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A B S T R A C T

This paper is concerned with aircraft aeroelastic interactions and the propagation of parametric uncertainties
in numerical simulations using high-fidelity fluid flow solvers. More specifically, the influence of variable
operational and structural parameters (random inputs) on the drag performance and deformation (outputs) of
a flexible wing in transonic regime, is assessed. Because of the complexity of fluid flow solvers, non-intrusive
uncertainty quantification techniques are favored. Polynomial surrogate models based on homogeneous
chaos expansions in the random inputs are commonly considered in this respect. The polynomial expansion
coefficients are constructed using either structured sampling sets of the input parameters, as Gauss quadrature
nodes, or unstructured sampling sets, as in Monte-Carlo methods. In complex systems such as the advanced
aeroelastic test case studied here, the output quantities of interest generally depend only weakly on the
multiple cross-interactions between the random inputs. Consequently, only low-order polynomials significantly
contribute to their surrogates, which thus have a sparse structure in the underlying polynomial bases. This
feature prompts to use compressed sensing, or compressive sampling theory for the construction of the
polynomial surrogates. The proposed methodology is non-adapted and considers unstructured sampling sets
orders of magnitude smaller than the ones required by the usual techniques with structured sampling sets. It
is illustrated in the present work for a moderately to high dimensional parametric space.

1. Introduction

Aeroelasticity deals with the coupling of a flexible structure and a
fluid flow and involves complex, possibly highly non-linear physical
phenomena. The assessment of these non-linear effects is of crucial im-
portance for the stability and strength of the structure, such as aircraft,
bridge, turbine, etc., since they may lead to its complete destruction
in case of self-sustained (limit-cycle) or divergent (flutter) oscillations.
On an aircraft wing, fluid flows induce structural deformations which
in turn influence the fluid dynamics such as for example shock behavior
at transonic speeds, which in turn impacts the performance of the wing.
Aeroelastic interactions have thus to be accounted for in design, testing,
certification, and subsequent optimization if need be. However several
sources of variability arise in the prediction of aeroelastic phenomena,
including manufacturing process, assembly, measurement uncertainties
during ground or flight testing, parametric uncertainties, or model and
numerical uncertainties pertaining to analysis methods. Uncertainty
quantification (UQ) and the various techniques it encompasses are
aimed at estimating quantitatively all those sources of uncertainties or
variabilities and predicting their significance on quantities of interest
used to design, test, certify or optimize the structure. UQ is generally
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addressed in a probabilistic framework, although the actual regulations
do not rely on probabilities for certification but rather introduce the
notion of risks related to undesirable (failure) scenarios. Recent reviews
on the various issues raised by UQ in aeroelasticity are given in [1–
4]. Applications to stability or optimization are described in [5–11]
for example. In this paper the influence of operational and structural
parametric uncertainties (inputs) on the deformation and aerodynamic
performances (outputs) of a flexible wing in transonic regime, is quan-
tified. This UQ analysis is performed thanks to polynomial surrogate
models of the quantities of interest accounting for fluid–structure in-
teractions. The air flow is solved by high-fidelity computational fluid
dynamics (CFD) tools [12,13] while the wing motion and stresses are
computed by a simplified beam model [14]. The coupling is ensured by
balancing the aerodynamic loads for a prescribed lift force, considered
as a variable input parameter, with the efforts in the wing for its
induced shape. The overall procedure is outlined in [14,15].

Polynomial surrogate of random functionals are typically obtained
invoking the homogeneous, or polynomial chaos (PC) expansion in-
troduced by Wiener [16] for stochastic processes. It is defined as the
span of Hermite polynomial functionals of a Gaussian random variable.
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Mean-square convergence is guaranteed by the Cameron–Martin the-
orem [17]. It is optimal (i.e. exponential) for Gaussian processes but
sub-optimal for non-Gaussian processes, as shown numerically in [18].
Generalized polynomial chaos (gPC) expansions with other families
of polynomials which numerically recover the foregoing optimality
property have then been studied in [18–20]. They consist in expanding
a function of random variables into a linear combination of orthogonal
polynomials with respect to the probability density functions (PDFs)
of these underlying random variables. PC and gPC expansions are
now widely used in engineering sciences as a constructive tool for
representing random vectors, matrices, tensors or fields, and quanti-
fying uncertainties in complex systems; see [21–27] and references
therein. Applications to aeroelastic stability are considered in [7,9,11]
for example.

Non-intrusive UQ techniques are typically considered in CFD, be-
cause the complex flow solvers are preferably treated as black boxes in
order to compute the aerodynamic loads and other quantities of inter-
est. Regarding non-intrusive PC and gPC expansions, two approaches
for computing the polynomial coefficients of the output quantities of
interest have usually been considered:

• the projection approach, in which they are computed by structured
quadratures, i.e. Gauss quadratures, or unstructured quadratures,
i.e. Monte-Carlo or quasi Monte-Carlo sampling;

• the regression approach, minimizing some error measure or trun-
cation tolerance of the polynomial expansion for some particular
values of the inputs (which can be the quadrature sets invoked just
above, for example).

Both techniques suffer from the so-called ‘‘curse of dimensionality’’
when the dimension 𝐷 of the parameter space increases. Indeed, a poly-
nomial expansion of total degree 𝑞 in 𝐷 variable parameters contains
𝑃 + 1 =

(𝑞+𝐷
𝑞

)

≈ 𝐷𝑞

𝑞! coefficients for 𝐷 large. A direct way to compute
them is to use a tensor product grid in the parameter space requiring
about 𝑁 ≈

⌊

𝑞
2

⌋𝐷
evaluations of the whole model, where ⌊⋅⌋ stands for

the floor function. These 𝑁 runs are very often unaffordable for large
parameter spaces and complex configurations, as in the present case
dealing with three-dimensional, non-linear fluid–structure interactions.
Smolyak’s algorithm [28] introduces sparse grid quadratures involving

𝑁 ≈
⌊

𝑞
2

⌋log𝐷
points while preserving a satisfactory level of accuracy.

In [29] it has been observed that such sparse rules typically become
competitive with respect to tensor grids for dimensions 𝐷 ≥ 4. Con-
sequently, collocation techniques with sparse quadratures or adaptive
regression strategies have been developed in order to circumvent the
dimensionality concern [24,30,31].

In this article we adopt the regression approach to propagate uncer-
tainty in the aeroelastic computations. We also aim at benefiting from
the sparsity of the processed outputs themselves (wing shape, drag and
pitching moment coefficients) to reconstruct their gPC representations
in a non-adaptive way [32]. Indeed, we rely on the observation that
many cross-interactions between the input parameters are actually
smoothened, or even negligible, once that have been propagated to
some global quantities of interest processed from complex aerodynamic
computations. The corresponding polynomial expansions should thus
involve only low-order polynomials, such that the contribution of the
higher-order polynomials is negligible. We can therefore expect to
achieve a successful output recovery by the techniques known under
the terminology of compressed sensing [33,34]. In this theory the
reconstruction of a sparse signal on a given, known basis requires only
a limited number of evaluations at randomly selected points—at least
significantly less than the dimension 𝑃 of the basis. We thus resort to
unstructured sampling sets to recover sparse outputs. Here compressed
sensing is formulated as a constrained, underdetermined system which
is solved by dedicated optimization algorithms [35]. In the context of
optimization theory, it could also be formulated as an unconstrained

problem using suitable penalty functions or regularized versions, such
as regularized least-squares as done in [36] for example.

The rest of the paper is organized as follows. In Section 2 the
aeroelastic database for which surrogates are sought for is outlined.
The aerodynamic model, the structural model, and the computational
procedure for flow-structure interactions are introduced. The vari-
able input parameters for this problem, and the sampling strategy
for the computations are also detailed. Then Section 3 addresses the
construction of polynomial surrogates for the output quantities of in-
terest identified in the foregoing section. Probability density functions
and sensitivity indices are typically computed using those polynomials
surrogates. The application of these techniques of uncertainty quantifi-
cation to the aeroelastic database described in Section 2 is presented in
Section 4. Some conclusions are finally drawn in Section 5.

2. Aeroelastic database

In this section the numerical procedure and tools considered to
generate the aeroelastic database to be used as a basis for uncertainty
propagation, are outlined. The database consists of high-fidelity CFD-
elastic simulations representative of an aircraft wing. The sampling
of the aeroelastic input parameters covers a very large design space
that enables to achieve significant aerodynamic output at cruise (the
main output being the drag sensitivity to aerodynamic and structural
parameters).

2.1. Aeroelastic computation process

The coupled fluid–structure problem is solved in terms of the conser-
vative aerodynamic quantities 𝒘 of the fluid flow, and the displacement
𝒖 of the aircraft wing. They solve the non-linear Reynolds Average
Navier–Stokes (RANS) equations and the linear beam equilibrium equa-
tions, respectively, written as the residual equations f and s for the
fluid and the structure:
f(𝒘,  (𝒖); 𝝃) = 0 ,

s(𝒖, (𝒘); 𝝃) = 0 .
(1)

Here  (𝒘) stands for the steady-state aerodynamic forces and moments
acting on the wing through the fluid–structure interface 𝛴fs, e.g. the
wing profile, as induced by the fluid flow aerodynamic field 𝒘, and
 (𝒖) is the position of that profile in the fluid flow induced by the
structure motion 𝒖. The latter as well as the associated strain tensor are
assumed to remain small. At last, 𝝃 stands for the variable aerodynamic
and structural parameters considered in this study, namely the Mach
number and the lift coefficient of the profile, and the bending and
torsion stiffnesses of the wing at four control points; see Section 2.3
below for the description of the parameters ranges and associated
database. In view of its non-linearity, the foregoing system is solved
numerically by a staggered procedure, invoking a fixed-point argument.
At the iteration step 𝑛, the aerodynamic field 𝒘(𝑛) is computed by the
fluid flow solver for the position  (𝑛)(𝒖(𝑛−1)) of the interface 𝛴fs induced
by the wing motion 𝒖(𝑛−1) computed by the structure solver at the
previous iteration step. In turn, the aerodynamic loads are updated to
 (𝑛)(𝒘(𝑛)) which allows to compute the updated wing motion 𝒖(𝑛). This
iterative scheme:
f(𝒘(𝑛),  (𝑛)(𝒖(𝑛−1)); 𝝃) = 0 ,

s(𝒖(𝑛), (𝑛)(𝒘(𝑛)); 𝝃) = 0 ,
(2)

is repeated until convergence is reached in terms of the tolerance:

|𝒖(𝑛+1) − 𝒖(𝑛)| ≤ 𝜀s|𝒖(𝑛)| (3)

evaluated at the position of maximum deformations of the wing (typi-
cally the wing tip), and 𝜀s ≪ 1 is a small number. It starts from the
jig shape 𝒖(0) of the wing induced by gravity forces at ground level
(see Fig. 5) before it is deformed further by the aerodynamic loads in
cruise configuration. The same initial shape 𝒖(0) is considered for all
possible values of the parameters 𝝃 in their ranges of variation, and the
foregoing iterative process is subsequently run for all 𝝃’s of the database
described in Section 2.3.
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Fig. 1. Wing beam model.

2.1.1. Structure solver
The aircraft wing is modeled as a rectilinear (or piecewise recti-

linear) beam of which cross-sections 𝛴(𝑠) vary along the beam axis
parameterized by the curvilinear coordinate 𝑠 ∈  = [0, 𝐿] where 𝐿
is the wingspan. The axis of the beam is constituted by its geometrical
and inertial centers which are assumed to be superimposed, i.e. they
form the neutral fiber. It is oriented by the unit vector 𝒆 which together
with the vertical axis 𝒛̂ ∶= 𝒆1 and the bi-normal unit vector 𝒆2 = 𝒆 × 𝒆1
constitute a Frenet–Serret frame defined about ; see Fig. 1. This frame
is fixed with respect to the moving frame attached to the aircraft
traveling at the cruise Mach number 𝑀 . Adopting a classical beam
kinematical model, the displacement of any point 𝒔 = (𝑠, 𝒔𝛴 ) of the
beam occupying the domain 𝛺s =  × 𝛴(𝑠) of R3 reads:

𝒖(𝒔) = 𝑼 (𝑠) + 𝜽(𝑠) × 𝒔𝛴 , (4)

where 𝒔 = 𝑠𝒆 + 𝒔𝛴 , and 𝒔𝛴 ⟂ 𝒆 is the position of 𝒔 ∈ 𝛴(𝑠) about the
neutral fiber at 𝑠. 𝑼 (𝑠) ∈ R3 is the displacement of the neutral fiber,
and 𝜽(𝑠) ∈ R3 is the rotation vector of the cross-section 𝛴(𝑠) about
the neutral fiber at 𝑠. The wing being fixed to the fuselage at 𝑠 = 0,
they satisfy 𝑼 (0) = 𝜽(0) = 0. Both the displacement and associated
strain tensor are assumed to be small: ‖𝒖‖ ≪ 𝐿 and ‖𝛁𝒔 ⊗ 𝒖‖ ≪ 1.
Under Euler–Bernoulli kinematical assumption, the rigid cross-sections
remain in addition perpendicular to the neutral fiber with the motion
of the latter. This yields 𝜽(𝑠) = 𝒆×𝑼 ′(𝑠) where 𝑓 ′ = d𝑓

d𝑠 for any function
𝑠 ↦ 𝑓 (𝑠). Also 𝒂𝛴 ∶= (𝑰 − 𝒆 ⊗ 𝒆)𝒂 and 𝑎𝑒 = 𝒂 ⋅ 𝒆 for any vector
𝒂 ∈ R3, where 𝑰 is the identity matrix and 𝒂 ⊗ 𝒃 is the usual tensor
product of vectors 𝒂 and 𝒃 such that for any 𝒄, (𝒂⊗ 𝒃)𝒄 = (𝒃 ⋅ 𝒄)𝒂 with
𝒃 ⋅ 𝒄 the Euclidean scalar product of 𝒃 and 𝒄; we have in particular
𝒔𝛴 = (𝑰 − 𝒆⊗ 𝒆)𝒔.

Now let  (𝒘) = (𝒇 (𝑠),𝒎(𝑠)) by the linear aerodynamic forces and
moments, respectively, exerted on the wing profile by the aerodynamic
field 𝒘. Then the beam displacement under Euler–Bernoulli kinematical
assumption satisfies:

𝐸𝑱 (𝒆 × 𝑼 ′′′′
𝛴 ) − 𝒆 × 𝒇𝛴 +𝒎′

𝛴 = 0 ,
𝐺𝑗𝑒𝜃

′′
𝑒 + 𝑚𝑒 = 0 ,

(5)

for the flexural and torsional motions 𝑼𝛴 and 𝜃𝑒, respectively. The axial
motion 𝑈𝑒 of the beam along the direction of its neutral fiber is ignored.
Here 𝐸(𝑠) is the Young’s modulus of the wing at the cross-section 𝛴(𝑠),
𝐺(𝑠) is its shear modulus, 𝑱 (𝑠) = ∫𝛴(𝑠)(‖𝒔𝛴‖

2𝑰 − 𝒔𝛴 ⊗ 𝒔𝛴 )d𝒔𝛴 is its
tensor of area moments of inertia, and 𝑗𝑒(𝑠) = 𝑱 (𝑠)𝒆 ⋅ 𝒆 is the polar
moment of inertia with respect to its axis. The equations of motion (5)
are solved in their weak form, applying the principle of virtual work
and a finite element method whereby the neutral fiber is discretized
into flexural/torsion beam elements. This procedure yields the residual
s in Eq. (2).

2.1.2. Flow solver
The aerodynamic loads  (𝒘) are computed from the RANS equa-

tions for a Newtonian, compressible flow. Introducing the density 𝜚,
the momentum 𝜚𝒗, and the total energy 𝜚𝐸 per unit of volume, the
homogeneous Navier–Stokes equations for a compressible flow read:

𝜕𝑡𝜚 + div(𝜚𝒗) = 0 ,

𝜕𝑡(𝜚𝒗) + Div(𝜚𝒗⊗ 𝒗 − 𝝈) = 0 ,
𝜕𝑡(𝜚𝐸) + div [(𝜚𝐸 − 𝝈)𝒗 + 𝒒] = 0 ,

(6)

where 𝝈 is the stress tensor and 𝒒 is the heat flux vector due to thermal
conductivity. For an isotropic Newtonian fluid, the stress tensor reads:

𝝈 = −𝑝𝑰 + 𝝉 , 𝝉 = 𝜆div(𝒗)𝑰 + 2𝜇𝑫,

where 𝑝 is the thermodynamic pressure, 𝑫 is the strain rate tensor
defined by 𝑫 = 1

2 (𝛁⊗ 𝒗 + 𝛁⊗ 𝒗T), 𝑨T stands for the transpose of a
matrix 𝑨, and 𝜆 and 𝜇 are the bulk and dynamic viscosities of the fluid.
For a perfect gas with constant specific heats of ratio 𝛾 = 𝑐𝑝∕𝑐𝑣, the
internal energy 𝑒 and pressure 𝑝 are given by the equations of state:

𝑒(𝑇 ) = 𝑐𝑣𝑇 = 𝐸 − 1
2
‖𝒗‖2 , 𝑝(𝜚, 𝑇 ) = 𝜚𝑅𝑇 ,

where 𝑇 is the temperature, and 𝑅 = 𝑐𝑝−𝑐𝑣 is the specific gas constant.
In order to erase the fine structures of the turbulent fields which are

typically not accessible to measurements or simulations, the turbulent
quantity 𝜙 is split into a mean value 𝜙 and a fluctuating value 𝛿𝜙 as:

𝜙 =
𝜚𝜙
𝜚

+ 𝛿𝜙 , (7)

where 𝜙 ∶= 𝜚𝜙∕𝜚 is the so-called mass-weighted Favre average. In
the context of steady flows, and invoking an ergodicity principle, the
mean values above are interpreted as either (i) a time average over a
time greater than the characteristic time scale of turbulence but smaller
than the characteristic period for the time evolution of the macroscopic
properties of the flow; or (ii) as an ensemble average over different
possible realizations of the fine turbulent structures. Now let 𝒘 =
𝜚(1, 𝒗̃, 𝐸 + 𝑘̃) be the vector of the conservative aerodynamic variables,
where 𝑘 = 1

2‖𝛿𝒗‖
2 is the kinetic energy of the turbulent motion. Also

let 𝛺 be the fixed computational domain (or any cell of the mesh) of
outward unit normal n̂. Then applying the averaging operator (7) to the
Navier–Stokes equations (6) and integrating over 𝛺 yields the RANS
equations in their integral form:

d
d𝑡 ∫𝛺

𝒘d𝛺 + ∫𝜕𝛺
𝑭 𝑐 (𝒘) ⋅ n̂d𝑆 = ∫𝜕𝛺

𝑭 𝑑 (𝒘,𝛁𝒘) ⋅ n̂d𝑆 , (8)

where 𝑭 𝑐 and 𝑭 𝑑 are the convective and diffusive fluxes given by:

𝑭 𝑐 (𝒘) = 𝜚

⎡

⎢

⎢

⎢

⎢

⎣

𝒗̃

𝒗̃⊗ 𝒗̃ + ( 𝑝𝜚 + 2
3 𝑘̃)𝑰

(𝐸 + 𝑝
𝜚 + 5

3 𝑘̃)𝒗̃

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑭 𝑑 (𝒘,𝛁𝒘) =

⎡

⎢

⎢

⎢

⎣

0
(𝜆 − 2

3𝜇𝑡)div(𝒗̃)𝑰 + 2(𝜇 + 𝜇𝑡)𝑫̃

(𝜆 − 2
3𝜇𝑡)div(𝒗̃)𝒗̃ + 2(𝜇 + 𝜇𝑡)𝑫̃𝒗̃ − 𝒒 − 𝒒𝑡

⎤

⎥

⎥

⎥

⎦

.

This model introduces the eddy (turbulent) viscosity parameter 𝜇𝑡 and
Prandtl number 𝑃𝑟𝑡 such that, within Boussinesq’s approximation, the
Reynolds stress tensor 𝝉 𝑡 = −𝜚𝛿𝒗⊗ 𝛿𝒗 reads after averaging:

𝝉 𝑡 = −2
3

(

𝜚𝑘̃ + 𝜇𝑡div𝒗̃
)

𝑰 + 2𝜇𝑡𝑫̃,

and the enthalpy turbulent diffusion flux 𝒒𝑡 = 𝜚𝛿ℎ𝛿𝒗, with the specific
enthalpy ℎ = 𝑒 + 𝑝∕𝜚, reads after averaging:

𝒒𝑡 = −
𝛾𝜇𝑡
𝑃𝑟𝑡

𝛁𝑒.

These quantities have to be specified in order to close the RANS system
(8) above. In the Spalart–Allmaras turbulence model closure [37] used
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Fig. 2. ALBATROS configuration.

Fig. 3. Aerodynamic surface mesh (mix of the full grid and the one-node-over-two
grid).

in the subsequent analyses, the turbulent kinetic energy 𝑘 is negligible,
the turbulent Prandtl number is fixed (typically 𝑃𝑟𝑡 = 0.9), and the
turbulent viscosity 𝜇𝑡 is the solution of a scalar transport equation. The
latter is solved in parallel with the RANS system (8), since it has the
same form in its integrated version (with an additional source term
though). We refer to [37] for further details. This model has been used
for a wide range of flows for which the comparisons with experimental
data have been satisfactory; see e.g. [12,13] and references therein for
some complex applications.

At first, Eq. (8) is discretized in space by a cell-centered finite-
volume method, yielding the residual f in Eq. (2). The convective flux
is computed using the Jameson centered scheme [38] with artificial
viscosity (𝜒2 = 0.5, 𝜒4 = 0.016) outside of the boundary layers.
The diffusive flux is computed as the half sum of the normal flux
densities in the two adjacent cells sharing the current interface (with
due care of the boundary conditions on external interfaces), considering
corrected cell-centered gradients of the fluid velocity in these cells.
Each cell-centered velocity gradient is computed as the average of
𝒗̃ ⊗ n̂ over the surrounding interfaces invoking Green–Ostrogradski’s
formula, and then the gradient at the center of the current interface is
obtained by considering the control volume centered on that interface
and composed of the two half cells neighboring it. The diffusive flux of
the transport equation for the turbulent variable is discretized using
a similar approach, whereas a first order Roe flux is used for the
convective term. Finally, the source term of the transport equation is
computed using the temperature gradients at the center of the cells.
Secondly, the semi-discretized version of Eq. (8) is solved in time using
a backward Euler scheme up to the convergence towards a steady-state
solution. The linearization of the resulting non-linear implicit system of
equations is performed using the Lower-Upper Symmetric Successive
Over-relaxation (LU-SSOR) scheme [39] with four relaxation cycles.
The convergence is accelerated by the use of multigrid techniques for
steady flows. A uniform flow is considered as the initial conditions for
the iterations with respect to the time parameter.

Fig. 4. Far-field drag analysis [41,42]. The wave drag volume is in blue and the viscous
pressure drag volume is in pink. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Once the steady-state solution 𝒘 has been computed, the aerody-
namic loads exerted on the wing profile are given by:

𝒇 (𝑠) = ∫𝛴(𝑠)∩𝛴fs

(𝑝 − 𝑝∞)n̂d𝑙 + ∫𝛴(𝑠)∩𝛴fs

(𝝉 + 𝝉 𝑡)n̂d𝑙 ,

𝒎(𝑠) = ∫𝛴(𝑠)∩𝛴fs

𝒔𝛴 × (𝑝 − 𝑝∞)n̂d𝑙 + ∫𝛴(𝑠)∩𝛴fs

𝒔𝛴 × (𝝉 + 𝝉 𝑡)n̂d𝑙 ,
(9)

where 𝛴(𝑠) ∩ 𝛴fs is the wing-flow interface at the position 𝑠 spanwise
(i.e. the boundary of 𝛴(𝑠)), and n̂ is its outward unit normal. Also 𝑝∞ is
the pressure on the upstream boundary of the computational domain.

2.1.3. Coupling the solvers
Various techniques have been derived to couple the fluid and struc-

ture solvers used in a staggered process, depending on the numerical
schemes they use; see e.g. [14] and references therein. Two steps
are required: (i) the derivation of the aerodynamic loads  (𝒘) to be
imposed to the wing beam model, and (ii) the application of the wing
profile motion  (𝒖) to the fluid mesh to update the flow computation.
Regarding the first step, since the fluid mesh and the beam mesh do not
coincide in most situations, and the fluid mesh is typically much finer
than the structure mesh, a dedicated approach has to be implemented.
In this study, an influence area (defined by the half-distance to the
two neighboring nodes) is attached to each node of the structure mesh,
and the contribution of the aerodynamic pressure and viscous forces of
all cells of the fluid mesh intersecting that influence area is added to
form the surface forces and moments applied to each node. Regarding
the second step, once the structure motion 𝑼 (𝑠) and 𝜽(𝑠) have been
computed, they are transferred to the fluid mesh using the kinematical
relation (4) for all nodes located at a given distance, say 𝑅, of the
structure mesh. That is, for a node 𝒙𝑗 = (𝑠𝑗 ,𝒙𝑗𝛴 ) of the fluid mesh
located in a cylinder of radius 𝑅 about the wing, its new coordinates
in the deformed mesh  (𝒖) are updated to 𝒙𝑗 + 𝑼 (𝑠𝑗 ) + 𝜽(𝑠) × 𝒙𝑗𝛴 . This
updating is gradually damped out outside the cylinder of radius 𝑅 to
finally be nullified at the distance 𝑎𝑅, 𝑎 > 1, about the wing. Typically
𝑅 is chosen as twice the local chord length streamwise, and 𝑎 = 5. This
approach is justified inasmuch as only small displacement and strains
are considered for the wing, and the beam mesh is kept unchanged
for all the coupling process. The foregoing two steps are described in
detail in [14]. They have been implemented in ONERA’s CFD solver
elsA [12–14,40], which has been used for this research.

2.2. Aeroelastic case: ALBATROS wing

The configuration of interest is the ALBATROS model proposed
in [43]; see Fig. 2. It has been designed at ONERA in an internal project
between 2010 and 2013. The ALBATROS acronym can be translated
into ‘‘laminar strut braced wing with reduced drag by multidisciplinary
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Fig. 5. Structure modes of the beam and jig to 1 g loads: deflection (solid line) and torsion (▵ line).

Fig. 6. Bending (◦) and polar (▵) moments of inertia of the wing in the
reference configuration. The vertical lines indicate the location of the control
points/cross-sections.

optimization’’ (Aile Laminaire hauBAnée à Traînée Réduite par Op-
timisation multidiSciplinaire, in French). The purpose of this project
was to design and investigate the pros and cons of a strut braced
wing configuration, with high-fidelity analyses in both the structural
response and the aerodynamic loads. The aircraft has been designed
for medium range (3000 N m) with 180 passengers (equivalent to an
Airbus A321). To achieve natural laminar flow on the wing, the wing
sweep is limited to 16o (at 25% of the chord) and thus the design cruise
Mach number is 𝑀 = 0.75. The design lift coefficient had been set
to 𝐶𝐿 = 0.60. These nominal parameters are underlined to stress the
difference with their actual, yet unknown values 𝑀 and 𝐶𝐿; see the
subsequent section.

2.2.1. Aerodynamic model
For the purpose of the present study, the ALBATROS configuration

has been simplified. The strut and tail elements have been removed so
that only the wing and fuselage are accounted for; see Fig. 3. Since
the geometry and loads are symmetric with respect to the vertical plan
parallel to the streamflow, only one half of the numerical model is

actually solved. Another simplification has been to consider only tur-
bulent flow instead of laminar flow. This choice was made to simplify
the simulations because the laminar/turbulent transition would have
induced additional non-linearity to the database. The operational aero-
dynamic parameters considered as uncertain for the database are the
cruise Mach number 𝑀 and lift coefficient 𝐶𝐿, though their variations
are kept within an acceptable range for a cruise (see Section 2.3 below).

The aerodynamic mesh is structured and fully coincident. It consists
of 9,008,512 cells and 9,879,020 nodes. For parallelism purposes, the
mesh is decomposed into 240 blocks distributed over 60 processors.
An isotropic multigrid acceleration technique (for a total of three grid
levels, each time keeping one node over two) is implemented. The
Courant–Friedrichs–Lewy (CFL) stability condition CFL = 50 is chosen
for the backward Euler time integration scheme. The aerodynamic sim-
ulations are post-processed to derive a detailed phenomenological drag
breakdown through the far-field drag analysis outlined in [41,42] (and
implemented in ONERA’s ffd01 software). This post-processing allows
first to convert the pressure/friction drag breakdown given by the
CFD solvers into a physical breakdown: lift induced drag 𝐶𝐷,lift induced,
viscous drag 𝐶𝐷,viscous pressure + 𝐶𝐷,friction, and wave drag 𝐶𝐷,wave. The
cells containing wave or viscous drag are isolated to allow for specific
volume integration of drag; see Fig. 4. This analysis also enables to
remove all numerical spurious contributions 𝐶𝐷,spurious that stem from
the imperfect numerical resolution of the gradients—at leading edges
for instance. It is important to isolate this contribution because the
mesh is deformed to represent various wing shapes, and thus this
contribution evolves from one shape to another. Using this analysis
increases the precision of the aeroelastic database; see [44]. The output
of the database contains the drag breakdown for each parameter set, as
well as the pitching moment coefficient 𝐶𝑚. The overall lift, drag, and
pitching moment coefficients are defined by:

𝐶𝐿 =

(

∫𝛴fs
(𝑝 − 𝑝∞ + 𝝉 + 𝝉 𝑡)n̂d𝒔𝛴

)

⋅ (𝜶̂ × 𝒚̂)
1
2 𝛾𝑝∞𝑆𝑀

2
,

𝐶𝐷 =

(

∫𝛴fs
(𝑝 − 𝑝∞ + 𝝉 + 𝝉 𝑡)n̂d𝒔𝛴

)

⋅ 𝜶̂
1
2 𝛾𝑝∞𝑆𝑀

2
,

𝐶𝑚 =

(

∫𝛴fs
𝒔𝛴 × (𝑝 − 𝑝∞ + 𝝉 + 𝝉 𝑡)n̂d𝒔𝛴

)

⋅ 𝒚̂
1
2 𝛾𝑐𝑝∞𝑆𝑀

2
,

(10)

respectively, where 𝑆 is the reference surface of the wing, 𝑐 is the
reference chord length, and 𝜶̂ is the upstream flow direction. In the
fixed reference frame (𝒙̂, 𝒚̂, 𝒛̂) attached to the aircraft such that, say, 𝒙̂
is parallel to the axis of the aircraft and 𝒛̂ is the upward direction (see
Fig. 3), the angle of attack 𝛼 is cos 𝛼 = 𝜶̂ ⋅ 𝒙̂.
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Fig. 7. Example of two different wing shapes obtained with two different sets of
bending (◦) and torsion (▵) stiffness parameters. The vertical lines indicate the location
of the control points/cross-sections.

Fig. 8. Aeroelastic process for each set of parameters.

Fig. 9. Geometrical setting for the definition of the wing twist.

2.2.2. Structure model
A simplified, equivalent beam model has been created for the pur-

pose of this study. It is derived following the work done in [15] on
aero-structure optimization (InAirSsi module [45]). The jig shape
𝒖(0) has been derived from a 1 g loading on the beam structure; see
Fig. 5. It is kept fixed for all the different shapes (structure parameters)
investigated in this study, as already mentioned in Section 2.1. The
meaning of this is that the shape to be manufactured is designed

Table 1
Manual parameter sensitivity. The middle table is for nominal parameters.

𝝃 𝐶𝐷,far-field Twist 𝜑 (◦)

𝑀 0.745 216e−04 −7.1
𝐶𝐿 0.55 203e−04 −6.8
Bending 0.5 × 𝐸𝑱 226e−04 −10.0
Torsion 0.1 × 𝐺𝑗𝑒 218e−04 −7.2

𝝃 𝐶𝐷,far-field Twist 𝜑 (◦)

𝑀 0.750 219e−04 −7.2
𝐶𝐿 0.60 219e−04 −7.2
Bending 1.0 × 𝐸𝑱 219e−04 −7.2
Torsion 1.0 × 𝐺𝑗𝑒 219e−04 −7.2

𝝃 𝐶𝐷,far-field Twist 𝜑 (◦)

𝑀 0.755 224e−04 −7.3
𝐶𝐿 0.65 238e−04 −7.6
Bending 2.0 × 𝐸𝑱 222e−04 −4.7
Torsion 10.0 × 𝐺𝑗𝑒 218e−04 −7.2

once and for all and any structure uncertainty will be visible on the
flight shape, which is a relevant scheme for an aircraft process. If
the jig shape had been adapted for each structure parameter, the
uncertainty on cruise deformation and drag would only come from
the jig determination process and would be hardly noticeable. The
aeroelastic simulations are carried out starting from the 1 g shape
to accelerate the convergence (accounting for the jig to 1 g efforts
and moments). The structure variable design parameters are directly
related to the torsion and bending stiffnesses. Four fixed locations are
chosen spanwise and the design parameters consist of coefficients to
be applied to the bending stiffnesses 𝐸𝑱 and torsion stiffness 𝐺𝑗𝑒 in
Eq. (5); see Fig. 6. Large deviations are achieved on the flight shape
for different stiffness parameters, as seen on Fig. 7. Since only one half
of the numerical model is considered, these variabilities are applied to a
single wing. Future works shall consider different parameters for both
wings and the influence of such a dissymmetry on the aerodynamic
coefficients, for example.

2.2.3. Aeroelastic equilibrium for imposed lift
For each set of input parameters, including the lift coefficient, the

wing shape must be at equilibrium for the corresponding lift force. The
balancing process is sketched on Fig. 8. Two loops are nested:

• The outer loop concerns the prescribed lift: the angle of attack 𝛼 is
varied to reach the prescribed lift coefficient.

• The inner loop concerns the aeroelastic computation itself: for
a given angle of attack 𝛼, the wing shape corresponding to the
equilibrium of the aerodynamic loading and the structural response
is sought for through an iterative process. For each iteration, 300
CFD cycles are computed. The integrated efforts and moments are
transferred to the beam according to the methodology outlined
in Section 2.1.3, and the corresponding beam displacements are
computed using a dedicated module of the elsA software [12–14].
The induced aerodynamic mesh deformations are applied thanks to
another dedicated analytical tool (SeAnDef) described in [40].

When convergence is reached (for a tolerance 𝜀s given here as 𝜀s = 10−2

in Eq. (3) for the wing tip bend and twist defined in Section 2.3.3), the
solution is analyzed with the far-field drag breakdown of [41,42] using
the ffd01 software. The whole process is driven by a python script
and requires about 6 h (wall-clock time) on 60 cores for each set of
parameters 𝝃.

2.3. ALBATROS database

2.3.1. Manual range quantification
Prior to the high-fidelity computations, the parameter variation

amplitudes have been checked through 19 simulations, considering
only one variation at a time. The results are gathered in Table 1. The
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Fig. 10. Latin Hypercube Sampling (LHS) set. Red dots ( ) correspond to the original manual sampling, red circles ( ) are the other successfully computed (converged) points of
the LHS set, and the blue crosses ( ) are the points that did not lead to convergence.

sensitivity of wing deformation and thus of drag is far more pronounced
for the bending than for the torsion. Therefore larger multiplication
factors are applied to torsion to detect effects on the outputs (drag).
However, when reaching too high or too low values, the aeroelastic
simulations diverge. The resulting ranges for the ten parameters have
thus been identified as:

• Mach number 𝑀 ≡ 𝜉1 with 𝜉1 ∈ [0.74, 0.76];
• lift coefficient 𝐶𝐿 ≡ 𝜉2 with 𝜉2 ∈ [0.55, 0.65];
• four bending parameters 𝜉3, 𝜉4, 𝜉5, and 𝜉6 in the range [0.5, 2.0]

which are multiplied to the reference bending stiffness 𝐸𝑱 in each
control cross-section (see Fig. 6);

• four torsion parameters 𝜉7, 𝜉8, 𝜉9, and 𝜉10 in the range [0.02, 10.0]
which are multiplied to the reference torsion stiffness 𝐺𝑗𝑒 in each
control cross-section (see Fig. 6).

2.3.2. Latin hypercube sampling
A Latin Hypercube Sampling (LHS) has been set on the parameter

ranges determined manually (optimized for space filling [46]). 100
samples have been generated to allow for a reasonable CPU time and to
reach the empirical target of 10 samples per parameters. The minimum
torsion value proved to be too aggressive and led to diverging wing
shapes when associated with some other parameters. Thus, several
sets of parameters did not lead to converged solutions (loss of 17
points). In the end, by combining the manual samples and the LHS
samples, 102 points have been completely evaluated (about 10 points
per parameter). The sampling for the various parameters is presented in
Fig. 10. The original manual sampling is included (red dots displayed
as a cross over the parametric space). The other symbols represent the
LHS sampling (the converged samples are in red and the other ones are
in blue).
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Fig. 11. Various input–output dependencies ( manual sampling set, LHS set): 𝐶𝐷,far field vs. 𝑀 (top left); 𝐶𝐷,wave vs. 𝐶𝐿 (top right); 𝐶𝐷,lift induced vs. 𝜉3 (middle left); 𝐶𝐷,viscous pressure
vs. 𝜉10 (middle right); 𝜑 (o) vs. 𝜉10 (bottom left); 𝜑 (o) vs. 𝜉6 (bottom right).

2.3.3. Outputs
The output quantities of interest are:

• the angle of attack 𝛼;
• the CFD code drag outputs: pressure-induced contribution
𝐶𝐷,pressure and friction-induced contribution 𝐶𝐷,friction;

• the drag coefficients obtained from a far-field drag analysis: lift-
induced contribution 𝐶𝐷,lift induced, wave contribution 𝐶𝐷,wave and
viscous contribution 𝐶𝐷,viscous pressure (which adds to the friction-
induced contribution 𝐶𝐷,friction);

• the numerical spurious drag contribution 𝐶𝐷,spurious;
• the CFD code pitching moment coefficient 𝐶𝑚;
• the wing shape characterized by the wing tip bend 𝑈 = 𝑈𝑧(𝐿)

and maximum twist 𝜑, defined as the relative differential vertical
displacement between the leading edge 𝑳 and trailing edge 𝑻

aligned in the direction 𝒙̂ of the streamflow (see Fig. 9); namely:

𝜑 = max
0≤𝑠≤𝐿

tan−1
(

𝒖(𝑳(𝑠)) − 𝒖(𝑻 (𝑠))
‖𝑳(𝑠) − 𝑻 (𝑠)‖

⋅ 𝒛̂
)

= max
0≤𝑠≤𝐿

tan−1
(

𝑈𝑧(𝑠𝐿) − 𝑈𝑧(𝑠𝑇 )
𝑐𝐿(𝑠) + 𝑐𝑇 (𝑠)

− cos𝜙
𝜃𝑒(𝑠𝐿)𝑐𝐿(𝑠) + 𝜃𝑒(𝑠𝑇 )𝑐𝑇 (𝑠)

𝑐𝐿(𝑠) + 𝑐𝑇 (𝑠)

)

≃ max
0≤𝑠≤𝐿

tan−1
(

𝑈𝑧(𝑠𝐿) − 𝑈𝑧(𝑠𝑇 )
𝑐𝐿(𝑠) + 𝑐𝑇 (𝑠)

− 𝜃𝑒(𝑠) cos𝜙
)

,

where cos𝜙 = |𝒆 ⋅ 𝒚̂|, and 𝑠𝐿 and 𝑠𝑇 are the curvilinear coor-
dinates of the leading edge and trailing edge, respectively, on
the neutral fiber such that 𝑳(𝑠) = 𝑠𝐿𝒆 + 𝑐𝐿(𝑠) cos𝜙𝒆2 and 𝑻 (𝑠) =

𝑠𝑇 𝒆 − 𝑐𝑇 (𝑠) cos𝜙𝒆2, and ‖𝑳(𝑠) − 𝑻 (𝑠)‖ = 𝑐𝐿(𝑠) + 𝑐𝑇 (𝑠) is the local
cord length streamwise. The last approximate equality stems from
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Fig. 12. Noticeable input–output dependencies for aerodynamics ( manual sampling set, LHS set): 𝐶𝐷,lift induced vs. 𝐶𝐿 (top left); 𝐶𝐷,spurious vs. 𝑀 (top right); 𝐶𝐷,viscous pressure vs.
𝐶𝐿 (middle left); 𝐶𝐷,viscous pressure vs. 𝑀 (middle right); 𝐶𝐷,wave vs. 𝐶𝐿 (bottom left); 𝐶𝐷,wave vs. 𝑀 (bottom right).

𝜃𝑒(𝑠𝐿) ≃ 𝜃𝑒(𝑠𝑇 ) ≃ 𝜃𝑒(𝑠) where the twist is maximum. The rele-
vance of this quantity in aeroelastic analysis is further discussed
in e.g. [44].

The deformed wing shape, and the pressure and friction fields on each
configuration are also post-processed.

2.3.4. Brief analysis of the results
Some input–output and output–output dependencies have been plot-

ted on Figs. 11 through 14. Fig. 11 presents various dependencies
between the input parameters and the aeroelastic outputs. If some
dependency can be drawn between the drag and the Mach number or
lift coefficient, no simple explicit relationship can be derived with the
bending and torsion parameters presented here. On the contrary, some
obvious dependencies with the input can be extracted for some specific
outputs (see Fig. 12 for aerodynamics and Fig. 13 for aeroelasticity).
Some dependencies can be simple (well-known correlation – linear

dependence – between lift induced drag and lift, spurious drag as a
function of Mach number,1 bending at the tip of the wing as a function
of the bending parameter in the second section). Some other outputs
exhibit strong trends but depend on multiple parameters. Finally, some
cross dependencies between outputs are highlighted on Fig. 14. A high
correlation can be denoted between wave drag and viscous pressure
drag (top left plot). A less trivial near-correlation exists between the
tip twist and the tip bend and other complex dependencies are also
presented. This database contains many input parameters and outputs
(aerodynamics and steady aeroelasticity). Precise computations enable
to extract well-known or subtle dependencies between the parameters
for a flexible wing in transonic regime. These idiosyncrasies make it a
highly valuable database on which to propagate uncertainties.

1 It should be noted that the strong dependence evidenced by the top right
Fig. 12 is actually quadratic, and not linear.
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Fig. 13. Noticeable input–output dependencies for aeroelasticity ( manual sampling set, LHS set): 𝑈 (m) vs. 𝐶𝐿 (top left); 𝑈 (m) vs. 𝑀 (top right); 𝜑 (o) vs. 𝐶𝐿 (middle left);
𝜑 (o) vs. 𝑀 (middle right); 𝜑 (o) vs. 𝜉10 (bottom left); 𝑈 (m) vs. 𝜉4 (bottom right).

3. Sparse polynomial surrogates

The computation of the marginal PDFs and first moments (mean,
standard deviation, skewness, kurtosis...) of the output quantities of
interest when the variability of the parameters 𝝃 is accounted for,
is done thank to surrogate models, or response surfaces. We more
particularly focus on polynomial surrogates in this study.

3.1. Polynomial surrogates

Polynomial surrogates for aerodynamic computations have been
outlined in e.g. [29]. We basically follow this presentation here. Let
𝑔 be a generic physical/numerical model involving 𝐷 parameters 𝝃 =
(𝜉1, 𝜉2,… 𝜉𝐷) ∈  ⊆ R𝐷, such that the quantity of interest 𝑦 ∈  is given
as:

𝑦 = 𝑔(𝝃).

Let P𝑞[𝒙] be the set of 𝐷-dimensional polynomials with total order 𝑞
with respect to 𝒙 ∈ R𝐷. We first note that this set has cardinality
#P𝑞[𝒙] = 𝑃 + 1 such that:

𝑃 + 1 =
(𝑞 +𝐷)!
𝑞!𝐷!

. (11)

A polynomial surrogate model 𝑔̂𝑞 of order 𝑞 for the model 𝑔 is obtained
as:

𝑔 ≈ 𝑔̂𝑞 = arg min
𝜋∈P𝑞 [𝒙]

1
2 ∫R𝐷

|𝑔(𝒙) − 𝜋(𝒙)|2Ξ(d𝒙) , (12)

where Ξ ∼ Ξ is the marginal PDF of the random parameters Ξ with
values in  ⊆ R𝐷. The accuracy of this approximation may be assessed
considering the limit of the mean-square norm E{|𝑔̂𝑞(Ξ) − 𝑔(Ξ)|2} as
𝑞 → +∞. However such a ‘‘convergence’’ does not necessarily holds,
and it depends on the probability measure Ξ.

10
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Fig. 14. Noticeable output–output dependencies ( manual sampling set, LHS set): 𝐶𝐷,wave vs. 𝐶𝐷,viscous pressure (top left); 𝜑 (o) vs. 𝑈 (m) (top right); 𝐶𝐷,lift induced vs. 𝐶𝐷,viscous pressure
(middle left); 𝐶𝐷,lift induced vs. 𝐶𝐷,wave (middle right); 𝐶𝐷,lift induced vs. 𝜑 (o) (bottom left); 𝐶𝐷,viscous pressure vs 𝑈 (m) (bottom right).

There are several ways to construct polynomial response surfaces
and surrogates: embedded projection (this is the original spectral
stochastic finite element method of Sun [27] and Ghanem & Spanos
[23] which is highly intrusive), non-intrusive projection (e.g. colloca-
tion) [24,31], or regression, whereby an 𝓁2-optimization problem is
formed; see also Le Maître & Knio [25] for a detailed introduction. For
that purpose, a set of sampling points {𝝃𝓁}𝑁𝓁=1 where the model 𝑔 has
been evaluated, is needed in order to discretize the minimization prob-
lem (12). These observations are denoted by {𝑦𝓁}𝑁𝓁=1 where 𝑦𝓁 = 𝑔(𝝃𝓁),
1 ≤ 𝓁 ≤ 𝑁 .

3.2. Polynomial chaos expansion

From now on we assume that an orthonormal polynomial basis 
of 𝐿2(,Ξ) is available. Then we construct the polynomial surrogate

𝑔̂𝑞 of 𝑔 by standard 𝐿2 projection on the finite dimensional subspace of
𝐿2(,Ξ) spanned by the truncated family of orthonormal polynomials
up to the total order 𝑞 denoted by 𝑞 = {𝜓𝑗}𝑃𝑗=0, where 𝑃 is again given
by Eq. (11). The orthonormalization of this basis reads:

∫
𝜓𝑗 (𝒙)𝜓𝑘(𝒙)Ξ(d𝒙) = (𝜓𝑗 , 𝜓𝑘)𝐿2 = 𝛿𝑗𝑘 ; (13)

then:

𝑔̂𝑞(𝒙) =
𝑃
∑

𝑗=0
𝑔𝑗𝜓𝑗 (𝒙) =

𝑃
∑

𝑗=0
(𝑔, 𝜓𝑗 )𝐿2𝜓𝑗 (𝒙) . (14)

Such representations are referred to as polynomial chaos (PC) ex-
pansions in the dedicated literature, provided that the variable pa-
rameters Ξ follow a multi-dimensional Gaussian (normal) distribution
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Ξ =
⨂𝐷

𝑑=1  (0, 1) [23,25]. They are otherwise called generalized
polynomial chaos (gPC) expansions for other distributions [18,20].

The sampling points are typically used to evaluate the expansion
coefficients 𝑔𝑗 = (𝑔, 𝜓𝑗 )𝐿2 in the foregoing representation. For example,
they can be chosen as the 𝑁 integration points of a quadrature rule
Θ𝑁 = {𝜔𝓁 , 𝝃𝓁}𝑁𝓁=1, which provides with positive weights {𝜔𝓁}𝑁𝓁=1 and
nodes {𝝃𝓁}𝑁𝓁=1 in R𝐷 such that for a smooth function 𝒙 ↦ 𝑓 (𝒙) one can
evaluate its average by:

∫
𝑓 (𝒙)Ξ(d𝒙) ≃

𝑁
∑

𝓁=1
𝜔𝓁𝑓 (𝝃𝓁) . (15)

Using the quadrature rule above, the expansion coefficients are approx-
imated by:

𝑔𝑗 ≈ 𝑔𝑁𝑗 =
𝑁
∑

𝓁=1
𝜔𝓁𝑦𝓁𝜓𝑗 (𝝃𝓁) , 0 ≤ 𝑗 ≤ 𝑃 .

This corresponds to the approximation 𝑔̂𝑞 ≈ 𝑔̂𝑁𝑞 =
∑𝑃
𝑗=0 𝑔

𝑁
𝑗 𝜓𝑗 . Clas-

sical Gauss–Jacobi quadratures require 𝑞 nodes to exactly integrate
one-dimensional polynomials of order 2𝑞 − 1. The polynomial ba-
sis 𝑞 adapted to the parameters PDF Ξ is constituted by the 𝐷-
dimensional orthonormal polynomials 𝜓𝒋 , 𝒋 = (𝑗1, 𝑗2,… 𝑗𝐷) ∈ N𝐷, such
that ‖𝒋‖1 =

∑𝐷
𝑑=1 𝑗𝑑 ≤ 𝑞 (note that they are 𝑃 + 1 such multi-indices

according to Eq. (11) and it is understood here and below that they
are simply reordered as single indices in the PC expansion (14)). These
polynomials are given by:

𝜓𝒋(𝒙) =
𝐷
∏

𝑑=1
𝜓𝑗𝑑 (𝑥𝑑 ) , ‖𝒋‖1 ≤ 𝑞,

where {𝜓𝑗𝑑 }𝑗𝑑≥0 is the family of one-dimensional orthonormal polyno-
mials with respect to the PDF of the 𝑑th variable parameter. There-
fore, 𝑁 ≈ ⌊

𝑞
2 ⌋

𝐷 sampling points are needed to exactly integrate
𝐷-dimensional polynomials of total order 𝑞. Using sparse quadrature
rules [28,47,48] yields 𝑁 ≈ 2⌊

𝑞
2 ⌋𝑃 whenever 𝐷 ≫ 1, which may

still be unaffordable for a complex model 𝑔: this is the so-called curse
of dimensionality. Practical examples, though, reveal that the vector
𝒈 = (𝑔0, 𝑔1,… 𝑔𝑃 )T ∈ R𝑃+1 of the expansion coefficients of 𝑔̂𝑞 can
have many negligible components [29], so that it is compressible in
the terminology of the theory of compressed sensing, or compressive
sampling (CS) [33,34,49,50]. In other words, its sparsity:

𝑆 = #{𝑗; |𝑔𝑗 | > 𝛿} (16)

for some tolerance 0 ≤ 𝛿 ≪ E{|𝑔̂𝑞(Ξ)|}, say, is such that 𝑆 ≪ 𝑃 . In
this setting it is argued that only a number of samples 𝑁 proportional
to the compressed size 𝑆, rather than the uncompressed size 𝑃 , of the
sought signal (in the present case the surrogate model 𝑔̂𝑞) is needed in
order to reconstruct it. The reconstruction of the expansion coefficients
from a sparsity argument is outlined in the next section. There we
basically follow the introductory paper of Candès & Wakin [50] on the
underlying CS theory.

3.3. Non-adapted sparse reconstruction by 𝓁1-minimization

Evaluating the gPC expansion (14) at the sampling points Θ𝑁 =
{𝝃𝓁}𝑁𝓁=1 we arrive at the 𝑁 × (𝑃 + 1) system:

𝒚 = 𝑴𝒈 + 𝝐 , (17)

where 𝒚 = (𝑦1, 𝑦2,… 𝑦𝑁 )T ∈ 𝑁 is the vector of observations, and 𝑴 is
the so-called 𝑁 × (𝑃 +1) measurement matrix given by [𝑴]𝓁𝑗 = 𝜓𝑗 (𝝃𝓁).
Since the gPC expansion truncated at the total order 𝑞 is not complete
for the exact representation of 𝑔, a truncation error vector 𝝐 has been
accounted for in the foregoing process. Eq. (17) is ill-posed and has
infinitely many solutions whenever 𝑁 ≪ 𝑃 , unless additional con-
straints of the sought solution 𝒈 are accounted for. Regularized versions
of Eq. (17) exist for this case, which in turn ensure its well-posedness.
Together with a sparsity constraint, this can be accommodated by

reformulating Eq. (17) as the following 𝓁0-minimization problem where
a sparsest approximation is sought for:

𝒈 ≈ 𝒈⋆ = arg min
𝒉∈R𝑃+1

{‖𝒉‖0; ‖𝑴𝒉 − 𝒚‖2 ≤ 𝜀} , (𝑃0,𝜀)

for some tolerance 0 ≤ 𝜀 ≪ 1 on the polynomial chaos truncation;
the norms above are defined by ‖𝒉‖𝑚 = (

∑𝑃
𝑗=0 |ℎ𝑗 |

𝑚)
1
𝑚 for 𝑚 > 0 and

‖𝒉‖0 = #{𝑗; ℎ𝑗 ≠ 0} otherwise. The solution of the problem (𝑃0,0)
is not always unique and the latter is also NP-hard to solve, that is,
the time needed to solve it is exponential with respect to 𝑃 (as for
example the brute force algorithm for optimization). However it can be
relaxed by convex 𝓁1-minimization, known as Basis Pursuit Denoising
(BPDN) [51]:

𝒈 ≈ 𝒈⋆ = arg min
𝒉∈R𝑃+1

{‖𝒉‖1; ‖𝑴𝒉 − 𝒚‖2 ≤ 𝜀} . (𝑃1,𝜀)

For sufficiently sparse coefficients 𝒈 and some conditions on the mea-
surement matrix 𝑴 , (𝑃0,0) and (𝑃1,0) share the same unique solution.
Consequently the strategy for the present study is to solve (𝑃1,𝜀) with 𝑁
runs of the aeroelastic model 𝑔 significantly lower than the number of
coefficients to be identified. Indeed CS theory shows that it is relevant
provided that the target solution 𝒈 is actually sparse, or nearly sparse
(compressive), and some constraints on the measurement matrix are
fulfilled.

One of such requirements for the successful recovery of a sparse
vector by (𝑃1,𝜀) is small mutual coherence of the columns of the
measurement matrix, or their near orthogonality. The coherence 0 <
𝜇(Θ𝑁 ,𝑞) ≤ 1:

𝜇(Θ𝑁 ,𝑞) = max
1≤𝑗,𝑘≤𝑃+1

𝑗≠𝑘

|𝒎T
𝑗 𝒎𝑘|

‖𝒎𝑗‖2‖𝒎𝑘‖2
, (18)

where 𝒎𝑗 = (𝜓𝑗 (𝝃1), 𝜓𝑗 (𝝃2),…𝜓𝑗 (𝝃𝑁 ))T stands for the 𝑗th column of 𝑴 ,
is a measure of how close to orthogonality the measurement matrix is.
Based on this coherency measure, the following theorem from Candès &
Romberg [49] asserts that if 𝑔̂𝑞 is sufficiently sparse in 𝑞 , the recovery
of its gPC coefficients by 𝓁1-minimization is exact.

Theorem 3.1. Assume that 𝑔̂𝑞 is 𝑆-sparse on the gPC basis 𝑞 , that is 𝒈
has at most 𝑆 non-zero entries. Then if 𝑁 sampling points Θ𝑁 = {𝝃𝓁}𝑁𝓁=1
are selected at random to form the measurement matrix 𝑴 , and:

𝑁 ≥ 𝐶 ⋅ 𝜇(Θ𝑁 ,𝑞) ⋅ 𝑆 ⋅ log𝑃 (19)

for some constant 𝐶 > 0, the solution of (𝑃1,0) is exact with ‘‘overwhelming’’
(sic) probability.

More precise results with structured random measurement matrices
are given by e.g. Rauhut & Ward [52]. It should be noted that the role
of coherence in this result is transparent. The smaller the coherence
is, the closer the measurement matrix is to a unitary matrix, and the
fewer sampling points are needed. This result also states that (𝑃1,0) can
be effectively solved without any prior knowledge of the number of
non-zero coefficients, their orders (locations), or their amplitudes. In
other words, the reconstruction procedure permitted by the CS theory
is non adapted because it identifies the sparsity pattern of a signal in its
sparsifying basis, and the leading components at the same time. This
procedure can therefore efficiently capture the relevant information of
a sparse signal without trying to comprehend that signal [50] contrary
to the proposal of [30]. This is clearly a much desirable feature for
practical industrial applications.

The previous Theorem 3.1 is however not entirely satisfactory from
a practical point of view because (i) it does not allow for some trun-
cation error, or noisy/imprecise observations; (ii) it does not deal with
approximately sparse vectors, for which a large subset of entries are
negligible rather than strictly zero. These shortcomings may be allevi-
ated simultaneously as established by Candès et al. [33]. To achieve
this, a constraint on the measurement matrix 𝑴 needs be added to
gain robustness in CS, the so-called restricted isometry property (RIP) also
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Table 2
Root mean-square error, mean, standard deviation, and Kullback–Leibler divergence
from a Gaussian distribution of the output quantities of interest computed by
𝓁1-minimization with 𝑁 = 102 sampling points.

𝐶𝑚 𝐶𝐷𝑠 𝐶𝐷𝑣
𝜇 −11.63e−02 219.83e−04 218.69e−04
𝜎 1.55e−02 6.53e−04 6.28e−04
𝑒2 4.70e−03 0.45e−03 0.35e−03
𝐷KL( ∥ ) 1.10e−02 1.11e−02 1.39e−02

𝛼 (◦) 𝑈 (m) 𝜑 (◦)

𝜇 2.53 2.16 −6.10
𝜎 0.20 0.26 0.80
𝑒2 1.88e−03 1.65e−03 3.97e−03
𝐷KL( ∥ ) 1.40e−02 0.50e−02 0.62e−02

quoted as the uniform uncertainty principle. For each integer 𝑆 ∈ N∗,
the isometry constant 𝛿𝑆 of 𝑴 is defined as the smallest number such
that:

(1 − 𝛿𝑆 )‖𝒉𝑆‖22 ≤ ‖𝑴𝒉𝑆‖22 ≤ (1 + 𝛿𝑆 )‖𝒉𝑆‖22

for all 𝑆-sparse vectors 𝒉𝑆 ∈ 𝑆 ∶= {𝒉 ∈ R𝑃+1; ‖𝒉‖0 ≤ 𝑆}. Then 𝑴
is said to satisfy the RIP of order 𝑆 if, say, 𝛿𝑆 is not too close to 1.
This property amounts to saying that all 𝑆-column submatrices of 𝑴
are numerically well-conditioned, or 𝑆 columns 𝒎𝑗1 ,𝒎𝑗2 …𝒎𝑗𝑆 selected
arbitrarily in 𝑴 are nearly orthogonal. The following theorem by
Candès et al. [33,50] then states that (𝑃1,𝜀) can be solved efficiently:

Theorem 3.2. Assume 𝛿2𝑆 <
√

2 − 1. Then the solution 𝒈⋆ to (𝑃1,𝜀)
satisfies:

‖𝒈⋆ − 𝒈‖2 ≤ 𝐶0
‖𝒈𝑆 − 𝒈‖1

√

𝑆
+ 𝐶1𝜀

for some 𝐶0, 𝐶1 > 0. Here 𝒈𝑆 is 𝒈 with all but the 𝑆 largest entries set to
zero.

This result calls for several comments. First, it is more general than
Theorem 3.1 since, if the signal is exactly 𝑆-sparse, 𝒈 = 𝒈𝑆 and the
reconstruction is exact whenever 𝜀 = 0 (noiseless case). Second, it deals
with all signals, not the 𝑆-sparse ones solely. Third, it is deterministic
and does not involve any probability. Lastly, the bound

√

2 − 1 on 𝛿2𝑆
is the one originally proposed by Candès & Wakin [50] but it can be
improved as proposed by e.g. Mo & Li [53]; such improvements are an
active field of research at present.

3.4. Uncertainty quantification (UQ)

Once the polynomial surrogate model 𝑔̂𝑞 has been derived, a mean
output functional of the quantity of interest 𝑦 can be estimated by:

E{𝑓 (𝑦)} ≃ ∫
𝑓 (𝑔̂𝑞(𝒙))Ξ(d𝒙),

where 𝑦↦ 𝑓 (𝑦) is a regular function on  . The mean 𝜇 is obtained for
𝑓 (𝑦) = 𝑦, the variance 𝜎2 is obtained for 𝑓 (𝑦) = (𝑦 − 𝜇)2, the skewness
𝛾1 for 𝑓 (𝑦) = ( 𝑦−𝜇𝜎 )3, the kurtosis 𝛽2 for 𝑓 (𝑦) = ( 𝑦−𝜇𝜎 )4, etc. Owing to
the orthonormality (13) of the polynomials of 𝑞 the mean is simply
𝜇 = 𝑔0 and the variance is 𝜎2 =

∑𝑃
𝑗=1 𝑔

2
𝑗 . Higher-order moments may

be computed with the formulas derived in [54] for the continuous
orthogonal polynomials of the Askey scheme.

Sensitivity indices may be computed alike. Denoting by I𝑑 the set
of indices corresponding to the polynomials of 𝑞 depending only on
the 𝑑th variable parameter 𝜉𝑑 , the main-effect gPC-based Sobol’ indices
are given by (see for example [55]):

S𝑑 = 1
𝜎2

∑

𝑗∈I𝑑

𝑔2𝑗 , (20)

invoking again the normalization condition (13). More generally, if
I𝑑1𝑑2…𝑑𝑠 is the set of indices corresponding to the polynomials of
𝑞 depending only on the parameters 𝜉𝑑1 , 𝜉𝑑2 ,… 𝜉𝑑𝑠 , the 𝑠-fold joint
sensitivity indices are:

S𝑑1𝑑2…𝑑𝑠 =
1
𝜎2

∑

𝑗∈I𝑑1𝑑2…𝑑𝑠

𝑔2𝑗 .

In the following application to the aeroelastic database, we will primar-
ily consider the main-effect sensitivity indices S𝑑 .

4. Application to the aeroelastic database

We now apply the foregoing procedure to the non-adaptive compu-
tation of the gPC coefficients 𝒈 of the surrogate models 𝑔̂𝑞 for the output
quantities of interest of Section 2.3.3. We use the 𝑁 = 102 sampling
points drawn manually and by LHS as explained in Section 2.3, so that
the chaos basis 𝑞 is constituted by Legendre polynomials because the
latter are orthogonal with respect to the uniform measure. Note in pass-
ing that the uniform probability measure is the one arising from Jaynes’
maximum entropy principle [56,57] when the sole imposed constraint
is the compactness of its support. We also note that techniques have
been developed to enrich an LHS database with inherited samples in
e.g. [58]. We consider a total order 𝑞 = 3, thus 𝑃 = 285 since 𝐷 = 10
here, with 𝜉1 =𝑀 , 𝜉2 = 𝐶𝐿, 𝜉3 through 𝜉6 for the bending parameters,
and 𝜉7 through 𝜉10 for the torsion parameters. The coherence for the
present sampling set and representation basis is 𝜇(Θ102,3) ≃ 0.94 and
the sparsity of the polynomial surrogates is observed to be 𝑆 ≃ 10. Thus
Eq. (19) yields 𝑁 ≳ 50. A common observation is that 𝑁 ≳ 4𝑆 ≃ 40 is
usually enough for a successful recovery.

We subsequently apply BPDN (𝑃1,𝜀) to compute 𝒈. For that purpose
we use the Spectral Projected Gradient Algorithm (SPGL1) developed
by van den Berg & Friedlander [35] and implemented in the Matlab
package SPGL1 [36] to solve this 𝓁1-minimization problem. The tol-
erance was fixed at 𝜀 = 10−5 and we were able to find a solution
for all surrogates with this a priori choice without resorting to cross-
validation, for example. Further investigations should be carried on this
topic, though. It should also be noted that no particular sampling strat-
egy, such as stratification, low-discrepancy series, or preconditioning,
has been applied at this stage to select the sampling set. Alternative
strategies are outlined in several recent works; see for example [32,52,
59–62]. At last, in view of the dimensions 𝑁 = 102 and 𝑃 + 1 = 286 of
the measurement matrix 𝑴 , the computational cost for solving (𝑃1,𝜀) is
completely negligible compared to the computational cost of one single
run of the aeroelastic model for one sample of the parameters 𝝃.

The root mean-square errors of the output quantities of interest 𝐶𝑚
(pitching moment coefficient), 𝐶𝐷𝑠 = 𝐶𝐷,pressure + 𝐶𝐷,friction (skin drag
coefficient), 𝐶𝐷𝑣 = 𝐶𝐷,lift induced +𝐶𝐷,wave +𝐶𝐷,viscous pressure +𝐶𝐷,friction
(far-field drag coefficient), 𝛼 (angle of attack), 𝑈 (wing tip bend), and 𝜑
(wing tip twist) are gathered in the Table 2. The root mean-square error
𝑒2 is defined by (note that it is directly related to the chosen tolerance
𝜀):

𝑒2 =

√

√

√

√

∑𝑁
𝓁=1 |𝑦𝓁 − 𝑔̂𝑞(𝝃𝓁)|2
∑𝑁

𝓁=1 |𝑦𝓁|
2

.

The mean 𝜇 and standard deviation 𝜎 are gathered in the Table 2
as well, while the main-effect sensitivity indices S1 through S10 of
Eq. (20) are gathered in Table 3. The strong dependence of the wing
tip bend 𝑈 on the second bending parameter 𝜉4 underlined in Sec-
tion 2.3.4, for example, is recovered from these results (S4 = 62%).
The noticeable dependence of the wing tip twist 𝜑 on the third bending
parameter 𝜉5 may also be observed (S5 = 32%). The PDFs are displayed
on Fig. 15 . They were estimated from 𝑁𝑠 = 100, 000 interrogations
of the gPC surrogates 𝑔̂𝑞 and smoothing out the resulting histograms
by a normal kernel density function [63]. They are compared with
a standard Gaussian distribution with the same mean and standard
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Fig. 15. PDFs of the pitching moment coefficient (top left), skin drag coefficient (top right), far-field drag coefficient (middle left), angle of attack (middle right), wing tip bend
(bottom left), and wing tip twist (bottom right) computed by 𝓁1-minimization with 𝑁 = 102 sampling points. Comparison with a standard Gaussian distribution (green curve) with
the same mean and standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

deviation. These comparisons are quantified by the Kullback–Leibler
divergence 𝐷KL( ∥ ) defined by [64]:

𝐷KL( ∥ ) = ∫
log

(𝑦)
(𝑦)

(d𝑦),

where  is the reconstructed marginal PDF of the output quantity of
interest 𝑦, and  ≡  (𝜇, 𝜎) is the standard Gaussian distribution it
is compared to. It is computed in the Table 2 for the various output
quantities of interest considered here.

In view of the comments of Section 2.3.4, we have also quantified
the dependence of the lift-induced drag coefficient 𝐶𝐷,lift induced and
spurious drag coefficient 𝐶𝐷,spurious = 𝐶𝐷𝑠 − 𝐶𝐷𝑣 on the various pa-
rameters. The tolerance for the computation of their gPC coefficients
by (𝑃1,𝜀) was fixed at 𝜀 = 10−6 and 𝜀 = 10−9, respectively. The root
mean-square error, mean, standard deviation, and Kullback–Leibler
divergence from a Gaussian distribution are gathered in the Table 4,
while the main-effect sensitivity indices are gathered in Table 5. Their
PDFs are displayed on Fig. 16, using again 𝑁𝑠 = 100,000 evaluations
of the gPC surrogates and smoothing with a normal kernel density
function. These results confirm the strong dependence of 𝐶𝐷,spurious on

the Mach number 𝜉1 (for S1 = 94%), and to a lesser extent that of
𝐶𝐷,lift induced on the lift coefficient 𝜉2 (for S2 = 48%).

5. Conclusions

In this paper we have applied a non-intrusive technique to recon-
struct surrogates (response surfaces) for the uncertainty quantification
and robust optimization of aeroelastic computations, taking the ex-
ample of the ALBATROS configuration. This technique is a regression
approach, whereby the surrogates are polynomial chaos expansions in
the variable parameters space. It typically uses structured sampling set,
e.g. Gauss quadratures, to compute the expansion coefficients in this
basis. However we have shown in this study that invoking a ‘‘sparsity-
of-effects’’ feature, the framework of compressed sensing is applicable
to the present case. Accordingly, an 𝓁1-minimization algorithm has
been implemented to reconstruct polynomial surrogates in a regression
approach. In addition, it requires unstructured sampling sets orders of
magnitude smaller than the ones required by the widespread sampling
rules (Shannon’s sampling theorem or Gauss quadratures, for example),
and typically smaller than the dimension of the polynomial space where
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Fig. 16. PDFs of the lift-induced (left) and spurious (right) drag coefficients computed by 𝓁1-minimization with 𝑁 = 102 sampling points. Comparison with a standard Gaussian
distribution (green curve) with the same mean and standard deviation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 3
Main-effect sensitivity indices of the output quantities of interest computed by
𝓁1-minimization with 𝑁 = 102 sampling points.

𝐶𝑚 𝐶𝐷𝑠 𝐶𝐷𝑣
S1 0.048e−01 2.657e−01 2.286e−01
S2 0.036e−01 1.841e−01 1.682e−01
S3 0.052e−01 0.136e−01 0.136e−01
S4 0.229e−01 0.000e−01 0.002e−01
S5 0.046e−01 0.000e−01 0.002e−01
S6 0.280e−01 0.038e−01 0.027e−01
S7 0.078e−01 0.002e−01 0.004e−01
S8 0.005e−01 0.001e−01 0.001e−01
S9 0.322e−01 0.115e−01 0.149e−01
S10 0.285e−01 0.073e−01 0.191e−01

𝛼 𝑈 𝜑

S1 0.003e−01 0.002e−01 0.105e−01
S2 1.333e−01 0.007e−01 0.011e−01
S3 0.005e−01 0.974e−01 0.021e−01
S4 0.154e−01 6.187e−01 0.461e−01
S5 0.001e−01 1.137e−01 3.186e−01
S6 0.010e−01 0.016e−01 0.128e−01
S7 0.840e−01 0.196e−01 0.774e−01
S8 0.722e−01 0.109e−01 0.506e−01
S9 0.003e−01 0.010e−01 0.034e−01
S10 0.390e−01 0.057e−01 0.411e−01

Table 4
Root mean-square error, mean, standard deviation, and Kullback–Leibler divergence
from a Gaussian distribution of the lift-induced and spurious drag coefficients computed
by 𝓁1-minimization with 𝑁 = 102 sampling points.

𝐶𝐷,lift induced 𝐶𝐷,spurious

𝜇 72.60e−04 0.88e−04
𝜎 3.52e−04 0.46e−04
𝑒2 0.74e−03 14.19e−03
𝐷KL( ∥ ) 1.16e−02 15.18e−02

the surrogates are sought for. The procedure is also non-adaptive in the
sense that it identifies both the amplitude of the leading expansion co-
efficients and their order in the polynomial basis. At last, its application
to the aeroelastic database of the present study has clearly demon-
strated its ability to handle a parameters space of high dimension—thus
alleviating to some extent the ‘‘curse of dimensionality’’. Therefore, the
sparse reconstruction technique outlined here constitutes a promising
direction for future developments in large-scale industrial applications
involving complex geometries and flows.
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and demonstration under grant agreement no. ACP3-GA-2013-60503
(UMRIDA Project www.umrida.eu).
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