L) = R. We

may assume d(σ(t1), L) = R. Then, since C is a simple closed curve and a′ < t1 < b′, there

10



Figure 3.2: Lemma 3.4

is some radius r > 0 about y = σ(t1) such that Bd(y, r) does not intersect τ([a′, b′]). Let A

be the connected component of C ∩Bd(y, r) containing y, and let s0 ∈ [a′, t1] and s1 ∈ [t1, b
′]

satisfy σ([s0, s1]) = A.

Now let L′ be the line through σ(s0) and σ(s1). Note that d(σ(s0), L) < d(y, L) and

d(σ(s1), L) ≤ d(y, L) by choice of y, so y /∈ L′ by convexity of d. By the Jordan curve

theorem, y is the limit of points in the interior region D bounded by C. So there is some

point x ∈ D with d(x, y) < d(x, L′). Let L′′ = par(L′, x); since d(x, L′) = d(L′′, L′), we also

have L′ ∩L′′ = ∅. Since x is in D, L′′ hits C on each side of x; by construction, L′′ first hits

C inside Bd(y, r) in each direction. By choice of r, we therefore have a straight line segment

through D between two points on σ([a′, b′]) where σ does not follow the line segment exactly.

But D ⊂ E since (E, d) is simply connected, so this contradicts σ being geodesic. Therefore,

(E, d̄) is uniquely geodesic.

11



3.2 Simple Geodesic Triangles

We will use the following terminology: Call a geodesic triangle T ⊂ (E, d̄) simple if T ⊂

(E, d) is a simple closed curve. For this section, let T be a simple geodesic triangle in (E, d̄)

with interior (under the standard M2
k metric) S and exterior U .

Proposition 3.5. Let L be a line in M2
k that passes through two distinct points p and q that

lie on a single edge A of T . Let L0 be the open line segment between p and q. If L0 has

empty intersection with T then L0 ⊂ U .

Proof. Since T is a simple closed curve in (E, d) and (E, d) is simply connected, S ⊂ E.

Hence if L0 has empty intersection with T , we have that L0 is contained entirely in either S

or U . But L0 ⊂ S would give us L0 ⊂ E, and this contradicts the hypothesis that A is the

shortest path in E from p to q. Therefore, L0 ⊂ U .

Lemma 3.6. Let L be a line in M2
k that passes through the point p ∈ T , where p is not a

vertex of T . Let A be the edge of T that contains p. Suppose that r > 0 is a radius such that

T ∩ Bd(p, r) ⊂ A, and let L− and L+ be the two components of L ∩ Bd(p, r) \ {p}. Then at

least one of L− and L+ has empty intersection with U . Moreover, if L− ∩ T = L− ∩ A 6= ∅

then L+ ∩ U = ∅.

Proof. First suppose, by way of contradiction, that there exist points x ∈ L− ∩ U and

y ∈ L+∩U . Let r′ > 0 be some radius with r′ < r such that we have both Bd(x, r
′) ⊂ U and

Bd(y, r
′) ⊂ U . Now by the Jordan Curve Theorem, T = ∂S, so there is some point q ∈ S

close enough to p that L′ = par(L, q) hits points x′ in Bd(x, r
′) and y′ in Bd(y, r

′).

Now L′ must be exterior at x′ and y′, but interior at q; furthermore, q lies between x′ and

y′ on L′ by construction. Thus L′ must hit T somewhere between x′ and q and somewhere

between q and y′. Therefore, L′ hits T at two points x′′ and y′′ closest to q (on opposite

sides). By hypothesis on the radius r, we must have x′′ ∈ A and y′′ ∈ A. Hence L′ contains

12



Figure 3.3: Lemma 3.6 allows three types of lines through an edge of a simple triangle: (A)
The line intersects the triangle on one side and is locally interior on the other side, (B) the
line is locally interior on one side and locally exterior on the other, or (C) the line is locally
interior on both sides.

a line segment between two points of A that is completely interior by construction. This

contradicts Proposition 3.5, and therefore at least one of L− and L+ has empty intersection

with U .

Suppose now that there is some point z ∈ T ∩L− and some point w ∈ U ∩L+. Let r′ > 0

be some radius with r′ < r such that we have Bd(w, r
′) ⊂ U . The Jordan Curve Theorem

guarantees points in U arbitrarily close to z, so let z′ ∈ U be close enough to z that the

line L′′ passing through the points z′ and p enters Bd(w, r
′). But then L′′ passes through

the point p and has nonempty intersection with U on both sides of p, which contradicts the

result of the previous paragraph. Hence L+ must have empty intersection with U if L− has

nonempty intersection with T .

Corollary 3.7. Let p1, p2, and p3 be three distinct points on a single edge A of T . Suppose

13



that p1, p2, and p3 lie on a line L in M2
k , with p1 and p3 on opposite sides of p2. Let L1 and

L2 be the open line segments from p1 to p2 and from p2 to p3, respectively. If L1 and L2 both

have empty intersection with T \ A, then the arc from p1 to p3 along T follows L.

Proof. Suppose both L1 and L2 have empty intersection with T \ A. Then Proposition 3.5

implies that both L1 and L2 must have empty intersection with the interior. Hence Lemma

3.6 gives us that if L1 has nonempty intersection with U , then L2 must follow A, so L2

has nonempty intersection with T , and thus L1 has empty intersection with U ; this is a

contradiction, so L1 must have empty intersection with U . Thus L1 follows A (i.e., L1 ⊂ A).

Similarly, L2 must follow A. Therefore, the arc from p1 to p3 along T follows L.

Lemma 3.8. Suppose the vertices of T are x, y, and z. Let 4′ be the triangle in M2
k with

vertices x, y, and z, and let C ⊂M2
k be the convex hull of 4′. Then T is contained in C.

Proof. Suppose, by way of contradiction, that p ∈ T \C. Let L be the line passing through

x and y. We may assume that p lies in the component of M2
k \ L that contains no point of

C; let H be the closure of this component. Then H ∩ T is compact and nonempty, so it

contains at least one point p′ of maximum distance to L. Let L′ be the line parallel to L at

p′. Now L′∩T is compact and nonempty, so let q be a point on L′∩T of maximum distance

to p′.

Since q /∈ C, q is not a vertex of T . Hence there is a radius r > 0 such that Bd(q, r)

touches no point of any edge of T other than the one on which q lies. Let L′− and L′+ be

the two components of L′ ∩ Bd(q, r) \ {q}. Lemma 3.6 requires both L′+ and L′− to be in

T since L′ ∩ S is empty, but this contradicts our choice of q. Therefore, T ⊂ C, and the

theorem is proved.
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3.3 Limit Outer Angles

If p, q, and r are distinct point in E, we will call the angle in M2
k at p between q and r the

outer angle at p between q and r, and denote it Ap(q, r). Now suppose σ : [0, 1] → E and

τ : [0, 1] → E are constant-speed geodesic line segments emanating from the point p ∈ E,

the images of which intersect only at p, with σ(1) = q and τ(1) = r. By Proposition 3.5

and Lemma 3.8, we have that Ap(σ(t), τ(t′)) decreases monotonically in both t and t′, so the

limit outer angle

A′p(q, r) = lim
t,t′→0

Ap(σ(t), τ(t′))

is well defined. We will show that the limit outer angle A′p(q, r) equals the Alexandrov angle

∠p(q, r).

As before, let T be a simple geodesic triangle in (E, d̄) with interior (under the standard

M2
k metric) S and exterior U ; denote the vertices p, q, and r. Also, let σ : [0, 1] → E and

τ : [0, 1]→ E be the geodesic line segments from p to q and from p to r, respectively.

Lemma 3.9. Suppose A′p(q, r) <
π
2
, and τ follows a line L in M2

k near p (i.e., τ([0, δ]) ⊂ L

for some δ > 0). Then there exists t1 > 0 such that, for any t with 0 < t < t1, the line

segment from σ(t) to L perpendicular to L is contained in S ∪ T .

Proof. Since Ap(σ(t), τ(t′)) decreases monotonically in both t and t′, we may find some

δ′ ∈ (0, δ] such that Ap(σ(t), τ(t′)) < π
2

for all t and t′ with 0 < t, t′ ≤ δ′. Let D = Bd(p, ε),

where ε > 0 is small enough that D ∩ T ⊂ σ([0, δ′]) ∪ τ([0, δ′]). Let P be projection in M2
k

onto L, with domain restricted to the image of σ, and let L+ be the component of L \ {p}

that has nonempty intersection with the image of τ .

Since A′p(q, r) <
π
2
, there is some t0 > 0 with C = σ([0, t0]) ⊂ D such that P (σ(t)) ∈ L+

for every t with 0 < t ≤ t0. Since P is continuous and C is compact, P (C) has some point

q1 = σ(t1) ∈ C such that P (q1) attains the maximum distance from p. We further require

15



that t1 be the smallest such value.

Figure 3.4: Lemma 3.9

Now suppose, by way of contradiction, the line segment L′ from q2 = σ(t2) to P (q2)

contains a point of U for some t2 with 0 < t2 < t1 (note that L′ ⊥ L). Let t3 be the smallest

positive value such that q3 = σ(t3) lies on L′. If t3 = t2 then the line segment between q2

and P (q2) cuts one of S or U into two components; by Lemma 3.8, it must therefore have

interior in S, which contradicts our hypothesis on t2. Thus 0 < t3 < t2, and L′ has nontrivial

intersection with U between q2 and q3. Hence some t′2 with t3 < t′2 < t2 must have P (σ(t′2))

farther from p than P (q2) = P (q3). Let q′2 = σ(t′2), and let s be the midpoint between P (q2)

and P (q′2). By the intermediate value theorem, there must be some s1 with t2 < s1 < t1 such

that P (s1) = s. Similarly, P−1(s) must contain points σ(s2) and σ(s3) with t′2 < s2 < t2 and

t3 < s3 < t′2. Thus these three points lie on a line in M2
k (orthogonal to L), so by Corollary

3.7, q2 and q′2 must also lie on this line; this is a contradiction, so no such point q2 can exist.

16



Therefore, for any t with 0 < t < t1, the line segment from σ(t) to L perpendicular to L is

contained in S ∪ T .

Lemma 3.10. Suppose that A′p(q, r) = 0 and τ follows a line L in M2
k near p. Then

∠p(q, r) = 0.

Proof. For simplicity, we assume k = 0 or k = −1. Let ε > 0 be given. Since Ap(σ(t), τ(t′))

decreases monotonically in both t and t′, we may find some δ > 0 such that Ap(σ(t), τ(t′)) < ε

for all t and t′ with σ(t), τ(t′) ∈ Bd(p, δ) \ {p}. Replacing δ by a smaller positive constant if

necessary, we may assume that every point of T in D is in the image of σ or τ and that the

image of τ in D follows L. Let P be the projection from the image of σ onto L, and let t1

be the point guaranteed by Lemma 3.9.

Let δ′ be the distance in M2
k from p to P (σ(t1)), and note that 0 < δ′ < δ. Suppose

that q′ and r′ are points in Bd(p, δ
′) \ {p} along the images of σ and τ , respectively. Let

a = d(p, q′), b = d(p, r′), and c = d(q′, r′), and let φ = Ap(q
′, r′). Also let a′ = d̄(p, q′) and

c′ = d̄(q′, r′); note that a′ ≥ a and c′ ≥ c. Since σ is a geodesic, the path straight from p to

P (q′) and then straight to q′, which stays in E by choice of t1, must have length at least a′.

Hence if k = 0 then

a′ ≤ a(cosφ+ sinφ) ≤ a(1 + sinφ) ≤ a(1 + sin ε) ≤ a(1 + ε),

and if k = −1 then by the hyperbolic law of sines,

sinh a′ ≤ (cosφ+ sinφ) sinh a ≤ (1 + ε) sinh a.

Now suppose that c′ = c. By the law of cosines,

cos ∠(0)
p (q′, r′) =

(a′)2 + b2 − c2

2(a′)b
≥ a2 + b2 − c2

2(a′)b
≥ a2 + b2 − c2

2a(1 + ε)b
=

1

1 + ε
cosφ,
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and by the hyperbolic law of cosines,

cos ∠(−1)
p (q′, r′) =

cosh a′ cosh b− cosh c

sinh a′ sinh b
≥ cosh a cosh b− cosh c

(1 + ε) sinh a sinh b
=

1

1 + ε
cosφ.

On the other hand, suppose c′ > c. Note that, by choice of t1, the geodesic triangle with

vertices p, σ(t1), and P (σ(t1) is simple. The interior of this triangle is contained in S, and

q′ 6= σ(t1). Thus L′ = par(L, q′) must be locally interior on one side of q′. Let L′0 be the

segment of L′ with q′ as one endpoint, interior in S, and other endpoint in T . Let p′ ∈ T

be the other endpoint. Since T is a simple triangle, q′ /∈ L, and therefore p′ /∈ L. But

p′ /∈ σ([0, t1]), so p′ must lie on the line segment from σ(t1) to P (σ(t1)). Hence both L′0 and

the line segment from q′ to P (q′) lie in S ∪ T . Thus, if P (q′) lies between p and r′ on the

line L, then the line segment from r′ to q′ is contained in S ∪ T . Therefore, the outer angle

Ar′(p, q
′) is greater than π

2
, and so a > c.

r’

q’

s

p

Figure 3.5: Lemma 3.10

Now consider the line segment in M2
k from r′ to q′: It hits T at a first point s (the edge
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hit is the one between p and q′). Let γ be the path which travels from r′ to s along the line

segment and then from s to q′ along σ. Note that the length `(γ) of γ is at least c′. Let α

be the path that travels in a straight line from p to s and then straight from s to q′, and

let α′ be the path that travels in a straight line from p to s and then from s to q′ along σ.

Note that a ≤ `(α) ≤ `(α′) ≤ a′. Hence a + c′ ≤ `(α) + `(γ) = `(α′) + c ≤ a′ + c, and thus

a′ − c′ ≥ a − c. Therefore, a > c gives us a′ − c′ > 0. Since a′ ≥ a > 0 and c′ ≥ c > 0, we

have

(a′)n+1 − (c′)n+1 = (a′ − c′)
n∑
k=0

(a′)k(c′)n−k ≥ (a− c)
n∑
k=0

akcn−k = an+1 − cn+1

for all integers n ≥ 0. Hence for k = 0 we have

cos ∠(0)
p (q′, r′) =

(a′)2 + b2 − (c′)2

2(a′)b
≥ a2 + b2 − c2

2(a′)b
≥ a2 + b2 − c2

2a(1 + ε)b
=

1

1 + ε
cosφ,

and for k = −1 we have

cosh a′ − cosh c′ =
∞∑
n=1

1

(2n)!

(
(a′)2n − (c′)2n

)
≥

∞∑
n=1

1

(2n)!

(
a2n − c2n

)
= cosh a− cosh c.

Hence cosh a′ − cosh a ≥ cosh c′ − cosh c, so the fact that cosh b ≥ 1 gives us cosh a′ cosh b−

cosh a cosh b ≥ cosh c′ − cosh c, and therefore cosh a′ cosh b− cosh c′ ≥ cosh a cosh b− cosh c.

Thus

cos ∠(−1)
p (q′, r′) =

cosh a′ cosh b− cosh c′

sinh a′ sinh b
≥ cosh a cosh b− cosh c

(1 + ε) sinh a sinh b
=

1

1 + ε
cosφ.
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Thus, in either case,

cos ∠p(q
′, r′) ≥ 1

1 + ε
cosφ,

and therefore we obtain ∠p(q
′, r′) ≤ A′p(q

′, r′) = 0 as ε tends to zero. This concludes the

proof of the lemma.

Theorem 3.11. In a simple geodesic triangle T with vertices p, q, and r,

A′p(q, r) = ∠p(q, r).

Proof. By Proposition 3.5, the rays R1,t from p through σ(t) limit monotonically to a ray

R1 as t tends to zero. Similarly, the rays R2,t from p through τ(t) limit monotonically to a

ray R2 as t tends to zero.

Suppose first that R1 6= R2. By construction, R1 and R2 are locally contained in S ∪ T

near p. Let s1 be the last point of R1 contained in S ∪ T . Clearly, s1 ∈ T ; if s1 lies along σ

then s1 must equal q by Lemma 3.6. Since R1 is locally contained in S ∪ T near p, we have

s1 6= p, and thus s1 cannot lie along τ . Therefore, s1 lies along the geodesic arc between q

and r. Similarly, the last point s2 of R2 that is contained in S∪T must lie along the geodesic

arc between q and r. Note that ∠p(s1, s2) = A′p(q, r), since both measure the angle between

R1 and R2.

If σ follows R1 for some positive distance beyond p, then ∠p(q, s1) = 0 by definition. On

the other hand, if σ does not follow R1 for any positive distance beyond p, then the geodesic

triangle T1 = 4(p, q, s1) is simple, and ∠p(q, s1) = 0 by Lemma 3.10. Thus in either case,

∠p(q, s1) = 0; similarly, ∠p(s2, r) = 0. Hence

∠p(q, r) ≤ ∠p(q, s1) + ∠p(s1, s2) + ∠p(s2, r) = ∠p(s1, s2)
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and

∠p(s1, s2) ≤ ∠p(s1, q) + ∠p(q, r) + ∠p(r, s2) = ∠p(q, r)

by Proposition 2.9. Therefore ∠p(q, r) = ∠p(s1, s2) = A′p(q, r).

Finally, suppose R1 = R2; note that this gives A′p(q, r) = 0. If σ follows R1 for some

positive distance beyond p, then ∠p(q, r) = A′p(q, r) = 0 by Lemma 3.10. Thus we may

assume, by symmetry, that neither σ nor τ follows R1 for any positive distance beyond p.

Then by construction of R1 = R2, the last point s of R1 contained in S ∪ T must be along

the geodesic arc from q to r. Hence the geodesic triangles T1 = 4(p, q, s) and T2 = 4(p, s, r)

are simple, and since A′p(q, s) = A′p(s, r) = 0 by construction, ∠p(q, s) = ∠p(s, r) = 0 by

Lemma 3.10. Therefore,

∠p(q, r) ≤ ∠p(q, s) + ∠p(s, r) = 0,

and the theorem is proved.

The main result result now follows easily.

Proof of Theorem 1.1. Note that every geodesic triangle with distinct vertices either can

be trimmed to a simple triangle, or it has 0 angle at all 3 vertices. Moreover, this trimming

does not decrease the angles at the vertices. So let p, q, and r be the vertices of a simple

triangle T . As in the proof of Theorem 3.11, we have two (possibly equal) limit rays R1

and R2 from p. Cutting along these rays gives three (not necessarily simple) triangles. The

middle triangle has Alexandrov angle at p at most the k-comparison angle, since only the

edge opposite p can be longer than the distance in M2
k . The two outside triangles either

are simple, in which case Lemma 3.10 applies, or both edges emanating from p follow the

same path for a positive distance; in either case, the Alexandrov angle at p is 0. So by

Alexandrov’s Lemma, ∠p(q, r) ≤ ∠(k)
p (q, r). Therefore, (E, d̄) is CAT(k).
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