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abstract

Regular Fibrations over the Hawaiian Earring

Stewart Mason Cecil McGinnis
Department of Mathematics, BYU

Master of Science

We present a family of fibrations over the Hawaiian earring that are inverse limits of
regular covering spaces over the Hawaiian earring. These fibrations satisfy unique path
lifting, and as such serve as a good extension of covering space theory in the case of non-
semi-locally simply connected spaces. We give a condition for when these fibrations are
path-connected.
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Chapter 1. Introduction

The fundamental group is an important algebraic invariants in topology. Classically, covering

space theory is the primary approach to studying and computing the fundamental group.

There is a correspondence between automorphisms of covering spaces over a base space X

and subgroups of the fundamental group of X. However, this correspondence is incomplete

if X is not a path-connected, locally path-connected, semilocally simply connected space.

One of the most simple nonsemilocally simply connected spaces is the Hawaiian earring.

Every neighborhood of the basepoint contains an essential loop. Consequently, the Hawaiian

earring does not admit a universal covering space. We probe deeper into the structure of

the Hawaiian earring by generalizing covering spaces to inverse limits of towers of covering

spaces.

Chapter 2. Preliminaries

We first recall the definitions of covering spaces and fibrations, as well as their connection

to the fundamental group of a space.

2.1 Covering Spaces

Definition 2.1. [1] A covering space is a triple (E, p,X) where p : E → X is a continuous

surjective map which evenly covers X. That is, for each x ∈ X there is an open neighborhood

Ux of x such that p−1(Ux) is homeomorphic to a disjoint union of copies of Ux, called slices,

and that p restricted to one of these slices is a homeomorphism to Ux. The map p is called

a covering map.

Definition 2.2. A deck transformation of a covering space p : E → X is a homeomorphism

f : E → E such that f = p ◦ f .
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The set of deck transformations of a covering space form a group under composition called

the deck transformation group, denoted Aut(E → X) or Aut(E) when X is understood.

Definition 2.3. [2] A triple (E, p,X) where p : E → X is a continuous map is said to have

the homotopy lifting property with respect to a space Y if for all homotopies H : I ×Y → X

and maps f0 : 0×Y → E such that H0 = f0 ◦ p, there exists a lift H̃ : I ×Y → E of H with

H̃0 = f0.

0×Y E

I ×Y X

f0

p
∃H̃

H

Definition 2.4. A (Hurewicz) fibration is a triple (E, p,X) where p : E → X has the

homotopy lifting with respect to all spaces. A unique path lifting (UPL) fibration is a

fibration for which lifts of paths are unique.

We now show that covering spaces are fibrations with unique path lifting. It is this

property that is preserved when we pass to the inverse limit of a tower. Throughout the

following proofs we denote the backwards parametrization of a path by overlining.

Proposition 2.5. [2] Let p : (E, e0)→ (X, x0) be a covering map, and f : (Y, y0)→ (X, x0)

where Y is path-connected and locally path-connected. A lift f̃ : Y → E of f exists if and

only if f∗(π1(Y, y0)) is in a conjugacy class of p∗(π1(E, e0)).

Proof. Suppose we have a lift f̃ , and α : (I, 0, 1) → (E, e0, f̃0(y0)). So we have a change of

basepoint homomorphism hα : π1(E, f̃(y0)) → π1(E, e0). Then since p ◦ f̃ = f , hp◦α ◦ p∗ ◦

hα ◦ f̃∗ = f∗, so we must have im f∗ ⊆ [p ◦ α](im p∗)[p ◦ α].
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Now suppose im f∗ ⊆ [p◦α](im p∗)[p◦α]. Let γ, γ′ : (I, 0, 1)→ (Y, y0, y) and define f̃(y) =

˜p ◦ α ∗ f ◦ γe0 . Since γ ∗ γ′ is a loop in Y , and im f∗ ⊆ [p ◦ α](im p∗)[p ◦ α], ˜p ◦ α ∗ f ◦ γe0 ∗

˜p ◦ α ∗ f ◦ γ′e0 is a loop in E. So ˜p ◦ α ∗ f ◦ γe0(1) = ˜p ◦ α ∗ f ◦ γ′e0(1). Thus f̃ is well

defined. Also p ◦ f̃ = p(f̃(y)) = p( ˜p ◦ α ∗ f ◦ γe0(1)) = f ◦ (p ◦ α ∗ γ(1)) = f(y).

Now let e ∈ f̃(y) and U be an evenly covered neighborhood about e. Then take V ⊆

f−1(p(U)) a path connected neighborhood of y. Then let δ be a path based at y contained in

V . Then f̃(δ(1)) = ˜f ◦ (γ ∗ δ)e0(1). By construction f ◦ (γ ∗ δ)(1) ∈ p(U), so ˜f ◦ (γ ∗ δ)e0(1)

is in U . Thus f̃(V ) ⊆ U . So f̃ is continuous.

If we have two such lifts that agree on a point, then they are the same lift.

Proof. Suppose f̃1(y) = f̃2(y). Then given y′ ∈ Y , let γ : (I, 0, 1) → (Y, y, y′). Then

f̃1(y
′) = f̃(γ(1)) = f̃ ◦ γ f̃1(y)(1) = f̃ ◦ γ f̃2(y)(1) = f̃2(γ(1)) = f̃2(y

′).

Corollary 2.6. Covering spaces are fibrations.

Proof. Let p : E → X be a covering space. Given a homotopy H : Y × I → X and a lift of

H̃0 of H0 : Y → X, we have H∗(π1(Y × I) = H0∗(π1(Y )) because H, and H0 are homotopic

maps. Since H0 admits a lift, by Proposition 2.5, H0∗(π1(Y )) is contained in a conjugacy

class of p∗(π1(E)). Hence H admits a lift as well.

We now show unique path lifting.

Proposition 2.7. Given a covering space p : E → X, a path α : [0, 1]→ X and e ∈ p−1α(0),

there exists a unique lift α̃ of α with p ◦ α̃ = α and α̃(0) = e.

E

I X

p∃!α̃

α

Proof. Since I is compact, its image in X is compact, so we can cover the image of I with

finitely many evenly covered neighborhoods. Call this cover U . Take one such neighborhood

U1 ∈ U containing α(0), and define α̃ = p|−1U1,e
◦ α|I1 where U1,e is the slice of U1 containing

e and I1 is the open interval of α−1(U1) that contains 0. We then choose Ui+1 ∈ U such
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that α−1(Ui+1) has as a component an open interval Ii+1 which intersects and extends Ii,

and extend α̃ = p|−1Ui+1,e
◦ α|Ii+1

where Ui+1,e is the slice of Ui+1 that intersects the slice of

Ui,e containing α̃(Ii ∩ Ii+1). This process terminate because U is finite, and completes the

definition of α̃ since U covers the image of α. Given β any other lift beginning at e, we can

find that β = α on U1 by homeomorphically pushing β down and back up along p, and then

continuing to Ui as before.

Corollary 2.8. Covering spaces are UPL fibrations with unique lifts of homotopies.

Proof. Suppose we have a map f : (I ×Y, (0, y0)) → (X, x0). Then there exists a map

f̃0 : ({0}×Y, (0, y0)) → (X, x0) if and only if f |{0}×Y ∗(π1({0}×Y, (0, y0)) ⊆ p∗(π1(E, e0)).

If this is the case then f∗(π1(I ×Y, (0, y0))) ⊆ p∗(π1(E, e0)) since I ×Y is homotopic to Y . So

the homotopy f lifts to f̃ with f̃(0, y) = f̃0(y). Furthermore, this lift is uniquely determined

by f̃0(y0).

We now discuss the relationship between covering spaces and the fundamental group of

the base space. The correspondence is more general than we present here, but we restrict

our attention to what is relevant for this thesis.

Proposition 2.9. Given a covering space p : E → X, the induced homomorphism on the

fundamental group is injective.

Proof. Let [α] ∈ ker p∗. Then p◦α is nullhomotopic in X. By the homotopy lifting property,

this nullhomotopy lifts to a nullhomotopy in E which begins at α by unique path lifting.

Thus [α] is the identity of π1(E, e0).

Definition 2.10. A path-connected, locally path-connected covering space is normal if the

deck transformation group of the covering space acts transitively on point fibers.

Proposition 2.11. [2] Given a normal covering space p : (E, e0) → (X, x0), there is a

surjective homomorphism π1(X, x0)→ Aut(E).

4



Proof. Let δ̃b denote the unique lift of a path δ : (I, 0)→ (X, p(b)) based at b ∈ E.

Suppose σ is a deck transformation. Then for γ a path from e0 to e. Then σ must map

e to p̃ ◦ γσ(e0)(1). Thus a deck transformation is completely determined by how it acts on

point fibers because of unique path lifting.

Furthermore, we note that for any path γ : (I, 0, 1)→ (E, e0, σ(e0)) and [β] ∈ π1(E, σ(e0))

we have a change of basepoint homomorphism hγ : π1(E, σ(e0))→ π1(E, e0) : [β] 7→ [γ∗β∗γ].

Then p∗(hγ([β])) = [p◦γ][p◦β][p◦γ]. So p∗(π1(E, σ(e0))) = [p◦γ]p∗(π1(E, e0))[p◦γ]. Since σ

is a deck transformation, we also have p∗(π1(E, σ(e0))) = p∗(σ∗(π1(E, e0))) = p∗(π1(E, e0)).

So p∗(π1(E, e0)) = [p ◦ γ]p∗(π1(E, e0))[p ◦ γ]. Given any [α] ∈ π1(X, x0), α lifts to some

path between fibers, and since there is a deck transformation taking e0 to α̃e0(1). Letting

γ = α̃e0 in the above argument shows p∗(π1(E, e0)) = [α]p∗(π1(E, e0))[α]. So im p∗ is normal

in π1(X, x0).

We now define a homomorphism ϕ : π1(X, x0)→ Aut(E). Let [α] ∈ π1(X, x0). Then the

lift of α based at e0 ends at some e1 in the fiber of x0. Since the covering space is normal, there

is a deck transformation σα taking e0 to e1, and this transformation is uniquely determined

by this action as we have mentioned before. So we set ϕ([α]) = σα. Note that since path

homotopies lift, any other representative of [α] will lift with the same endpoint via the lifted

homotopy. So ϕ is well defined.

Now suppose we also have [β] ∈ π1(X, x0). Then σα∗β(e0) = α̃ ∗ βe0(1) = α̃β̃e0 (1)
(1) =

α̃σβ(e0)(1) = σα(σβ(e0)). So σ homomorphism. The kernel is exactly those paths which

trivially act on the fiber (i.e. lift to loops), and thus is exactly π1(X, x0).

Proposition 2.12. [2] A path-connected, locally path-connected covering space is normal if

and only if p∗(π1(E)) is normal in π1(X).

Proof. We know the forward direction by Proposition 2.11. If we suppose that p∗(π1(E, e0))

was normal in π1(X, x0), then let γ be a path connecting e0 to any other fiber point of

x0. Then the change of base point homomorphism induced by γ yields p∗(π1(E, γ(1))) =

[p ◦ γ]p∗(π1(E, e0))[p ◦ γ] = p∗(π1(E, e0)). Thus there exists a unique lift of p along p which

5



takes e0 to e1 by Proposition 2.5. Call this lift σ. Since p ◦ σ = p we need only check that

σ is injective on fibers. If it were not injective on fibers then there is some nonloop path γ

that is mapped to a loop under σ, but p ◦ γ lifts to a path by unique path lifting, but this

lift is also σ ◦ γ, which would be a loop. Hence the map is injective on fibers.

Definition 2.13. A subgroup H of π1(X, x0) is called a covering subgroup if there exists a

covering space p : E → X such that p∗(π1(E)) = H.

Definition 2.14. Set Cn = {(x, y) ∈ R2|(x − 1
n
)2 + y2 = 1

n2} for n ≥ 1. Then the

Hawaiian earring is the space X =
⋃∞
n=1Cn with the subspace topology.

2.2 Fibrations from towers of covering Spaces

Definition 2.15. Given a tower (Xi, fi : Xi → Xi−1) of topological spaces and continuous

maps

· · · X2 X1 X0
f3 f2 f1

the inverse limit of the tower is defined to be the subspace of the product

lim←−Xi =

{
(x0, x1, . . . ) ∈

∞∏
i=0

Xi

∣∣∣∣∣ fi(xi) = xi−1∀i ≥ 1

}

endowed with the the subspace topology from the product topology.

Lemma 2.16 (universal property). Let (X, f) be a tower of topological spaces and gi : Y →

Xi be a collection of continuous maps satisfying fi ◦ gi = gi−1. Then there exists a unique

continuous map g : Y → lim←−Xi with pi ◦ g = gi where pj : lim←−Xi → Xj is projection.

Proof. Define g : Y →
∏∞

i=0Xi by g(y) = (gi(y)). By construction it is continuous and has

image lim←−Xi. Suppose g′ : Y → E also satisfied these hypotheses. Then pi ◦ g′(y) = gi(y).

So g′ = g.

We now define the family of fibrations consideration.

6



Definition 2.17. A regular fibration over X is an inverse limit of a tower of regular covering

spaces over X.

Proposition 2.18. Regular fibrations have unique path lifting.

Proof. Let (X∗, f∗) be a tower of normal covering spaces with X0 = X, E = lim←−Xn, pi :

E → Xi, and p : E → X. Let α : I → X and (ei) ∈ p−1(α(0)). Then we have lifts

α̃i : (I, 0)→ (Xi, ei). Then α̃ = (α̃i) is a lift of α to E since it is continuous as the product

of continuous functions and α = pi ◦ α̃i = pi ◦ pi ◦ α̃, so it is in fact a lift.

Now suppose we have β another lift of α. So α = p ◦ β = pi ◦ pi ◦ β. Thus pi ◦ β is a lift

of α to Xi. Since Xi is a covering space this lift is unique, so pi ◦ β = α̃i. Thus β = α̃i. So

β = α̃.

Chapter 3. Path-connectedness and lim←−
1

When we combine the connection between covering spaces and the fundamental group, we

obtain towers of groups associated to a tower of regular covering spaces. Passing to the

inverse limit reveals a necessary and sufficient criterion for when a fibration arising from a

tower is path-connected. We develop that criterion here, and investigate it further in the

following chapters.

Proposition 3.1. There is the following short exact sequence of towers of groups:

...
...

...

∗ π1(X̃i) π1(X) π1(X)/π1(X̃i) ∗

∗ π1(X̃i−1) π1(X) π1(X)/π1(X̃i−1) ∗

...
...

...

id
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Proof. We describe the homomorphisms and exactness of each row:

Given [α] ∈ π1(X̃), the first map is ρi∗([α]) = [ρi ◦α]. Suppose [ρi ◦α] = 1 the identity of

π1(X). Since ρi is a covering map, we have unique lifts of paths, so there is a null homotopic

based loop in X which lifts to α. Let H be a homotopy from x0 to ρ◦α. Then, again by the

covering property, which guarantees the homotopy lifting property, H lifts to a homotopy

from e0 to α. So α is null homotopic. So ρi is injective. The second map, being a quotient

being the quotient by the kernel of ρi, is surjective, and immediately yields exactness at

π1(X).

Now we check commutativity of the diagram. Clearly the left and center towers com-

mute because all the maps are inclusions. Since π1(X̃i) ⊂ π1(X̃i−1), by the universal prop-

erty of quotients the map π1(X) → π1(X)/π1(X̃i−1) descends to a map π1(X)/π1(X̃i) →

π1(X)/π1(X̃i−1).

We now take a detour to develop some basic theory for such a sequence of towers of

groups.

3.1 Towers of Groups and lim←−
1

Definition 3.2. Given a tower of groups and group homomorphisms (Gi, fi : Gi → Gi−1)

· · · G2 G1 G0
f3 f2 f1

the inverse limit of the tower is defined to be the subgroup of the product

lim←−Gi =

{
(g0, g1, . . . ) ∈

∞∏
i=0

Gi

∣∣∣∣∣fi(gi) = gi−1∀i ≥ 1

}
.

Note that lim←−Gi is a group and satisfies the same universal property described in Lemma

2.16.

Definition 3.3. [3] A tower of (possibly non-abelian) groups and homomorphisms

· · · Gn Gn−1 · · · G−1 = ∗j

8



give rise to a left action of the product group
∏
Gn on the product set

∏
Gn given by

(g0, . . . , gi, . . . ) · (x0, . . . , xi, . . . ) = (g0x0j(g1)
−1, . . . , gixij(gi+1)

−1, . . . ).

Clearly

lim←−Gn =
{
g ∈

∏
Gn

∣∣∣g · ∗ = ∗
}

and we define lim←−
1Gn as the orbit set

lim←−
1Gn =

∏
Gn/action

i.e. lim←−
1Gn is the set of equivalence classes of

∏
Gn under the equivalence relation given by

x ∼ y ⇔ y = g · x for some g ∈
∏

Gn.

Proposition 3.4. [3] A short exact sequence of towers of groups

∗ G′∗ G∗ G′′∗ ∗

yields an exact sequence of groups and pointed sets

∗ lim←−G
′
n lim←−Gn lim←−G

′′
n

lim←−
1G′n lim←−

1Gn lim←−
1G′′n ∗

Proof. First we show lim←−α : lim←−G
′
i → lim←−Gi is an injective homomorphism.

Suppose (αi(g
′
i)) = (αi(h

′
i)). Then for all i ≥ 0 αi(g

′
i) = αi(h

′
i). Since αi is injec-

tive, g′i = h′i for all i ≥ 0. So (g′i) = (h′i). Furthermore, (lim←−α)(g′ih
′
i) = (αi(g

′
ih
′
i)) =

(αi(g
′
i)αi(h

′
i)) = (αi(g

′
i))(αi(h

′
i)) = (lim←−α)(gi)(lim←−α)(hi). So lim←−α is a homomorphism and

we have exactness at lim←−G
′
i.

9



We now show that lim←− β and exactness at lim←−Gi (note lim←− β is a homomorphism by the

same argument as used for lim←−α).

Let (gi) ∈ ker lim←− β. then (lim←− β)(gi) = 0. So βi(gi) = 0 for i ≥ 0. Since each row

is exact, there is g′i such that αi(g
′
i) = gi. Since αi is injective, g′i is unique. We claim

(lim←−α)(g′i) = (gi). First we must verify (g′i) is a coherent sequence. Since (gi) is coherent,

fi(gi) = gi−1. Since α is a morphism of towers we have fi(gi) = fi(αi(g
′
i)) = αi−1(f

′
i(g
′
i)). So

αi−1(f
′
i(g
′
i)) = gi−1. Since g′i−1 is the unique element such that αi−1(g

′
i−1) = gi−1, we must

have f ′i(g
′
i) = g′i−1. So (g′i) ∈ lim←−G

′
i. Now (lim←−α)(g′i) = (αi(g

′
i)) = (gi).

Given (gi) ∈ im lim←−α, we have (g′i) lim←−G
′
i such that αi(g

′
i) = gi. So (lim←− β)(gi) =

(βi(αi(g
′
i))) = (e′′i ). So (gi) = ker lim←− β.

Thus we have exactness at lim←−Gi.

Following [4], we define the connecting homomorphism δ : lim←−G
′′
i → lim←−

1G′i.

Take (g′′i ) ∈ lim←−G
′′
i . Since each βi is surjective, there exists gi ∈ Gi so that βi(gi) = g′′i .

Noe that (gi) may not be a coherent sequence, but βi(gifi+1(g
−1
i+1)) = βi(gi)f

′′
i+1(βi+1(g

−1
i+1)) =

g′′i g
′′
i
−1 = e′′i . Thus by exactness there is a unique g′i so that αi(g

′
i) = gifi+1(g

−1
i+1). This yields

a (not necessarily coherent sequence) (g′i) ∈
∏
G′i. We define δ((g′′i )) = [(g′i)].

We now show that δ is well defined.

Suppose that (gi), (hi) ∈
∏
Gi with βi(gi) = βi(hi). Then we have unique sequences

(g′i), (h
′
i) ∈

∏
G′i satisfying αi(g

′
i) = gifi+1(g

−1
i+1) and αi(h

′
i) = hifi+1(h

−1
i+1). We now seek a

sequence (r′i) ∈
∏
G′i such that r′ig

′
if
′
i+1(r

′
i+1
−1) = h′i.

Since βi(gi) = βi(hi), βi(hig
−1
i ) = e′′i . So there is a unique element of G′i, which assign

r′i, so that αi(r
′
i) = hig

−1
i . Then αi(r

′
ig
′
if
′
i+1(r

′
i+1
−1)) = αi(r

′
i)αi(g

′
i)fi+1(αi+1(r

′
i+1
−1)) =

hig
−1
i gifi+1(g

−1
i+1)fi+1((hi+1g

−1
i+1)

−1) =

hig
−1
i gifi+1(g

−1
i+1)fi+1(gi)fi+1(h

−1
i ) = hifi+1(fi+1(h

−1
i+1)). Since h′i is the unique elements with

αi(h
′
i) = hifi+1(h

−1
i+1), we must have r′ig

′
if
′
i+(r′i+1

−1) = h′i. So (g′i) ∼ (h′i), this δ is well-defined.

We now show ker δ = im lim←− β.

10



Let (g′′i ) ∈ ker δ. Then given (gi) ∈
∏
Gi such that |betai(gi) = g′′i and unique (g′i) such

that αi(g
′
i) = gifi+1(g

−1
i ), we have that [(g′i)] = [(e′i)]. So there is a sequence (r′i) ∈

∏
G′i so

that (r′i) · (e′i) = (r′if
′
i+1(r

′
i+1
−1)) = (g′i). So αi(r

′
if
′
i+1(r

′
i+1
−1)) = αi(r

′
i)fi+1(αi+1(r

′
i+1
−1)) =

gifi+1(g
−1
i+1, thus fi+1(αi(r

′
i+1
−1)) = αi(r

′
i
−1)gi. So (αi(r

′
i
−1)) is a coherent sequence and

(lim←− β)(α(r′i
−1)gi) = (βi(αi(r

′
i
−1β(gi)))) = (βi(gi)) = (g′′i ). So (g′′i ) ∈ im lim←− β.

Let (g′′i ) ∈ lim←− β. Then there exists (gi) ∈ lim←−Gi so that βi(gi) = g′′i . So δ((g′′i )) = [(ri)]

where r′i is the unique sequence of elements of G′i so that αi(r
′
i) = gifi+1(g

−1
i+1). Since (gi) is

coherent, gifi+1(g
−1
i+1) = gig

−1
i = ei. So r′i = e′i, and δ((g′′i )) = [(e′i)].

So we have exactness at lim←−G
′′
i .

Next is exactness at lim←−
1G′i.

First we show lim←−
1 α : lim←−

1G′i → lim←−
1Gi is well-defined.

We define (lim←−
1 α)[(g′i)] = [(αi(g

′
i))]. Suppose (g′i) ∼ (h′i). So there exists (r′i) ∈

∏
G′i so

that r′ig
′
if
′
i+1(ri+1

−1) = h′i. So αi(r
′
i)αi(g

′
i)fi+1(αi+1(r

′
i+1
−1)) = αi(h

′
i).So (αi(g

′
i)) ∼ (αi(h

′
i))

via the sequence αi(r
′
i) ∈

∏
Gi. So lim←−

1 α is well-defined.

Let [(g′i)] ∈ ker lim←−
1 α. So there is (ri) ∈

∏
Gi so that rieifi+1(r

−1
i+1) for all i ≥ 0. Applying

βi yields e′′i = βi(ri)f
′′
i+1(βi+1(r

−1
i )). Then βi(ri) = f ′′i+1(βi(ri)), so (βi(ri)) ∈ lim←−G

′′
i . We

then compute δ((βi(ri))). We see (ri) is a sequence so that (βi(ri)) = (βi(ri)), so we take

the unique element of G′i whose image under α is rifi+1(r
−1
i+1), but we already know this is

g′i. So δ((βi(ri))) = [(g′i)]. So ker lim←−
1 α ⊆ im δ.

Now suppose [(g′i)] ∈ im δ. So there is (g′′i ) ∈ lim←−G
′′
i so that there is (gi) ∈

∏
Gi with

βi(gi) = g′′i , h′i = α−1(gifi+1(g
−1
i+1)), and (r′i) ∈

∏
G′′i with r′ih

′
if
′
i+1(r

′
i+1
−1) = g′i. So α(gi) =

αi(r
′
ih
′
if
′
i+1(r

′
i+1
−1)) = αi(r

′
i)α(h′i)fi+1(αi+1(r

′
i+1
−1)) = αi(r

′
i)gifi+1(g

−1
i+1)fi+1(αi+1(r

′
i+1
−1)) =

(αi(r
′
i)gi)e

′
i(fi+1((αi+1(r

′
i+1gi+1)

−1))). So (αi(g
′
i))(̃ei) via the sequence (αi(r

′
i)gi). So we have

equality (lim←−
1 α)([g′i]) = ([ei]).

So we have exactness at lim←−Gi.
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Now we show exactness at lim←−
1Gi (note that lim←−

1 β is well-defined similarly to lim←−
1 α).

Let [(gi)] ∈ ker lim←−
1 β. So there is (r′′i ) ∈

∏
G′′i so that r′′i β(gi)f

′′
i+1(r

′′
i+1
−1) = e′′i . Since

each βi is surjective, here is ri with βi(ri) = r′′i . So e′′i = βi(ri)βi(gi)f
′′
i+1(βi+1(ri+1

−1)) =

βi(rigifi+1(ri+1
−1)). Since each row is exact, there is a unique g′i with αi(g

′
i) = rigifi+1(r

−1
i+1).

Then (lim←−
1 α)[(g′i)] = [(rigifi+1(r

−1
i+1))] = [(gi)]. So ker lim←−

1 β ⊆ im lim←−
1 α.

Now suppose [(gi)] ∈ im lim←−
1 α. So here is [(g′i)] ∈ lim←−

1G′i and (ri) ∈
∏
Gi with

riαi(g
′
i)f
′
i+1(r

′
i+1
−1) = gi. Then we compute βi(gi) = βi(ri)βi(αi(g

′
i))f

′′
i+1(βi+1(r

−1
i+1)) =

βi(ri)e
′′
i f
′′
i+1(βi+1(r

−1
i+1)). Thus (βi(gi) ∼ (e′′i ). So [(gi)] ∈ ker lim←−

1 β.

So we have exactness at lim←−
1Gi.

Finally surjectivity of lim←−
1 β yields exactness at lim←−

1G′′i and concludes the theorem.

Let [(g′′i )] ∈ lim←−
1G′′i . Then since each βi is surjective there is g′i ∈ Gi with βi(gi) = g′′i .

Then (lim←−
1 β)[(gi)] = [(βi(gi)] = [(g′′i )]. So lim←−

1 β is surjective.

Proposition 3.5. [3] If Gn is a tower of surjections then lim←−
1Gn = ∗.

3.2 Path-connectedness

Proposition 3.6. [5, Theorem 4.10] For a tower of normal covering spaces with inverse limit

E we have lim←− π1(X, x0)/π1(X̃i, x̃0) ∼= lim←−Aut(X̃i) ↪→ Aut(E). Furthermore, the action of

lim←− π1(X, x0)/π1(X̃i, x̃0) on fibers is free and transitive.

Proof. The isomorphism lim←− π1(X, x0)/π1(X̃i, x̃0) ∼= lim←−Aut(X̃i) is a consequence of Propo-

sition 2.11.

Suppose (σi) ∈ lim←−Aut(X̃i). That means σi : X̃i → X̃i such that pi ◦ σi = pi and

pii−1 ◦ σi = σi−1 ◦ pii−1. Then define σ : E → E be σ((yi)) = (σi(yi)). We first verify that

(σi(yi)) ∈ E. Since pii−1(σi(yi)) = σi−1(p
i
i−1(yi)) = σi−1(yi−1), the codomain of σ is in fact

E. Since each σi is a deck transformation, we have p((σi(yi))) = pj(σj(yj)) = pj(yj) =

p((yi)). The product of continuous maps σ1×σ2× · · · is continuous and σ is a restriction

12



of this product map, so σ continuous. Finally σ has inverse (yi) 7→ (σ−1i (yi)). So σ is an

automorphism of E over X.

Given (τi) ∈ lim←−Aut(X̃i) with induced automorphism τ on E, we see σ(τ((yi))) =

σ((τi(yi))) = (σi(τi(yi)) = ((σi ◦ τi)(yi)) so this is a homomorphism. The kernel is triv-

ial because if σ is the identity, then pi(σ) = σi is the identity.

Let (ei), (e
′
i) ∈ p−1(x0). Since pi is a normal covering map and ei, e

′
i ∈ pi

−1
(x0), there is a

unique deck transformation of σi ∈ Aut(X̃i) that maps ei to e′i. These deck transformations

form a coherent sequence: pii−1(σi(ei)) = pii−1(e
′
i) = e′i−1 = σi−1(ei−1) = σi−1(p

i
i−1(ei)). Since

deck transformations are determined by their action on a point, we don’t need to check

pii−1 ◦ σi = σi−1 ◦ pii−1 anywhere else (doing so amounts to checking that pσ commutes over

paths, which it is the case by unique path lifting). So the image lim←−Aut(Xi) acts transitively

on point fibers. Since all of the terms in the sequence (σi) are unique, the sequence is too,

thus the image is free as well.

Proposition 3.7. [5, Theorem 4.5] The map π1(X, x0) → lim←−Aut(X̃i, x̃
0
i ) is surjective if

and only if E is path connected.

Proof. Suppose E is path connected. Then let α be a path connecting e0 to any other fiber

point e1 of x̃0. Every deck transformation in the image is determined by its action on the

basepoint. The p ◦ α maps to the sequence of deck transformations that exactly yields the

unique deck transformation σ of E in the image of lim←−Aut(X̃i) that takes e0 to e1. So the

map is surjective because we can obtain a loop which lifts to a path connecting the basepoint

to any other fiber point.

Now suppose the map is surjective. Then there is a unique deck transformation in the

image of π1(X, x0) that takes the basepoint to any other fiber point. A loop in the preimage

of this deck transformation must then be a loop with lifts to a path connecting the basepoint

to that fiber point. Given any point y ∈ E, we can take a path from p(y) to x0. Then the

lift of this path based at y is a path from y to a fiber point of x0 since it is a lift. Thus it

13



is sufficient to see we have paths between fiber points to obtain general path connectedness.

Hence E is path connected.

Chapter 4. Product structures on towers

of regular covering spaces

We make strong use of the following lemma.

Lemma 4.1. Let H1, H2 E G with H2 ⊂ H1. Then we have the exact sequence

1 H1/H2 G/H2 G/H1 1

For this sequence, the following are equivalent:

(1) There exists a retract r : G/H2 → H1/H2.

(2) This sequence splits as a direct product:

G/H2

1 H1/H2 G/H1 1

H1/H2×G/H1

∼=

(3) There is a normal subgroup N2 of G satisfying

(i) H1 ∩N2 = H2

(ii) G = H1N2.

Proof. Since H2 ⊂ H1, by the universal property of quotients we get a unique group homo-

morphism G/H2 → G/H1 given by gH2 7→ gH1. The kernel of this map is {gH2 | g ∈ H1}.

This is exactly the image of H1 under the quotient by H2.

Now we show the three equivalent conditions for splitting as a product.

14



(1⇒2) Let ι : H1/H2 → G/H2 and q : G/H2 → G/H1. Define r× q : G/H2 →

H1/H2×G/H1 by (r× q)(gH2) = (r(gH2), q(gH2)). Let gH2 ∈ ker(r× q). Then we have

that q(gH2) = 1, so g ∈ H1. Thus 1 = r(gH2) = r(ι(gH2)) = gH2. Therefore g ∈ H2 and

r× q is injective.

Now let gH2 ∈ H1/H2 and fH1 ∈ G/H1. Then let f ′ ∈ H1 representative of r(fH2).

Since r is a retract r(gH2) = gH1 and r(f ′H2) = f ′H2. Then

(r× q)(gff ′−1H2) = (r(gH2)r(fH2)r(f
′−1H2), q(gH2)q(fH2)q(f

′−1H2))

= (gH2f
′H2f

′−1H2, gH1fH1f
′−1H1)

= (gH2, fH1)

so (r× q) is surjective.

(2⇒1) Projection onto the first coordinate is a retract.

(1⇒3) Let ϕ : G → G/H2 be the quotient map. Set N2 = ker(r ◦ ϕ). Then by the

first isomorphism theorem G/N2
∼= H1/H2. Suppose h ∈ H2. Then since h ∈ kerϕ, clearly

h ∈ N2. Since H2 ⊂ H1, we have H2 ⊂ H1 ∩N2.

Now suppose h ∈ H1 ∩ N2. Then ι(hH2) = ϕ(h) since h ∈ H1. Applying r yields

hH2 = r(ϕ(h)), which is trivial since h ∈ N2. So h ∈ H2.

Let g ∈ G. Since H1/(H1 ∩N2) and N2/(H1 ∩N2) are normal subgroups of G/(H1 ∩H2)

with trivial intersection, we have G/(H1∩N2) = H1/(H1∩N2)N2/(H1∩N2). So g(H1∩N2) =

hn(H1∩N2) for some h ∈ H1 and n ∈ N2. So g = hnk for some k ∈ H1∩N2. Since nk ∈ N2,

we have g ∈ H1N2.

(3⇒1) Since G = H1N2, we can write g = hn where h ∈ H1 and n ∈ N2. Define

r′(g) = h(H1 ∩N2). First, we check that this is well-defined. Suppose g = hn = h′n′ where

h′ ∈ H1 and n′ ∈ N2. Then h′−1h = n′−1n. So h′−1h ∈ H1∩N2, and h(H1∩N2) = h′(H1∩N2).

We now check that it is a homomorphism. Suppose g = hn, g′ = h′n′. Since N2 is normal,

there is n′′ such that h′n′ = n′′h′. Then r(gg′) = r(hnh′n′) = r(hh′n′′n′) = hh′(H1 ∩N2) =

h(H1 ∩N2)h
′(H1 ∩N2)) = r(g)r(g′).
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If r′(g) = 1, then g ∈ N2. So H1 ∩ N2 ⊂ ker r′, so r′ descends to a homomorphism

r : G/(H1∩N2)→ H1/(H1∩N2). Lastly, we check that r is a retract. Let h(H1∩N2) ∈ H1.

Then r(h(H1 ∩ N2)) = r′(h) = h(H1 ∩ N2). So r is in fact a retract for the inclusion

H1/(H1 ∩N2) ↪→ G/(H1 ∩N2).

We now apply this to the case of a tower of regular covering spaces.

Definition 4.2. We say a tower of regular covers X̃∗ over a base space X has a product

structure if the exact sequence

1 Aut(X̃i → X̃i−1) Aut(X̃i → X) Aut(X̃i−1 → X̃) 1

splits as a product for all i.

Proposition 4.3. A tower X̃∗ has a product structure if and only if there is a collection

{Ni}∞i=1 of normal covering subgroups of π1(X) satisfying

(i) pi∗(π1(X̃n)) =
⋂n
i=1Ni

(ii) π1(X) = (
⋂i−1
j=1Nj)Ni.

Furthermore, there are isomorphisms π1(X)/pi∗(π1(X̃i)) ∼=
∏i

j=1 π1(X̃j−1)/p
j
j−1∗(π1(X̃i))

commute with the connecting maps, where the connecting homomorphism

i∏
j=1

π1(X̃j−1)/p
j
j−1∗(π1(X̃i))→

i−1∏
j=1

π1(X̃j−1)/p
j
j−1∗(π1(X̃j))

is given by projection onto the first i− 1 factors. In particular

lim←− π1(X)/pi∗(π1(X̃i)) ∼=
∞∏
i=1

π1(X̃i−1)/p
i
i−1∗(π1(X̃i))

Proof. Set Hi = pi∗(π1(X̃i)). Then by application of Lemma 4.1, there exists Ni E G

such that Hi−1 ∩ Ni = Hi and Hi−1Ni. With the convention that H0 = G, we have the

base case H1 = N1. Now assume, by way of induction, that Hn−1 =
⋂n−1
i=1 Ni. Then

Hn = Hn−1 ∩Nn = (
⋂n−1
i=1 ) ∩Nn =

⋂n
i=1Ni.
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Alternatively, if we have covering subgroups {Ni} satisfying (i) and (ii), the exact se-

quence 1 → π1(X̃i−1)/π1(X̃i) → π1(X)/π1(X̃i) → π1(X)/π1(X̃i−1) → 1 splits by (3) ⇒ (2)

in Lemma 4.1. So the tower corresponding to {
⋂n
i=1(Ni)} has a product structure.

So we now have by assumption that Aut(X̃i → X) ∼= Aut(X̃i → X̃i−1)×Aut(X̃i−1 →

X), where projection to the second coordinate corresponds exactly to the bonding map

Aut(X̃i → X)→ Aut(X̃i−1 → X):

Aut(X̃i → X) Aut(X̃i → X̃i−1)×Aut(X̃i−1 → X)

Aut(X̃i−1 → X)

∼=

qii−1

In fact this gives the following isomorphism of towers (and thus of inverse limits):

lim←−Aut(X̃i → X) lim←−
∏i

j=1 Aut(X̃j → X̃j−1)

...
...

Aut(X̃i → X)
∏i

j=1 Aut(X̃j → X̃j−1)

Aut(X̃i−1 → X)
∏i−1

j=1 Aut(X̃j → X̃j−1)

...
...

Aut(X̃1 → X) Aut(X̃1 → X)

∼=

∼=

qii−1

∼=

∼=

It is easy to see that lim←−
∏i

j=1 Aut(X̃j → X̃j−1) ∼=
∏∞

j=1 Aut(X̃j → X̃j−1).
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Chapter 5. Product towers that yield to

path-connected regular fibrations

We now present our main result.

Theorem 5.1. Let X be the Hawaiian earring and let E be a regular fibration over X

arising from a tower with a product structure. If for all k ∈ N, there is ` ∈ N such that for

i > `, the group π1(X̃i−1)/π1(X̃i) is generated by loops of diameter less than 1/k, then E is

path-connected,

Proof. Set Hi = pi∗(π1(X̃i). First, assume that for all k ∈ N, there is `k ∈ N such that

for i > `, the group Hi−1/Hi−1 is generated by loops of diameter less than 1/k. Let Ni

be the subgroups obtained by applying Proposition 4.3. In the proof of Proposition 4.3,

Ni is the kernel of the composition G → G/Hi → Hi−1/Hi where the second map is the

retract from the product structure. So G/Ni
∼= Hi−1/Hi, and in particular if {gjHi} is a

generating set for Hi−1/Hi, then {gjNi} is a generating set for G/Ni. Thus, since Hi−1/Hi

is generated by loops of diameter less than 1/k for i > `k, so is G/Ni. Then we can take

(σi) ∈ lim←−Aut(X̃i → X) ∼=
∏∞

i=1 Aut(X̃i → X̃i−1) ∼=
∏∞

i=1G/Ni. So we have an element

(giNi) ∈
∏
G/Ni corresponding to (σi). For i > `k we may find wi such that giNi = wiNi

where wi is a reduced word in {aj | j > k}. Furthermore, by the product structure we may

assume wi ∈ Nj for j 6= i. We define g = w1w2 · · · . Note that g is a well-defined element of

the G since every big free generator ak appears only in the factors wi where i ≤ `k, and wi is

a legal word in G. Since we have gNi = (w1 · · ·wi−1Ni)(wiNi)(wi+1 · · ·Ni) = wiNi. Hence,

g 7→ (wiNi) under the product of projection maps, and by construction (wiNi) = (giNi). So

π1(X)→
∏∞

i=1G/Ni
∼= lim←−Aut(X̃i → X) is onto, and thus E = lim←− X̃i is path-connected.

Conjecture 5.2. If a regular fibration E does not arise as the inverse limit of a product

tower then it is not path-connected.
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The following examples illustrate the various cases covered in the above theorem.

Example 5.3 (Z-tower). Define

Hi = 〈〈ak, [am, an] | k > i, 1 ≤ m < n ≤ i〉〉

Then the subgroups obtained from the product structure are Ni = 〈〈ak | k 6= i〉〉, so

Hi−1/Hi
∼= G/Ni

∼= Z and lim←−Aut(X̃i → X) = Z∞. The regular fibration obtained from

this descending sequence of subgroups is the integer lattice Z∞ ⊂ R∞, with the subspace

topology induced by the product topology on R∞.

Example 5.4 (F2-tower with product structure). Define

Hi = 〈〈ak, [am, an] | k > 2i, 1 ≤ m < n ≤ 2i, where n 6= m+ 1 if m = 1 (mod 2)〉〉

Then G/Hi
∼= F (a1, a2)×F (a3, a4)× · · ·×F (a2(i−1)−1, a2(i−1))×F (a2i−1, a2i). Then the sub-

groups obtained from the product structure are Ni = 〈〈ak | k 6= 2i, k 6= 2i + 1〉〉, so

Hi−1/Hi
∼= G/Ni

∼= F (a2i, a2i+1). The resulting inverse limit group is lim←−Aut(X̃i → X) ∼=

F (a1, a2)×F (a3, a4)× · · · . The resulting regular fibration here is an infinite lattice of Cayley

graphs of F2.

Example 5.5 (F2-tower without product structure). Define

Hi = 〈〈ak, [am, an] | k > 2i− 1, 1 ≤ m < n ≤ 2i, where n 6= m+ 1 if m = 1 (mod 2)〉〉

So G/Hi
∼= F (a1, a2)×F (a3, a4)× · · ·×F (a2(i−1)−1, a2(i−1))×F (a2i−1). For this tower the

exact sequence

1→ Hi−1/Hi → G/Hi → G/Hi−1 → 1

does not split for any i > 1. For simplicity we only argue the case of i = 2. Then note

that H1/H2 = 〈a−m1 a2a
m
1 H1 | m ≥ 0〉〈a3H1〉. This group is not finitely generated. Since
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H2 is a covering subgroup of G, G/H2 is finitely generated, so there can be no surjection

G/H1 → H1/H2. Hence, a retract cannot exist.

Despite this, this tower clearly results in the same fibration as the previous example.

Example 5.6 (solenoid on a1). Define

Hi = 〈〈a2i1 , ak | k > 1〉〉

Then G/Hi
∼= Z/2iZ. Even though G/Hi and Hi−1/Hi are abelian for all i, this tower does

not yield a product structure since the short exact sequence does not split for any i > 1:

Z/2iZ 6∼= Z/2i−1Z×Z/2Z. One can see that regular fibration obtained from this tower is the

2-adic solenoid with Hawaiian earrings attached at each point preimage of the basepoint of

the base space. It is not path-connected.

Example 5.7 (not a product). Define

Hi = 〈〈ak, [am, an] | k > i+ 1, 1 ≤ m < n ≤ i+ 1, and |m− n| > 1〉〉

Then G/Hi is generated by i+ 1 generators {a1, . . . , ai+1} where every generator commutes

unless their indices are adjacent. Using this we can construct a coherent sequence of deck

transformations that are not in the image of π1(X)→ lim←−Aut(X̃i → X):

σ1 = [a1, a2]H1

σ2 = [a1, a2][a1, a
−1
2 a3a2]H3

σ3 = [a1, a2][a1, a
−1
2 a3a2][a1, a

−1
2 a−13 a4a3a2]H4

...

However, [a1, a2][a1, a
−1
2 a3a2][a1, a

−1
2 a−13 a4a3a2] . . . is not a valid word in the Hawaiian

earring group because a1 appears infinitely often.
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Chapter 6. Conclusion

We now have a characterization of when a regular fibration arising from a product tower

over the Hawaiian earring is path-connected. This leads to the following questions:

• Is there an appropriate generalization of the arguments presented here that extend

this characterization to all one-dimensional Peano continua? The notion of a product

structure on a descending sequence of normal subgroups is a purely algebraic, and

perhaps lim←−
1 can be computed directly from this information.

• What UPL fibrations exists that do not arise as the inverse limit of towers of regular

covering spaces? Are any of these path-connected?
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