
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2019-06-01 

Mirror Symmetry for Non-Abelian Landau-Ginzburg Models Mirror Symmetry for Non-Abelian Landau-Ginzburg Models 

Matthew Michael Williams 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Williams, Matthew Michael, "Mirror Symmetry for Non-Abelian Landau-Ginzburg Models" (2019). Theses 
and Dissertations. 8560. 
https://scholarsarchive.byu.edu/etd/8560 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8560?utm_source=scholarsarchive.byu.edu%2Fetd%2F8560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Mirror Symmetry for Non-Abelian Landau-Ginzburg Models

Matthew Michael Williams

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Nathan Priddis, Chair
Tyler Jarvis

Pace Nielsen

Department of Mathematics

Brigham Young University

Copyright c© 2019 Matthew Michael Williams

All Rights Reserved



ABSTRACT

Mirror Symmetry for Non-Abelian Landau-Ginzburg Models

Matthew Michael Williams
Department of Mathematics, BYU

Master of Science

We consider Landau-Ginzburg models stemming from non-abelian groups comprised
of non-diagonal symmetries, and we describe a rule for the mirror LG model. In partic-
ular, we present the non-abelian dual group G?, which serves as the appropriate choice of
group for the mirror LG model. We also describe an explicit mirror map between the A-
model and the B-model state spaces for two examples. Further, we prove that this mirror
map is an isomorphism between the untwisted broad sectors and the narrow diagonal
sectors in general.

Keywords: algebraic geometry, mirror symmetry
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CHAPTER 1. INTRODUCTION

Mirror symmetry is most easily explained for Calabi-Yau manifolds. The physics of string

theory produces an A-model and a B-model for each Calabi-Yau manifold, so these come

in dual pairs. Mirror symmetry essentially says that the A-model for a Calabi-Yau man-

ifold is “the same” as the B-model on its mirror dual, meaning they produce the same

physics.

Instead of working with Calabi-Yau manifolds, physics predicts that one can work

with what is called a Landau-Ginzburg model instead, which is computationally more

efficient. Landau-Ginzburg models are built from an invertible polynomial W and a group

G ≤ Gmax
W , both of which we describe later. One of the important structures of a Landau-

Ginzburg model—both for the A-model and B-model—is that of a vector space called the

state space. This can also be given the structure of a Frobenius algebra or a Frobenius man-

ifold. The Landau-Ginzburg (LG) Mirror Symmetry Conjecture predicts that for an invertible

polynomial W with a group G of admissible symmetries of W, there is a dual polynomial

WT and dual group GT of symmetries defined by WT such that the Landau-Ginzburg

A-model for the pair (W, G) is isomorphic to the Landau-Ginzburg B-model for the pair

(WT, GT) (see Berglund–Hübsch [3] or Krawitz [7]).

In the past, mathematicians have primarily studied LG models of pairs (W, G) where

G is an abelian group comprised of so-called diagonal symmetries (see Francis/Jarvis [6]).

There has been much interest in understanding the mirror symmetry for when G is non-

abelian, but until now there has not been a clear way to determine the mirror model.

Formerly, the dual group of G was only defined when G was a group of diagonal sym-

metries.

In this paper, we describe the non-abelian dual group G?, which extends the Landau-

Ginzburg Mirror Symmetry Conjecture to LG models built from non-abelian groups. We

detail the construction of the A- and B-model state spaces, and for two examples provide
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an explicit isomorphism between them. Furthermore, we prove that certain natural sub-

spaces are isomorphic in general for particular polynomials W and non-abelian groups

G. This has several similarities with the mirror map defined by Krawitz [7] for abelian

LG models. There are still many hurdles for considering structures beyond vector spaces,

the foremost being the lack of definition of even a Frobenius product on the B-side. This

is a possible direction for future work.

This construction of G? was also discovered independently by Ebeling and Gusein-

Zade (see [5], [4]). Much of their work focuses on proving when the mirror map isomor-

phism exists, while our work pertains more to the actual construction of the mirror map

between the A- and B-models.

CHAPTER 2. PRELIMINARY DEFINITIONS

In this chapter, we begin by introducing some definitions that will be vital to the construc-

tion of the A- and B-model state spaces. As mentioned earlier, every Landau-Ginzburg

model stems from a polynomial W and a group G, but both of these are subject to certain

conditions which we will detail here.

2.1 INVERTIBLE POLYNOMIALS

Definition 2.1. A polynomial is quasihomogeneous if there exist positive rational numbers

(q1, . . . , qn) so that for every c ∈ C∗, we have

W(cq1 x1, . . . , cqn xn) = cW(x1, . . . , xn).

The numbers (q1, . . . , qn) are called the weights of the polynomial W. These will be

used later to construct an important symmetry of W called the exponential grading operator,

which we will denote by jW .
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Definition 2.2. A quasihomogeneous polynomial W : Cn → C is nondegenerate if it has

an isolated critical point at the origin, and it contains no monomials of the form xixj for

i 6= j.

This definition implies that the weights (q1, . . . , qn) of W are uniquely determined and

qi ∈ (0, 1
2) ∩Q for all i.

Definition 2.3. A quasihomogeneous, nondegenerate polynomial is invertible if the poly-

nomial has the same number of monomials as variables.

Example 2.4. Consider the polynomial W : C4 → C defined by W = x4
1 + x4

2 + x4
3 + x4

4.

First, W is nondegenerate since it has a unique critical point at (0, 0, 0, 0). Next, note that

W is quasihomogeneous with weights (1
4 , 1

4 , 1
4 , 1

4) since for every c ∈ C∗, we have

W(c
1
4 x1, c

1
4 x2, c

1
4 x3, c

1
4 x4) = (c

1
4 x1)

4 + (c
1
4 x2)

4 + (c
1
4 x3)

4 + (c
1
4 x4)

4

= cx4
1 + cx4

2 + cx4
3 + cx4

4

= c(x4
1 + x4

2 + x4
3 + x4

4)

= cW(x1, x2, x3, x4).

Clearly this choice of weights is unique. Also, we can see that W has four monomials and

four variables, hence W is invertible. We will continue to work with the above polynomial

throughout this paper. This is known as a Fermat polynomial.

Theorem 2.5 (Kreuzer/Sharke [8]). Any invertible quasihomogeneous polynomial is a decou-

pled sum of polynomials of one of the following three atomic types:

Fermat type: xa1
1

Chain type: xa1
1 x2 + xa2

2 x3 + · · ·+ xan
n (n ≥ 1)

Loop type: xa1
1 x2 + xa2

2 x3 + · · ·+ xan
n x1(n ≥ 2)

Example 2.6. An example of a chain polynomial is W = x3
1x2 + x2

2x3 + x2
3 with weights

(1
4 , 1

4 , 1
2). An example of a loop polynomial is W = x2

1x2 + x2
2x3 + x2

3x1, which has weights

(1
3 , 1

3 , 1
3).
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2.2 MAXIMAL SYMMETRY GROUP

Definition 2.7 (Mukai [9]). Let W : Cn → C be an invertible polynomial with weights

(q1, . . . , qn). Then the maximal symmetry group of W, denoted Gmax
W , is defined as follows:

Gmax
W := {g ∈ GLn(C)|(g ·W)(x1, . . . , xn) = W(x1, . . . , xn)

and gij = 0 if qi 6= qj}

The condition gij = 0 if qi 6= qj implies that g has a block diagonal form. This is

equivalent to the condition that each g commutes with the action of c ∈ C∗ where c acts

on (x1, . . . , xn) by c · (x1, . . . , xn) = (cq1 x1, . . . , cqn xn) (Mukai [9], pointed out by Y. Ruan).

The diagonal symmetry group of W is the group of diagonal linear transformations, de-

fined

Gdiag
W := {(g1, . . . , gn) ∈ (C∗)n|W(g1x1, . . . , gnxn) = W(x1, . . . , xn)}.

The second definition is the standard definition of diagonal symmetries, (Francis/Jarvis

[6]). Note that Gdiag
W can be viewed as a subgroup of Gmax

W via diagonal matrices. It is a

standard fact that for g = (g1, . . . , gn) ∈ Gdiag
W the entries gi as above are roots of unity (Ar-

tebani/Boissière/Sarti [1]). For simplicity, we will typically represent these symmetries

additively as n-tuples of rational numbers as follows:

(e2πia1 , . . . , e2πian)↔ (a1, . . . , an) ∈ (Q/Z)n

It is a fact that Gdiag
W is generated by the entries of the inverse of the exponent matrix

AW (Artebani/Boissière/Sarti [1] or Krawitz [7]), which we define below. Furthermore,

one can see that the exponential grading operator jW = (q1, . . . , qn) is an element of Gdiag
W ,

where q1, . . . , qn are the weights of W.

Two other important subgroups of Gmax
W are JW and SLdiag

W . The group JW is the group

generated by jW . The group SLdiag
W is the group of matrices in Gdiag

W whose determinant is

4



1. Explicitly, we write these groups as follows:

JW = 〈jW〉 = 〈(q1, . . . , qn)〉

SLdiag
W = SL(n, C) ∩ Gdiag

W

Example 2.8. For W = x4
1 + x4

2 + x4
3 + x4

4, we have

JW = 〈(1
4 , 1

4 , 1
4 , 1

4)〉 and SLdiag
W = 〈(1

4 , 1
4 , 1

4 , 1
4), (

2
4 , 1

4 , 1
4 , 0), (1

4 , 2
4 , 1

4 , 0)〉.

BHK mirror symmetry associates to an LG model (W, G) another LG model (WT, GT),

which we work towards next. These two LG models are the dual of each other under

BHK mirror symmetry, discovered by Berglund–Hübsch [3] and Krawitz [7], which we

will show explicitly for this choice of W in Example 2.13.

2.3 DUAL POLYNOMIALS AND DUAL GROUPS

Definition 2.9. Let W be an invertible polynomial. If we write W = ∑n
i=1 ∏n

j=1 x
aij
j , then

the associated exponent matrix is defined to be AW = (aij). The dual polynomial WT is the

invertible polynomial defined by the matrix AT
W .

Example 2.10. For W = x4
1 + x4

2 + x4
3 + x4

4, we have

AW =



4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4


= AT

W .

Hence in this case, WT = W.

Example 2.11. While the dual polynomial is invariant when W is a Fermat polynomial

as in the previous example, this isn’t always the case. If W is the chain polynomial W =
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x3
1x2 + x2

2x3 + x2
3 from Example 2.6, then

AW =


3 1 0

0 2 1

0 0 2

 , so AT
W =


3 0 0

1 2 0

0 1 2

 .

In this example, we see that WT = x3
1 + x1x2

2 + x2x2
3. Notice that WT is also invertible and

that its weights are (1
3 , 1

3 , 1
3).

Note that the exponent matrix AW from Definition 2.9 is only defined up to a reorder-

ing of rows. For instance, if we write W from Example 2.11 as W = x2
2x3 + x2

3 + x3
1x2,

then

AW =


0 2 1

0 0 2

3 1 0

 , so AT
W =


0 0 3

2 0 1

1 2 0

 .

Thus WT = x3
3 + x2

1x3 + x1x2
2, but this is just a reordering of the variables from WT in

Example 2.11, so they are effectively the same.

Definition 2.12. The dual group of a subgroup G ≤ Gdiag
W is the set

GT = {g ∈ Gdiag
WT |gAWhT ∈ Z for all h ∈ G},

where we consider g and h in their additive form as row vectors.

Example 2.13. After Example 2.8, we claimed that the dual group of JW is SLdiag
W for W =

x4
1 + x4

2 + x4
3 + x4

4 = WT. Observe

(JW)T = {g ∈ Gdiag
WT |gAWhT ∈ Z for all h ∈ JW}.

Let g ∈ Gdiag
WT and h ∈ JW , then g = ( a1

4 , a2
4 , a3

4 , a4
4 ) and h = ( b

4 , b
4 , b

4 , b
4) where a1, a2, a3, a4, b ∈
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{0, 1, 2, 3}. Then

gAWhT = ( a1
4 , a2

4 , a3
4 , a4

4 )



4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4


( b

4 , b
4 , b

4 , b
4)

T

= a1b
4 + a2b

4 + a3b
4 + a4b

4

= b( a1
4 + a2

4 + a3
4 + a4

4 ).

This value is an integer for all b ∈ {0, 1, 2, 3} if and only if ( a1
4 + a2

4 + a3
4 + a4

4 ) ∈ Z,

implying g ∈ SLdiag
WT . Hence (JW)T = SLdiag

WT . In fact, it is true that (JW)T = SLdiag
WT for any

choice of invertible polynomial W (Artebani/Boissière/Sarti [1]).

As mentioned previously, most of the work done with Landau-Ginzburg models has

been with subgroups of Gdiag
W . Next, we consider a group with a permutation as one of its

generators, which is a non-diagonal symmetry.

Example 2.14. With W = x4
1 + x4

2 + x4
3 + x4

4 as before, consider the subgroup

G = 〈jW , (123)〉 ≤ Gmax
W , where (123) =



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


.

Here (123) permutes the variables x1, x2, and x3. Even though G contains non-diagonal

matrices, it is actually still abelian since the generators commute. We can see this because

jW is a constant diagonal matrix, and so it lies in the center of GL(n, C).

Although G is abelian in the above example, we cannot use the previously mentioned

definition for GT since G is not a subset of Gdiag
W , as required by Definition 2.12. In order

to define the dual group we need to define the non-abelian dual group.

7



2.4 THE NON-ABELIAN DUAL GROUP

Definition 2.15. An element of Gmax
W is called a pure permutation if it acts on C[x1, . . . , xn]

by simply permuting the variables.

Notice that a pure permutation can only permute variables that have the same weight

with respect to W. We are now ready to define the non-abelian dual group G?.

Definition 2.16. Let G ≤ Gmax
W be a group of the form

G = K · H,

where K ≤ G is the subgroup of pure even permutations and H ≤ G∩Gdiag
W . This product

should be thought of as a subgroup of GL(n, C). We define the non-abelian dual group of G

to be

G? = K · HT ≤ GL(n, C).

Example 2.17. If we consider G = 〈jW , (123)〉 ≤ Gmax
W from Example 2.14, then

G? =
〈
(123)

〉
· (JW)T =

〈
(123)

〉
· SLdiag

WT .

Explicitly, the elements of G? are of the form (123)k( a1
4 , a2

4 , a3
4 , a4

4 ), where a1 + a2 + a3 + a4 ∈

4Z and 0 ≤ k ≤ 2. As stated earlier, in this example G? is non-abelian. For instance,

consider the products of (123)(1
2 , 1

4 , 1
4 , 0) and (132)(1

2 , 1
4 , 1

4 , 0) ∈ G? in both ways. Observe

(123)(1
2 , 1

4 , 1
4 , 0) · (132)(1

2 , 1
4 , 1

4 , 0) = (3
4 , 1

2 , 3
4 , 0), whereas

(132)(1
2 , 1

4 , 1
4 , 0) · (123)(1

2 , 1
4 , 1

4 , 0) = (3
4 , 3

4 , 1
2 , 0).

Now we have defined a rule relating two LG models (W, G) and (WT, G?). In the next

sections we will construct the A- and B-model state spaces.
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CHAPTER 3. THE A-MODEL STATE SPACE

The A-model vector space is refered to as the state space. The construction for the state

space, as shown by Basalaev, Takahashi, and Werner [2] and Mukai [9], requires an in-

vertible polynomial W and an admissible subgroup of Gmax
W , which we will define shortly.

One other important piece is the Milnor ring, which we now define.

Definition 3.1. The Milnor ring of a polynomial W is defined to be

QW =
C[x1, . . . , xn](

∂W
∂x1

, . . . , ∂W
∂xn

) .

Definition 3.2. Let W be a nondegenerate quasihomogenenous polynomial with unique

weights (q1, . . . , qn), and let G be a subgroup of Gmax
W . Then G is admissible if G contains

jW = (q1, . . . , qn).

Definition 3.3. Given an admissible group G and an element g ∈ G, we let Fix(g) denote

the subspace of Cn which is fixed by g

Fix(g) = {(a1, . . . , aN)|g(a1, . . . , aN) = (a1, . . . , aN)}.

To find Fix(g) we look for eigenvectors of g with an eigenvalue of 1, and the span of

these vectors will define Fix(g). We also write

Wg = W|Fix(g)

to denote the polynomial W restricted to Fix(g).

Definition 3.4. Let W be an invertible polynomial and G be an admissible subgroup of

9



Gmax
W . The state space for the A-model is defined as

AW,G =

⊕
g∈G
QWg ·ωg

G

,

where ωg is a volume form on the fixed locus of g.

We will use the notation bP, ge to denote an element of QWg · ωg, often suppressing

the volume form where convenient. The volume form can be easily determined by g. We

can form a basis of AW,G using sums of the form

∑
gi∈[g]
bP, gie,

where gi are the group elements in the same conjugacy class [g] of G, and P ∈ QWgi
.

When G is abelian, we can rewrite the state space definition as

AW,G =
⊕
g∈G

(QWg ·ωg)
G

as the action of G preserves each summand. But if G is non-abelian, then for h ∈ G,

h ·
(
QWg ·ωg

)
⊆ QWh−1gh

·ωh−1gh. (∗)

3.1 CONSTRUCTING AN A-MODEL STATE SPACE

Example 3.5. Let W = x4
1 + x4

2 + x4
3 + x4

4 and G = 〈jW , (123)〉. We will determine a basis

for AW,G. Since in this case, G is an abelian group, the conjugacy class for each g ∈ G

contains only g. Hence we can choose a basis of AW,G consisting of elements of the form

bP, ge (i.e. single terms, instead of sums, although P may have more than one summand).

The elements of G can be expressed as (123)a jb
W with 0 ≤ a ≤ 2 and 0 ≤ b ≤ 3. For each

g ∈ G, we will need to find the basis elements of (QWg · ωg)G. The choices of g can be

10



broken down into three different cases.

Case 1: g = (0, 0, 0, 0)

When g = (0, 0, 0, 0), then Wg = W, and the Milnor ring of Wg is

QWg = QW =
C[x1, x2, x3, x4]〈

4x3
1, 4x3

2, 4x3
3, 4x3

4

〉 =
C[x1, x2, x3, x4]〈

x3
1, x3

2, x3
3, x3

4

〉 .

The elements of QW are sums of elements in the set {xa
1xb

2xc
3xd

4|0 ≤ a, b, c, d ≤ 2}. The

volume form ωg in this case is dx1 ∧ dx2 ∧ dx3 ∧ dx4. To find the elements of (QW · (dx1 ∧

dx2 ∧ dx3 ∧ dx4))
G we look for p(x) ∈ QW such that p(x) · (dx1 ∧ dx2 ∧ dx3 ∧ dx4) is

invariant under jW and (123), the generators of G. The volume form is invariant under

jW since

(e
2πi

4 dx1) ∧ (e
2πi

4 dx2) ∧ (e
2πi

4 dx3) ∧ (e
2πi

4 dx4) = dx1 ∧ dx2 ∧ dx3 ∧ dx4.

It is also invariant under (123) since

dx2 ∧ dx3 ∧ dx1 ∧ dx4 = −(dx2 ∧ dx1 ∧ dx3 ∧ dx4) = dx1 ∧ dx2 ∧ dx3 ∧ dx4.

Thus, in this case we only need to be concerned that the actual polynomial p(x) is invari-

ant under jW and (123).

In order to be invariant under (123), the polynomial must be symmetric with respect

to x1, x2, and x3 and polynomials invariant under jW must have exponents in each term

sum to a multiple of 4; for example, the polynomial x1x2x3x4 ∈ QW is invariant under

both jW and (123). The basis elements of (QW · ωg)G can also be sums of monomials in

11



QW ·ωg. Consider x2
1x2

4 + x2
2x2

4 + x2
3x2

4 ∈ QW . Applying jW to x2
1x2

4 + x2
2x2

4 + x2
3x2

4 gives

(e
2πi

4 x1)
2(e

2πi
4 x4)

2 + (e
2πi

4 x2)
2(e

2πi
4 x4)

2 + (e
2πi

4 x3)
2(e

2πi
4 x4)

2

= (e
4πi

4 x2
1)(e

4πi
4 x2

4) + (e
4πi

4 x2
2)(e

4πi
4 x2

4) + (e
4πi

4 x2
3)(e

4πi
4 x2

4)

= x2
1x2

4 + x2
2x2

4 + x2
3x2

4.

Applying (123) gives

x2
2x2

4 + x2
3x2

4 + x2
1x2

4 = x2
1x2

4 + x2
2x2

4 + x2
3x2

4,

and thus this element of the Milnor ring (including its volume form) is invariant under

all the generators of G, so it is invariant under G.

In the same way, we find that the invariant elements of the Milnor ring in the identity

sector are of the form P = p(x) · (dx1∧ dx2∧ dx3∧ dx4), where p(x) is one of the following

polynomials:

1

x1x2x3x4

x2
1x2

2x2
3x2

4

x2
1x2

2 + x2
1x2

3 + x2
2x2

3

x1x2x2
3 + x2

1x2x3 + x1x2
2x3

x1x2x2
4 + x1x3x2

4 + x2x3x2
4

x1x2
2x4 + x2x2

3x4 + x3x2
1x4

x2
1x2x4 + x2

2x3x4 + x2
3x1x4

x2
1x2

4 + x2
2x2

4 + x2
3x2

4

The 9 dimensional vector space generated by these elements is called the untwisted broad

12



sector of AW,G, where all the eigenvectors of g have an eigenvalue of 1.

Case 2: g = (123) or g = (132)

Let

g = (123) =



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


.

To find Fix(123), we look for eigenvectors of (123) with an eigenvalue of 1. Diagonalizing

(123) gives (123) = QDQ−1, where

D =



1 0 0 0

0 1 0 0

0 0 e
4πi

3 0

0 0 0 e
2πi

3


and Q =



0 1 e
4πi

3 e
2πi

3

0 1 e
2πi

3 e
4πi

3

0 1 1 1

1 0 0 0


.

Thus the eigenvectors with eigenvalue 1 are (1, 1, 1, 0) and (0, 0, 0, 1), and the span

of these two vectors is Fix(123). If we call the coordinates of these two vectors y1 and

y4, then we have Wg = c1y4
1 + y4

4 for some constant c1. The value of c1 does not matter

for our purposes, since QWg is simply C[y1, y4]/(y3
1, y3

4). The volume form here is dy1 ∧

dy4 = (dx1 + dx2 + dx3) ∧ dx4. This is invariant under (123), which acts trivially when

considering only y1 and y4. However, this volume form is not invariant under jW since

(e
2πi

4 dy1) ∧ (e
2πi

4 dy4) = −(dy1 ∧ dy4) 6= dy1 ∧ dy4.

To balance this, in order for an element of QWg ·ωg to be invariant under jW , the polyno-

mial p(x) must have each term be degree equal to 2 (mod 4). This means the degree must

be 2 since the elements of C[y1, y4]/(y3
1, y3

2) have the exponents on y1 and y4 capped at 2.
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This gives us three anti-invariant polynomials:

y2
1 = (x1 + x2 + x3)

2

y1y4 = (x1 + x2 + x3)x4

y2
4 = x2

4

Each one of these, together with the volume form, is another element in the basis ofAW,G.

The case of g = (132) is almost identical. The matrix Q will be different, but the

vectors (0, 0, 0, 1) and (1, 1, 1, 0) still correspond to the eigenvalues of 1, and they produce

the same Milnor ring, volume form, and invariant entries. The two 3 dimensional vector

spaces produced by (123) and (132) are known as twisted broad sectors, where some, but

not all of the eigenvectors of g have an eigenvalue of 1.

Case 3: Other Values of g

The eigenvalues of jW are all e
2πi

4 , so g = jW has trivial fixed locus. Thus W|Fix(jW) = 0.

This implies that for g = jW , we get QWg ·ωg ∼= C. There is a natural basis for C, namely

1, so this sector only produces a single basis element of AW,G, being b1, jWe. Sectors with

Fix(g) = 0 are called narrow sectors. The action of G on these narrow sectors is trivial, so

each contributes to the basis. Similarly, (jW)2 and (jW)3 produce narrow sectors as well.

Next, we look at g = (123)jW . As seen in case 2, the eigenvalues of (123) are 1, 1, e
4πi

3 ,

and e
2πi

3 , so the eigenvalues of (123)jW are e
2πi

4 , e
2πi

4 , e
22πi

12 , and e
14πi

12 . None of these are 1, so

(123)jW produces another narrow sector. Similarly, we can see that (123)jW , (123)(jW)2,

(123)(jW)3, (132)(jW), (132)(jW)2, and (132)(jW)3 have no eigenvalues equal to 1, so they

are also narrow sectors. In total, there are 9 narrow sectors in AW,G.

To conclude this example, we have found that there are 9 narrow sectors, the un-

twisted broad sector has dimension 9, and the two twisted broad sectors from (123) and

(132) each contribute dimension 3 to the state space. Hence AW,G has dimension 24.
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3.2 A-MODEL BIGRADING

The A-model can also be given a bigrading which we will see is also preserved under mir-

ror symmetry. This bigrading is similar to the Hodge grading for Calabi-Yau manifolds.

Since mirror symmetry for Calabi-Yau manifolds rotates the Hodge diamond, we expect

some similar phenomenon for LG models.

Definition 3.6 (Mukai [9]). Let G be a finite subgroup of the symmetry group of some non-

degenerate quasihomogeneous polynomial in C[x1, . . . , xn]. We define the age of g ∈ G

as

age g =
1

2πi

n

∑
j=1

log(λj),

where λ1, . . . , λn are the eigenvalues of g and the branch of the logarithmic function for

z ∈ C∗ such that |z| = 1 is chosen to satisfy 0 ≤ log(z) < 2πi.

Example 3.7. When g is diagonal, then λj will take on the value of the sole entry in the

jth column (when we view g multiplicitively). Since the entries are all of the form e2πi(aj),

the age of g is just ∑n
j=1 aj. Hence for diagonal symmetries, we can simply sum the entries

when they are written in additive form. For example, for jW = (1
4 , 1

4 , 1
4 , 1

4) from the A-

model vector space in the previous section, we have

age(jW) = 1
4 +

1
4 +

1
4 +

1
4 = 1.

Definition 3.8. The A-model has a bigrading, defined to be the ordered pair

(deg P + age g− age jW , Ng − deg P + age g− age jW),

where Ng is the dimension of Fix(g), and deg P is the weighted degree. The weighted

degree of P is the standard way you would think of the degree of a polynomial, but

divided by the weights of W for each variable. In this notation, note that the volume form

ωg contributes to deg P.
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Example 3.9. Let’s continue with the A-model vector space from the previous section to

turn it into a bigraded vector space. Since age(jW) = 1 as mentioned in Example 3.7, the

bidegree for each element reduces to

(deg P + age g− 1, Ng − deg P + age g− 1),

and we can break up the process into the same three cases as before depending on g.

Case 1: g = (0, 0, 0, 0)

When g is the identity, we get age g = 0 and Ng = 4, so the bidegree simplifies to

(deg P + 0− 1, 4− deg P + 0− 1) = (deg P− 1, 3− deg P),

and the bidegree is dependent only on deg P. Recall that there were 9 polynomials in our

basis for this choice of g. A few examples of deg P can be seen below. The weights of W

are (1
4 , 1

4 , 1
4 , 1

4), which is why we divide by 4 in the following computations. In particular

the volume form will have weighted degree of 4
4 = 1, so deg P = deg p(x) + 1.

deg(1 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = deg(1) + 1 =
0
4
+ 1 = 1

deg(x1x2x3x4 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = deg(x1x2x3x4) + 1 =
4
4
+ 1 = 2

deg(x2
1x2

2x2
3x2

4 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = deg(x2
1x2

2x2
3x2

4) + 1 =
8
4
+ 1 = 3

deg(x2
1x2

2 + x2
1x2

3 + x2
2x2

3 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = deg(x2
1x2

2 + x2
1x2

3 + x2
2x2

3) + 1 =
4
4
+ 1 = 2

The rest of the polynomials in this sector have degree 2. We list in the following table the

bidegree for all of the basis elements in this sector.
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Basis element Bidegree

b1, (0, 0, 0, 0)e (0, 2)

bx1x2x3x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2

2x2
3x2

4, (0, 0, 0, 0)e (2, 0)

bx2
1x2

2 + x2
1x2

3 + x2
2x2

3, (0, 0, 0, 0)e (1, 1)

bx1x2x2
3 + x2

1x2x3 + x1x2
2x3, (0, 0, 0, 0)e (1, 1)

bx1x2x2
4 + x1x3x2

4 + x2x3x2
4, (0, 0, 0, 0)e (1, 1)

bx1x2
2x4 + x2x2

3x4 + x3x2
1x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2x4 + x2

2x3x4 + x2
3x1x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2

4 + x2
2x2

4 + x2
3x2

4, (0, 0, 0, 0)e (1, 1)

Case 2: g = (123) or g = (132)

Recall that in this case, the fixed locus was spanned by the two vectors y1 = x1 + x2 + x3

and y4 = x4, so Ng = 2. To find age((123)) and age((132)), recall that the eigenvalues of

(123) and (132) are 1, 1, e
2πi

3 , and e
4πi

3 . Then

1
2πi

n

∑
j=1

log(λj) =
1

2πi
(log(1) + log(1) + log(e

2πi
3 ) + log(e

4πi
3 ))

=
1

2πi
(0 + 0 +

2πi
3

+
4πi

3
)

=
1

2πi
(2πi) = 1,

so age((123)) and age((132)) are both 1. Next we need to find deg P for the three poly-

nomials we found earlier. It is easiest to think about the polyomials as elements of the

Milnor ring C[y1, y4]/(y3
1, y3

4). There were 3 elements in the G-invariant subspace of the
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Milnor ring, and their degrees are computed below.

deg(y2
1 · (dy1 ∧ dy4)) = 1

deg(y1y4 · (dy1 ∧ dy4)) = 1

deg(y2
4 · (dy1 ∧ dy4)) = 1

Thus the bidegree of each of these elements is the same, which is

(deg P + age g− 1, Ng − deg P + age g− 1) = (1 + 1− 1, 2− 1 + 1− 1) = (1, 1).

Case 3: Other Values of g

For all other choices of g, we know that g creates a narrow sector. So the fixed locus has

dimension 0, that is, Ng = 0. The formula for bidegree thus reduces to

(age g− age jW , age g− age jW) = (age g− 1, age g− 1).

Hence in this case, the only thing we need to actually compute is age g. When g is a

multiple of (jW), we can simply add up the components to get

age(jW) = 1, age((jW)2) = 2, and age((jW)3) = 3,

and their bidegree is shown below.

Basis element Bidegree

b1, jWe (0, 0)

b1, (jW)2e (1, 1)

b1, (jW)3e (2, 2)

The rest of the elements are non-diagonal, so we must find the eigenvalues as in the
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previous case. The resulting age is the same for all of them, which is 2. Thus the bidegree

for the rest of the narrow sectors is (1, 1). We have now covered all cases, and in following

table, we can see all basis elements and their bidegree.

A-model basis element Bidegree

b1, (0, 0, 0, 0)e (0, 2)

bx1x2x3x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2

2x2
3x2

4, (0, 0, 0, 0)e (2, 0)

bx2
1x2

2 + x2
1x2

3 + x2
2x2

3, (0, 0, 0, 0)e (1, 1)

bx1x2x2
3 + x2

1x2x3 + x1x2
2x3, (0, 0, 0, 0)e (1, 1)

bx1x2x2
4 + x1x3x2

4 + x2x3x2
4, (0, 0, 0, 0)e (1, 1)

bx1x2
2x4 + x2x2

3x4 + x2
1x3x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2x4 + x2

2x3x4 + x1x2
3x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2

4 + x2
2x2

4 + x2
3x2

4, (0, 0, 0, 0)e (1, 1)

b(x1 + x2 + x3)2, (123)e (1, 1)

b(x1 + x2 + x3)x4, (123)e (1, 1)

bx2
4, (123)e (1, 1)

b(x1 + x2 + x3)2, (132)e (1, 1)

b(x1 + x2 + x3)x4, (132)e (1, 1)

bx2
4, (132)e (1, 1)

b1, jWe (0, 0)

b1, (jW)2e (1, 1)

b1, (jW)3e (2, 2)

b1, (123)jWe (1, 1)

b1, (123)(jW)2e (1, 1)

b1, (123)(jW)3e (1, 1)

b1, (132)jWe (1, 1)

b1, (132)(jW)2e (1, 1)

b1, (132)(jW)3e (1, 1)
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If we arrange these as a Hodge diamond, we have

1

1 20 1

1

The reader may notice that this is the Hodge diamond of a K3 surface.

During this section, when we considered the bidegree of a polynomial P, where P was

a sum of terms, we only needed to check the degree of a single term. This is because the

bidegree of a polynomial is unchanged when acted upon by a symmetry in G, which is a

fact we shall prove next. This will be a very useful fact to have in Theorem 5.2, where we

will prove that the so called mirror map is a bigraded vector space isomorphism.

Lemma 3.10. Given h ∈ Gmax
W , and bP, ge ∈ AW,G, the element h · bP, ge has the same bidegree

as bP, ge.

Proof. First, recall the A-model bigrading from Definition 3.8:

(deg P + age g− age jW , Ng − deg P + age g− age jW).

We are also going to rely on (∗) from right after Defintion 3.4, which says that

h · bP, ge = bh · P, h−1ghe.

Note that age jW will clearly be unaffected by the action of h on bP, ge. We aim to show

that age(h−1gh) = age g, Nh−1gh = Ng, and deg(h · P) = deg P. Recall from Definition 3.6

that the age of g is dependent only on the eigenvalues of g. Since g and h−1gh are similar

matrices, they must have the same eigenvalues, so age(h−1gh) = age g. This also gives us

N(h−1gh) = Ng, since Ng is the number of eigenvalues of g which are equal to one. To show
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that deg(h · P) = deg P, we will have two cases for h: either h is a pure permutation or h

is a diagonal symmetry. A third case would be when h is a product of a pure permutation

and a diagonal symmetry, but this follows from the previous two cases.

Case 1: Suppose h is a pure permutation. Then h · P simply renames the indexes of

the variables which will not change the degree at all. Recall from Definition 2.7 that the

elements of Gmax
W only permute variables with the same weight. The degree of the volume

form is also unaffected for the same reason. Thus deg(h · P) = deg P.

Case 2: Suppose h is a diagonal symmetry, meaning it is of the form (a1, a2, . . . , an),

where ai ∈ Q/Z for all i. Then h · P = cP for some c ∈ C∗, which would have the same

degree as P, again implying that deg(h · P) = deg P.

Thus h · bP, ge has the same bidegree as bP, ge in AW,G.

CHAPTER 4. THE B-MODEL STATE SPACE

Having constructed the A-model as a bigraded vector space, we can begin our construc-

tion of the B-model. We expect the B-model for (WT, G?) to be isomorphic to the A-model

for (W, G); in our example, this means that the B-model should also have dimension 24

with the same bidegree as the A-model.

Definition 4.1. Let W be an invertible polynomial and H ≤ SLdiag
W . The state space for the

B-model is defined as

BW,H =

(⊕
h∈H

QWh ·ωh

)H

,

where ωh is a volume form on the fixed locus of h.

This is exactly analogous to Definition 3.4, except that the associated group H has dif-

ferent requirements than the group G used for the A-model. If we use (W, G) to construct

the A-model with G ≤ Gdiag
W , then Krawitz [7] showed that the B-model state space asso-

ciated to (WT, GT) will be isomorphic to the A-model state space for (W, G). While the

21



state spaces have similar definitions, the grading and product structures are very differ-

ent, although we won’t explore the product structure here in this thesis.

For groups of non-diagonal matrices, in order for mirror symmetry to hold we replace

GT by the non-abelian dual group G?, defined in Definition 2.16.

4.1 CONSTRUCTING A B-MODEL STATE SPACE

Example 4.2. Let W = x4
1 + x4

2 + x4
3 + x4

4, G = 〈jW , (123)〉, and H = G?. Recall from Exam-

ple 2.17 that G? = 〈(123)〉 ·SLdiag
W . The elements of SLdiag

W are of the form (123)k (̇ a1
4 , a2

4 , a3
4 , a4

4 );

again, the notation ( a1
4 , a2

4 , a3
4 , a4

4 ) refers to a 4x4 diagonal matrix with diagonal entries on

the complex unit circle. The entries also satisfy 4|(a1 + a2 + a3 + a4)—the requirement

to be in SL(4, C). Alternately, the elements are generated by (123), jW , K, and L, where

jW = (1
4 , 1

4 , 1
4 , 1

4), K = (1
2 , 1

4 , 1
4 , 0), and L = (1

4 , 1
2 , 1

4 , 0).

As we begin to construct BW,G? , we need to pay attention to centralizers and conjugacy

classes. Recall the property h · AWg ⊆ AWh−1gh
((∗) under Definition 3.4). On the A-side,

jW commuted with (123), so the centralizer of every element was G and the conjugacy

class of every element was itself. That is not the case for G?.

Case 1: g = (0, 0, 0, 0)

Given that WT = W, the Milnor ring here will be exactly the same as in case 1 of Example

4.2. However, the list of polynomials invariant under G? will not be the same as that for

G, since G? has different generators. Since (123), jW ∈ G?, this list of polynomials will

be a subset of the 9 from earlier, but we also need to check if those 9 polynomials are

invariant under K = (1
2 , 1

4 , 1
4 , 0), and L = (1

4 , 1
2 , 1

4 , 0) as well. The only polynomials that

will work are those where each monomial has the same exponent for x1, x2, and x3. An

example of a polynomial that isn’t invariant under K is x2
1x2

2 + x2
1x2

3 + x2
2x2

3 since

(e
4πi

4 x1)
2(e

2πi
4 x2)

2 + (e
4πi

4 x1)
2(e

2πi
4 x3)

2 + (e
2πi

4 x2)
2(e

2πi
4 x3)

2

6= x2
1x2

2 + x2
1x2

3 + x2
2x2

3.
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This G?-invariant subspace has dimension 3 spanned by 1, x1x2x3x4, and x2
1x2

2x2
3x2

4 (again

suppressing the volume form).

Case 2: g = (123) or g = (132)

Much like in the previous case, we know that the polynomials in either of these sectors

will be a subset of those found in the A-model. Recall there were the same three polyno-

mials for both choices of g. One can check that all three are invariant under K and L too,

meaning that this case yields the same polynomials as on the A-side.

Case 3: g ∈ Gdiag
W and has a trivial fixed locus

This case means g = ( a1
4 , a2

4 , a3
4 , a4

4 ), for 1 ≤ ai ≤ 3. Any sector where a1, a2, a3, and a4 are

all nonzero will fix nothing nontrivial, so it will be narrow. Since the sum of a1, a2, a3, and

a4 must be a multiple of four, then (a1, a2, a3, a4) will need to be an ordering of one the

following:

(3, 3, 3, 3)

(3, 3, 1, 1)

(3, 2, 2, 1)

(2, 2, 2, 2)

(1, 1, 1, 1)

The 3 choices from the above where the components are all equal are powers of jW . In any

of those 3 cases, the conjugacy class is trivial since they will commute with (123), jW , K,

and L.

There are 12 different orderings of (1, 2, 2, 3). One can easily check that x ∈ Fix(g)

if and only if h−1 · x ∈ Fix(h−1gh), so the conjugates of narrow group elements remain

narrow. Conjugation by jW , K, or L does nothing, but conjugation by (123) creates a conju-

gacy class of size 3, implying there will be 12/3 = 4 conjugacy classes of this type. There

are 6 orderings of (1, 1, 3, 3), so this choice gives 6/3 = 2 additional conjugacy classes.
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The powers of jW give three more classes. Thus in this case we found a total of 9 conju-

gacy classes. The sums of the elements in each conjugacy class form a basis vector for a

narrow sector. A few examples of these are the following:

b1, jWe

b1, (3
4 , 3

4 , 1
4 , 1

4)e+ b1, (3
4 , 1

4 , 3
4 , 1

4)e+ b1, (1
4 , 3

4 , 3
4 , 1

4)e

b1, (2
4 , 2

4 , 3
4 , 1

4)e+ b1, (3
4 , 2

4 , 2
4 , 1

4)e+ b1, (2
4 , 3

4 , 2
4 , 1

4)e

The rest are listed in a table at the end of this chapter. In chapter 5, we will show that these

9 sums of narrow sectors correspond to the 9 untwisted broad sectors from the A-model.

Case 4: g ∈ Gdiag
W and has non-trivial fixed locus

Again, we have g = ( a1
4 , a2

4 , a3
4 , a4

4 ), but with 0 ≤ ai ≤ 3 and at least one of the a′is is 0.

The sectors where exactly one of the ai’s is 0 fix those coordinates. We need to check for

invariance under the centralizer (recall (∗) under Definition 3.4), which includes powers

of jW , K, and L but not (123). If exactly one ai is 0, then our resulting polynomial has only

one variable (with degree less than 3) and a dxi volume form, so it cannot be invariant

under jW .

If exactly two of the ai values are zero, two standard basis vectors are included in the

fixed locus. There are six ways to choose these two, and there are three in each conjugacy

class, so we only need to consider two classes. Assume these are x1 and x2. Then the Mil-

nor ring of Wg is C[x1, x2]/〈x3
1, x3

2〉, with the volume form being (dx1 ∧ dx2). Invariance

under jW tells us that each of these must be of the form x2
1, x1x2, or x2

2. However, these

polynomials are not invariant under both K and L, so we get no additional basis elements

from this subcase. The other cases similarly provide no contribution.

If three ai values are 0, the fourth must be as well or else g would not be in SLdiag
W .

This implies that g = (0, 0, 0, 0), which would be a repeat of case 1. Thus case 4 yields no

contribution to the state space.

Case 5: g is a narrow sector with permuations
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Finally, we move on to sectors with factors of (123) and (132). In particular, (123)jW ,

(123)(jW)2, (123)(jW)3, (132)jW , (132)(jW)2, and (132)(jW)3 all have trivial fixed locus as

we have seen in Case 3 of Example 3.5, and they still don’t on this side, so they are narrow.

However, on the B-side, these elements have nontrivial conjugacy classes. Let’s consider

a specific example, say (123)jW . Conjugating (123)jW by K yields the following:

K[(123)jW ]K−1 =



e
4πi

4 0 0 0

0 e
2πi

4 0 0

0 0 e
2πi

4 0

0 0 0 1





0 e
2πi

4 0 0

0 0 e
2πi

4 0

e
2πi

4 0 0 0

0 0 0 e
2πi

4





e
2πi

4 0 0 0

0 e
6πi

4 0 0

0 0 e
6πi

4 0

0 0 0 1



=



0 e
4πi

4 0 0

0 0 e
2πi

4 0

1 0 0 0

0 0 0 e
2πi

4


= (123)(0, 1

2 , 1
4 , 1

4)

This conjugation is equivalent to multiplying on the left of (123)jW by K2L. Similarly,

conjugating (123)jW by L is equivalent to multiplying on the left by K3L. Together the

conjugacy class of (123)jW reaches (123)KiLj for any i, j ∈ {0, 1, 2, 3}. The same is true for

the other five classes, producing 6 more narrow sectors.

In conclusion, the B-model state space contains 3 basis elements from the unwisted

broad sector (0, 0, 0, 0), 6 basis elements from the two twisted broad sectors (123) and

(132), 9 narrow sectors from case 3, and 6 more narrow sectors from case 5, for a total of

24 basis elements. Recall that there were 24 basis elements in the A-model as well, which

is sufficient for showing that the A- and B-models are isomorphic as vector spaces.

4.2 B-MODEL BIGRADING

Just like with the A-model, there is also a bigrading on the B-model state space.
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Definition 4.3. The B-model bigrading is defined for an element bP, ge to be

(deg P + age g− age jW , deg P + age g−1 − age jW).

Example 4.4. The A-model had 24 basis elements, with 20 of them having a bidegree of

(1, 1) and 1 of each of the following: (0, 0), (2, 0), (0, 2), and (2, 2). For the A- and B-

models to be isomorphic as bigraded vector spaces, we should see the same breakdown

of elements for the B-model too.

As with the A-model, we know that age(jW) = 1. Hence the bidegree for all of the

elements in the B-model can be reduced to

(deg P + age g− 1, deg P + age g−1 − 1).

As with the A-model, we will handle this by cases. Many of the basis elements on this

side will be sums of elements, but we only need to look at one term in the sum since they

will all have the same degree.

Case 1: g = (0, 0, 0, 0)

As with the A-model, we will have age g = 0, and thus age g−1 = 0 as well since (0, 0, 0, 0)

is its own inverse. There are only three polynomials to check in this sector, shown below.

deg(1 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = 1

deg(x1x2x3x4 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = 2

deg(x2
1x2

2x2
3x2

4 · (dx1 ∧ dx2 ∧ dx3 ∧ dx4)) = 3

Hence the bidegree for the elements in this sector is

(deg P− 1, deg P− 1),

where deg P is found above.
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Case 2: g = (123) or g = (132)

Recall from the A-model that age((123)) = 1 and age((132)) = 1. Also, the polynomials in

this case are exactly the same as those from the A-model, where we found deg P = 1 for

all such polynomials. Thus the bidegree for the basis elements in these sectors is (1, 1).

Case 3: g ∈ Gdiag
W and has trivial fixed locus

There are a total of 9 sectors in this case, with 3 having a basis elements with trivial

conjugacy class and the other 6 having a conjugacy class of size 3. All of the polynomials

in these sectors will have degree 0, so the bidegree depends just on age g and age g−1.

When g = (jW)i where 1 ≤ i ≤ 3, then age g = i and age g−1 = 4− i. Hence the bidegree

for these 3 elements is

(age g− 1, age g−1 − 1),

where age g and age g−1 are given above.

An example of one of the 6 basis elements with non trivial conjugacy class is

b1, (3
4 , 3

4 , 1
4 , 1

4)e+ b1, (3
4 , 1

4 , 3
4 , 1

4)e+ b1, (1
4 , 3

4 , 3
4 , 1

4)e.

To find the degree of this element, we need to only look at one term in the summation.

Since all of the group elements are diagonal, we can simply sum up the components of g

to find age g, which is 2 in this case. Looking at g−1 will also yield an age of 2. In fact, the

associated g and g−1 for all 6 of these basis elements have an age of 2. Thus the bidegree

for all of them will be (2− 1, 2− 1) = (1, 1).

Case 4: g ∈ Gdiag
W and has non-trivial fixed locus

This case yields 6 such basis elements, each with a conjugacy class of size 16. These con-

jugacy classes are found through conjugating (123)jW , (123)(jW)2, (123)(jW)3, (132)jW ,

(132)(jW)2, (132)(jW)3 by (1
2 , 1

4 , 1
4 , 0) and (1

4 , 1
2 , 1

4 , 0). Since all of these sectors are narrow,

we have deg P = 0, so once again the bidegree depends solely on age g and age g−1. All

of these elements appeared in the A-model as well, where we found that they all have an
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age of 2. The inverse of (123)i(jW)j is (123)2−i(jW)4−j, which also has an age of 2. One can

check that each conjugate will also have age 2. Thus the bidegree for all of the elements

in this case is (2− 1, 2− 1) = (1, 1).

As with the A-model, we now present of the basis elements in the B-model with their

bigrading, seen in the following table:

B-model basis element Bidegree

b1, (0, 0, 0, 0)e (0, 0)

bx1x2x3x4, (0, 0, 0, 0)e (1, 1)

bx2
1x2

2x2
3x2

4, (0, 0, 0, 0)e (2, 2)

b(x1 + x2 + x3)2, (123)e (1, 1)

b(x1 + x2 + x3)x4, (123)e (1, 1)

bx2
4, (123)e (1, 1)

b(x1 + x2 + x3)2, (132)e (1, 1)

b(x1 + x2 + x3)x4, (132)e (1, 1)

bx2
4, (132)e (1, 1)

b1, jWe (0, 2)

b1, (jW)2e (1, 1)

b1, (jW)3e (2, 0)

b1, ( 3
4 , 3

4 , 1
4 , 1

4 )e+ b1, ( 3
4 , 1

4 , 3
4 , 1

4 )e+ b1, ( 1
4 , 3

4 , 3
4 , 1

4 )e (1, 1)

b1, ( 2
4 , 2

4 , 3
4 , 1

4 )e+ b1, ( 3
4 , 2

4 , 2
4 , 1

4 )e+ b1, ( 2
4 , 3

4 , 2
4 , 1

4 )e (1, 1)

b1, ( 2
4 , 2

4 , 1
4 , 3

4 )e+ b1, ( 2
4 , 1

4 , 2
4 , 3

4 )e+ b1, ( 1
4 , 2

4 , 2
4 , 3

4 )e (1, 1)

b1, ( 2
4 , 3

4 , 1
4 , 2

4 )e+ b1, ( 1
4 , 2

4 , 3
4 , 2

4 )e+ b1, ( 3
4 , 1

4 , 2
4 , 3

4 )e (1, 1)

b1, ( 3
4 , 2

4 , 1
4 , 2

4 )e+ b1, ( 1
4 , 3

4 , 2
4 , 2

4 )e+ b1, ( 2
4 , 3

4 , 1
4 , 3

4 )e (1, 1)

b1, ( 3
4 , 1

4 , 1
4 , 3

4 )e+ b1, ( 1
4 , 3

4 , 1
4 , 3

4 )e+ b1, ( 1
4 , 1

4 , 3
4 , 3

4 )e (1, 1)

b1, (123)jWe+ (15 elements in conj. class) (1, 1)

b1, (123)(jW)2e+ (15 elements in conj. class) (1, 1)

b1, (123)(jW)3e+ (15 elements in conj. class) (1, 1)

b1, (132)jWe+ (15 elements in conj. class) (1, 1)
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b1, (132)(jW)2e+ (15 elements in conj. class) (1, 1)

b1, (132)(jW)3e+ (15 elements in conj. class) (1, 1)

If we arrange these as a Hodge diamond, we have

1

1 20 1

1

Notice this is the same diamond as with our A-model example. This is enough to

prove that the given A- and B-models are isomorphic, but we will give a more explicit

isomorphism in Chapter 5.

As with Lemma 3.10, we again want to know that the bigrading of an element is un-

changed when acted upon by a symmetry in G?, so we prove the same fact for B-models.

Lemma 4.5. Given h ∈ Gmax
WT , and bP, ge ∈ BWT ,G? , the element h · bP, ge has the same bidegree

as bP, ge.

Proof. Recall the B-model bigrading from Definition 4.3:

(deg P + age g− age jW , deg P + age g−1 − age jW).

This proof follows the same as the proof of Lemma 3.10. We already proved that deg(h ·

P) = deg P and age(h−1gh) = age g in Lemma 3.10. The work to show that age(h−1g−1h) =

age g−1 is the same, since h−1g−1h and g−1 are similar matrices, implying that they too

have the same eigenvalues.

Thus h · bP, ge has the same bidegree as bP, ge in BWT ,G? .
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CHAPTER 5. THE MIRROR MAP

Thus far in our example from Chapters 3 and 4, we have shown that the specified A-

and B-models have 24 basis elements with the same number of elements for each bide-

gree. While this in itself would be sufficient for claiming that they are isomorphic, we

aim to create a canonical map which will better demonstrate which elements on one side

correspond to elements on the other. In particular, we expect that this map will exchange

narrow and broad sectors. This follows the map given by Krawitz [7] for A- and B-models

built from abelian groups. This isomorphism between A- and B-models is known as the

mirror map.

Example 5.1. We will continue with the same A- and B-models, and begin constructing

the mirror map with the part of the map that is already laid out for us by matching the 4

elements on either side with unique bidegree.

Bidegree A-model B-model

(0, 0) b1, jWe b1, (0, 0, 0, 0)e

(2, 2) b1, (jW)3e bx2
1x2

2x2
3x2

4, (0, 0, 0, 0)e

(0, 2) b1, (0, 0, 0, 0)e b1, jWe

(2, 0) bx2
1x2

2x2
3x2

4, (0, 0, 0, 0)e b1, (jW)3e

This illuminates 2 more corresponding elements:

Bidegree A-model B-model

(1, 1) b1, (jW)2e bx1x2x3x4, (0, 0, 0, 0)e

(1, 1) bx1x2x3x4, (0, 0, 0, 0)e b1, (jW)2e

A nice generalization of the six element maps above can be seen by

b1, (jW)ie ↔ bxi−1
1 xi−1

2 xi−1
3 xi−1

4 , (0, 0, 0, 0)e.
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Recall that the dimension of the untwisted broad sector in the A-model was 9, and

since three of those are seen above, there are still 6 others to account for. These 6 basis

elements map to the 6 narrow sectors in the B-model which have a conjugacy class of

size 3. Specifically, we map the elements on the A-side whose polynomial has the same

permutation structure as the group elements on the B-side. One explicit example is given

by mapping the A-model element

bx2
1x2

2 + x2
1x2

3 + x2
2x2

3, (0, 0, 0, 0)e

to the B-model element

b1, (3
4 , 3

4 , 1
4 , 1

4)e+ b1, (3
4 , 1

4 , 3
4 , 1

4)e+ b1, (1
4 , 3

4 , 3
4 , 1

4)e.

Notice that the term x2
1x2

2 has a power of 2 for x1 and x2, and this corresponds to the first

two components of the group element of b1, (3
4 , 3

4 , 1
4 , 1

4)e having a larger value by 2
4 . The

same correspondence can be noticed between x2
1x2

3 and b1, (3
4 , 1

4 , 3
4 , 1

4)e, as well as x2
2x2

3 and

b1, (1
4 , 3

4 , 3
4 , 1

4)e.

All 6 elements of this type are given below. The bidegree is left out, but all of the fol-

lowing elements have a bidegree of (1, 1).

A-model B-model

bx2
1x2

2 + x2
1x2

3 + x2
2x2

3, (0, 0, 0, 0)e b1, (3
4 , 3

4 , 1
4 , 1

4)e+ b1, (3
4 , 1

4 , 3
4 , 1

4)e+ b1, (1
4 , 3

4 , 3
4 , 1

4)e

bx1x2x2
3 + x2

1x2x3 + x1x2
2x3, (0, 0, 0, 0)e b1, (2

4 , 2
4 , 3

4 , 1
4)e+ b1, (3

4 , 2
4 , 2

4 , 1
4)e+ b1, (2

4 , 3
4 , 2

4 , 1
4)e

bx1x2x2
4 + x1x3x2

4 + x2x3x2
4, (0, 0, 0, 0)e b1, (2

4 , 2
4 , 1

4 , 3
4)e+ b1, (2

4 , 1
4 , 2

4 , 3
4)e+ b1, (1

4 , 2
4 , 2

4 , 3
4)e

bx1x2
2x4 + x2x2

3x4 + x2
1x3x4, (0, 0, 0, 0)e b1, (2

4 , 3
4 , 1

4 , 2
4)e+ b1, (1

4 , 2
4 , 3

4 , 2
4)e+ b1, (3

4 , 1
4 , 2

4 , 2
4)e

bx2
1x2x4 + x2

2x3x4 + x1x2
3x4, (0, 0, 0, 0)e b1, (3

4 , 2
4 , 1

4 , 2
4)e+ b1, (1

4 , 3
4 , 2

4 , 2
4)e+ b1, (2

4 , 1
4 , 3

4 , 2
4)e

bx2
1x2

4 + x2
2x2

4 + x2
3x2

4, (0, 0, 0, 0)e b1, (3
4 , 1

4 , 1
4 , 3

4)e+ b1, (1
4 , 3

4 , 1
4 , 3

4)e+ b1, (1
4 , 1

4 , 3
4 , 3

4)e
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Again, notice that the polynomials of the A-model elements have the same permutation

structure of the group elements in the B-model.

There are now 12 basis elements left to be mapped in both models, with 6 being

twisted broad sectors from g = (123) or g = (132) and 6 being narrow sectors, where

g is a product of a permutation and a power of jW . While they all have the same bidegree,

we expect that the mirror map will map broad sectors to narrow sectors and narrow sec-

tors to broad sectors, so we will do the same here. Unlike the previous element mappings,

it is not as clear exactly which A-model and B-model elements below should map to each

other, since there’s no permuation structure to be observed in these elements.

A-model B-model

b(x1 + x2 + x3)
2, (123)e b1, (123)jWe+ (15 others)

b(x1 + x2 + x3)x4, (123)e b1, (123)(jW)2e+ (15 others)

b(x4)
2, (123)e b1, (123)(jW)3e+ (15 others)

b(x1 + x2 + x3)
2, (132)e b1, (132)jWe+ (15 others)

b(x1 + x2 + x3)x4, (132)e b1, (132)(jW)2e+ (15 others)

b(x4)
2, (132)e b1, (132)(jW)3e+ (15 others)

b1, (123)jWe b(x1 + x2 + x3)
2, (123)e

b1, (123)(jW)2e b(x1 + x2 + x3)x4, (123)e

b1, (123)(jW)3e b(x4)
2, (123)e

b1, (132)jWe b(x1 + x2 + x3)
2, (132)e

b1, (132)(jW)2e b(x1 + x2 + x3)x4, (132)e

b1, (132)(jW)3e b(x4)
2, (132)e

This completes the mirror map, and we have explicitly shown in this example that as
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bigraded vector spaces,

AW,G
∼= BWT ,G? .

5.1 PROOF OF THE RESTRICTED MIRROR MAP

Later we will find that under certain conditions, that surprisingly the A- and B-models

are not isomorphic as bigraded vector spaces. However, we can show that part of the mir-

ror map always holds if we restrict to certain natural subspaces. In particular, it works

if we restrict to the untwisted broad sectors of the A-model and B-model and their cor-

responding images as seen in the previous example. We prove that here in the following

theorem.

Theorem 5.2. Let W be an invertible Fermat polynomial and G ≤ Gmax
W be an admissible group

of the form K · H, where K ≤ G is the subgroup of pure even permutations and H ≤ G is the

subgroup of diagonal symmetries. Define A0 ⊆ AW,G and B0 ⊆ BWT ,G? to be the untwisted

broad sectors for the A- and B-side, respectively. Let nar′ ≤ G be the set of narrow diagonal

symmetries. We will also denote nar′ ≤ G? to be the corresponding set on the B-side. Then there

exist bigraded vector space isomorphisms

A0
∼−→ Bnar′ and Anar′

∼−→ B0.

Proof. Let W = xd1
1 + · · ·+ xdn

n , so Gdiag
W is generated by the set

{( 1
d1

, 0, . . . , 0), (0, 1
d2

, . . . , 0), . . . , (0, 0, . . . , 1
dn
)}

Define Ig = {i ∈ {1, . . . , n}|ai 6= 0} and consider the map

⊕
g∈G∩Gdiag

W

QWg ·ωg →
⊕

g′∈G?∩Gdiag
W

QWg′
·ωg′
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given by ⌊
∏
j 6∈Ig

xbi
j dxj, (

a1
d1

, . . . , an
dn
)
⌉
7→
⌊

∏
i 6∈Ig

yai−1
i dxi, (

b′1
d1

, . . . , b′n
dn
)
⌉

,

for g = ( a1
d1

, . . . , an
dn
), where b′i = bi + 1 if i 6∈ Ig, and b′i = 0 otherwise.

The above map is known as the map on the unprojected state spacest, where invariance

has not yet been considered. Notice that G? ∩ Gdiag
W = GT in this case. This map was

proven to be a bijection by Krawitz [7]. For completeness, we will reprove the relevant

part here. We will show that

QW →
⊕

g′∈Gdiag
W

Fix(g′)={0}

QWg′
·ωg′

is a bijection. This is the case for when ai = 0 for all i and (
b′1
d1

, . . . , b′n
dn
) is a diagonal

symmetry with nonzero entries. We will also need that fact that

⊕
g∈Gdiag

W
Fix(g)=0

QWg ·ωg → QW

is a bijection, considering it this time as a map from the A-model to the B-model. How-

ever, the proof of this exactly mirrors the first one, so we will exclude it here. Before

proceeding, note that since W is Fermat, we know that the Milnor ring of W is

QW =
C[x1, . . . , xn]

(xd1−1
1 , . . . , xdn−1

n )
,

which has a basis of elements of the form ∏n
i=1 xbi

i , where 0 ≤ bi ≤ di − 2.

First, to prove surjectivity, let

b1, ( b′1
d1

, . . . , b′n
dn
)e ∈

⊕
g′∈Gdiag

W
Fix(g′)={0}

QWg′
·ωg′ ,
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so 1 ≤ b′i ≤ di − 1. Since each b′i 6= 0, let bi = b′i − 1, and notice 0 ≤ bi ≤ di − 2. The

preimage of b1, ( b′1
d1

, . . . , b′n
dn
)e is of the form b∏n

j=1 xbi
j dxj, (0, . . . , 0)e. Notice W|Fix((0,...,0)) =

W, so ∏n
j=1 xbi

j dxj ∈ QW , as desired.

To prove injectivity, let

b1, ( b′1
d1

, . . . , b′n
dn
)e = b1, ( c′1

d1
, . . . , c′n

dn
)e

be two elements in the image of the given map. This would imply that b′i = c′i (mod di)

for all i. So bi = ci (mod di). Recall that

QW =
C[x1, . . . , xn]

(xd1−1
1 , . . . , xdn−1

n )
,

so ∏n
j=1 xbi

j dxj = ∏n
j=1 xci

j dxj in QW since bi and ci are between 1 and di − 2. Thus

b
n

∏
j=1

xbi
j dxj, (0, . . . , 0)e = b

n

∏
j=1

xci
j dxj, (0, . . . , 0)e,

completing the bijection.

Next, we look at the invariant subspaces of the preimage and image of the above map.

Specifically, we aim to show that

A0 → Bnar′

is a bijection with the given map, where A0 =
(
QW

)G and Bnar′ =
( ⊕

g′∈Gdiag
W

Fix(g′)={0}

QWg′
·

ωg′
)G?

.

We will need to show that if b
m

∑
r=1

(∏
j 6∈Ig

x
bjr
j dxj), (0, . . . , 0)e is invariant under G, meaning

it is fixed by all the elements of G, then its image is fixed by the elements of G?. Since G is

generated by K and H, we need to show that if
m

∑
r=1

(∏
j 6∈Ig

x
bjr
j dxj) is fixed for all σ ∈ K and

h ∈ H, then its image is fixed by G?.
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Case 1: Let h ∈ H, so h is a diagonal symmetry of the form ( h1
d1

, . . . , hn
dn
). For this case,

recall that h acts on the element bP, ge by h · bP, ge = bh · P, h−1ghe. Note that h fixes

terms of polynomials independently since h acts diagonally, so we only need to consider

P as a monomial. We consider h · bP, (0, . . . , 0)e, where P = ∏n
j=1 xbi

j dxj. Then

h · bP, (0, . . . , 0)e = bh · P, (0, . . . , 0)e = be2πi ∑n
i=1

hib′i
di P, (0, . . . , 0)e.

Note that since P is fixed by h, then ∑n
i=1

hib′i
di
∈ Z. But notice that ∑n

i=1
hib′i
di

= hAW(
b′1
d1

, . . . , b′n
dn
) ∈

Z. Thus ( b′1
d1

, . . . , b′n
dn
) ∈ HT, so b1, ( b′1

d1
, . . . , b′n

dn
)e ∈ (

⊕
g∈Gdiag

WT
Fix(g)={0}

QWT |Fix(g)
·ωg)

HT
.

Case 2: Let σ ∈ K, so that σ fixes b∑m
r=1(Π

n
i=1xbir

i dxi), (0, . . . , 0)e ∈ A0. That is, if

∏n
j=1 xbi

j dxi is a single term of the sum ∑m
r=1(Π

n
i=1xbir

i dxi), then σ(∏n
j=1 xbi

j dxi) = ∏n
j=1 xbσ(i)

j dxi

must be another term in the sum. Note that σ fixes the volume form because σ is an

even permutation. Now consider ∑m
r=1b1, (

b′1r
d1

, . . . , b′nr
dn
)e ∈ Bnar′ , which is the image of

b∑m
r=1(Π

n
i=1xbir

i dxi), (0, . . . , 0)e ∈ A0. Since σ(∏n
j=1 xbi

j dxj) = ∏n
j=1 xbσ(i)

j dxj is a term of the

sum ∑m
r=1(Π

n
j=1xbir

j dxj), then σ(b1, ( b′1
d1

, . . . , b′n
dn
)e) = b1, (

b′
σ(1)

dσ(1)
, . . . ,

b′
σ(n)

dσ(n)
)e is another term of

∑m
r=1b1, (

b′1r
d1

, . . . , b′nr
dn
)e. Thus σ fixes ∑m

r=1b1, (
b′1r
d1

, . . . , b′nr
dn
)e ∈ Bnar′ as well, so it is invariant

under K.

The work to show that Anar′ → B0 is a bijection follows similarly. Thus we have

proved that the restricted A- and B-models are isomorphic as vector spaces. However,

we claimed that they were also isomorphic as bigraded vector spaces, so it remains to

show that the corresponding elements from either side have the same bidegree.

Recall that the A-model bigrading from Definition 3.8 is

(deg P + age g− age jW , Ng − deg P + age g− age jW).
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If we restrict to A0, then age g = 0 and Ng = n, so the above definition reduces to

(deg P− age jW , n− deg P− age jW).

The B-model bigrading from Definition 4.3 was

(deg P′ + age g′ − age jW , deg P′ + age g′−1 − age jW).

When we consider elements of Bnar′ , we find that deg P′ = 0, so the bigrading becomes

(age g′ − age jW , age g′−1 − age jW).

Consider the corresponding elements

b
m

∑
r=1

(
n

∏
j=1

xbir
j dxj), (0, . . . , 0)e ∈ A0 and

m

∑
r=1
b1, (

b′1r
d1

, . . . , b′nr
dn
)e ∈ Bnar′ .

By Lemma 3.10 and Lemma 4.5, we only need to focus on one term in each sum. Thus

to show that the mirror map preserves bidegree, we must prove that deg(∏n
j=1 xbir

j dxj) =

age(
b′1r
d1

, . . . , b′nr
dn
) and n− deg(∏n

j=1 xbir
j dxj) = age(

b′1r
d1

, . . . , b′nr
dn
)−1. Observe that

deg(
n

∏
j=1

xbi
j dxj) =

n

∑
i=1

bi + 1
di

and age( b′1
d1

, . . . , b′n
dn
) =

b′1
d1
+ · · ·+ b′n

dn
=

n

∑
i=1

b′i
di

.

Since b′i = bi + 1, then deg(∏n
j=1 xbir

j dxj) = age(
b′1r
d1

, . . . , b′nr
dn
).

It follows that n− deg(∏n
j=1 xbir

j dxj) = age(
b′1r
d1

, . . . , b′nr
dn
)−1 since if g is narrow, then it

is known that age g = n− age g−1 (Mukai [9]). This establishes that the first isomorphism

A0 → Bnar′ preserves bidegree.

For the other iso, Anar′ → B0, we need to show is that the corresponding elements

from Anar′ and B0 also have the same bidegree. The bigrading of elements from these
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sectors is

(age g− age jW , age g− age jW) and (deg P′ − age jW , deg P′ − age jW),

respectively, where g ∈ G and P′ ∈ (QW)G?
. This means that all we need to show is that

age g = deg P′, which follows the exact same work as above.

Thus we have shown that the maps

A0 → Bnar′ and B0 → Anar′

are bigraded vector space isomorphisms. This gives us the partial mirror map.

CHAPTER 6. ANOTHER EXAMPLE

While the example we began in Chapter 3 was a great starting place, the mirror map left

a bit to be desired given that 20 of the 24 basis elements had the same bidegree of (1, 1).

Moving up to a higher degree polynomial will create A- and B-models with larger bases

and more variety in their bigrading, illuminating a clearer picture of the mirror map. With

Theorem 5.2, we know what most of the map will look like, but mapping the sectors built

from non-diagonal matrices is still a bit unclear.

Example 6.1. Let W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 and G = 〈jW , (12)(34)〉, where

jW = (1
5 , 1

5 , 1
5 , 1

5 , 1
5) and (12)(34) =



0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1


.
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Then WT = W and the non-abelian dual group of G is

G? = 〈(12)(34)〉 · SLdiag
W ,

where SLdiag
W = 〈jW , (2

5 , 1
5 , 1

5 , 1
5 , 0), (1

5 , 2
5 , 1

5 , 1
5 , 0), (1

5 , 1
5 , 2

5 , 1
5 , 0)〉. We will denote K = (2

5 , 1
5 , 1

5 , 1
5 , 0),

L = (1
5 , 2

5 , 1
5 , 1

5 , 0), and M = (1
5 , 1

5 , 2
5 , 1

5 , 0). As with the previous example, the goal is to

show that

AW,G
∼= BWT ,G?

as bigraded vector spaces. This example follows the same recipe as Example 5.1, so we

leave the details to the reader and simply provide the mirror map.

The first eight elements listed below follow the mirror map described by and Theorem

5.2 between A0 and Bnar′ as well as Anar′ and B0.

Bidegree A-model B-model

(0, 0) b1, jWe b1, (0, 0, 0, 0, 0)e

(1, 1) b1, (jW)2e bx1x2x3x4, (0, 0, 0, 0, 0)e

(2, 2) b1, (jW)3e bx2
1x2

2x2
3x2

4, (0, 0, 0, 0, 0)e

(3, 3) b1, (jW)4e bx3
1x3

2x3
3x3

4, (0, 0, 0, 0, 0)e

(0, 3) b1, (0, 0, 0, 0, 0)e b1, jWe

(1, 2) bx1x2x3x4, (0, 0, 0, 0, 0)e b1, (jW)2e

(2, 1) bx2
1x2

2x2
3x2

4, (0, 0, 0, 0, 0)e b1, (jW)3e

(3, 0) bx3
1x3

2x3
3x3

4, (0, 0, 0, 0, 0)e b1, (jW)4e

The next four pages contain the basis elements in A0 and the corresponding narrow

sectors in Bnar′ as in Theorem 5.2. The first two pages all have a bidegree of (1, 2), while

the next two after that have a bidegree of (2, 1). These are all described by Theorem 5.2.
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A-model B-model

bx3
1x2

2 + x2
1x3

2, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 1
5 , 1

5 , 1
5 )e+ b1, ( 3

5 , 4
5 , 1

5 , 1
5 , 1

5 )e

bx3
3x2

4 + x2
3x3

4, (0, 0, 0, 0, 0)e b1, ( 1
5 , 1

5 , 4
5 , 3

5 , 1
5 )e+ b1, ( 1

5 , 1
5 , 3

5 , 4
5 , 1

5 )e

bx2
1x3

3 + x2
2x3

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 4
5 , 1

5 , 1
5 )e+ b1, ( 1

5 , 3
5 , 1

5 , 4
5 , 1

5 )e

bx3
1x2

3 + x3
2x2

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 3
5 , 1

5 , 1
5 )e+ b1, ( 1

5 , 4
5 , 1

5 , 3
5 , 1

5 )e

bx3
1x2

4 + x3
2x2

3, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 1
5 , 3

5 , 1
5 )e+ b1, ( 1

5 , 4
5 , 3

5 , 1
5 , 1

5 )e

bx2
1x3

4 + x2
2x3

3, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 1
5 , 4

5 , 1
5 )e+ b1, ( 1

5 , 3
5 , 4

5 , 1
5 , 1

5 )e

bx3
1x2

5 + x3
2x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 1
5 , 1

5 , 3
5 )e+ b1, ( 1

5 , 4
5 , 1

5 , 1
5 , 3

5 )e

bx3
3x2

5 + x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 1
5 , 1

5 , 4
5 , 1

5 , 3
5 )e+ b1, ( 1

5 , 1
5 , 1

5 , 4
5 , 3

5 )e

bx2
1x3

5 + x2
2x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 1
5 , 1

5 , 4
5 )e+ b1, ( 1

5 , 3
5 , 1

5 , 1
5 , 4

5 )e

bx2
2x3

5 + x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 1
5 , 3

5 , 1
5 , 1

5 , 4
5 )e+ b1, ( 1

5 , 1
5 , 1

5 , 3
5 , 4

5 )e

bx3
1x2x3 + x1x3

2x4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 2
5 , 1

5 , 1
5 )e+ b1, ( 2

5 , 4
5 , 1

5 , 2
5 , 1

5 )e

bx1x3
3x4 + x2x3x3

4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 4
5 , 2

5 , 1
5 )e+ b1, ( 1

5 , 2
5 , 2

5 , 4
5 , 1

5 )e

bx1x3
2x3 + x3

1x2x4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 2
5 , 1

5 , 1
5 )e+ b1, ( 4

5 , 2
5 , 1

5 , 2
5 , 1

5 )e

bx1x3x3
4 + x2x3

3x4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 2
5 , 4

5 , 1
5 )e+ b1, ( 1

5 , 2
5 , 4

5 , 2
5 , 1

5 )e

bx1x2x3
3 + x1x2x3

4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 4
5 , 1

5 , 1
5 )e+ b1, ( 2

5 , 2
5 , 1

5 , 4
5 , 1

5 )e

bx3
1x3x4 + x3

2x3x4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 2
5 , 2

5 , 1
5 )e+ b1, ( 1

5 , 4
5 , 2

5 , 2
5 , 1

5 )e

bx1x3
2x5 + x3

1x2x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 1
5 , 1

5 , 2
5 )e+ b1, ( 4

5 , 2
5 , 1

5 , 1
5 , 2

5 )e

bx3x3
4x5 + x3

3x4x5, (0, 0, 0, 0, 0)e b1, ( 1
5 , 1

5 , 2
5 , 4

5 , 2
5 )e+ b1, ( 1

5 , 1
5 , 4

5 , 2
5 , 2

5 )e

bx1x3
3x5 + x2x3

4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 4
5 , 1

5 , 2
5 )e+ b1, ( 1

5 , 2
5 , 1

5 , 4
5 , 2

5 )e

bx3
1x3x5 + x3

2x4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 2
5 , 1

5 , 2
5 )e+ b1, ( 1

5 , 4
5 , 1

5 , 2
5 , 2

5 )e

bx1x3
4x5 + x2x3

3x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 1
5 , 4

5 , 2
5 )e+ b1, ( 1

5 , 2
5 , 4

5 , 1
5 , 2

5 )e

bx3
1x4x5 + x3

2x3x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 1
5 , 2

5 , 2
5 )e+ b1, ( 1

5 , 4
5 , 2

5 , 1
5 , 2

5 )e

bx1x2x3
5, (0, 0, 0, 0, 0)e b1, ( 2

5 , 2
5 , 1

5 , 1
5 , 4

5 )e

bx3x4x3
5, (0, 0, 0, 0, 0)e b1, ( 1

5 , 1
5 , 2

5 , 2
5 , 4

5 )e

bx1x3x3
5 + x2x4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 2
5 , 1

5 , 4
5 )e+ b1, ( 1

5 , 2
5 , 1

5 , 2
5 , 4

5 )e

bx1x4x3
5 + x2x3x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 1
5 , 2

5 , 4
5 )e+ b1, ( 1

5 , 2
5 , 2

5 , 1
5 , 4

5 )e
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bx2
1x2

2x3 + x2
1x2

2x4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 2
5 , 1

5 , 1
5 )e+ b1, ( 3

5 , 3
5 , 1

5 , 2
5 , 1

5 )e

bx1x2
2x2

3 + x2
1x2x2

4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 3
5 , 1

5 , 1
5 )e+ b1, ( 3

5 , 2
5 , 1

5 , 3
5 , 1

5 )e

bx2
1x2x2

3 + x1x2
2x2

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 3
5 , 1

5 , 1
5 )e+ b1, ( 2

5 , 3
5 , 1

5 , 3
5 , 1

5 )e

bx2
1x2

3x4 + x2
2x3x2

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 3
5 , 2

5 , 1
5 )e+ b1, ( 1

5 , 3
5 , 2

5 , 3
5 , 1

5 )e

bx1x2
3x2

4 + x2x2
3x2

4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 3
5 , 3

5 , 1
5 )e+ b1, ( 1

5 , 2
5 , 3

5 , 3
5 , 1

5 )e

bx2
1x3x2

4 + x2
2x2

3x4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 2
5 , 3

5 , 1
5 )e+ b1, ( 1

5 , 3
5 , 3

5 , 2
5 , 1

5 )e

bx2
1x2

2x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 1
5 , 1

5 , 2
5 )e

bx2
3x2

4x5, (0, 0, 0, 0, 0)e b1, ( 1
5 , 1

5 , 3
5 , 3

5 , 2
5 )e

bx2
1x2

3x5 + x2
2x2

4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 3
5 , 1

5 , 2
5 )e+ b1, ( 1

5 , 3
5 , 1

5 , 3
5 , 2

5 )e

bx2
1x2

4x5 + x2
2x2

3x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 1
5 , 3

5 , 2
5 )e+ b1, ( 1

5 , 3
5 , 3

5 , 1
5 , 2

5 )e

bx1x2
2x2

5 + x2
1x2x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 1
5 , 1

5 , 3
5 )e+ b1, ( 3

5 , 2
5 , 1

5 , 1
5 , 3

5 )e

bx3x2
4x2

5 + x2
3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 1
5 , 1

5 , 2
5 , 3

5 , 3
5 )e+ b1, ( 1

5 , 1
5 , 3

5 , 2
5 , 3

5 )e

bx1x2
3x2

5 + x2x2
4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 3
5 , 1

5 , 3
5 )e+ b1, ( 1

5 , 2
5 , 1

5 , 3
5 , 3

5 )e

bx2
1x3x2

5 + x2
2x4x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 2
5 , 1

5 , 3
5 )e+ b1, ( 1

5 , 3
5 , 1

5 , 2
5 , 3

5 )e

bx1x2
4x2

5 + x2x2
3x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 1
5 , 3

5 , 3
5 )e+ b1, ( 1

5 , 2
5 , 3

5 , 1
5 , 3

5 )e

bx2
1x4x2

5 + x2
2x3x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 1
5 , 2

5 , 3
5 )e+ b1, ( 1

5 , 3
5 , 2

5 , 1
5 , 3

5 )e

bx2
1x2x3x4 + x1x2

2x3x4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 2
5 , 2

5 , 1
5 )e+ b1, ( 2

5 , 3
5 , 2

5 , 2
5 , 1

5 )e

bx1x2x2
3x4 + x1x2x3x2

4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 3
5 , 2

5 , 1
5 )e+ b1, ( 2

5 , 2
5 , 2

5 , 3
5 , 1

5 )e

bx2
1x2x3x5 + x1x2

2x4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 2
5 , 1

5 , 2
5 )e+ b1, ( 2

5 , 3
5 , 1

5 , 2
5 , 2

5 )e

bx1x2
3x4x5 + x2x3x2

4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 3
5 , 2

5 , 2
5 )e+ b1, ( 1

5 , 2
5 , 2

5 , 3
5 , 2

5 )e

bx1x2
2x3x5 + x2

1x2x4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 2
5 , 1

5 , 2
5 )e+ b1, ( 3

5 , 2
5 , 1

5 , 2
5 , 2

5 )e

bx1x3x2
4x5 + x2x2

3x4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 2
5 , 3

5 , 2
5 )e+ b1, ( 1

5 , 2
5 , 3

5 , 2
5 , 2

5 )e

bx1x2x2
3x5 + x1x2x2

4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 3
5 , 1

5 , 2
5 )e+ b1, ( 2

5 , 2
5 , 1

5 , 3
5 , 2

5 )e

bx2
1x3x4x5 + x2

2x3x4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 2
5 , 2

5 , 2
5 )e+ b1, ( 1

5 , 3
5 , 2

5 , 2
5 , 2

5 )e

bx1x2x3x2
5 + x1x2x4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 2
5 , 1

5 , 3
5 )e+ b1, ( 2

5 , 2
5 , 1

5 , 2
5 , 3

5 )e

bx1x3x4x2
5 + x2x3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 2
5 , 2

5 , 3
5 )e+ b1, ( 1

5 , 2
5 , 2

5 , 2
5 , 3

5 )e
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A-model B-model

bx3
1x3

2x3
3x4 + x3

1x3
2x3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 4
5 , 2

5 , 1
5 )e+ b1, ( 4

5 , 4
5 , 2

5 , 4
5 , 1

5 )e

bx3
1x2x3

3x3
4 + x1x3

2x3
3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 4

5 , 1
5 )e+ b1, ( 2

5 , 4
5 , 4

5 , 4
5 , 1

5 )e

bx3
1x3

2x3
3x5 + x3

1x3
2x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 4
5 , 1

5 , 2
5 )e+ b1, ( 4

5 , 4
5 , 1

5 , 4
5 , 2

5 )e

bx3
1x3

2x3
4x5 + x3

2x3
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 1
5 , 4

5 , 2
5 )e+ b1, ( 1

5 , 4
5 , 4

5 , 4
5 , 2

5 )e

bx3
1x3

2x3x3
5 + x3

1x3
2x4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 2
5 , 1

5 , 4
5 )e+ b1, ( 4

5 , 4
5 , 1

5 , 2
5 , 4

5 )e

bx1x3
3x3

4x3
5 + x2x3

3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 4
5 , 4

5 , 4
5 )e+ b1, ( 1

5 , 2
5 , 4

5 , 4
5 , 4

5 )e

bx3
1x2x3

3x3
5 + x1x3

2x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 1

5 , 4
5 )e+ b1, ( 2

5 , 4
5 , 1

5 , 4
5 , 4

5 )e

bx3
1x3

3x4x3
5 + x3

2x3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 4
5 , 2

5 , 4
5 )e+ b1, ( 1

5 , 4
5 , 2

5 , 4
5 , 4

5 )e

bx1x3
2x3

3x3
5 + x3

1x2x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 4
5 , 1

5 , 4
5 )e+ b1, ( 4

5 , 2
5 , 1

5 , 4
5 , 4

5 )e

bx3
1x3x3

4x3
5 + x3

2x3
3x4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 2
5 , 4

5 , 4
5 )e+ b1, ( 1

5 , 4
5 , 4

5 , 2
5 , 4

5 )e

bx3
1x3

2x2
3x2

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 3
5 , 3

5 , 1
5 )e

bx2
1x2

2x3
3x3

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 4
5 , 4

5 , 1
5 )e

bx3
1x2

2x3
3x2

4 + x2
1x3

2x2
3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 4
5 , 3

5 , 1
5 )e+ b1, ( 3

5 , 4
5 , 3

5 , 4
5 , 1

5 )e

bx3
1x2

2x2
3x3

4 + x2
1x3

2x3
3x2

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 4

5 , 1
5 )e+ b1, ( 3

5 , 4
5 , 4

5 , 3
5 , 1

5 )e

bx3
1x3

2x2
3x2

5 + x3
1x3

2x2
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 4

5 , 1
5 )e+ b1, ( 4

5 , 4
5 , 1

5 , 3
5 , 3

5 )e

bx2
1x3

3x3
4x2

5 + x2
2x3

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 4
5 , 4

5 , 3
5 )e+ b1, ( 1

5 , 3
5 , 4

5 , 4
5 , 3

5 )e

bx3
1x2

2x3
3x2

5 + x2
1x3

2x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 4
5 , 1

5 , 3
5 )e+ b1, ( 3

5 , 4
5 , 1

5 , 4
5 , 3

5 )e

bx3
1x3

3x2
4x2

5 + x3
2x2

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 4
5 , 3

5 , 3
5 )e+ b1, ( 1

5 , 4
5 , 3

5 , 4
5 , 3

5 )e

bx2
1x3

2x3
3x2

5 + x3
1x2

2x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 4

5 , 4
5 , 1

5 , 3
5 )e+ b1, ( 4

5 , 3
5 , 1

5 , 4
5 , 3

5 )e

bx3
1x2

3x3
4x2

5 + x3
2x3

3x2
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 3
5 , 4

5 , 3
5 )e+ b1, ( 1

5 , 4
5 , 4

5 , 3
5 , 3

5 )e

bx3
1x2

2x2
3x3

5 + x2
1x3

2x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 1

5 , 4
5 )e+ b1, ( 3

5 , 4
5 , 1

5 , 3
5 , 4

5 )e

bx2
1x3

3x2
4x3

5 + x2
2x2

3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 4
5 , 3

5 , 4
5 )e+ b1, ( 1

5 , 3
5 , 3

5 , 4
5 , 4

5 )e

bx2
1x3

2x2
3x3

5 + x3
1x2

2x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 4

5 , 3
5 , 1

5 , 4
5 )e+ b1, ( 4

5 , 3
5 , 1

5 , 3
5 , 4

5 )e

bx2
1x2

3x3
4x3

5 + x2
2x3

3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 3
5 , 4

5 , 4
5 )e+ b1, ( 1

5 , 3
5 , 4

5 , 3
5 , 4

5 )e

bx2
1x2

2x3
3x3

5 + x2
1x2

2x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 4
5 , 1

5 , 4
5 )e+ b1, ( 3

5 , 3
5 , 1

5 , 4
5 , 4

5 )e

bx3
1x2

3x2
4x3

5 + x3
2x2

3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 3
5 , 3

5 , 4
5 )e+ b1, ( 1

5 , 4
5 , 3

5 , 3
5 , 4

5 )e
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bx3
1x2

2x2
3x2

4x5 + x2
1x3

2x2
3x2

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 3

5 , 2
5 )e+ b1, ( 3

5 , 4
5 , 3

5 , 3
5 , 2

5 )e

bx2
1x2

2x3
3x2

4x5 + x2
1x2

2x2
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 4
5 , 3

5 , 2
5 )e+ b1, ( 3

5 , 3
5 , 3

5 , 4
5 , 2

5 )e

bx3
1x2

2x2
3x4x2

5 + x2
1x3

2x3x2
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 2

5 , 3
5 )e+ b1, ( 3

5 , 4
5 , 2

5 , 3
5 , 3

5 )e

bx2
1x2x3

3x2
4x2

5 + x1x2
2x2

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 4
5 , 3

5 , 3
5 )e+ b1, ( 2

5 , 3
5 , 3

5 , 4
5 , 3

5 )e

bx3
1x2

2x3x2
4x2

5 + x2
1x3

2x2
3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 2
5 , 3

5 , 3
5 )e+ b1, ( 3

5 , 4
5 , 3

5 , 2
5 , 3

5 )e

bx1x2
2x3

3x2
4x2

5 + x2
1x2x2

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 4
5 , 3

5 , 3
5 )e+ b1, ( 3

5 , 2
5 , 3

5 , 4
5 , 3

5 )e

bx3
1x2x2

3x2
4x2

5 + x1x3
2x2

3x2
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 3
5 , 3

5 , 3
5 )e+ b1, ( 2

5 , 4
5 , 3

5 , 3
5 , 3

5 )e

bx2
1x2

2x3
3x4x2

5 + x2
1x2

2x3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 4
5 , 2

5 , 3
5 )e+ b1, ( 3

5 , 3
5 , 2

5 , 4
5 , 3

5 )e

bx2
1x2

2x2
3x4x3

5 + x2
1x2

2x3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 3
5 , 2

5 , 4
5 )e+ b1, ( 3

5 , 3
5 , 2

5 , 3
5 , 4

5 )e

bx2
1x2x2

3x2
4x3

5 + x1x2
2x2

3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 3
5 , 3

5 , 4
5 )e+ b1, ( 2

5 , 3
5 , 3

5 , 3
5 , 4

5 )e

bx3
1x3

2x2
3x4x5 + x3

1x3
2x3x2

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 3
5 , 2

5 , 2
5 )e+ b1, ( 4

5 , 4
5 , 2

5 , 3
5 , 2

5 )e

bx2
1x2x3

3x3
4x5 + x1x2

2x3
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 4
5 , 4

5 , 2
5 )e+ b1, ( 2

5 , 3
5 , 4

5 , 4
5 , 2

5 )e

bx3
1x2

2x3
3x4x5 + x2

1x3
2x3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 4
5 , 2

5 , 2
5 )e+ b1, ( 3

5 , 4
5 , 2

5 , 4
5 , 2

5 )e

bx3
1x2x3

3x2
4x5 + x1x3

2x2
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 3

5 , 2
5 )e+ b1, ( 2

5 , 4
5 , 3

5 , 4
5 , 2

5 )e

bx3
1x2

2x3x3
4x5 + x2

1x3
2x3

3x4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 2
5 , 4

5 , 2
5 )e+ b1, ( 3

5 , 4
5 , 4

5 , 2
5 , 2

5 )e

bx1x3
2x3

3x2
4x5 + x3

1x2x2
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 4
5 , 3

5 , 2
5 )e+ b1, ( 4

5 , 2
5 , 3

5 , 4
5 , 2

5 )e

bx3
1x3

2x3x4x2
5, (0, 0, 0, 0, 0)e b1, ( 4

5 , 4
5 , 2

5 , 2
5 , 3

5 )e

bx1x2x3
3x3

4x2
5, (0, 0, 0, 0, 0)e b1, ( 2

5 , 2
5 , 4

5 , 4
5 , 3

5 )e

bx3
1x2x3

3x4x2
5 + x1x3

2x3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 2

5 , 3
5 )e+ b1, ( 2

5 , 4
5 , 2

5 , 4
5 , 3

5 )e

bx3
1x2x3x3

4x2
5 + x1x3

2x3
3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 2
5 , 4

5 , 3
5 )e+ b1, ( 2

5 , 4
5 , 4

5 , 2
5 , 3

5 )e

bx3
1x2

2x3x4x3
5 + x2

1x3
2x3x4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 2
5 , 2

5 , 4
5 )e+ b1, ( 3

5 , 4
5 , 2

5 , 2
5 , 4

5 )e

bx1x2x3
3x2

4x3
5 + x1x2x2

3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 4
5 , 3

5 , 4
5 )e+ b1, ( 2

5 , 2
5 , 3

5 , 4
5 , 4

5 )e

bx3
1x2x2

3x4x3
5 + x1x3

2x3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 3
5 , 2

5 , 4
5 )e+ b1, ( 2

5 , 4
5 , 2

5 , 3
5 , 4

5 )e

bx2
1x2x3

3x4x3
5 + x1x2

2x3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 4
5 , 2

5 , 4
5 )e+ b1, ( 2

5 , 3
5 , 2

5 , 4
5 , 4

5 )e

bx3
1x2x3x2

4x3
5 + x1x3

2x2
3x4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 2
5 , 3

5 , 4
5 )e+ b1, ( 2

5 , 4
5 , 3

5 , 2
5 , 4

5 )e

bx1x2
2x3

3x4x3
5 + x2

1x2x3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 4
5 , 2

5 , 4
5 )e+ b1, ( 3

5 , 2
5 , 2

5 , 4
5 , 4

5 )e
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The following basis elements are not described by Theorem 5.2, yet we are still able to

find the same number of each bidegree on either side.

Bidegree A-model B-model

(1, 1) b1, ((12)(34))jWe b(x1 + x2)(x3 + x4), (12)(34)e

(2, 2) b1, ((12)(34))(jW)2e b(x1 + x2)
2(x3 + x4)

2x3
5, (12)(34)e

(1, 1) b1, ((12)(34))(jW)3e bx2
5, (12)(34)e

(2, 2) b1, ((12)(34))(jW)4e b(x1 + x2)
3(x3 + x4)

3x5, (12)(34)e

(1, 2) b(x1 + x2)
2, (12)(34)e b1, ((12)(34))jWe+ (24 others)

(1, 2) b(x3 + x4)
2, (12)(34)e b1, ((12)(34))j3We+ (24 others)

(1, 2) b(x1 + x2)(x3 + x4), (12)(34)e b1, ((12)(34))j2WKe+ (24 others)

(1, 2) bx2
5, (12)(34)e b1, ((12)(34))j2W Le+ (24 others)

(1, 2) b(x1 + x2)x5, (12)(34)e b1, ((12)(34))j2WK4e+ (24 others)

(1, 2) b(x3 + x4)x5, (12)(34)e b1, ((12)(34))j2W L4e+ (24 others)

(2, 1) b(x1 + x2)
3(x3 + x4)

3x5, (12)(34)e b1, ((12)(34))j2We+ (24 others)

(2, 1) b(x1 + x2)
3(x3 + x4)

2x2
5, (12)(34)e b1, ((12)(34))j4We+ (24 others)

(2, 1) b(x1 + x2)
2(x3 + x4)

3x2
5, (12)(34)e b1, ((12)(34))j3WKe+ (24 others)

(2, 1) b(x1 + x2)
3(x3 + x4)x3

5, (12)(34)e b1, ((12)(34))j3W Le+ (24 others)

(2, 1) b(x1 + x2)(x3 + x4)
3x3

5, (12)(34)e b1, ((12)(34))j3WK4e+ (24 others)

(2, 1) b(x1 + x2)
2(x3 + x4)

2x3
5, (12)(34)e b1, ((12)(34))j3W L4e+ (24 others)

CHAPTER 7. FAILED EXAMPLE

Unfortunately, the correspondence previously shown does not hold for all examples. In

Example 7.3 we will see that even if two A- and B-models are isomorphic as vector spaces,
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the given bidegrees don’t match. Wolfgang Ebeling and Sabir Gusein-Zade describe the

parity condition ([5]), which is the condition a subgroup K ≤ G of pure permutations must

have in order for AW,G and BWT ,G? to be isomorphic as bigraded vector spaces.

Definition 7.1. (Ebeling/Gusein-Zade [5]) Let K be the subgroup of pure permuations in

a group G ≤ Gmax
W . We say that K satisfies the parity condition (“PC” for short) if for each

subgroup T ≤ K one has

dim(Cn)T ≡ n (mod 2),

where (Cn)T = {x ∈ Cn : σx = x for all σ ∈ T}.

Example 7.2. Consider K = 〈(12)(34)〉 from Example 6.1. Then (C4)K has dimension

2 and (C4){(1)} has dimension 4, which are both equal to 4 (mod 2). Thus K satisfies

the parity condition, implying that the bigraded state spaces of AW,G and BWT ,G? are

isomorphic, which we proved explicitly in Example 6.1.

Example 7.3. Let W = x5
1 + x5

2 + x5
3 + x5

4 + x5
5 and G = 〈jW , (12)(34), (13)(24)〉, where

jW = (1
5 , 1

5 , 1
5 , 1

5 , 1
5), (12)(34) =



0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 1


, and (13)(24) =



0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1


.

Then WT = W and the non-abelian dual group of G is

G? = 〈(12)(34), (13)(24)〉 · SLdiag
W ,

where SLdiag
W = 〈jW , (0, 2

5 , 1
5 , 1

5 , 1
5), (0, 1

5 , 2
5 , 1

5 , 1
5), (0, 1

5 , 1
5 , 2

5 , 1
5)〉. While the mirror map works

for the sectors described in Theorem 5.2, it is not an isomorphism when considering

the entire A- and B-models. We can verify this with the PC condition above. If K =
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〈(12)(34), (13)(24)〉, then (C4)K = 1 6= 4(mod 2). We will show this explictly be comput-

ing the basis elements ofAW,G and BWT ,G? , and then computing their bidegree. However,

as proved in Theorem 5.2, the restricted mirror map is still an isomorphism, which we

will list first. The eight elements listed below are the exact same as those from Example

6.1.

Bidegree A-model B-model

(0, 0) b1, jWe b1, (0, 0, 0, 0, 0)e

(1, 1) b1, (jW)2e bx1x2x3x4, (0, 0, 0, 0, 0)e

(2, 2) b1, (jW)3e bx2
1x2

2x2
3x2

4, (0, 0, 0, 0, 0)e

(3, 3) b1, (jW)4e bx3
1x3

2x3
3x3

4, (0, 0, 0, 0, 0)e

(0, 3) b1, (0, 0, 0, 0, 0)e b1, jWe

(1, 2) bx1x2x3x4, (0, 0, 0, 0, 0)e b1, (jW)2e

(2, 1) bx2
1x2

2x2
3x2

4, (0, 0, 0, 0, 0)e b1, (jW)3e

(3, 0) bx3
1x3

2x3
3x3

4, (0, 0, 0, 0, 0)e b1, (jW)4e

46



The following 28 corresponding elements have a bidegree of (1, 2). On the A side

these come from untwisted sectors, and on the B side these are from the narrow sectors,

again following the outline from Theorem 5.2.

A-model B-model

bx3
1x2

2 + x2
1x3

2 + x3
3x2

4 + x2
3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 1
5 , 1

5 , 1
5 )e+ (3 others)

bx3
1x2

3 + x2
1x3

3 + x3
2x2

4 + x2
2x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 3
5 , 1

5 , 1
5 )e+ (3 others)

bx3
1x2

4 + x2
1x3

4 + x3
2x2

3 + x2
2x3

3, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 1
5 , 3

5 , 1
5 )e+ (3 others)

bx3
1x2

5 + x3
2x2

5 + x3
3x2

5 + x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 1

5 , 1
5 , 1

5 , 3
5 )e+ (3 others)

bx2
1x3

5 + x2
2x3

5 + x3
2x3

5 + x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 1
5 , 1

5 , 4
5 )e+ (3 others)

bx3
1x2x3 + x1x3

2x4 + x1x3
3x4 + x2x3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 2
5 , 1

5 , 1
5 )e+ (3 others)

bx1x3
2x3 + x3

1x2x4 + x1x3x3
4 + x2x3

3x4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 2
5 , 1

5 , 1
5 )e+ (3 others)

bx1x2x3
3 + x1x2x3

4 + x3
1x3x4 + x3

2x3x4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 4
5 , 1

5 , 1
5 )e+ (3 others)

bx1x3
2x5 + x3

1x2x5 + x3x3
4x5 + x3

3x4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 1
5 , 1

5 , 2
5 )e+ (3 others)

bx1x3
3x5 + x3

1x3x5 + x2x3
4x5 + x3

2x4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 4
5 , 1

5 , 2
5 )e+ (3 others)

bx1x3
4x5 + x3

1x4x5 + x2x3
3x5 + x3

2x3x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 1
5 , 4

5 , 2
5 )e+ (3 others)

bx1x2x3
5 + x3x4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 1
5 , 1

5 , 4
5 )e+ b1, ( 1

5 , 1
5 , 2

5 , 2
5 , 4

5 )e

bx1x3x3
5 + x2x4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 2
5 , 1

5 , 4
5 )e+ b1, ( 1

5 , 2
5 , 1

5 , 2
5 , 4

5 )e

bx1x4x3
5 + x2x3x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 1
5 , 2

5 , 4
5 )e+ b1, ( 1

5 , 2
5 , 2

5 , 1
5 , 4

5 )e

bx1x2
2x2

3 + x2
1x2x2

4 + x2
1x3x2

4 + x2
2x2

3x4, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 3
5 , 1

5 , 1
5 )e+ (3 others)

bx2
1x2x2

3 + x1x2
2x2

4 + x2
1x2

3x4 + x2
2x3x2

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 3
5 , 1

5 , 1
5 )e+ (3 others)

bx2
1x2

2x3 + x2
1x2

2x4 + x1x2
3x2

4 + x2x2
3x2

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 2
5 , 1

5 , 1
5 )e+ (3 others)

bx2
1x2

2x5 + x2
3x2

4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 1
5 , 1

5 , 2
5 )e+ b1, ( 1

5 , 1
5 , 3

5 , 3
5 , 2

5 )e

bx2
1x2

3x5 + x2
2x2

4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 3
5 , 1

5 , 2
5 )e+ b1, ( 1

5 , 3
5 , 1

5 , 3
5 , 2

5 )e

bx2
1x2

4x5 + x2
2x2

3x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 1

5 , 1
5 , 3

5 , 2
5 )e+ b1, ( 1

5 , 3
5 , 3

5 , 1
5 , 2

5 )e

bx1x2
2x2

5 + x2
1x2x2

5 + x3x2
4x2

5 + x2
3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 1
5 , 1

5 , 3
5 )e+ (3 others)

bx1x2
3x2

5 + x2
1x3x2

5 + x2x2
4x2

5 + x2
2x4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 3
5 , 1

5 , 3
5 )e+ (3 others)

bx1x2
4x2

5 + x2
1x4x2

5 + x2x2
3x2

5 + x2
2x3x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 1

5 , 1
5 , 3

5 , 3
5 )e+ (3 others)

bx2
1x2x3x4 + x1x2

2x3x4 + x1x2x2
3x4 + x1x2x3x2

4, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 2
5 , 2

5 , 1
5 )e+ (3 others)

bx2
1x2x3x5 + x1x2

2x4x5 + x1x2
3x4x5 + x2x3x2

4x5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 2

5 , 2
5 , 1

5 , 2
5 )e+ (3 others)

bx1x2
2x3x5 + x2

1x2x4x5 + x1x3x2
4x5 + x2x2

3x4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 3

5 , 1
5 , 2

5 , 2
5 )e+ (3 others)

bx1x2x2
3x5 + x1x2x2

4x5 + x2
1x3x4x5 + x2

2x3x4x5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 3
5 , 1

5 , 2
5 )e+ (3 others)

bx1x2x3x2
5 + x1x2x4x2

5 + x1x3x4x2
5 + x2x3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 2

5 , 2
5 , 1

5 , 3
5 )e+ (3 others)
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The following 28 corresponding elements have a bidegree of (2, 1). As with the previ-
ous page, the basis elements on the A-side come from the untwisted broad sector and the
elements on the B side are narrow.

A-model B-model

bx3
1x3

2x3
3x4 + x3

1x3
2x3x3

4 + x3
1x2x3

3x3
4 + x1x3

2x3
3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 4
5 , 2

5 , 1
5 )e+ (3 others)

bx3
1x3

2x3
3x5 + x3

1x3
2x3

4x5 + x3
1x3

2x3
4x5 + x3

2x3
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 4
5 , 1

5 , 2
5 )e+ (3 others)

bx3
1x3

2x3x3
5 + x3

1x3
2x4x3

5 + x1x3
3x3

4x3
5 + x2x3

3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 2
5 , 1

5 , 4
5 )e+ (3 others)

bx3
1x2x3

3x3
5 + x1x3

2x3
4x3

5 + x3
1x3

3x4x3
5 + x3

2x3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 1

5 , 4
5 )e+ (3 others)

bx1x3
2x3

3x3
5 + x3

1x2x3
4x3

5 + x3
1x3x3

4x3
5 + x3

2x3
3x4x3

5, (0, 0, 0, 0, 0)e b1, ( 2
5 , 4

5 , 4
5 , 1

5 , 4
5 )e+ (3 others)

bx3
1x3

2x2
3x2

4 + x2
1x2

2x3
3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 3
5 , 3

5 , 1
5 )e+ b1, ( 3

5 , 3
5 , 4

5 , 4
5 , 1

5 )e

bx3
1x2

2x3
3x2

4 + x2
1x3

2x2
3x3

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 4
5 , 3

5 , 1
5 )e+ b1, ( 3

5 , 4
5 , 3

5 , 4
5 , 1

5 )e

bx3
1x2

2x2
3x3

4 + x2
1x3

2x3
3x2

4, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 4

5 , 1
5 )e+ b1, ( 3

5 , 4
5 , 4

5 , 3
5 , 1

5 )e

bx3
1x3

2x2
3x2

5 + x3
1x3

2x2
4x2

5 + x2
1x3

3x3
4x2

5 + x2
2x3

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 3
5 , 1

5 , 3
5 )e+ (3 others)

bx3
1x2

2x3
3x2

5 + x2
1x3

2x3
4x2

5 + x3
1x3

3x2
4x2

5 + x3
2x2

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 1

5 , 3
5 )e+ (3 others)

bx2
1x3

2x3
3x2

5 + x3
1x2

2x3
4x2

5 + x3
1x2

3x3
4x2

5 + x3
2x3

3x2
4x2

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 4

5 , 4
5 , 1

5 , 3
5 )e+ (3 others)

bx3
1x2

2x2
3x3

5 + x2
1x3

2x2
4x3

5 + x2
1x3

3x2
4x3

5 + x2
2x2

3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 3
5 , 1

5 , 4
5 )e+ (3 others)

bx2
1x3

2x2
3x3

5 + x3
1x2

2x2
4x3

5 + x2
1x2

3x3
4x3

5 + x2
2x3

3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 4

5 , 3
5 , 1

5 , 4
5 )e+ (3 others)

bx2
1x2

2x3
3x3

5 + x2
1x2

2x3
4x3

5 + x3
1x2

3x2
4x3

5 + x3
2x2

3x2
4x3

5, (0, 0, 0, 0, 0)e b1, ( 3
5 , 3

5 , 4
5 , 1

5 , 4
5 )e+ (3 others)

bx3
1x2

2x2
3x2

4x5 + x2
1x3

2x2
3x2

4x5 + x2
1x2

2x3
3x2

4x5 + x2
1x2

2x2
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 3

5 , 2
5 )e+ (3 others)

bx3
1x2

2x2
3x4x2

5 + x2
1x3

2x3x2
4x2

5 + x2
1x2x3

3x2
4x2

5 + x1x2
2x2

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 3
5 , 2

5 , 3
5 )e+ (3 others)

bx3
1x2

2x3x2
4x2

5 + x2
1x3

2x2
3x4x2

5 + x1x2
2x3

3x2
4x2

5 + x2
1x2x2

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 2
5 , 3

5 , 3
5 )e+ (3 others)

bx3
1x2x2

3x2
4x2

5 + x1x3
2x2

3x2
4x2

5 + x2
1x2

2x3
3x4x2

5 + x2
1x2

2x3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 3
5 , 3

5 , 3
5 )e+ (3 others)

bx2
1x2

2x2
3x4x3

5 + x2
1x2

2x1
3x2

4x3
5 + x2

1x2x2
3x2

4x3
5 + x1x2

2x2
3x2

4x3
5, (0, 0, 0, 0, 0)e b1, ( 3

5 , 3
5 , 3

5 , 2
5 , 4

5 )e+ (3 others)

bx3
1x3

2x2
3x4x5 + x3

1x3
2x3x2

4x5 + x2
1x2x3

3x3
4x5 + x1x2

2x3
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 3
5 , 2

5 , 2
5 )e+ (3 others)

bx3
1x2

2x3
3x4x5 + x2

1x3
2x3x3

4x5 + x3
1x2x3

3x2
4x5 + x1x3

2x2
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 4
5 , 2

5 , 2
5 )e+ (3 others)

bx3
1x2

2x3x3
4x5 + x2

1x3
2x3

3x4x5 + x1x3
2x3

3x2
4x5 + x3

1x2x2
3x3

4x5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 2
5 , 4

5 , 2
5 )e+ (3 others)

bx3
1x3

2x3x4x2
5 + x1x2x3

3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 4

5 , 2
5 , 2

5 , 3
5 )e+ b1, ( 2

5 , 2
5 , 4

5 , 4
5 , 3

5 )e

bx3
1x2x3

3x4x2
5 + x1x3

2x3x3
4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 4
5 , 2

5 , 3
5 )e+ b1, ( 2

5 , 4
5 , 2

5 , 4
5 , 3

5 )e

bx3
1x2x3x3

4x2
5 + x1x3

2x3
3x4x2

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 2
5 , 4

5 , 3
5 )e+ b1, ( 2

5 , 4
5 , 4

5 , 2
5 , 3

5 )e

bx3
1x2

2x3x4x3
5 + x2

1x3
2x3x4x3

5 + x1x2x3
3x2

4x3
5 + x1x2x2

3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 3

5 , 2
5 , 2

5 , 4
5 )e+ (3 others)

bx3
1x2x2

3x4x3
5 + x1x3

2x3x2
4x3

5 + x2
1x2x3

3x4x3
5 + x1x2

2x3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 3
5 , 2

5 , 4
5 )e+ (3 others)

bx3
1x2x3x2

4x3
5 + x1x3

2x2
3x4x3

5 + x1x2
2x3

3x4x3
5 + x2

1x2x3x3
4x3

5, (0, 0, 0, 0, 0)e b1, ( 4
5 , 2

5 , 2
5 , 3

5 , 4
5 )e+ (3 others)
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Bidegree A-model Bidegree B-model

(1, 1) b1, ((12)(34))jWe (1, 2) b1, ((12)(34))jWe+ (24 others)

(2, 2) b1, ((12)(34))(jW)2e (2, 1) b1, ((12)(34))(jW)2e+ (24 others)

(1, 1) b1, ((12)(34))(jW)3e (1, 2) b1, ((12)(34))(jW)3e+ (24 others)

(2, 2) b1, ((12)(34))(jW)4e (2, 1) b1, ((12)(34))(jW)4e+ (24 others)

(1, 1) b1, ((13)(24))jWe (1, 2) b1, ((13)(24))jWe+ (24 others)

(2, 2) b1, ((13)(24))(jW)2e (2, 1) b1, ((13)(24))(jW)2e+ (24 others)

(1, 1) b1, ((13)(24))(jW)3e (1, 2) b1, ((13)(24))(jW)3e+ (24 others)

(2, 2) b1, ((13)(24))(jW)4e (2, 1) b1, ((13)(24))(jW)4e+ (24 others)

(1, 1) b1, ((14)(23))jWe (1, 2) b1, ((14)(23))jWe+ (24 others)

(2, 2) b1, ((14)(23))(jW)2e (2, 1) b1, ((14)(23))(jW)2e+ (24 others)

(1, 1) b1, ((14)(23))(jW)3e (1, 2) b1, ((14)(23))(jW)3e+ (24 others)

(2, 2) b1, ((14)(23))(jW)4e (2, 1) b1, ((14)(23))(jW)4e+ (24 others)

(1, 2) b(x1 + x2)(x3 + x4), (12)(34)e (1, 2) b1, ((12)(34))j2W Ke+ (99 others)

(1, 2) bx2
5, (12)(34)e (1, 2) b1, ((12)(34))j2W Le+ (99 others)

(2, 1) b(x1 + x2)
2(x3 + x4)

2x3
5, (12)(34)e (2, 1) b1, ((12)(34))j3W Ke+ (99 others)

(2, 1) b(x1 + x2)
3(x3 + x4)

3x5, (12)(34)e (2, 1) b1, ((12)(34))j3W Le+ (99 others)

(1, 2) b(x1 + x3)(x3 + x4), (13)(24)e (1, 2) b1, ((13)(24))j2W Ke+ (99 others)

(1, 2) bx2
5, (13)(24)e (1, 2) b1, ((13)(24))j2W Le+ (99 others)

(2, 1) b(x1 + x3)
2(x2 + x4)

2x3
5, (13)(24)e (2, 1) b1, ((13)(24))j3W Ke+ (99 others)

(2, 1) b(x1 + x3)
3(x2 + x4)

3x5, (13)(24)e (2, 1) b1, ((13)(24))j3W Le+ (99 others)

(1, 2) b(x1 + x4)(x2 + x3), (14)(23)e (1, 2) b1, ((14)(23))j2W Ke+ (99 others)

(1, 2) bx2
5, (14)(23)e (1, 2) b1, ((14)(23))j2W Le+ (99 others)

(2, 1) b(x1 + x4)
2(x2 + x3)

2x3
5, (14)(23)e (2, 1) b1, ((14)(23))j3W Ke+ (99 others)

(2, 1) b(x1 + x4)
3(x2 + x3)

3x5, (14)(23)e (2, 1) b1, ((14)(23))j3W Le+ (99 others)

As we can see above, there is not the same number of (1, 1), (2, 2), (1, 2), and (2, 1)

bigraded elements on either side. So although the restricted mirror map is always an

isomorphism, the entire state spaces are not always isomorphic as bigraded vector spaces.
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