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A B S T R A C T

This study investigates the dynamic vibration and static deformation of a long flexible underwater body
suspended from the ocean surface. A numerical model is constructed by considering (i) the structural
mechanics, (ii) hydrodynamic forces induced by vortex shedding, (iii) motion mechanics associated with the
free bottom end of the suspended body, and (iv) the interactions among (i)-(iii). Numerical computations are
performed by applying uniform vertical distributions of the ocean flow speed and a sheared distribution, and
by varying the weight of the body at the free bottom end. Comparing the computed results of these cases
elucidates the mechanics of the fluid–structure interaction of the suspended body. In particular, the sheared
flow velocity profile allows the growth of multiple frequency components of vibrations in the flexible body.
The frequency multiplicity at a point in the body arises from the vortex-induced vibrations excited at that
point, and those that are excited in other regions then propagate to that point.

1. Introduction

Very long flexible bodies are used to convey oil and gas from
the seabed to floating platforms on the ocean surface. These flexible
bodies are often subjected to factors that excite motions and defor-
mations, thereby complicating the process of resource development
or production. Reliable designs are essential in ensuring operational
integrity.

Sometimes, these bodies are suspended from the ocean surface (Bai
and Bai, 2005), with their bottom ends hanging free under the water.
For example, when a drilling riser is used in a harsh environment such
as an environment prone to high waves, its bottom end is intentionally
disconnected from the wellhead when the environmental conditions
become too severe, while its top end remains connected to the floating
platform. Therefore, it is critical to ensure safe operation in both
suspended and normal conditions; the normal condition means that
both ends of the flexible body are connected to other bodies in the
vicinity.

Previous studies have noted the contribution of hydrodynamic
forces to the excitation of vibrations of a suspended body. For exam-
ple, Patel and Jesudansen (1987) experimentally examined the dynamic
motion of a free-hanging riser and identified the vortex-induced force
as a source of motion excitation. Meanwhile, using a perturbation
technique, Triantafyllou and Triantafyllou (1991) obtained the natural
modes of a free-hanging string and regarded them as the configuration
of responses of the body to excitation. In their model test, Kajiwara and
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Noridomi (2009) observed the vibratory motion of a riser model during
re-entry operations. Wenbo et al. (2014) constructed a numerical model
to simulate the dynamics of a platform and drilling riser in suspended
conditions.

Other previous studies have considered external forces other than
the vortex-induced force acting on a suspended body. For example, Yan-
bin et al. (2014a,b) analytically examined the static deformation and
dynamic motion of a suspended body induced by wind, waves, and
vessel motion. Honghai et al. (2016) analyzed the process wherein
vessel motion causes a suspended body to vibrate, and Wang et al.
(2012) numerically studied the vibration of suspended bodies excited
by vessel motion because of the wind and waves.

Optimal control theory applications to risers during re-entry opera-
tion have been extensively studied. For example, Shengwei et al. (2016)
attempted to optimize the re-entry of a free-hanging riser, Suzuki et al.
(1993, 1994) used thrusters to actively control the motion of a vessel
and deepwater risers, and Ohtsubo et al. (2005) and Koterayama et al.
(2008) used gain-scheduled control to improve the re-entry operation
of a marine riser.

The preceding literature review shows that, compared to the motion
of a floating platform in waves, vortex-induced vibration (VIV) has
attracted less attention among researchers interested in the dynamics
of suspended bodies. Nevertheless, because poor weather can extend
the flexible body suspension time, the severity of damage and fatigue
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Fig. 1. Schematic of coupling between structural, vortex-induced force, and bottom end body (BEB) models. The notation 𝑀 denotes moment acting on a segment. 𝒕, 𝒏, and 𝒃
denote the tangential, normal, and binormal unit vectors of a segment, respectively.

accumulation while the body is suspended should be addressed in equal
measures as that during operations in normal conditions.

This study attempts to develop a numerical simulation method to
investigate the mechanics of suspended bodies undergoing VIV. Numer-
ical simulation methods were developed to examine the mechanics of
risers in normal conditions (e.g., Chatjigeorgiou (2008, 2010), Srinil
(2011), Yanbin et al. (2014b), Doan and Nishi (2015), Tsukada and Mo-
rooka (2016), Honghai et al. (2016)). However, a numerical simulation
method that is able to serve as a practical approach for the suspended
conditions as well as the normal conditions has not been constructed.
The establishment of such a numerical simulation method would allow
long flexible bodies to be designed in a refined way. Considering
the good performances of the finite-difference scheme (Chatjigeorgiou,
2008) and the wake oscillator model (Violette et al., 2007; Nishi et al.,
2009; Doan and Nishi, 2015; Nishi and Doan, 2015) for the normal
condition, this study attempts to develop a numerical computation
program applicable to the suspended conditions based on the scheme
and model.

To simulate the suspended conditions, the bottom end must be
carefully treated. While a riser is suspended, it often has a small
attachment at its bottom end, such as the lower marine riser package
for a drilling riser (Bai and Bai, 2005) or the body attached to the
bottom end of a vertical cold-water pipe used in ocean thermal energy
conversion (Wilson, 2002). The body connected to the bottom end
of the long flexible body may change the natural frequencies of the
flexible body through changing the tension. Therefore, the bottom end
body (BEB) should be regarded as an important design parameter.

The BEB, which behaves like an almost-rigid body, must be modeled
as an independent body from the long flexible body above it. Accord-
ingly, the model built in this study involves three sets of mechanics and
the interactions between them, namely (i) structural mechanics express-
ing the elasticity of the suspended body, (ii) fluid mechanics expressing
the vortex formation and shedding, and (iii) motion mechanics of the
BEB.

Incorporating spatial differences is essential when considering the
speed of fluid flow around a body that has a vertical length of a few
kilometers. The VIV of the body in a sheared vertical profile of flow
speeds is an unresolved issue of interest, despite attempts having been
undertaken to elucidate the mechanics in sheared flows (e.g., Vandiver
et al. (1996), Trim et al. (2005), Chen et al. (2015), Nishi and Doan
(2015), Nishi et al. (2018)). Furthermore, these studies devoted little
attention to the suspended condition. Therefore, this study investigates
the following issues by interpreting the results of numerical simula-
tions: how the vertical distributions of ocean flow speed affect the
response of the suspended body, and to what extent the presence of
the BEB influences the response.

Fig. 2. Coordinate systems used to describe the governing equations. 𝜙 and 𝜃 denote
the angles of attitude of a segment. The 𝑥𝑦𝑧-axes span the space-fixed coordinate
system, the 𝑦-axis is vertical upward, and the 𝑥𝑧-plane is the horizontal plane.

2. Model description

Models for the structure 2.1, the vortex-induced force 2.2 and the
BEB 2.3 are described (Fig. 1). These are commonly represented using
nonlinear differential equations that govern the temporal evolution of
dynamic quantities. Accordingly, the numerical computational method
used in this study is built to solve the equations in the time domain.

These equations are written in terms of (i) an 𝑠-coordinate system
fixed to the long flexible body and extending from the bottom end
(𝑠 = 0) to the top end (𝑠 = 𝐿), and (ii) an 𝑥𝑦𝑧-coordinate system fixed
in space (Fig. 2). The variables and parameters used in the equations
are listed and defined in Table 1.

2.1. Structural model

The structural model represents the deformation of the long flexible
body; this body is modeled as an Euler–Bernoulli beam whose dynamics
are governed by the equations of segment (a small part of the body)
motion and the compatibility relation that ensures the continuity of the
beam (Howell, 1992).

The equation of motion of a segment of longitudinal length (1 +
𝑒)𝑑𝑠 (see the box labeled ‘‘Structural model’’ in Fig. 1) has tangential,
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Table 1
Notation and definitions of model variables and parameters.

Notation Definition Unit or value

𝑚 Mass per unit pipe length kg/m
𝑚a Added mass per unit pipe length kg/m
𝑢, 𝑣,𝑤 Velocities of a structural element in

tangential, normal, and binormal
directions

m/s

𝑇 Tension N
𝑆n In-plane shear force N
𝑆b Out-of-plane shear force N
𝐸 Young’s modulus N/m2

𝐼 Area moment of inertia of pipe m4

𝐴 Cross-section area of pipe m2

𝜔0 Submerged weight per unit pipe length kg/s2
𝑒 ≡ 𝑇 ∕ (𝐸𝐴) Axial strain –
𝛺2 , 𝛺3 Out-of-plane and in-plane curvatures rad
𝜙 Angle formed by tangential with the

horizontal plane
rad

𝜃 Out-of-plane angle rad
𝑠 Lagrangian coordinate along the

longitudinal length of body
m

𝑑𝑠 Longitudinal length of an unstretched
segment

m

𝐶dt , 𝐶dn , 𝐶db Drag coefficients in tangential, normal,
and binormal directions

0.0, 1.4, 0.6

𝐿 Whole length of suspended body m
𝑑 Outer diameter of suspended body m
𝑐a Added mass coefficient of circular

cylinder
1.0

𝜌w Fluid density 1.00 × 103 kg/m3

𝑃 ′ Coefficient of nonlinear damping term –
𝑉 ≡

√

𝑣c2 +𝑤c
2 Speed of flow perpendicular to element m/s

𝑽𝐜≡ (𝑢c , 𝑣c , 𝑤c) Flow velocity vector m/s
𝑓 Coefficient of the slope of the lift force 1.16
𝑙 Mean half-length of wake oscillator 1.16𝑑 m
𝑞 Width of wake oscillator 1.25𝑑 m
𝜔v Natural frequency of wake oscillator rad/s
𝜉 Self-excitation coefficient –
𝐶a Added mass coefficient of BEB 0.5
𝐶L Lift coefficient –
𝐶L0 Lift coefficient of a stationary cylinder 0.4
𝐶D Drag coefficient of BEB 0.4
𝑑B Diameter of BEB 0.584 m
𝑔 Gravitational acceleration 9.8 m/s2
𝑆 Projected area of BEB 0.184 m2

𝑀a Added mass of BEB –
𝑀s Mass of BEB in air –
𝑉s Volume of BEB 5.95 × 10−2 m3

normal, and binormal components written as

𝑚
(

𝜕𝑢
𝜕𝑡

+𝑤𝜕𝜃
𝜕𝑡

− 𝑣
𝜕𝜙
𝜕𝑡

cos 𝜃
)

= 𝜕𝑇
𝜕𝑠

+ 𝑆b𝛺2 − 𝑆n𝛺3

− 𝜔0 sin𝜙 cos 𝜃 + (1 + 𝑒)𝑅t ,
(1)

𝑚
{

𝜕𝑣
𝜕𝑡

+
𝜕𝜙
𝜕𝑡

(𝑢 cos 𝜃 +𝑤 sin 𝜃)
}

+ 𝑚a
𝜕𝑣r
𝜕𝑡

=
𝜕𝑆n
𝜕𝑠

+𝛺3
(

𝑇 + 𝑆b tan 𝜃
)

− 𝜔0 cos𝜙 + (1 + 𝑒)𝑅n, (2)

𝑚
(

𝜕𝑤
𝜕𝑡

− 𝑣
𝜕𝜙
𝜕𝑡

sin 𝜃 − 𝑢 𝜕𝜃
𝜕𝑡

)

+ 𝑚a
𝜕𝑤r
𝜕𝑡

=
𝜕𝑆b
𝜕𝑠

− 𝑆n𝛺3 tan 𝜃 − 𝑇𝛺2

− 𝜔0 sin𝜙 sin 𝜃 + (1 + 𝑒)𝑅b,
(3)

where
(

𝑅t , 𝑅n, 𝑅b
)

are the components of the external force vector
𝐑, which contains the gravity (𝐑w), drag (𝐑d), added mass (𝐑a), and
vortex-induced (𝐑VIV) components,

(1 + 𝑒)𝐑 = (1 + 𝑒)
(

𝐑w + 𝐑a + 𝐑d + 𝐑VIV
)

, (4)

where (1 + 𝑒)𝐑w and (1 + 𝑒)𝐑a have tangential, normal, and binormal
components described as follows:

(1 + 𝑒)𝐑w = 𝜔0 (sin𝜙 cos 𝜃,−cos𝜙,− sin𝜙 cos 𝜃) , (5)

(1 + 𝑒)𝐑a = −𝑚a

(

0,
𝜕𝑣r
𝜕𝑡

,
𝜕𝑤r
𝜕𝑡

)

. (6)

The notations
(

𝑢r , 𝑣r , 𝑤r
)

are the tangential, normal, and binormal com-
ponents of the relative velocity defined as

(

𝑢r , 𝑣r , 𝑤r
)

≡
(

𝑢 − 𝑢c, 𝑣 − 𝑣c,
𝑤 −𝑤c

)

, where
(

𝑢c, 𝑣c, 𝑤c
)

are the tangential, normal, and binormal
components of the flow velocity.

The drag force (1 + 𝑒)𝐑d has the following tangential, normal, and
binormal components respectively defined as

𝑅dt = −1
2
𝜌w𝑑𝜋𝐶dt𝑢r |𝑢r |

√

1 + 𝑒, (7)

𝑅dn = −1
2
𝜌w𝑑𝐶dn𝑣r

√

𝑣r 2 +𝑤r
2
√

1 + 𝑒, (8)

𝑅db = −1
2
𝜌w𝑑𝐶db𝑤r

√

𝑣r 2 +𝑤r
2
√

1 + 𝑒. (9)

The vortex-induced component (1 + 𝑒)𝐑VIV is related to the lift
coefficient 𝐶L in the following manner:

𝐑VIV = 1
2
𝜌w𝑑𝑉

2𝐶L
𝒕 × 𝑽𝐜
|𝒕 × 𝑽𝐜|

, (10)

where the temporal variation in 𝐶L is calculated based on the vortex-
induced force model as described in Section 2.2.

Segment bending is determined by the relationship between the
bending stiffness, tension-induced moment, and rotational inertia. In
this model, the torsional moment and the rotational inertia are omitted
because they are negligible compared to the other terms. Therefore, the
moment relationships can be simplified to:

𝐸𝐼
𝜕𝛺2
𝜕𝑠

= −𝐸𝐼𝛺3
2 tan 𝜃 + 𝑆b

(

1 + 𝑇
𝐸𝐴

)3
, (11)

𝐸𝐼
𝜕𝛺3
𝜕𝑠

= 𝐸𝐼𝛺2𝛺3 tan 𝜃 − 𝑆n

(

1 + 𝑇
𝐸𝐴

)3
, (12)

and the compatibility relationships can be written as
𝜕𝑢
𝜕𝑠

+𝛺2𝑤 −𝛺3𝑣 = 1
𝐸𝐴

𝜕𝑇
𝜕𝑡

, (13)

𝜕𝑣
𝜕𝑠

+𝛺3 (𝑢 +𝑤 tan 𝜃) =
(

1 + 𝑇
𝐸𝐴

) 𝜕𝜙
𝜕𝑡

cos 𝜃, (14)
𝜕𝑤
𝜕𝑠

−𝛺3𝑣 tan 𝜃 −𝛺2𝑢 = −
(

1 + 𝑇
𝐸𝐴

) 𝜕𝜃
𝜕𝑡

. (15)

The curvatures (𝛺2, 𝛺3) are related to the Euler angles as

𝛺2 = 𝜕𝜃
𝜕𝑠

, (16)

𝛺3 =
𝜕𝜙
𝜕𝑠

cos 𝜃. (17)

The added mass is calculated as

𝑚a = 𝑐a𝜌w𝜋
(𝑑
2

)2
. (18)

2.2. Model of vortex-induced force

A bluff body placed in a flowing fluid exhibits vibratory motion
(e.g., Blevins (1977)), which is induced by the periodic generation
and shedding of vortices in the downstream region of the body and
through the interaction of vortices with the moving body. Because the
section of the long flexible body addressed in this study is bluff, the
fluid–structure interaction is accounted for in the present modeling.

The dynamics involved in this interaction is represented using the
wake oscillator model. Although this model expresses the vortex dy-
namics in a simple fashion, the essence of the fluid–structure inter-
action mechanics is retained. Satisfactory performance of this model
has been reported when simulating the VIV of riser pipes (e.g., Violette
et al. (2007), Nishi et al. (2018)).

The time-varying lift coefficient, 𝐶L, is governed by the following
nonlinear equation:

�̈�L − 2𝜁𝜔v

(

1 − 𝑃 ′

𝑓 2
𝐶L

2
)

�̇�L + 𝜔2
v𝐶L = 𝐹coup. (19)
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Fig. 3. Schematic of (a) vortex formation and shedding behind segment section, and (b) wake oscillator. In (b), letters ‘‘𝛼’’ and ‘‘ℎ’’ denote rotation and translation motions.

The term 𝐹coup on the right-hand side of Eq. (19) is the force exerted
by the interaction between the segment motion and the wake oscillator
rotation, as expressed by

𝐹coup ≡
𝑓ℎ̈
𝑑
2 + 𝑙

, (20)

where ḧ denotes the acceleration of the segment motion in the di-
rection perpendicular to the flow. The present model assumes that a
wake oscillator is attached to a segment (Fig. 3 and the box labeled
‘‘Vortex-induced force model’’ in Fig. 1).

The notation 𝜁 is the coefficient that specifies the self-excitation
intensity of the wake oscillator, defined as

𝜁 ≡ 𝑓𝑑

2
√

2𝜋2𝑙
. (21)

The notation 𝜔v in the third term on the left-hand side in Eq. (19) is
the natural frequency of the wake oscillator. This is equivalent to the
frequency of the vortex generation and shedding behind a fixed circular
cylinder, defined as

𝜔2
v ≡

𝜋𝑉 2

𝑞
(

𝑑
2 + 𝑙

) . (22)

The coefficient 𝑃 ′ represents the nonlinear damping of the wake oscil-
lator, defined as

𝑃 ′ ≡
(

2𝑓
𝐶L0

)2
. (23)

2.3. Model of BEB and boundary condition of structural model

The BEB is connected to the long flexible body and is assumed to be
a sphere of diameter 𝑑B moving in a fluid. Its motion is affected by the
tension in the flexible body through the action–reaction principle. The
equations of motion of the BEB in the space-fixed coordinate system
(Fig. 2) are written as
(

𝑀s +𝑀a
)

�̈�B = 𝑇 cos 𝜃 cos𝜙 − 1
2
𝜌w𝐶D𝑆|

(

�̇�B − 𝑢f
)

|

(

�̇�B − 𝑢f
)

, (24)
(

𝑀s +𝑀a
)

�̈�B = 𝑇 cos 𝜃 sin𝜙 +
(

𝜌w𝑉s −𝑀s
)

𝑔

− 1
2
𝜌w𝐶D𝑆|

(

�̇�B − 𝑣f
)

|

(

�̇�B − 𝑣f
)

, (25)
(

𝑀s +𝑀a
)

�̈�B = −𝑇 sin 𝜃 − 1
2
𝜌w𝐶D𝑆

|

|

|

(

�̇�B −𝑤f
)

|

|

|

(

�̇�B −𝑤f
)

, (26)

where
(

𝑢f , 𝑣f , 𝑤f
)

are the components of the flow velocity in the
space-fixed coordinate system, and

(

𝑥B, 𝑦B, 𝑧B
)

are the BEB coordi-
nates in the space-fixed coordinate system. The added mass of the BEB
is calculated as

𝑀a = 𝐶a𝜌w
4
3
𝜋
(

𝑑B
2

)3
. (27)

The values of 𝐶D (Eq. (26)) and 𝐶a (Eq. (27)) are determined by
referring to Sarpkaya and Isaacson (1981) and Sumer and Fredsœ
(1997).

Boundary conditions must be imposed to calculate all the unknown
variables in the preceding equations. The flexible body is assumed to be
simply supported: the bending moments at the top (𝑠 = 𝐿) and bottom
(𝑠 = 0) ends are set to zero. These conditions are written as
{

𝛺2 (𝑠 = 𝐿, 𝑡) = 𝛺3 (𝑠 = 𝐿, 𝑡) = 0,
𝛺2 (𝑠 = 0, 𝑡) = 𝛺3 (𝑠 = 0, 𝑡) = 0.

(28)

The top end of the body is fixed, and the bottom end is positioned at
the same point as the BEB, as expressed by
{

𝑢 (𝑠 = 𝐿, 𝑡) = 0, 𝑣 (𝑠 = 𝐿, 𝑡) = 0, 𝑤 (𝑠 = 𝐿, 𝑡) = 0,
𝑢 (𝑠 = 0, 𝑡) = 𝑢b, 𝑣 (𝑠 = 0, 𝑡) = 𝑣b, 𝑤 (𝑠 = 0, 𝑡) = 𝑤b,

(29)

where (𝑢b, 𝑣b, 𝑤b) are the tangential, normal, and binormal com-
ponents of the BEB velocity, respectively, and are calculated via the
coordinate-system transformation of the velocity in the space-fixed
coordinate system in the following manner:

⎡

⎢

⎢

⎣

𝑢b
𝑣b
𝑤b

⎤

⎥

⎥

⎦

= 𝜞
⎡

⎢

⎢

⎣

�̇�B
�̇�B
�̇�B

⎤

⎥

⎥

⎦

, (30)

where 𝜞 denotes the rotation matrix for the coordinate-system trans-
formation and is defined as

𝜞 ≡
⎡

⎢

⎢

⎣

cos𝜙 cos 𝜃 sin𝜙 cos 𝜃 − sin 𝜃
− sin𝜙 cos𝜙 0

cos𝜙 sin 𝜃 sin𝜙 sin 𝜃 cos 𝜃

⎤

⎥

⎥

⎦

. (31)

2.4. Numerical computation method in time domain

This section explains the process of numerically solving the govern-
ing equations described earlier.

The partial differential equations (Eqs. (1)–(17)) of the structural
model can be collectively written in matrix form as

𝐌 𝜕𝐘(𝑠, 𝑡)
𝜕𝑡

+𝐊 𝜕𝐘(𝑠, 𝑡)
𝜕𝑠

+ 𝐅 {𝐘(𝑠, 𝑡)} = 0, (32)
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Fig. 4. Discrete points along spatial and temporal axes sequenced by integers 𝑘 and 𝑖,
respectively. The quantities at the locations and times represented by the open squares
are used to calculate finite-difference approximations of the first-order spatial and
temporal derivatives at the center (the open circle). The middle gray box represents
the segment with extremities located at nodes (𝑘 − 1) and 𝑘, and the other two boxes
are the segments connected to the middle segment.

where 𝐘(𝑠, 𝑡) is a vector containing 10 unknown variables and is defined
as

𝐘(𝑠, 𝑡) ≡
[

𝑇 𝑆n 𝑆b 𝑢 𝑣 𝑤 𝛺2 𝛺3 𝜃 𝜙
]T . (33)

Eq. (32) is transformed into finite difference form. The second-order
central finite-difference approximation is applied to both the spatial
and temporal differentiations (i.e., the Kellor box method: e.g., Hoff-
man (1992), Fig. 4). They can be written in the following matrix
form

(

𝐌𝑖+1
𝑘 +𝐌𝑖

𝑘
)

(

𝐘𝑖+1
𝑘 − 𝐘𝑖

𝑘
𝛥𝑡

)

+
(

𝐌𝑖+1
𝑘−1 +𝐌𝑖

𝑘−1
)

(

𝐘𝑖+1
𝑘−1 − 𝐘𝑖

𝑘−1
𝛥𝑡

)

+
(

𝐊𝑖+1
𝑘−1 +𝐊𝑖+1

𝑘
)

(

𝐘𝑖+1
𝑘 − 𝐘𝑖+1

𝑘−1
𝛥𝑠

)

+
(

𝐊𝑖
𝑘−1 +𝐊𝑖

𝑘
)

(

𝐘𝑖
𝑘 − 𝐘𝑖

𝑘−1
𝛥𝑠

)

+
(

𝐅𝑖+1
𝑘 + 𝐅𝑖+1

𝑘−1 + 𝐅𝑖
𝑘 + 𝐅𝑖

𝑘−1
)

= 𝐎. (34)

In Eq. (34), subscripts 𝑘−1 and 𝑘 represent the node locations on the
spatial coordinate (𝑠-coordinate) and superscripts 𝑖 and 𝑖 + 1 represent
the discrete times. The Kellor box method approximates a quantity and
its first-order spatial and temporal derivatives at the center of the box
(𝑖 + 1

2 , 𝑘 − 1
2 ) using the quantities at the four vertices surrounding the

center (Fig. 4).
The ordinary differential equation in the vortex-induced force model

(Eq. (19)) is solved for all the nodes placed along the long flexible
body. This equation and the equations in the BEB model (Eqs. (24)–
(26)) are numerically solved by applying the fourth-order Runge Kutta
scheme. In the numerical computations shown herein, 201 discrete
nodes are placed along the 𝑠-coordinate (the maximum of 𝑘 equals
201). This means that the structure is approximated by the succession
of 200 segments. Several computations were conducted by varying
the number of segments to examine the effect of spatial resolution on
results, confirming that the 200 segments and more yield sufficiently
converged results.

2.5. Linearization and numerical computation method in frequency domain

The developed numerical method was evaluated by conducting a
numerical computation in the frequency domain to ensure its appropri-
ate performance and determine its structural design. The mathematical
form of the suspended body model in the time domain was linearized,
and thereafter, transformed into the form in the frequency domain.
The numerical results of computations in the frequency domain were
compared with the analytically determined values.

The natural frequency is very important when designing a sus-
pended body because it is closely related to the magnitude of the VIV.
Numerous studies have shown that the magnitude of the VIV corre-
sponds to the dimensionless flow velocity (reduced velocity), which
includes the natural frequency, 𝜔n, defined as

𝑈∗ ≡ 2𝜋𝑉
𝜔n𝑑

. (35)

Each vibratory mode has its own natural frequency. The design parame-
ters of the suspended body can be specified using the frequency-domain
calculation yielding the natural frequencies.

Linearization is performed using the mathematical formula by
Chatjigeorgiou (2010). The vector of unknown variables is decomposed
into static �̄� (𝑠) and dynamic �̃� (𝑠, 𝑡) components as

𝐘 (𝑠, 𝑡) = �̄� (𝑠) + �̃� (𝑠, 𝑡) . (36)

Assuming that the suspended body in its static state is straight and
vertical, the static component comprising the zeroth-order quantities
can be written as

�̄� (𝑠) =
[

�̄� (𝑠) 0 0 0 0 0 0 0 0 0
]T . (37)

The dynamic part comprises first-order quantities of dynamic variables
defined as

�̃� (𝑠, 𝑡) =
[

�̃� �̃�n �̃�b �̃� �̃� �̃� �̃�2 �̃�3 𝜃 �̃�
]T . (38)

The linearized equations are derived by substituting Eq. (36) into
the governing equations of the structural model (Eqs. (1)–(17)) and
retaining only the first-order terms (i.e., omitting all terms equal to
or higher than second-order). To transform these into equations in the
frequency domain, the first-order dynamic variables are assumed to
have sinusoidal temporal variations, written as

�̃� (𝑠, 𝑡) = Re
{

�̃� (𝑠) 𝑒𝑖𝜔𝑡
}

, (39)

where 𝜔 is the frequency of the response and �̃� (𝑠) is the complex
amplitude of the dynamic variables.

The equations that result from substituting Eq. (39) into the lin-
earized equations are ordinary differential equations with respect to
space. The equations are solved by applying the central finite-difference
scheme to the spatial derivatives. The boundary conditions that the
bottom and top ends are simply supported are imposed. For the calcula-
tions in the frequency domain, 𝐶L in Eq. (10) is assumed to sinusoidally
vary with frequency 𝜔.

3. Results and discussion

3.1. Program evaluation

Solutions in the frequency domain were calculated by assuming the
uniformity of the beam material and tension, a straight configuration,
and both the ends simply supported (Fig. 5), whereupon a comparison
between the theoretical and numerical results was made to verify the
performance of the implemented program. The physical properties of
the beam used for program evaluation are listed in Table 2. The tension
is approximately 12% of the submerged weight of the beam, and is
set to be small for getting neighboring two natural frequencies closer,
thereby reducing the computing load in the frequency domain.
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Fig. 5. Schematic of straight beam with length 𝐿, and with both ends simply supported.
A constant tension, 𝑇 , is loaded.

Fig. 6. Average response amplitude versus frequency of vortex-induced force.

Table 2
Physical properties of beam for program verification.

Notation Definition Value

𝐿 Whole length 4000 m
𝑑 Outer diameter 0.02 m
𝑑i Inner diameter 0.01 m
𝐸 Young’s modulus 4.0 × 108 N/m2

𝐸𝐼 Bending stiffness 2.945 Nm2

𝐸𝐴 Axial stiffness 9.425 × 104 N
𝑚 Mass per unit beam length 0.5184 kg/m
𝑇 Tension 980.00 N

The theoretical solution according to these assumptions is

𝜔n_𝑗 =
(

𝑗𝜋
𝐿

)2 √𝐸𝐼
𝑚

√

√

√

√
1 + 𝑇

𝑗2
(

𝜋2𝐸𝐼
𝐿

) (𝑗 = 1, 2,…) , (40)

where 𝑗 is the sequential number of vibratory modes.
The resulting response amplitudes of the displacement were av-

eraged over the entire longitudinal length for various frequencies of
bottom end forced vibrations (Fig. 6). The frequencies associated with
the response peaks were regarded as the natural frequencies. Their
mode numbers, 𝑗, were assigned in increasing order from the smallest
peak frequency.

The numerically computed natural frequencies are plotted against
the mode sequence number (Fig. 7). The analytical solution (Eq. (40))
is also plotted for comparison. The numerical results are consistent
with the analytical results. Thus, adequate performance of the proposed
program is verified.

3.2. Design of flexible body

The parameters of the long flexible body were specified by con-
sidering the depth and the current speed of the ocean at the site of
the structure installation (Table 3). The tension is equivalent to the

Fig. 7. Relationships between natural frequency and mode number obtained from
numerical (circles) and analytical (solid line) calculations.

Table 3
Physical properties of suspended body.

Notation Definition Value

𝐿 Whole length 2000 m
𝑑 Outer diameter 0.02 m
𝑑𝑖 Inner diameter 0.01 m
𝐸 Young’s modulus 4.0 × 108 N/m2

𝐸𝐼 Bending stiffness 2.945 Nm2

𝐸𝐴 Axial stiffness 9.425 × 104 N
𝑚 Mass per unit length of suspended body 0.5184 kg/m
𝑇 Tension at bottom end 4005.77 N

submerged weight of the flexible body. In this study, the Gulf of Guinea
was selected as the installation site because oil and gas reserves were
discovered at this location and resource developments have been in
operation in this region.

The response amplitudes were calculated (Fig. 8) by performing
a frequency domain numerical computation with the parameters in-
putted. The response amplitudes showed peaks at 𝜔 = 0.29, 0.57, and
0.86 rad/s, which are associated with the natural frequencies of the
smallest three vibratory modes. Moreover, the natural frequency in
Eq. (35) is 0.30 rad/s upon specifying (i) the reduced velocity 𝑈∗ at
which the VIV of a circular cylinder is generally maximized as 6.0,
and (ii) the flow speed as 0.006 m/s, which represents the typical flow
speed of ocean currents in the deep layer of the installation region. The
value of 0.30 rad/s is slightly larger than the smallest value associated
with the peaks in Fig. 8.

These results allow us to deduce that the structure vibrates in the
form of the first mode or its neighboring modes even when the flow
speed is approximately 0.006 m/s, which is notably lower than the
typical speeds of the surface current. This aspect will be examined in
more detail by performing time-domain simulations.

3.3. Time domain simulation of suspended body

To determine how the suspended body response is related to the
vertical distribution of flow speed, time-domain simulations were per-
formed using two vertical distributions of ocean flow speed, that is,
those of uniform currents and the Benguela current (the prevailing
northward ocean current off the western coast of Africa).

This was followed by a parametric study quantifying how the BEB
affects the response. In the standard design (Table 3), the weight of the
BEB equals to the weight of the entire suspended body. This parameter
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Fig. 8. Magnitude of the displacement averaged over the entire length of suspended
body versus frequency.

Table 4
Simulation cases, ratio of submerged weights (ratio of submerged weight of BEB to
that of entire flexible body), and flow speed profile.

Case Ratio of submerged weights Flow speed profile

Standard 1.0 Benguela current
B3 3.0 Benguela current
B5 5.0 Benguela current

setting involved uncertainties, thus, three ratios of the BEB weight to
that of the entire pipe weight were used (Table 4) to see response
sensitivity.

In the following discussion, temporal series and spectra at a spec-
ified point (the three-quarter point from the bottom end and middle
point: 𝑠∕𝐿 = 0.75) are plotted in several figures, because this point
clearly exhibits the vibration characteristics and response differences
that correspond with changes in BEB mass.

3.3.1. Vertical profile of ocean flow speed
Numerical computations were performed over three uniform distri-

butions (0.0005, 0.0010, and 0.0015 m/s) as well as over the Benguela
current distribution using the design parameters listed in Table 3. The
vertical distribution of the Benguela current is sheared throughout the
water column (Fig. 9). The presented data is based on observations
by Richardson and Garzoli (2003). The flow speed is nearly 0.005 m/s
at a 2000-m water depth, and gradually increases as the water depth
decreases until it reaches 0.017 m/s at the surface.

The uniform distributions provide distinct vibration modal config-
urations, for which the frequencies are approximately constant. Peri-
odic variations occur at the three-quarter point from the bottom end,
(Figs. 10–12). The amplitudes fluctuate for flow speeds of 0.010 m/s,
and 0.0150 m/s (Figs. 11 and 12, respectively), whereas for the lowest
speed (Fig. 10), the displacement amplitude is almost constant. The
amplitude fluctuations arise from the nonuniformity of the tension
along the suspended body. The upper part of the body has greater static
tension than the lower parts because the former needs to support the
weight of the majority of the vertical structure length.

The vibration at the same point for 0.005 m/s has a single pre-
dominant frequency of 0.276 rad/s (Fig. 10), which is very close to
the natural frequency of the first-mode (Fig. 8), showing that the
growth of this vibration results from the synchronization of the vortex
shedding frequency to the first mode natural frequency. The dominance
of a single component also occurs at 0.010 m/s (Fig. 11) and 0.0150
m/s (Fig. 12). The spectral peaks for the two cases are 0.476 rad/s

Fig. 9. Vertical profiles of flow speeds of the Benguela current (thicker line) and
uniform distribution (vertical straight lines).

and 0.675 rad/s, respectively, and their deviations from the natural
frequencies (Fig. 8) are large enough to prohibit the synchronization
of vortex-shedding frequency with the natural frequencies.

The Benguela current profile yields temporal displacement vari-
ations with amplitude fluctuations. The time histories of the three-
quarter point from the bottom end are plotted in Fig. 13. The time
history of the displacement has maxima (resp. minima) consecutively
without down-crossing (resp. up-crossing) the zero point. This irregu-
larity in the temporal variation is evidence of the growth of multiple
components with different frequencies. The suspended body used in
this study is flexible, thus, the vibration frequency at a point is de-
termined through combining the vortex-shedding frequency at that
point with the frequency of the elastic waves that propagate from
other points. A similar fluid–structure interaction mechanism was noted
by, for example, Vandiver et al. (2009) for an experimental model
and Nishi et al. (2018) for an actual-size riser under normal conditions,
whereas this study reproduced this result numerically for the suspended
body (see also the supplementary animation file).

In contrast to the dynamic transverse displacements, the inline
displacements are static after a short initial transient (see also the
supplementary animation file). The static state of the inline displace-
ments (Fig. 14) arises primarily from the equilibrium between the
hydrodynamic drag (𝐑d) and gravity (𝐑w). The Benguela current profile
gives a static configuration similar to the uniform profile at 0.01 m/s.

Upon closer observation, the uppermost part recorded for the
Benguela current profile is displaced farther downstream when com-
pared to the static displacements recorded for the uniform profile of
0.01 m/s, while the lowermost part is displaced closer to the zero
position. This spatial distribution of the static configuration can be
explained by observing the Benguela current profile (Fig. 9). The flow
speed of the Benguela current is slower than 0.010 m/s in the deep
layer, then increases as depth decreases and exceeds 0.015 m/s at the
surface layer.

3.3.2. Influence of BEB
For the standard case, the displacement of the middle point (𝑠∕𝐿 =

0.5) irregularly evolves (Fig. 15). The standard case has frequency spec-
trum with multiple peaks and is very similar to that of the three-quarter
point (Fig. 13).

The middle point displacements in cases B3 and B5 have the same
irregularities (Figs. 16 and 17, respectively) as the standard case dis-
placement. The frequency spectra of cases B3 and B5 exhibit several
peaks (Fig. 16–17), which is similar to the spectrum in the standard
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Fig. 10. Results for a uniform flow speed profile of 0.005 m/s. Left: time series of transverse displacement at three-quarter point from bottom end. Right: power spectrum of time
series.

Fig. 11. Results for a uniform flow speed profile of 0.010 m/s. Left: time series of transverse displacement at three-quarter point from bottom end. Right: power spectrum of time
series.

Fig. 12. Results for a uniform flow speed profile of 0.015 m/s. Left: time series of transverse displacement at three-quarter point from bottom end. Right: power spectrum of time
series.

case. It is noteworthy that the peak frequencies are higher for cases
B3 and B5. The shifts of the spectral peaks are the largest in case B5
(Fig. 17).

The natural frequencies of the suspended body (vertical lines in
Fig. 15–17) are related to the BEB weight via the variation in tension.
A greater weight leads to higher natural frequencies, which accom-
pany the greater shifts of the spectral peaks. A greater BEB weight
corresponds to fewer spectral peaks. It comes from the wider intervals
between neighboring natural frequencies in cases B3 and B5.

These results can be interpreted in terms of the fluid–structure inter-
action mechanics. The faster flow speeds in shallow layer (Fig. 9) excite
vibrations with higher frequencies, and the slower flow speeds in the
deeper layer excite lower frequency vibrations. The multiple spectral
peaks (Figs. 13, and 15–17) are caused by the downward propagation
of elastic waves excited in the upper part in addition to the upward
propagation of waves excited in the lower part. The excitation intensity
depends on the differences between the multiple vortex-shedding fre-
quencies and the natural frequencies. If the vortex-shedding frequencies
and the natural frequencies are very close, the former is entrained
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Fig. 13. Results for the Benguela current profile. Left: time series of transverse displacement at three-quarter point from bottom end. Right: power spectrum of time series.

Fig. 14. Inline displacements of suspended body.

into the latter, and the VIVs of the corresponding modes grow. A
lighter (resp. heavier) BEB causes the suspended body to have relatively
lower (resp. higher) natural frequencies with narrower (resp. wider)
intervals between the neighboring natural frequencies. It follows that
more (resp. fewer) modes are excited by a lighter (resp. heavier) BEB
through the synchronizations of the vortex-shedding frequency and the
corresponding natural frequencies.

The amplitudes of the transverse vibrations exhibit modal configu-
rations (Fig. 18). The amplitudes at the bottom end are smaller than
those at the upper parts because the BEB motion is suppressed by the
drag and inertial forces acting on it. A heavier BEB yielded smaller
amplitudes overall with the maximum of the root-mean-square (RMS)
amplitude equating to 25% of the outer diameter of the pipe.

Although the developed model performed well under the assump-
tions made in this study, the following aspects were not considered
and must be resolved in future work. (1) The inline VIV component was
omitted in this model because it is generally smaller than the transverse
component. (2) The method constructed herein can be refined by
validating its performance against the results obtained from experiment
and computational fluid dynamics. (3) The vertical-profile data of the
Benguela current speeds was temporally constant and excluded time-
varying aspects such as tidal currents. (4) The Benguela current was

assumed to flow in a single direction (𝑥-direction), but in fact it flows
in different directions at different depths.

4. Conclusions

A numerical model was developed to simulate the fluid–structure
interaction mechanics of a long flexible underwater body that is sus-
pended from the free surface. The model comprised structural, vortex-
induced force and BEB models. These characteristics were coupled to
represent their mechanical interactions. The governing equations of
the structural model were solved using the Kellor box method, the
vortex-induced force was computed by applying the wake-oscillator
model, and the BEB equation was solved considering tensions of the
suspended body acting on the BEB. By using vertical profiles of ocean
current speeds, numerical simulations were performed, and the re-
sults were analyzed. The following conclusions are drawn from these
analyses.

• The proposed numerical model adequately combines the three
sets of dynamics (structural, vortex-induced force, and BEB), and
simulates the fluid–structure interaction of the suspended body.

• The actual vertical profile of the Benguela current speed promotes
the growth of multiple frequency components (Figs. 13, and
15–17).

The numerical model facilitates the simulation of the dynamic motion
and static deformation of a suspended body and allows for a more
refined design.
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Fig. 15. Results for the standard case. Left: time series of transverse displacement at middle point. Right: power spectrum of time series. Vertical lines indicate natural frequencies
of suspended body.

Fig. 16. Results for case B3. Left: time series of transverse middle point displacement. Right: power spectrum of time series. Vertical lines indicate natural frequencies of suspended
body.

Fig. 17. Results for case B5. Left: time series of transverse middle point displacement. Right: power spectrum of time series. Vertical lines indicate natural frequencies of suspended
body.
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Fig. 18. Vertical distributions of the transverse vibration root-mean-square (RMS)
amplitudes: standard case (solid line), case B3 (dotted line), and case B5 (dashed line).

Appendix A

The coefficient matrix 𝐌 is expressed as

𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −𝑚 0 0 0 0 −𝑚𝑤 𝑚𝑣 cos 𝜃
0 0 0 0 −𝑚 + 𝑚a 0 0 0 0 −𝑚 (𝑢 cos 𝜃 +𝑤 sin 𝜃)
0 0 0 0 0 −𝑚 + 𝑚a 0 0 𝑚𝑢 𝑚𝑣 sin 𝜃

− 1
𝐸𝐴

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −
(

1 + 𝑇
𝐸𝐴

)

cos 𝜃

0 0 0 0 0 0 0 0 1 + 𝑇
𝐸𝐴

0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(41)

The coefficient matrix 𝐊 is expressed as

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 𝐸𝐼 0 0 0
0 0 0 0 0 0 0 𝐸𝐼 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 cos 𝜃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (42)

The vector 𝐅 is expressed as

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑆b𝛺2 − 𝑆n𝛺3 − 𝜔0 sin𝜙 cos 𝜃 + 𝑅dt
𝛺3

(

𝑇 + 𝑆b tan 𝜃
)

− 𝜔0 cos𝜙 + 𝑅dn
−𝑆n𝛺3 tan 𝜃 − 𝑇𝛺2 − 𝜔0 sin𝜙 sin 𝜃 + 𝑅db

𝛺2𝑤 −𝛺3𝑣
𝛺3 (𝑢 +𝑤 tan 𝜃)
−𝛺3𝑣 tan 𝜃 −𝛺2𝑢

𝐸𝐼𝛺2
3 tan 𝜃 − 𝑆b

(

1 + 𝑇
𝐸𝐴

)3

−𝐸𝐼𝛺2𝛺3 tan 𝜃 + 𝑆b

(

1 + 𝑇
𝐸𝐴

)3

−𝛺2
−𝛺3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (43)

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.oceaneng.2019.106723.
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