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A B S T R A C T

We report in this paper accurate computed data of the energy positions and widths of the triplet doubly excited
Po3 states of the He-like Li+ ion lying below the =N 2 and =N 3 hydrogenic thresholds by using a B-spline
based spectral approach of configuration interaction type combined with the complex rotation method. The
method has been successfully applied in our previous works (Albert et al., 2018, 2019) to locate the singlet
doubly excited states of the ion. We also demonstrate in the present paper the efficiency of our approach for the
straightforward classification of the doubly excited states into distinct series.

1. Introduction

Two-electron excitation leading to the formation of the doubly ex-
cited Po3 states can be triggered in metastable He-like (1s2s Se3 ) ions by
extreme ultraviolet (EUV) and x-ray laser pulses. The states form re-
sonances that can decay by electron emission (autoionization) induced
by electron correlation. Metastable He-like ions in the 1s2s Se3 state can
be produced by using electron-cyclotron-resonance ion sources (Müller
et al., 2014, Müller et al., 2018a; Müller et al., 2018b). The ions with
only two bound electrons occupying two different shells are perfect
targets for studying the formation and decay of the Po3 resonance states.

The doubly excited Po3 states investigated in the present paper are
accessible from the 1s2s Se3 level of the Li+ ion by a single EUV photon
transition. The recent development in the generation techniques of laser
pulses in the EUV spectral range and with attosecond durations
(Attwood and Sakdinawat, 2016) opens the possibility to observe and
control the autoionization dynamics. Accurate theoretical data of the
energy positions E and the autoionizing widths Γ of the doubly excited
Po3 states in the Li+(1s2s Se3 ) ion will be useful to the future experi-
mental investigation of these states by attosecond EUV laser pulses.

In this work, we present accurate theoretical data of E and Γ for the
doubly excited Po3 states of the Li+ ion lying below the =N 2 and

=N 3 + NlLi ( )2 hydrogenic thresholds. The results are obtained by
using our spectral method of configuration interaction type which
combines a discretization technique based on B-spline functions with
the complex rotation method. The approach has been successfully ap-
plied to locate the singlet Se1 and Po1 resonance states of the Li+ ion
(Albert et al., 2018, 2019). In the present work, we extend the calcu-
lation to locate the triplet Po3 resonance states in the energy spectrum of

the ion. We also show how the present approach allows the straight-
forward classification of the states into distinct series.

The accuracy of the calculated resonant parameters (E, Γ) is de-
monstrated by comparing our results with the other available data.
Only the experimental measurements of the energy positions E of few
doubly excited Po3 states of the Li+ ion have been reported by using
beam-foil techniques (Ziem et al., 1975), ejected electron spectroscopy
experiment (Rodbro et al., 1979) and from the measurement of Auger
decays (Diehl et al., 1999). Theoretical investigations of the low lying
doubly excited Po3 states have been conducted by using diverse ap-
proaches such as the Feshbach formalism (Bhatia and Temkin, 1984;
Macias and Riera, 1988; Seminario and Sanders, 1990), the truncated
diagonalization method (Conneely and Lipsky, 1978), the density
functional theory (Roy et al., 1997), the complex rotation method (Ho,
1979; Chen, 2007; Chung and Lin, 1998), a time dependent perturba-
tion approach (Das and Mukerjee, 1993) or the screening constant by
unit nuclear charge method (Sakho et al., 2008).

Atomic units (a.u.), i.e., = = =e m ℏ 1 and =c α1/ , are used
throughout this paper unless otherwise stated.

2. Theory

The nonrelativistic time-independent Schrödinger equation for a
two-electron system is given by:

=H Er r r rΦ ( , ) Φ ( , ),SLM SLM
1 2 1 2 (1)

where the Hamiltonian H writes:
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Z is the nuclear charge, = −r r r| |12 1 2 the interelectronic distance,
and r1/ 12 the electrostatic interaction potential treated by using the
multipole expansion of the Coulomb repulsion between the two elec-
trons (Zare, 1988):
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with =<r r rmin( , )1 2 , =>r r rmax( , )1 2 and Y (Ω )l
m

i denotes a spherical
harmonic with = θ ϕΩ ( , )i i i . The spatial wave function r rΦ ( , )SLM

1 2 is
expanded on the basis of two-electron configurations that are products
of one-electron functions, as follows:
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S is the total spin, L the total angular momentum, M the projection
and l l( )1 2 the orbital angular momentum quantum number of electron 1
(2). The radial part of Eq. (4) is defined by a basis of B-spline functions

= ⋯B r( )|i
k

i N1, , b of order k (de Boor, 1978), with Nb the number of B-
splines used per electron in a box of radius r0. The angular part of Eq.
(4) is described by the bipolar spherical harmonic function

(Ω , Ω )l l
L M
,
,

1 21 2Y (Zare, 1988):
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The angular configurations (l1, l2) employed in Eq. (5) are de-
termined by the triangle condition − ≤ ≤ +l l L l l| | | |1 2 1 2 .

To locate the doubly excited + LπS2 1 resonance states embedded
between the Li2+(Nl) hydrogenic thresholds, we use the complex ro-
tation method. The technique consists in applying a rotation by an
angle θ to the radial coordinates ri → ri eiθ in the complex plane (Simon,
1972). The procedure transforms the Hamiltonian H defined in Eq. (2)
into the following rotated Hamiltonian H θ( ) :
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The diagonalization of H θ( ) for S = 1, L = 1, M = 0 and pairs of
l l( , )1 2 of odd parity =π o provides an energy spectrum, see Fig. (1), in
which the doubly excited Po3 resonance states are exposed and de-
scribed by discrete complex eigenvalues of the form:

= −E E i Γ
2

,res (7)

where E is the energy position of the resonance and Γ its width.
The demonstration of the efficiency of the B-spline functions for the

calculation of atomic structures can be found in the work of Van der
Hart and Hansen (1992) and in our previous works (Barmaki et al.,
2014, 2018, 2019). The details about the computational implementa-
tion for the diagonalization of rotated Hamiltonian are given in our
previous work (Albert et al., 2018).

3. Results and discussion

3.1. Localization and classification of the doubly excited states into distinct
series

The energy positions E, the widths Γ and other expectation values

for the doubly excited Po3 resonance states are obtained by considering
for the diagonalization of H θ( ) (Eq. (6)) the ion confined in a spherical
box of radius =r 900 a.u. In the radial part of the expansion (4),

=N 110b B-spline functions of order =k 7 are used per electron. In the
angular part of the expansion, we took into account the following pairs
( = =l l0, 11 2 ), ( = =l l1, 21 2 ), ( = =l l2, 31 2 ), ( = =l l3, 41 2 ),
( = =l l4, 51 2 ) that satisfy the odd parity = − = − =+π o( 1) ( 1)l l L1 2 .

Due to the strongly correlated nature of doubly excited states, they
cannot in general be described by the spectroscopic notation Nl nl( , )1 2

+ LπS2 1 based on the independent particle model, with N the inner-
electron quantum number associated with the ionic threshold and n the
outer-electron radial quantum number (n=N, +N 1, …). The problem
of the description and the classification of the doubly excited + LπS2 1

states in two-electron systems has been addressed in the pioneer works
of Sinanoglu and Herrick (1975), Conneely and Lipsky (1978) and Lin
(1984, 1986) using different theoretical approaches. The notation

K T( , ) nN
+ LπS2 1 introduced by Sinanoglu and Herrick (1975) to label

the doubly excited states is the most widely used. In the present paper,
the investigated Po3 states below an N threshold are classified and each
state is assigned a symbol K T( , )nN . K and T are integer numbers that
describe the angular correlations of the electron-electron interaction.
The calculations of Sinanoglu and Herrick (1975) to obtain K and T are
based on the group theoretical method that consisted in the diag-
onalization of the operator B2 ≡ −c c( )1 2

2, where c1 and c2 are Runge-
Lenz vectors for electron 1 and electron 2, respectively. For a given N, L,
and = −π ( 1)L, the allowed values for K and T are:

= ⋯ −T L N0,1,2, ,min( , 1) (8)

= − − − − ⋯ − − −K N T N T N T( 1 ), ( 3 ), , ( 1 ). (9)

K is a measure of the angle θ12 between the two electrons position
vectors. In a state with positive value of K, the electrons are located at
opposite sides of the nucleus (⟨ ⟩θcos 12 < 0). In a state with negative
value of K, the electrons are located at the same side of the nucleus
(⟨ ⟩θcos 12 > 0). The two electrons in a state with K = 0 have their po-
sition vectors nearly perpendicular to each other (⟨ ⟩θcos 12 ≃ 0). K is
proportional to the average value of <r θcos 12 where <r is the radius of
the inner electron =<r r rmin( , )1 2 . T describes the relative orientation
between the orbitals of the two electrons. When =T 0, the two elec-
trons move in the same plane. According to the conditions (8) and (9),
the allowed values of K T( , ) for N = 2 and L = 1 are K T( , ) = (1,0),
(0,1) and −( 1,0) and for N = 3 and L = 1, the allowed pairs are K T( , )
= (2,0), (1,1), (0,0), −( 1,1) and −( 2,0). The doubly excited Po3 states
lying below the N = 2 threshold can be separated in three series while

Fig. 1. Schematic description of the energy spectrum of the Li+ ion. The in-
dicated Po3 states are doubly excited states located below the =N 2 and =N 3
thresholds. An N hydrogenic threshold is in the energy spectrum located at the

exact energy position = −IN
Z
N

2

2 2 .

M.-A. Albert, et al. Radiation Physics and Chemistry 166 (2020) 108453

2



those located between the N = 2 and N = 3 can be grouped in five
series.

Since our theoretical approach is different from that of Sinanoglu
and Herrick (1975), the identification to which series K T( , )N a state
will belong is made in the present work from the examination of the
following calculated values (Chung and Lin, 1998):

1. The effective quantum number n* of the outer electron calculated by
using the Rydberg-Ritz formula that parameterizes the energy of the
state as = − − −E Z N Z n/2 ( 1) /22 2 2 *2 (Burgers et al., 1995). n* dif-
fers from n by the quantum defect μ (n* = n − μ).

2. The reduced width n Γ*3 .
3. The average value of = ⋅θ r rr rcos /12 1 2 1 2, where r1 and r2 are the po-

sition vectors of electron 1 and electron 2.
4. The average value of <r θcos 12, with =<r r rmin( , )1 2 .

In Tables 1 and 2, we present the results of the computed values of

n*, ⟨ ⟩<r θcos 12 , ⟨ ⟩θcos 12 and n Γ*3 for the lowest doubly excited Po3 states
located below the =N 2 and =N 3 thresholds, respectively. The states
that have similar values of ⟨ ⟩θcos 12 , ⟨ ⟩<r θcos 12 , n Γ*3 and the fractional
part of n* are put in the same group or series. According to the values of
⟨ ⟩θcos 12 and ⟨ ⟩<r θcos 12 , K and T numbers are assigned to each series.
Each Po3 (M) state of a given series is designated by the unique notation

K T( , )nN with n the outer-electron radial quantum number. The values
of n*, ⟨ ⟩<r θcos 12 , ⟨ ⟩cosθ12 and n Γ*3 obtained by our theoretical approach
are similar to the values reported by Chung and Lin (1998) using the
saddle-point complex rotation method.

3.2. Results of the energy positions and widths

The accuracy of the results of the energy positions E and the widths
Γ is demonstrated by comparing in Table 3 and Table 4 our computed
values obtained for the lowest doubly excited Po3 states of the Li+ ion
with other available data. The states are in the Tables arranged ac-
cording to their orders of appearance. The data of (E, Γ) for the states
located below the =N 2 threshold are in Table 3 compared to the
available theoretical data reported by Conneely and Lipsky (1978)
using the truncated diagonalization method with the open-channel
close-coupling approximation, Bhatia and Temkin (1984) using the
Feshbach formalism with Hylleraas functions, Ho (1981) using the
complex rotation method with Hylleraas functions, Macias and Riera
(1988) using the Feshbach formalism with a discretization method,
Chen (2007) and Chung and Lin (1998) using the saddle-point complex
rotation method. The approaches developed by these authors distin-
guish by their capacity to access not only the information about the
energy position of a resonant state but also its width. We also compare
our computed data with the experimental measurements obtained by
Ziem et al. (1975) using beam-foil techniques, Rodbro et al. (1979)
using ejected electron spectroscopy experiment and with the more re-
cent data of Diehl et al. (1999) obtained from the measurement of
Auger decays.

Experimental values of the energy positions are only available for
the first three states of the (1,0)2 series which are P (1)o3 , P (2)o3 and
P (5)o3 states and the two first states of the (0, 1)2 series: P (3)o3 and
P (6)o3 . Our theoretical values of their energy positions agree with the
experimental data within the first −3 4 digits. As one can see in
Table 3, all the theoretical approaches we compare with have provided
values of the energy positions of the three lowest P (1)o3 , P (2)o3 and
P (3)o3 states. We note generally a good agreement between all the re-
ported results. Our data of energy positions for these states and the
other states compare best with the data reported by Chen (2007). The
results agree within the first −5 7 digits.

Besides the calculation of the energy positions of the resonances, the
information about their widths is also necessary in order to evaluate the
lifetimes for their decay. Theoretical investigations are in this case of
interest since experimental measurement of the widths of the Po3 re-
sonances in Li+ are completely lacking. Our calculation indicates that
the two lowest P (1)o3 and P (2)o3 states are the broadest among the
other resonances in agreement with the other approaches. The present
calculation evaluates their lifetimes:

=τ ℏ
Γ

, (10)

to τ1 = 77 fs and τ2 = 220 fs, respectively. Our results indicate that the
P (4)o3 , P (7)o3 and P (10)o3 states belonging to the −( 1,0)2 series have the
narrowest widths in agreement with Chen (2007) and Chung and Lin
(1998). Once formed in the ion, these states have low probability to
decay by emission of electrons which makes them longer-lived states.

In Table 4, we present the results of the resonant parameters for the
lowest doubly excited Po3 states of Li+ located between the =N 2 and

=N 3 thresholds. To the best of our knowledge, no experimental in-
vestigations on the characterization of these resonant states have been
conducted to date. The results are compared with the reported data of

Table 1
Calculated values of n*, ⟨ ⟩<r θcos 12 , ⟨ ⟩θcos 12 and n Γ*3 for the doubly excited Po3

resonance states of Li+ below the =N 2 threshold. The integer number M in-
dicates the orders of appearance of the states counting from the lowest Po3 state.
The numbers in the square brackets denote the power of ten.

Po3 (M) n* ⟨ ⟩<r θcos 12 ⟨ ⟩θcos 12 n Γ*3 K T( , )nN

Po3 (1) 1.629 - 0.577 - 0.336 0.001 (1,0)22

Po3 (2) 2.666 - 0.824 - 0.395 0.002 (1,0)32

Po3 (5) 3.654 - 0.840 - 0.410 0.002 (1,0)42

Po3 (8) 4.649 - 0.843 - 0.416 0.002 (1,0)52

Po3 (11) 5.646 - 0.847 - 0.419 0.002 (1,0)62

Po3 (3) 2.704 - 0.005 - 0.003 6.7[-5] (0, 1) 32

Po3 (6) 3.733 - 0.010 - 0.011 8.4[-5] (0, 1) 42

Po3 (9) 4.743 - 0.010 - 0.010 9.4[-5] (0, 1) 52

Po3 (4) 3.077 0.608 0.310 2.4[-6] −( 1,0)32

Po3 (7) 4.067 0.772 0.384 3.1[-6] −( 1,0)42

Po3 (10) 5.063 0.834 0.413 3.6[-6] −( 1,0)52

Table 2
Calculated values of n*, ⟨ ⟩<r θcos 12 , ⟨ ⟩θcos 12 and n Γ*3 for the doubly excited Po3

resonance states of Li+ located between the =N 2 and =N 3 thresholds. The
numbers in the square brackets denote the power of ten.

Po3 (M) n* ⟨ ⟩<r θcos 12 ⟨ ⟩θcos 12 n Γ*3 K T( , )nN

Po3 (1) 2.373 - 2.040 - 0.533 0.045 (2,0)33

Po3 (3) 3.376 - 2.570 - 0.570 0.068 (2,0)43

Po3 (8) 4.339 - 2.653 - 0.588 0.069 (2,0)53

Po3 (13) 5.320 - 2.676 - 0.598 0.066 (2,0)63

Po3 (4) 3.377 - 1.244 - 0.287 0.004 (1,1)43

Po3 (9) 4.396 - 1.240 - 0.274 0.005 (1,1)53

Po3 (14) 5.403 - 1.274 - 0.279 0.006 (1,1)63

Po3 (2) 2.644 0.185 0.037 0.024 (0,0)33

Po3 (5) 3.793 0.027 0.014 0.027 (0,0)43

Po3 (10) 4.801 0.090 0.022 0.030 (0,0)53

Po3 (15) 5.800 0.124 0.029 0.030 (0,0)63

Po3 (6) 3.807 1.193 0.270 2.9[-3] −( 1,1)43

Po3 (11) 4.865 1.294 0.295 8.4[-4] −( 1,1)53

Po3 (16) 5.888 1.350 0.304 7.2[-4] −( 1,1)63

Po3 (7) 4.287 1.947 0.440 3.6[-5] −( 2,0)43

Po3 (12) 5.255 2.342 0.525 3.4[-5] −( 2,0)53
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Chung and Lin (1998), Ho (1979) and Bachau et al. (1991) using a
pseudo potential Feshbach formalism. Our computed energy positions
agree with the other data within the first −3 6 digits. Large differences
in magnitude between the widths reported by Bachau et al. (1991) for
the P (6)o3 , P (7)o3 and P (8)o3 states and the other values are observed.
The values of the widths we obtained for all the states agree best with
the results of Chung and Lin (1998) and the available data of Ho
(1979).

4. Conclusion

We have in this work investigated the triplet doubly excited Po3

states of the Li+ ion under the =N 2 and =N 3 hydrogenic thresholds
by using a B-spline based spectral approach of configuration type
combined with the complex rotation method. Our approach accurately
locates the broad and narrow doubly excited Po3 resonance states in the
energy spectrum of the ion. It also allows to extract a number of values
of interest for each state which permits the straightforward classifica-
tion of the states into distinct series.

Table 3
Energy positions and widths of the doubly excited Po3 resonance states of Li +below the N = 2 threshold. The numbers in the square brackets denote the power of
ten.

Po3 (M) Po3 (1) Po3 (2) Po3 (3) Po3 (4) Po3 (5) Po3 (6) Po3 (7) Po3 (8) Po3 (9) Po3 (10)

-E (a.u.)
Expt.
a 1.8770± 1.4048 ± 1.3975± 1.273 ± 1.267 ±

0.0007 0.0007 0.0007 0.002 0.001
b 1.877± 1.402± 1.398±

0.004 0.004 0.004
c 1.877±

0.001
Theory
Present 1.878174 1.406273 1.398511 1.336194 1.274756 1.268551 1.245908 1.217540 1.213899 1.203004
d 1.878174 1.406272 1.398511 1.336190 1.274755 1.268551 1.245906 1.217539 1.213898 1.203003
e 1.878263 1.406368 1.398632 1.336293 1.285887 1.268640 1.245997 1.217653 1.213993 1.203099
f 1.87869 1.40644 1.39865 1.33504
g 1.878185 1.40627 1.398514 1.33621
h 1.8746 1.4029 1.3972
i 1.8794 1.4065 1.3985
Γ (a.u.)
Theory
Present 3.131[-4] 1.101[-4] 3.387[-6] 8.249[-8] 4.385[-5] 1.610[-6] 4.563[-8] 2.121[-5] 8.809[-7] 2.778[-8]
d 3.145[-4] 1.110[-4] 3.624[-6] 2.76[-10] 4.444[-5] 2.238[-6] 9.96[-10] 2.154[-5] 6.46[-7] 2.92[-10]
e 3.231[-4] 1.137[-4] 3.408[-6] 5.667[-10] 4.55[-5] 1.559[-6] 2.896[-10] 2.200[-5] 8.655[-7] 4.245[-10]
f 3.146[-4] 1.117[-4] 2.848[-6] 1.948[-9]
g 3.12[-4] 1.05[-4]
h 4.81[-4] 1.90[-4] 4.85[-6]
i 3.28[-4] 1.16[-4] 3.494[-6]

aDiehl et al. (1999).
bRodbro et al. (1979).
cZiem et al. (1975).
dChen (2007).
eChung and Lin (1998).
fMacias and Riera (1988).
gHo (1981).
hConneely and Lipsky (1978).
iBhatia and Temkin (1984).

Table 4
Energy positions and widths of the doubly excited Po3 resonance states of Li+ located between the =N 2 and =N 3 thresholds. The numbers in the square brackets
denote the power of ten.

Po3 (M) Po3 (1) Po3 (2) Po3 (3) Po3 (4) Po3 (5) Po3 (6) Po3 (7) Po3 (8) Po3 (9) Po3 (10)

-E (a.u.)
Theory
Present 0.855030 0.786097 0.675403 0.675333 0.638975 0.638002 0.608805 0.606204 0.603472 0.586761
a 0.855082 0.786069 0.675441 0.675375 0.638972 0.638016 0.608839 0.606240 0.603491 0.586732
b 0.8569 0.7878 0.6763 0.6754 0.6392 0.6374 0.6066 0.6060 0.6034 0.5867
c 0.85505 0.786125
Γ (a.u.)
Theory
Present 3.384[-3] 1.318[-3] 1.763[-3] 1.150[-4] 4.937[-4] 5.298[-5] 4.630[-7] 8.408[-4] 6.182[-5] 2.748[-4]
a 3.405[-3] 1.351[-3] 1.777[-3] 1.150[-4] 4.973[-4] 6.255[-5] 4.906[-7] 8.475[-4] 6.160[-5] 2.819[-4]
b 4.040[-3] 1.507[-3] 2.278[-3] 1.396[-4] 6.615[-4] 1.507[-5] 1.176[-3] 4.777[-6] 7.717[-5] 3.675[-4]
c 3.3[-3] 1.325[-3]

aChung and Lin (1998).
bBachau et al. (1991).
cHo (1979).
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In the future experimental investigations on the photoabsorption
process in the Li+(1s2s Se3 ) ion by EUV laser pulses, the autoionizing
Po3 states will manifest themselves as prominent resonant structures in
the measured cross section. Accurate theoretical description of the
doubly excited Po3 states is needed for a proper analysis of the photo-
absorption process.
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