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A B S T R A C T

Employed both analytical and numerical methods, chaotic motions for the parametrically excited roll motion
of a ship in regular longitudinal waves are investigated in this paper. It is presented that the mechanism
for chaos is the intersection of the stable and unstable manifolds of the homoclinic orbits or heteroclinic
cycle. The parameter conditions for chaos are obtained rigorously with the Melnikov method. The chaotic
regions of the system parameters are illustrated. The chaotic feature on the system parameters is discussed
in detail. It is obtained that the critical values of chaos for homoclinic orbits increase monotonously as the
increasing of the nonlinear roll attenuation coefficient, while the critical values of chaos for the heteroclinic
cycle decrease monotonously as the increasing of the nonlinear roll attenuation coefficient. On the other
hand, critical values of chaos for both homoclinic orbits and heteroclinic cycle increase monotonously as the
increasing of the excitation amplitude. It is also demonstrated that there exist chaotic bands for this model.
Numerical simulations verify the analytical results.

1. Introduction

The navigation of ships in deep sea is a complicated dynamic
process. Chaotic vibrations of ships may lead to capsize. Therefore, it
is meaningful to study chaotic dynamics of ships. Recently, a lot of
researchers have investigated chaotic motions of various ship models.
Using an analytical and digital analog-computer simulation investiga-
tion, Nayfeh and Sanchez (1986) studied chaos and dynamic instability
of the rolling motion for ships in beam, following, and head seas. Com-
plicated rolling responses including jumps, period-multiplying bifurca-
tions and chaos were presented. Employing a numerical, phenomeno-
logical approach, Virgin (1987) investigated the nonlinear rolling re-
sponses of a vessel including chaotic motions leading to capsize in
regular seas. The stability of the periodic motion, and in particular
the possibility of capsize were explored. By using the numerical time
simulation, Kan and Taguchi studied chaos and fractal in capsizing
phenomenon (Kan and Taguchi, 1990), in asymmetric capsizing equa-
tion (Kan and Taguchi, 1991), as well as in forced Mathieu type
capsize equation (Kan and Taguchi, 1992) of a ship in quartering seas,
respectively. A safe basin defined as a non-capsizing region in the phase
plane of rolling angle and rolling velocity was obtained for the fixed
control parameters such as forcing frequency, forcing amplitude and
damping coefficient. Applying global analysis techniques, Falzarano
et al. (1992) studied transient rolling motions of a small ship which
is subjected to a periodic wave excitation. It was presented that the
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transition which this boundary makes from regular to fractal, implied a
loss in predictability of the ship’s eventual state. Using the path integral
method, Liu and Tang (2013) investigated the random jumping of ship
rolling excited by the narrow band waves. It was found that the ship
rolling had two attraction regions when the effect of liquid on board
was considered. Using a real-time online prediction method, Liu and
Yang (2011) studied the chaotic characteristics of ship rolling motion.
Based on the chaos system reconstruction method and G–P method, Li
et al. (2016) investigated prediction of ship motions. Using Lyapunov
characteristic exponents, Hu et al. (2010) investigated chaotic roll
motions of ships in regular longitudinal waves. The safe and unsafe
regions of target ships were identified there.

Melnikov method is an analytical tool to study chaos. It has been
used to investigate chaos of numerous dynamic models, such as the
suspend elastic cable under combined parametrical and external excita-
tions (Zhang and Tang, 2002), a parametrically excited cantilever beam
(Zhang et al., 2005), a rotor-active magnetic bearing system with time-
varying stiffness (Zhang et al., 2006), a string-beam coupled system
with two-degrees-of-freedom (Zhang and Cao, 2006), a cantilever beam
subjected to a harmonic axial excitation and two transverse excitations
at the free end (Zhang et al., 2009b), a composite laminated piezoelec-
tric rectangular plate (Zhang et al., 2009a), a parametrically excited
viscoelastic moving belt (Yao et al., 2012), and a laminated composite
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piezoelectric rectangular plate (Yao and Zhang, 2014), et al. Recently,
some researchers have also used this method to investigate chaotic
motions in ship models. With extended Melnikov’s method, Wu and
Mccue (2008) studied single-degree-of-freedom vessel roll motion of
ships. Two roll motion models, that is a simple roll model with non-
linear damping and cubic restoring moment and the model with biased
restoring moment, were analyzed there. Using the Melnikov method
and numerical methods, Maki et al. (2010, 2014) investigated chaos of
ship roll equation in beam seas. Chaos threshold was presented. With
random Melnikov method and phase space flux, Tang et al. (2004) stud-
ied nonlinear roll and capsize of ships in the random seas. It was shown
that phase space flux was growing continually along with significant
wave height and the safe basin of ships was decreasing rapidly. Liu
et al. (2016) analyzed stability and capsizing of nonlinear ship rolling in
wind and stochastic beam seas by using random Melnikov function and
the concept of phase space flux. Based on stochastic Melnikov function
and phase space transport theory, Zhang et al. (2017) studied safety
degree of ship capsizing in stochastic waves.

In this paper, chaotic motions for the parametrically excited roll
motion of a ship in regular longitudinal waves are studied both analyt-
ically and numerically. System parameter conditions for chaos arising
from homoclinic and heteroclinic intersections are presented rigor-
ously. Chaotic feature on system parameters is investigated in detail.
The results show that the critical values of chaos for homoclinic orbits
increase monotonously as the increasing of the nonlinear roll atten-
uation coefficient, while the critical values of chaos for heteroclinic
cycle decrease monotonously as the increasing of the nonlinear roll
attenuation coefficient. Meanwhile, critical values of chaos for both
homoclinic orbits and heteroclinic cycle increase monotonously as the
increasing of the excitation amplitude. Another interesting finding is
that chaotic bands may exist in this system. With the fourth-order
Runge–Kutta method and the wolf algorithm, the phase portraits, time
history curves, Poincaré section and Lyapunov exponent spectrum are
obtained, respectively, which confirm the analytical results.

2. The mathematical model and problem formulation

The nonlinear dynamic model for parametric rolling system of ship
in regular longitudinal waves is (Sanchez and Nayfeh, 1990)

�̈� + 𝜇1�̇� + 𝜇3�̇�
3 + 𝜔2

0[𝜑 + 𝛼3𝜑
3 + 𝛼5𝜑

5 + ℎ0𝜑 cos(𝜔𝑡)] = 0 (1)

where 𝜑 is the roll angle, ℎ0 is the dimensionless parameter excitation
amplitude, 𝜔 is the parametric excitation frequency, 𝜇1 and 𝜇3 are
roll attenuation coefficients, 𝛼3 and 𝛼5 are dimensionless restoring
moment coefficients, and 𝜔0 is the natural frequency of ship rolling,
respectively.

Denoting 𝐴 = 𝜔2
0, 𝐵 = 𝜔2

0𝛼3, 𝐶 = 𝜔2
0𝛼5 and 𝑓 = 𝜔2

0ℎ0, system (1) can
be written as

�̈� + 𝜇1�̇� + 𝜇3�̇�
3 + 𝐴𝜑 + 𝐵𝜑3 + 𝐶𝜑5 + 𝑓𝜑 cos(𝜔𝑡) = 0 (2)

Assuming the roll attenuation coefficients and excitation amplitude
are small, denoting 𝜇1 = 𝜀�̄�1, 𝜇3 = 𝜀�̄�3 and 𝑓 = 𝜀𝑓 , system (2) can be
written as follows

�̈� + 𝜀�̄�1�̇� + 𝜀�̄�3�̇�
3 + 𝐴𝜑 + 𝐵𝜑3 + 𝐶𝜑5 + 𝜀𝑓𝜑 cos(𝜔𝑡) = 0 (3)

When 𝜀 = 0, the unperturbed system of (3) is

�̈� + 𝐴𝜑 + 𝐵𝜑3 + 𝐶𝜑5 = 0 (4)

According to the practical significance of parameters, we consider
the case of 𝐴 > 0, 𝐵 < 0 and 𝐶 > 0 with 𝐵2 − 4𝐴𝐶 > 0. In this case,
there are five equilibrium points for the unperturbed Eq. (4), given by

−𝜑2,−𝜑1, 0, 𝜑1 =

√

−𝐵 −
√

𝐵2 − 4𝐴𝐶
2𝐶

,𝜑2 =

√

−𝐵 +
√

𝐵2 − 4𝐴𝐶
2𝐶

(5)

Fig. 1. The phase portrait of the unperturbed system (4).

where 0 < 𝜑1 < 𝜑2 are well-defined quantities. Eq. (3) can be rewritten
as

�̈� + 𝜀𝜇1�̇� + 𝜀𝜇3�̇�
3 + 𝐶𝜑(𝜑2 − 𝜑2

1)(𝜑
2 − 𝜑2

2) + 𝜀𝑓𝜑 cos(𝜔𝑡) = 0 (6)

Putting the parameters

𝜃 =
𝜑2
𝜑1

=

√

√

√

√

−𝐵 +
√

𝐵2 − 4𝐴𝐶

−𝐵 −
√

𝐵2 − 4𝐴𝐶
, 𝛾 = 𝜑2

1

√

2𝐶(𝜃2 − 1), 𝛽 = 5 − 3𝜃2

3𝜃2 − 1
(7)

the homoclinic orbits and heteroclinic cycle of the saddle 𝜑1 can be
described as follows
⎧

⎪

⎨

⎪

⎩

𝜑hom(𝑡) = ±
√

2𝜑1
cosh(𝛾𝑡∕2)

√

𝛽+cosh(𝛾𝑡)

�̇�hom(𝑡) = ±
√

2
2 𝜑1𝛾(𝛽 − 1) sinh(𝛾𝑡∕2)

(𝛽+cosh(𝛾𝑡))3∕2

(8)

⎧

⎪

⎨

⎪

⎩

𝜑het (𝑡) = ±
√

2𝜑1
sinh(𝛾𝑡∕2)

√

−𝛽+cosh(𝛾𝑡)

�̇�het (𝑡) = ±
√

2
2 𝜑1𝛾(1 − 𝛽) cosh(𝛾𝑡∕2)

(−𝛽+cosh(𝛾𝑡))3∕2

(9)

The phase portrait of the unperturbed system (4) is shown as in Fig. 1.

3. Chaos of the system

In this section, we use the Melnikov method (Wiggins, 1990; Guck-
enheimer and Holmes, 1997; Li and Chen, 2012) to investigate the
chaotic motions arising from the transverse intersections of stable and
unstable manifolds for the homoclinic orbits and heteroclinic cycle in
system (3).

3.1. Melnikov functions and parameter conditions of chaos for the system

Computing the Melnikov function of system (3) along the homo-
clinic orbit (8), one can obtain that

𝑀hom(𝑡0) = −�̄�1 ∫

+∞

−∞
[�̇�hom(𝑡)]2d𝑡 − �̄�3 ∫

+∞

−∞
[�̇�hom(𝑡)]4d𝑡

− 𝑓 ∫

+∞

−∞
𝜑hom(𝑡)�̇�hom(𝑡) cos(𝜔(𝑡 + 𝑡0))d𝑡

= −�̄�1 ∫

+∞

−∞
[�̇�hom(𝑡)]2d𝑡 − �̄�3 ∫

+∞

−∞
[�̇�hom(𝑡)]4d𝑡

+ 𝑓 sin𝜔𝑡0 ∫

+∞

−∞
𝜑hom(𝑡)�̇�hom(𝑡) sin𝜔𝑡d𝑡

≡ −�̄�1𝐼1 − �̄�3𝐼2 + 𝑓𝐼3 sin𝜔𝑡0

(10)



Ocean Engineering 195 (2020) 106729

3

L. Zhou and F. Chen

Fig. 2. The critical curves of chaos for (a) �̄�3 = 0.2, (b) �̄�3 = 0.8.

Fig. 3. The critical curves of chaos for the (a) homoclinic orbits and (b) heteroclinic cycle with different values of �̄�3.

where

𝐼1 = ∫

+∞

−∞
[�̇�hom(𝑡)]2d𝑡

=
𝜑2
1𝛾

1 + 𝛽
[−

1 + 2𝛽

2
√

1 − 𝛽2
arctan

√

1 − 𝛽
1 + 𝛽

+
2 + 𝛽
4

],

𝐼2 = ∫

+∞

−∞
[�̇�hom(𝑡)]4d𝑡

=
𝜑4
1𝛾

3

320(1 + 𝛽)2(1 − 𝛽)3

√

1 + 𝛽
1 − 𝛽

× [

√

1 − 𝛽
1 + 𝛽

(2𝛽5 − 18𝛽4 − 139𝛽3 − 249𝛽2 − 178𝛽 − 48)

+ arctan

√

1 − 𝛽
1 + 𝛽

(120𝛽3 + 240𝛽2 + 210𝛽 + 60)],

𝐼3 = ∫

+∞

−∞
𝜑hom(𝑡)�̇�hom(𝑡) sin(𝜔𝑡)d𝑡

= 𝜋𝜑2
1

√

1 − 𝛽
1 + 𝛽

𝜔
𝛾
sinh(𝜔 arccos 𝛽∕𝛾)

sinh(𝜔𝜋∕𝛾)
,

(11)

Thus, 𝑀hom(𝑡0) has simple zeros and chaotic motions occur if and only

if

|

�̄�1𝐼1 + �̄�3𝐼2
𝑓𝐼3

| < 1 (12)

Similarly, the Melnikov function for the system (3) along the hete-

roclinic cycle (9) is as follows:

𝑀het (𝑡0) = −�̄�1 ∫

+∞

−∞
[�̇�het (𝑡)]2d𝑡 − �̄�3 ∫

+∞

−∞
[�̇�het (𝑡)]4d𝑡

− 𝑓 ∫

+∞

−∞
𝜑het (𝑡)�̇�het (𝑡) cos(𝜔(𝑡 + 𝑡0))d𝑡

= −�̄�1 ∫

+∞

−∞
[�̇�het (𝑡)]2d𝑡 − �̄�3 ∫

+∞

−∞
[�̇�het (𝑡)]4d𝑡

+ 𝑓 sin𝜔𝑡0 ∫

+∞

−∞
𝜑het (𝑡)�̇�het (𝑡) sin𝜔𝑡d𝑡

≡ −�̄�1𝐽1 − �̄�3𝐽2 + 𝑓𝐽3 sin𝜔𝑡0

(13)

where

𝐽1 = ∫

+∞

−∞
[�̇�het (𝑡)]2d𝑡

=
𝜑2
1𝛾

1 + 𝛽
[

1 + 2𝛽

2
√

1 − 𝛽2
arctan

√

1 + 𝛽
1 − 𝛽

+
2 + 𝛽
4

],

𝐽2 = ∫

+∞

−∞
[�̇�het (𝑡)]4d𝑡

=
𝜑4
1𝛾

3

320(1 + 𝛽)3(1 − 𝛽)2

√

1 − 𝛽
1 + 𝛽

× [

√

1 + 𝛽
1 − 𝛽

(2𝛽5 − 22𝛽4 − 99𝛽3 − 11𝛽2 + 82𝛽 + 48)

+ arctan

√

1 + 𝛽
1 − 𝛽

(120𝛽3 + 240𝛽2 + 210𝛽 + 60)],

𝐽3 = ∫

+∞

−∞
𝜑het (𝑡)�̇�het (𝑡) sin(𝜔𝑡)d𝑡

= 𝜋𝜑2
1

√

1 − 𝛽
1 + 𝛽

𝜔
𝛾
sinh(𝜔 arccos(−𝛽)∕𝛾)

sinh(𝜔𝜋∕𝛾)
,

(14)

Therefore, 𝑀het (𝑡0) has simple zeros and chaotic motions occur if and
only if

|

�̄�1𝐽1 + �̄�3𝐽2
𝑓𝐽3

| < 1 (15)

3.2. Chaotic feature on the system parameters

The chaotic feature on the system parameters will be discussed in
this subsection. We take 𝜔0 = 1, 𝛼3 = −0.8046 and 𝛼5 = 0.081 in the
flowing discussions. Consequently, there are three system parameters
𝜇1, 𝜇3 and 𝑓 which may lead to chaos. We will fix two of them and
discuss the other one in the following discussions.

Case 1: �̄�1 and �̄�3 are fixed
In this case, the conditions of chaotic motions are as follows,

respectively,
For the homoclinic orbits:

1
𝑓

< |

𝐼3
�̄�1𝐼1 + �̄�3𝐼2

| (16)
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Fig. 4. The critical curves of chaos for the (a) homoclinic orbits and (b) heteroclinic cycle with different values of 𝑓 .

Fig. 5. The critical curves of chaos for the (a) homoclinic orbits and (b) heteroclinic cycle with different values of �̄�1.

Fig. 6. The phase portraits of system (1) while ℎ0 = 1.2.

For the heteroclinic cycle:

1
𝑓

< |

𝐽3
�̄�1𝐽1 + �̄�3𝐽2

| (17)

Taking �̄�1 = 0.1, �̄�3 = 0.2 or �̄�3 = 0.8, the critical curves of chaos are
shown as in Fig. 2, from which one can see that the critical values of
the heteroclinic cycle are always below that of the homoclinic orbits.
This means that the heteroclinic cycle is easier chaotically excited than
homoclinic orbits.

Fixing �̄�1 = 0.1, taking �̄�3 = 0.2, 0.4, 0.6, 0.8, the critical curves
of chaos for the homoclinic orbits and heteroclinic cycle are shown
as in Fig. 3, from which one can obtain that the critical values of
chaos for homoclinic orbits increase monotonously as the increasing
of �̄�3, while the critical values of chaos for heteroclinic cycle decrease
monotonously as the increasing of �̄�3.

Case 2: �̄�1 and 𝑓 are fixed
In this case, the conditions of chaotic motions are as follows,

respectively.
For the homoclinic orbits:

|�̄�1𝐼1 + �̄�3𝐼2| < |𝑓𝐼3| (18)

It can be verified that 𝐼1 > 0, 𝐼2 < 0 and 𝐼3 > 0 for all 𝜔 > 0.
On the other hand, the parameters �̄�1, �̄�3 and 𝑓 are all positive, so the
condition (20) can be written as follows

max(0,
𝑓𝐼3 − �̄�1𝐼1

𝐼2
) < �̄�3 < −

𝑓𝐼3 + �̄�1𝐼1
𝐼2

(19)

For the heteroclinic cycle:

|�̄�1𝐽1 + �̄�3𝐽2| < |𝑓𝐽3| (20)

Since 𝐽1 > 0, 𝐽2 < 0 and 𝐽3 > 0 for all 𝜔 > 0, condition (22) can be
written as

�̄�3 <
𝑓𝐽3 − �̄�1𝐽1

𝐽2
(𝑓𝐽3 − �̄�1𝐽1 > 0) (21)

Fixing �̄�1 = 0.1, taking 𝑓3 = 0.2, 0.4, 0.6, 0.8, respectively, the
critical curves of chaos for the homoclinic orbits and heteroclinic cycle
are shown as in Fig. 4, from which one can see that there exist
‘‘chaotic bands’’ for homoclinic orbits when the excitation frequency
is small. The excitation frequency range of the chaotic band decreases
monotonously as the increasing of 𝑓 , while the width of the chaotic
band increases as the increasing of 𝑓 . One can also see that the
heteroclinic cycle can be chaotically excited only in a interval of the
excitation frequency, and the interval increases as the increasing of the
excitation amplitude.

Case 3: �̄�3 and 𝑓 are fixed
In this case, due to 𝐼1 > 0, 𝐼2 < 0, 𝐼3 > 0, 𝐽1 > 0, 𝐽2 < 0 and

𝐽3 > 0 for all 𝜔 > 0, the conditions of chaotic motions are as follows,
respectively,

For the homoclinic orbits:

max(0,
−𝑓𝐼3 − �̄�3𝐼2

𝐼1
) < �̄�1 <

𝑓𝐼3 − �̄�3𝐼2
𝐼1

(22)

For the heteroclinic cycle:

�̄�1 <
𝑓𝐽3 − �̄�3𝐽2

𝐽1
(𝑓𝐽3 − �̄�3𝐽2 > 0) (23)
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Fig. 7. The time history curves of (a) 𝜑, (b) �̇� for system (1) while ℎ0 = 1.2.

Fixing �̄�3 = 0.1, taking 𝑓3 = 0.2, 0.4, 0.6, 0.8, respectively, one can
verify that 𝑓𝐼3− �̄�3𝐼2 < 0 for all 𝜔 > 0, so condition (24) can be written
as

�̄�1 <
𝑓𝐼3 − �̄�3𝐼2

𝐼1
(24)

The critical curves of chaos for the homoclinic orbits and hete-
roclinic cycle are shown as in Fig. 5. It can be concluded that the
critical values of chaos for both homoclinic orbits and heteroclinic cycle
increase monotonously as the increasing of the excitation amplitude.
Similarly as case 2, the heteroclinic cycle can be chaotically excited
only in a interval of the excitation frequency, and the interval increases
as the increasing of the excitation amplitude.

4. Numerical simulations

In this section, taking a maritime patrol ship for example, numerical
simulations are given to verify the analytical results.

Choosing the parameters as follows: the length of the ship is 49 m,
the width is 7.4 m, the full load draft is 2.317 m, the full load
displacement is 241.14t, the initial metacentric height is 0.987 m, the
initial natural frequency of rolling is 1.118rad/s, the total mass moment
of inertia is 268.42t ⋅m, then the parameters in system (1) are 𝜔 = 2.236,
𝜔0 = 1.118, 𝜇1 = 𝜀𝜇1 = 0.069, 𝜇3 = 𝜀𝜇3 = 0.08, 𝛼3 = −0.8046,
𝛼5 = 0.081, ℎ0 = 1.2, respectively. Using the fourth-order Runge–Kutta
method, the phase portraits and time history curves are shown as in
Figs. 6–7, respectively. The Poincaré section is shown as in Fig. 8.
Using the wolf algorithm (Wolf et al., 1985), the Lyapunov exponent
spectrum is shown as in Fig. 9. The largest Lyapunov exponent is
0.5467 > 0, so the system undergoes chaotic motions. On the other
hand, one can compute that | �̄�1𝐼1+�̄�3𝐼2𝑓𝐼3

| = 0.1453 < 1 and |

�̄�1𝐽1+�̄�3𝐽2
𝑓𝐽3

| =
0.2909 < 1, i.e., conditions (12) and (15) are satisfied, so the system is
chaotically excited according the analytical method, which agrees with
the numerical results.

Lastly, choosing ℎ0 = 1.1, 1.15, 1.25, 1.3, respectively, one can obtain
the phase portraits shown as in Figs. 10–13. From Figs. 10–13 and 6,
it can be seen that as the increasing of the excitation amplitude, first
the system undergoes periodic motions, then chaotic motions occur; at
last it undergoes periodic motions again.

5. Conclusions

With the Melnikov method and numerical methods, chaotic dy-
namics for the parametrically excited roll motion of a ship in regular
longitudinal waves is investigated in this paper. The critical curves
separating the chaotic and non-chaotic regions are plotted. It is pre-
sented that the critical values of chaos for homoclinic orbits increase
monotonously as the increasing of the nonlinear roll attenuation coef-
ficient, while the critical values of chaos for heteroclinic cycle decrease
monotonously as the increasing of the nonlinear roll attenuation coef-
ficient. Nevertheless, the critical values of chaos for both homoclinic
orbits and heteroclinic cycle increase monotonously as the increasing
of the excitation amplitude. It is also demonstrated that there exist

Fig. 8. The Poincaré sections of system (1) while ℎ0 = 1.2.

Fig. 9. The Lyapunov exponent spectrum of system (1) for ℎ0 = 1.2.

chaotic bands for this model, and the excitation frequency range of
the chaotic band decreases monotonously as the increasing of the
excitation amplitude, while the width of the chaotic band increases as
the increasing of the excitation amplitude. The results provide some
inspiration and guidance for the analysis and dynamics design of ships,
for example, we should choose the system parameters suitably so that
they are not in the chaotic regions. Otherwise, chaotic motion occurs
and capsize may happen.
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Fig. 10. The phase portraits of system (1) while ℎ0 = 1.1.

Fig. 11. The phase portraits of system (1) while ℎ0 = 1.15.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The research is supported by National Natural Science Foundation
of China (Nos. 11772148, 11572148, 11872201), and China Postdoc-
toral Science Foundation (No. 2013T60531).

References

Falzarano, J.M., Shaw, S.W., Troesch, A.W., 1992. Application of global methods for
analyzing dynamical systems to ship rolling motion and capsizing. Int. J. Bifurcation
Chaos 2, 101–115.

Fig. 12. The phase portraits of system (1) while ℎ0 = 1.25.

Fig. 13. The phase portraits of system (1) while ℎ0 = 1.3.

Guckenheimer, J., Holmes, P., 1997. Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields. Sprigner-Verlag, New York.

Hu, K.Y., Ding, Y., Wang, H.W., 2010. Chaotic roll motions of ships in regular
longitudinal waves. J. Mar. Sci. Appl. 9, 208–212.

Kan, M., Taguchi, H., 1990. Capsizing of a ship in quartering seas (part 2-chaos
and fractal in capsizing phenomenon). J. Japan Soc. Nav. Arch. Ocean Eng. 168,
211–220 (in Japanese).

Kan, M., Taguchi, H., 1991. Capsizing of a ship in quartering seas (part 3-chaos and
fractal in asymmetric capsizing equation). J. Japan Soc. Nav. Arch. Ocean Eng.
169, 1–13 (in Japanese).

Kan, M., Taguchi, H., 1992. Capsizing of a ship in quartering seas (Part 4. Chaos and
fractals in forced mathieu type capsize equation). J. Japan Soc. Nav. Arch. Ocean
Eng. 173, 83–98 (in Japanese).

Li, J.B., Chen, F.J., 2012. Chaos, Melnikov Method and Its New Development, second
ed. Science Press, Beijing.

Li, M.W., Geng, J., Han, D.F., Zheng, T.J., 2016. Ship motion prediction using dynamic
seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient
FOA. Neurocomputing 174, 661–680.

Liu, Y.C., Han, F.L., Lu, Y., 2016. Stability and capsizing analysis of nonlinear ship
rolling in wind and stochastic beam seas. Appl. Ocean Res. 57, 52–63.

http://refhub.elsevier.com/S0029-8018(19)30838-8/sb1
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb1
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb1
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb1
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb1
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb2
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb2
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb2
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb3
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb3
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb3
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb4
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb4
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb4
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb4
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb4
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb5
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb5
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb5
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb5
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb5
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb6
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb6
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb6
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb6
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb6
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb7
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb7
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb7
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb8
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb8
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb8
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb8
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb8
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb9
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb9
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb9


Ocean Engineering 195 (2020) 106729

7

L. Zhou and F. Chen

Liu, L.Q., Tang, Y.G., 2013. The random jumping of ship rolling in narrowband wave
considering the static effect of liquid on board. J. Vib. Control 19, 576–584.

Liu, S., Yang, Z., 2011. Real-time online forecasting model of ship rolling motion based
on chaotic online LSSVM. In: 2011 IEEE 18th International Conference on Industrial
Engineering and Engineering Management, vol. 3, pp. 1732–1736.

Maki, A., Umeda, N., Ueta, T., 2010. Melnikov integral formula for beam sea roll
motion utilizing a non-hamiltonian exact heteroclinic orbit. J. Mar. Sci. Technol.
15, 102–106.

Maki, A., Umeda, N., Ueta, T., 2014. Melnikov integral formula for beam sea roll
motion utilizing a non-hamiltonian exact heteroclinic orbit: analytic extension and
numerical validation. J. Mar. Sci. Technol. 19, 257–264.

Nayfeh, A.H., Sanchez, N.E., 1986. Chaos and dynamic instability in the rolling motion
of ships. In: 17th Symposium on Naval Hydrodynamics, pp. 617–630.

Sanchez, N.E., Nayfeh, A.H., 1990. Nonlinear rolling motions of ships in longitudinal
waves. Int. Shipbuild. Prog. 37, 247–272.

Tang, Y.G., Gu, J.Y., Zheng, H.Y., Li, H.X., 2004. Study on the ship capsize in random
beam seas using melnikov method. J. Ship Mech. 8, 27–34 (in Chinese).

Virgin, L.N., 1987. The nonlinear rolling response of a vessel including chaotic motions
leading to capsize in regular seas. Appl. Ocean Res. 9, 89–95.

Wiggins, S., 1990. Introduction To Applied Non-Linear Dynamical Systems and Chaos.
Springer, New York.

Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov
exponents from a time series. Physica D 16, 285–317.

Wu, W., Mccue, L., 2008. Application of the extended Melnikov’s method for
single-degree-of-freedom vessel roll motion. Ocean Eng. 35, 1739–1746.

Yao, M.H., Zhang, W., 2014. Multi-pulse chaotic motions of high-dimension nonlinear
system for a laminated composite piezoelectric rectangular plate. Meccanica 49,
365–392.

Yao, M.H., Zhang, W., Jean, W., 2012. Multi-pulse chaotic dynamics in non-planar
motion of parametrically excited viscoelastic moving belt. J. Sound Vib. 331,
2624–2653.

Zhang, W., Cao, D.X., 2006. Studies on bifurcation and chaos of a string-beam coupled
system with two-degrees-of-freedom. Nonlinear Dynam. 45, 131–147.

Zhang, W., Gao, M.J., Yao, M.H., Yao, Z.G., 2009a. Higher-dimensional chaotic
dynamics of a composite laminated piezoelectric rectangular plate. Sci. China Ser.
G 52, 1989–2000.

Zhang, W., Tang, Y., 2002. Global dynamics of the cable under combined parametrical
and external excitations. Int. J. Non-Linear Mech. 37, 505–526.

Zhang, J.W., Wang, W.Q., Hu, J.Q., 2017. Study on the safety degree of ship capsizing
in stochastic waves. J. Ship Prod. Des. 33, 24–30.

Zhang, W., Wang, F.X., Yao, M.H., 2005. Global bifurcations and chaotic dynamics
in nonlinear nonplanar oscillations of a parametrically excited cantilever beam.
Nonlinear Dynam. 40, 251–279.

Zhang, W., Yao, M.H., Zhan, X.P., 2006. Multi-pulse chaotic motions of a rotor-active
magnetic bearing system with time-varying stiffness. Chaos Solitons Fractals 27,
175–186.

Zhang, W., Yao, M.H., Zhang, J.H., 2009b. Using the extended Melnikov method to
study the multi-pulse global bifurcations and chaos of a cantilever beam. J. Sound
Vib. 319, 541–569.

http://refhub.elsevier.com/S0029-8018(19)30838-8/sb10
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb10
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb10
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb12
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb12
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb12
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb12
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb12
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb13
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb13
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb13
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb13
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb13
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb15
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb15
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb15
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb16
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb16
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb16
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb17
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb17
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb17
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb18
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb18
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb18
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb19
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb19
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb19
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb20
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb20
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb20
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb21
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb21
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb21
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb21
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb21
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb22
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb22
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb22
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb22
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb22
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb23
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb23
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb23
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb24
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb24
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb24
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb24
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb24
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb25
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb25
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb25
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb26
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb26
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb26
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb27
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb27
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb27
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb27
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb27
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb28
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb28
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb28
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb28
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb28
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb29
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb29
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb29
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb29
http://refhub.elsevier.com/S0029-8018(19)30838-8/sb29

	Chaotic motion of the parametrically excited roll motion for a class of ships in regular longitudinal waves
	Introduction
	The mathematical model and problem formulation
	Chaos of the system
	Melnikov functions and parameter conditions of chaos for the system
	Chaotic feature on the system parameters

	Numerical simulations
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


