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A B S T R A C T

In this paper we derive a state-space model restricted to heave motion of a full scale array of floating oscillating-
water-column (OWC) wave energy converters with nonlinear power take off dynamics, taking hydrodynamic
interactions between all bodies into account. The resulting state-space model is intended as a basis for
accelerated development of advanced control approaches to maximize power generation. The kinetic and
potential energy transferred to the air chamber causes a pressure difference, inducing unidirectional motion
of a novel bi-radial turbine. This can be accurately modeled using pressure dependent turbine characteristics,
taking into account the nonlinearity of the gas compressibility. The analytical model of the floating OWC
is based on linear hydrodynamic coefficients, obtained using the boundary element solver ANSYS Aqwa of
an equilateral triangle array of axis-symmetric floating OWCs of the Marmok-A-5 type. Finally, the system’s
model time domain equations are simulated in different wave climates and an ideal active controller is applied
to maximize energy conversion. For the specific implemented separation distance the resulting cross body
interactions are found to be negligible in irregular compared to regular wave scenarios. The turbine rotational
speed suggests investigations on discontinues nonlinear control methods before semi-global approaches are
used to optimize power generation.

1. Introduction

Wave energy is a promising renewable energy source and poten-
tially contributes significantly to the future energy mix (Aderinto and
Li, 2018). Thus, research in this field has increased substantially over
the last decade (Falcão, 2010) and in the recent past more single
prototypes and operational sites have been deployed (Rusu and Onea,
2017). However, significant costs associated with development and
maintenance have so far impeded the implementation of commercially
viable projects (Andrews and Jelley, 2017). To achieve commercial
power generation in the future wave energy converters (WECs) will be
deployed in large WEC farms (Chowdhury et al., 2015). The spacing
between single devices is on the one hand determined by a trade off
between safe maintenance operation and cost reduction due to shorter
cables for power transmission and on the other hand by the benefits for
power generation. Depending on the configuration of the array the pro-
duced power can be higher or lower compared to the same amount of
isolated devices, due to hydrodynamic interactions between the ocean
waves and those radiated by the WECs (Chowdhury et al., 2015; Budal,
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1977; Falcão, 2002; Nader et al., 2014). Bodies immersed in water
will experience additional effects apart from buoyancy if surrounded
by an unsteady flow, due to the pressure the water acts on them.
This can set the body into motion, resulting in a subsequent motion
of the surrounding water thus some of the bodies’ kinetic energy is
radiated away. However, a second body in the array configuration can
experience this radiated wave as an additional incident wave (Falnes,
2002). Those interactions vary for differently shaped devices, locations
and incident wave directions consequently those interactions are non
trivial to derive analytically (Sabuncu and Calisal, 1981) or to test
experimentally for scaled prototypes in wave tanks (Nader et al., 2017).
Today it is common practice to assess the main hydrodynamic coeffi-
cients using the boundary element method (BEM) to solve the velocity
potential of the flow, followed by a transformation in the time domain,
which is necessary if nonlinear effects want to be considered in the
model (Sheng et al., 2014). Additionally, the power generated in a
scaled physical model does not scale linearly to its size (Henriques
et al., 2016b). Hence, it is advantageous to use a detailed full-scale
mathematical model to predict the power generation capabilities as
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done in Forehand et al. (2016) with a single-body point absorber array.
Furthermore, the model can be used to design control strategies at
an early stage. In Bacelli and Ringwood (2015) the authors present
an optimal control approach of WEC array for single and multibody
devices with linear velocity power take off (PTO) relation and linear dy-
namics. A strategy taking into account hydrodynamic interactions while
solving the control problem is introduced in Nambiar et al. (2015) for
three hemispherical floats connected to a fixed support with a rigid
arm. To this date the authors do not know of any studies addressing
optimal control of multibody systems with nonlinear PTO, taking the
hydrodynamics into account. Consequently, our current work addresses
the necessary modeling aspects, validated based on a given control law
and our future work will address new control strategies in order to
optimize the energy conversion of large parks of WECs. This paper
deals with wave energy converters of the floating oscillating water
column type (OWC) illustrated in Fig. 1. The basics of the principle is
an off-shore device open to the sea water at the bottom and a trapped
air chamber. In general OWCs are considered as one of the simplest
WECs, since they have few moving mechanical parts and the PTO has
no water contact, sealing the air chamber to the atmosphere (Falcão
and Henriques, 2016). The oscillating motion of the water column
with the waves induces an alternating air flow, thus so-called self-
rectifying turbines are installed in OWCs to achieve a unidirectional
rotation. Apart from the well studied Well’s turbine, impulse turbines
are another class of axial flow machines. A new impulse turbine, the
bi-radial turbine (see Fig. 2) is a good choice in terms of performance,
with a peak efficiency of 79% (Falcão and Henriques, 2016), thus we
use the dynamic model of this turbine from Henriques et al. (2017a)
and Henriques et al. (2017) for the implementation of an OWC array in
this work. The air flow into the rotor is directed through so called guide
vanes. There are two distinct connected rows of guide vanes, illustrated
in blue. By sliding the complete guide vanes set axially, it will be
inserted into or removed from the flow to ensure that the downstream
guide vanes do not obstruct the flow out of the rotor. Additionally a
high speed stop valve (HSSV) is installed at the bottom of the turbine,
to prevent water contact in extreme sea states by stopping the entire
air flow. The description of these analytical relationships is followed
by a numerical simulation of the hydrodynamic coefficients for the
specifically used geometries, with the aid of the boundary element
method solver (ANSYS Aqwa). Subsequently, the implementation that
puts together the analytical and numerical parts is presented and the
resulting simulation model is validated based on regular and irregular
sea states. This work is concluded with a discussion of possible control
approaches to improve power generation.

2. System modeling

The following model is based on linear water wave theory, assuming
small wave amplitudes and body motions compared to the wave length
𝜆. Additionally, the diameter of the inner tube is 𝑑p ≪ 𝜆, justifying
the internal free surface representation by an imaginary rigid piston,
enabling the application of oscillating body theory between the OWC
(indicated by 𝑑p) and the floater (indicated by 𝑑b from buoy). This will
be called a two-body heaving system (Falnes, 2002). The terms piston
and OWC are used interchangeably throughout the paper. The main
axis of motion useful for power generation of the floating OWC is the
heave axis, thus our research focuses on the dynamics of the vertical
displacement 𝑧(𝑡), positive in the upwards direction.

2.1. Equations of motion

Let us assume we have an array on 𝑁 WEC devices, leading to 2𝑁
coupled bodies. The equations of motion (EOM) for a body 𝑖 oscillating
in heave in the ocean after Cummins approach (Cummins, 1962) are
given by

𝑚𝑖�̈�𝑖(𝑡) = 𝐹H
𝑖 (𝑡) + 𝐹M

𝑖 (𝑡) + 𝐹 PTO
𝑖 (𝑡) + 𝐹 Ex

𝑖 (𝑡) + 𝐹R
𝑖 (𝑡), (1)

Fig. 1. Conceptual sketch of a floating OWC with one equipped turbine. The OWC
surrounded by the dashed line represents the piston.

Fig. 2. Sketch of the bi-radial turbine.
Source: Adapted from Henriques et al.
(2016b).

Here 𝑚𝑖 denotes the mass of the individual body. The hydro-static
restoring force

𝐹H
𝑖 (𝑡) =

{

−𝜌𝑔𝑆b𝑧𝑖(𝑡), for a buoy
−𝜌𝑔𝑆p𝑧𝑖(𝑡), for a piston

, (2)

due to the displaced water is zero at equilibrium 𝑧𝑖(𝑡) = 0 and else
adds a spring like effect to the system. 𝑆b, 𝑆p are the constant cross
sections of a buoy, or a piston, 𝜌 the sea water density and 𝑔 the earth
acceleration. The mooring force 𝐹M

𝑖 is subject to the used mooring con-
figuration, which will be attached to the buoys and will be simplified
to a function of the heave position, hence

𝐹M
𝑖 (𝑡) =

{

−𝑓
(

𝑧𝑖(𝑡)
)

, for a buoy
0, for a piston

. (3)

In the equation of the hypothetical piston 𝐹M does not appear, since
the OWC is not affected by the mooring. The forced induced by the
relative motion in the two-body heaving system results in a varying
pressure inside the air chamber 𝑝𝑖(𝑡). The pressure difference to the
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atmosphere 𝑝𝑖(𝑡) − 𝑝at acts as a force in opposite direction on the buoy
and piston (Henriques et al., 2017a), namely,

𝐹 PTO
𝑖 (𝑡) =

{

(

𝑝𝑖(𝑡) − 𝑝at
)

𝑆p, for a buoy
−
(

𝑝𝑖(𝑡) − 𝑝at
)

𝑆p, for a piston
. (4)

Additionally the change rate of the pressure is determined by the power
take off (PTO) dynamics, by means of the air flow through the turbine
and consequently the generator torque. Our control inputs will act over
this force to our system (see 2.2). The local wave-induced excitation
force is obtained as a superposition of 𝑁w wave components (Henriques
et al., 2017a)

𝐹 Ex
𝑖 (𝑡) =

𝑁w
∑

𝑘=1
𝛤𝑖(𝜔𝑘, 𝜃)𝐴𝑘 cos

(

𝜔𝑘𝑡 + 𝜙𝑘 +𝛷𝑖(𝜔𝑘, 𝜃)
)

. (5)

Here 𝜙𝑘 is the phase of each component and is a uniformly dis-
tributed random variable in the range [0, 2𝜋], which yields an irregular
wave. The hydrodynamic excitation coefficient 𝛤𝑖(𝜔𝑘, 𝜃) at the wave
frequency 𝜔𝑘 will strongly vary for different WECs, since it is dependent
on the array configuration and the resulting diffraction of the incident
wave field with the incident wave angle 𝜃, commonly known as the
diffraction problem. The corresponding phase component to 𝛤𝑖(𝜔𝑘, 𝜃)
is denoted by 𝛷𝑖(𝜔𝑘, 𝜃). The amplitudes of the waves 𝐴𝑘 depend on the
used wave spectrum 𝑆𝜔(𝜔). The hydrodynamic interactions due to the
radiation problem are taken into account with the force

𝐹R
𝑖 (𝑡) =

2𝑁
∑

𝑗=1
𝐴∞
𝑖𝑗 �̈�𝑗

⏟⏞⏞⏟⏞⏞⏟
𝐹R,∞
𝑖

−
2𝑁
∑

𝑗=1
∫

𝑡

0
𝐾𝑖𝑗 (𝑡 − 𝜏)�̇�𝑗 (𝜏)d𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐹R’
𝑖

, (6)

acting on body 𝑖 due to body 𝑗. In consideration of the state space
representation, the radiation force will be separated into a component
𝐹R,∞
𝑖 due to the explicit dependence on the acceleration �̈�𝑗 (𝑡) and 𝐹R’

𝑖
due to the explicit dependence on the velocity �̇�𝑗 (𝑡) of the 𝑗th body. This
representation of the radiating phenomenon makes use of the linear
hydrodynamic coefficients 𝐴∞

𝑖𝑗 , the constant added mass on body 𝑖 due
to motion of body 𝑗, which originates from the frequency dependent
added mass 𝐴𝑖𝑗 (𝜔) evaluated at 𝜔 ←←→ ∞ as in Cummins formula-
tion (Cummins, 1962) and the frequency dependent radiation damping
coefficient 𝐵𝑖𝑗 (𝜔), which is connected with the kernel function of the
convolution integral in (6) through the inverse Fourier transformation

𝐾𝑖𝑗 (𝑡) =
2
𝜋 ∫

∞

0
𝐵𝑖𝑗 (𝜔) cos(𝜔𝑡)d𝜔. (7)

The hydrodynamic information of the two real matrix functions 𝐴𝑖𝑗 (𝜔)
and 𝐵𝑖𝑗 (𝜔) is contained in a time dependent matrix function 𝐾𝑖𝑗 (𝑡)
and a constant matrix 𝐴∞

𝑖𝑗 . In Falnes (2002) the derivation of the
Kramers–Kronig relations in hydrodynamic radiation using the princi-
ple of causality is described in more detail. With 𝛤𝑖(𝜔𝑘, 𝜃), 𝛷𝑖(𝜔𝑘, 𝜃),
𝐴∞
𝑖𝑗 , 𝐵𝑖𝑗 (𝜔), 𝑖, 𝑗 = {1, 2,…2𝑁} and the introduced manipulations we

have the main hydrodynamic coefficients, which are necessary for
the EOM in the time domain. For this first study we neglect nonlin-
ear viscous and friction effects, since the bottom of buoy is shaped
like a vertically cut ring torus, reducing viscous losses. However, the
time-domain formulation enables the practical correction to add those
terms (Falnes, 2002).

2.2. Air chamber and turbine model

The main assumptions to model the air chamber of WEC 𝑖 are an
isentropic compression/expansion of the air, no heat transfer in the
chamber walls and small variations in the temperature of the chamber,
due to continuous in and outflow as in Henriques et al. (2017a). We
restate the derivation for completeness and begin with mass balance of
the chamber

𝜌c𝑖 �̇�c𝑖 (𝑡) + �̇�c𝑖𝑉c𝑖 (𝑡) = −�̇�t𝑖 (𝑡), (8)

where 𝑉c𝑖 (𝑡) denotes the current chamber volume as a function of the
relative position between the piston and the buoy, with the air density
𝜌c𝑖 and �̇�t𝑖 (𝑡) the mass flow through the turbine, defined positive for an
exhalation. Let us define the dimensionless relative pressure inside the
chamber with the atmospheric pressure 𝑝at, i.e.

𝑝∗𝑖 (𝑡) =
𝑝𝑖(𝑡) − 𝑝at

𝑝at
. (9)

The isentropic process of air compression/expansion and considering
air as a perfect gas, yields

𝜌c𝑖 (𝑡) = 𝜌at(𝑝∗𝑖 (𝑡) + 1)
1
𝛾 , (10)

where 𝛾 ≈ 1.4 denotes the specific heat ratio of air is constant under the
assumptions. Taking the logarithmic derivative 𝐿(𝑓 ) ∶= ̇𝑓∕𝑓 of (10),
yields

𝛾
̇𝜌c𝑖 (𝑡)

𝜌c𝑖 (𝑡)
=

�̇�∗𝑖 (𝑡)
𝑝∗𝑖 (𝑡) + 1

. (11)

Substituting (10) and (11) into (8) results in

�̇�∗𝑖 (𝑡) = −𝛾
�̇�t𝑖 (𝑡)

𝜌at𝑉c𝑖 (𝑡)

(

𝑝∗𝑖 (𝑡) + 1
)

𝛾−1
𝛾

− 𝛾
�̇�c𝑖 (𝑡)
𝑉c𝑖 (𝑡)

(

𝑝∗𝑖 (𝑡) + 1
)

(12)

Now, the time rate of change (12) of the dimensionless pressure 𝑝∗𝑖 ,
which will be used as a state for the state space representation, connects
the heave states of the bodies with the turbine and generator dynamics
via the mass flow �̇�t𝑖 (𝑡). The modeling of a bi-radial turbine has been
previously presented in Henriques et al. (2016b, 2017a) and Henriques
et al. (2017). The time rate of change of the rotational speed 𝛺𝑖 of the
turbine is given by

�̇�𝑖 =
1
𝐼t

(

𝑇t𝑖 − 𝑇gen𝑖
)

(13)

where 𝐼t𝑖 is the moment of inertia (MOI) of the 𝑖th turbine/generator
set, 𝑇t𝑖 , 𝑇gen𝑖 are instantaneous torques of the 𝑖th turbine and the
generator, respectively. To identify the torque of the turbine, it is
necessary to regard its performance characteristics which are presented
in dimensionless form. To normalize those values, the rotational speed
𝛺, the turbine diameter 𝑑t and the reference air density 𝜌in are needed.
𝜌in is defined under stagnation conditions at the turbine entrance and
dependent on the flow direction, hence a function of the pressure
difference between the chamber and the atmosphere, i.e.

𝜌in𝑖 =

⎧

⎪

⎨

⎪

⎩

𝜌at(𝑝∗𝑖 + 1)
1
𝛾 , if 𝑝∗𝑖 > 0 (exhalation)

𝜌at, if 𝑝∗𝑖 < 0 (inhalation).
(14)

The dimensionless pressure head can now be computed as

𝛹𝑖 =
𝑝at𝑝∗𝑖

𝜌in𝑖𝛺
2
𝑖 𝑑

2
t
, (15)

with the diameter 𝑑t of the turbine in the normalization factor. The
dimensionless mass flow rate coefficient of a turbine is defined by

𝛷𝑖 =
�̇�t𝑖

𝜌in𝑖𝛺𝑖𝑑3t
. (16)

Finally, the dimensionless power coefficient is given by

𝛱𝑖 =
𝑃𝑡𝑖

𝜌in𝑖𝛺
3
𝑖 𝑑

5
t
. (17)

Those three characteristic coefficients are related through the turbine
efficiency as follows:

𝜂t𝑖 =
𝛱𝑖
𝛷𝑖𝛹𝑖

(18)

In Henriques et al. (2016b) 𝛷𝑖 ( ) and 𝜂t𝑖 ( ) are given as
functions of the dimensionless pressure head 𝛹𝑖 and are illustrated
in Fig. 3 together with the dimensionless power coefficient ( )
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Fig. 3. Turbine characteristics as functions of the dimensionless pressure head 𝛹 .
Namely, efficiency 𝜂, dimensionless flow rate 𝛷 and dimensionless power coefficient
𝛱 from Henriques et al. (2017).

calculated with 𝛱 = 𝜂𝛷𝛹 . The mass flow rate �̇�t𝑖 can be determined
from (16) and is a function of the rotational speed, which will become
important regarding the controllability. As stated before, an additional
high speed stop valve is installed before the biradial turbine, to realize,
for example, latching, or storm protection (Henriques et al., 2017,
2016a). Assuming the HSSV can stop the entire mass flow, the mass
flow rate can be stated as

�̇�t𝑖 (𝛺𝑖) = (1 − 𝑃HSSV,𝑖)𝛷𝑖𝜌in𝑖𝛺𝑖𝑑
3
t , (19)

where 𝑃HSSV,𝑖 denotes the position of the stop valve and is open for
𝑃HSSV,𝑖 = 0 and completely closed for 𝑃HSSV,𝑖 = 1, respectively. Finally,
with Eqs. (17) and (18) all necessary quantities to compute the turbine
torque are known, i.e.

𝑇t𝑖 = 𝜌in𝑖𝛺
2
𝑖 𝑑

5
t 𝜂t𝑖𝛷𝑖𝛹𝑖 (20)

The generator power torque 𝑇gen𝑖 is the commonly used control input
to the WEC, hence the dynamics of the generator/turbine set (13) will
be included in the state space representation. Additionally, the position
of the HSSV provides further influence on the pressure change inside
the air chamber.

2.3. State space representation

To obtain a state space model for our array of 𝑁 WECs, we rewrite
the equations of motion and introduce the state vector

𝒙 =
[

𝒙𝑇pos 𝒙𝑇vel 𝒙𝑇press 𝒙𝑇kin

]𝑇
, (21)

which consists of the vectors for heave positions 𝒙pos and velocities 𝒙vel
of the bodies 𝑖…2𝑁 , the vector for the relative pressure differences
inside the air chamber 𝒙press of WEC 𝑖…𝑁 and the vector of the
rotational speeds of the turbines 𝒙kin of system 𝑖…𝑁 , respectively,

𝒙pos =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑧1
⋮
𝑧𝑁
⋮

𝑧2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1
⋮
𝑥𝑁
⋮

𝑥2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝒙vel =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̇�1
⋮
�̇�𝑁
⋮

�̇�2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥2𝑁+1
⋮

𝑥3𝑁
⋮

𝑥4𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (22)

𝒙pres =
⎡

⎢

⎢

⎣

𝑝∗1
⋮
𝑝∗𝑁

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥4𝑁+1
⋮

𝑥5𝑁

⎤

⎥

⎥

⎦

, 𝒙kin =
⎡

⎢

⎢

⎣

𝛺1
⋮

𝛺𝑁

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑥5𝑁+1
⋮

𝑥6𝑁

⎤

⎥

⎥

⎦

,

leading to our state space representation

�̇� =

⎡

⎢

⎢

⎢

⎢

⎣

�̇�pos
�̇�vel
�̇�pres
�̇�kin

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝒙vel
(𝑨∞)−1 ⋅  (𝒙)
𝑓 (𝒙, 𝒖HSSV)

𝑓 (𝒙pres,𝒙kin, 𝒖gen)

⎤

⎥

⎥

⎥

⎥

⎦

(23)

with

𝑨∞ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴∞
11 … 𝐴∞

1𝑁 … 𝐴∞
12𝑁

⋮ ⋱ ⋮ ⋱ ⋮
𝐴∞
𝑁1 …𝐴∞

𝑁𝑁 …𝐴∞
𝑁 2𝑁

⋮ ⋱ ⋮ ⋱ ⋮
𝐴∞
2𝑁1…𝐴∞

2𝑁𝑁…𝐴∞
2𝑁 2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+ diag

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1
⋮
𝑚𝑁
⋮

𝑚2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (24)

consisting out of the added mass components 𝐴∞
𝑖𝑖 and the physical

masses of the bodies 𝑚𝑖 on its diagonal. This matrix originates from
the radiation force component 𝐹R,∞

𝑖 in (6), while isolating the highest
derivatives on the left hand sight of the equations of motion. (𝑨∞)−1 is
responsible for an interaction between all bodies due to the dependency
on the composite force, which would otherwise act on a single body,
namely,

 (𝒙)=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹H
1 (𝑥1)+𝐹M

1 (𝑥1)+𝐹 PTO
1 (𝑥4𝑛+1)+𝐹R’

1 (𝒙vel)+𝐹 Ex
1

⋮
𝐹H
𝑁 (𝑥𝑁 )+𝐹M

𝑁 (𝑥𝑁 )+𝐹 PTO
𝑁 (𝑥5𝑁 )+𝐹R’

𝑁 (𝒙vel)+𝐹 Ex
𝑁

⋮
𝐹H
2𝑁 (𝑥2𝑁 )+ 0 −𝐹 PTO

𝑁 (𝑥5𝑁 )+𝐹R’
2𝑁 (𝒙vel)+𝐹 Ex

2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

Additionally, it has to be noted that the velocity component of the
radiation force 𝐹R’

𝑖 (𝒙vel) not only does it depend on the states belonging
to its own WEC system, but on the velocities of all other bodies 𝒙vel,
leading to further interactions between all bodies. This component
has to be regarded as a separate input/output system, which will be
approximated with superposition of linear time invariant state space
representations of the form

�̇�R’
𝑖𝑗 = 𝐴R’

𝑖𝑗 𝒇
R’ + 𝒃R’

𝑖𝑗 𝑧𝑗 (𝑡) (26a)

𝐹R’
𝑖𝑗 = 𝒄R’

𝑖𝑗 𝒇
R’
𝑖𝑗 + 𝒅R’

𝑖𝑗 𝑧𝑗 (𝑡) (26b)

using the same impulse response function as in (7). The sum over
the outputs (26b) of body 𝑖 affected by body 𝑗 results in the desired
radiation component on body 𝑖

𝐹R’
𝑖 =

∑

𝑗
𝐹R’
𝑖𝑗 . (27)

The system matrices can be of arbitrary dimension, but are chosen as a
trade off between accuracy and computational effort due to additional
states as described in the next section, along with the method used to
approximate the impulse response functions. In Starrett et al. (2015)
the model (26) is directly included in the EOM for a single WEC system,
but due to the higher dimensions in this work we have to present the
components separately. The time rate of changes

�̇�pres,𝑖 = 𝑓
(

𝑧𝑖, 𝑧𝑁+𝑖, �̇�𝑖, �̇�𝑁+𝑖, 𝑝
∗
𝑖 , 𝛺𝑖, 𝑃HSSV,i

)

(28)

and

�̇�kin,𝑖 = 𝑓 (𝑝∗𝑖 , 𝛺𝑖, 𝑇gen,𝑖) (29)

follow Eqs. (12) and (13), but are chosen to illustrate the dependencies
on the other states in (23). In this model we define our inputs as the
generator torque and the position of the HSSV, i.e

𝒖gen =
⎡

⎢

⎢

⎣

𝑇gen1
⋮

𝑇gen𝑁

⎤

⎥

⎥

⎦

, and 𝒖HSSV =
⎡

⎢

⎢

⎣

𝑃HSSV1
⋮

𝑃HSSV𝑁

⎤

⎥

⎥

⎦

. (30)

3. Parameter identification

The derived model allows time domain simulations for arbitrary
geometries and configurations of floating OWCs assuming the main
hydrodynamic parameters are available. In this work we test the ana-
lytic equations based on three floating OWCs of the Marmok-A-5 type,
developed by Oceantec Energias Marinas (Weller et al., 2017), which is
illustrated in a scaled sketch in Fig. 1. The cross sections of the bodies
for (2) follow from

𝑆b = 𝜋
(

(𝑑b∕2)2 − (𝑑p∕2)2
)

and 𝑆p = 𝜋(𝑑p∕2)2. (31)

The WECs are arranged in an equilateral triangular array configuration,
which is found to be optimal for multi-directional waves in de Andrés
et al. (2014), with each buoy moored independently by three mooring
cables building a tripod, with an angle 𝛽 with the calm sea surface,
as illustrated in Fig. 4. We assume 𝛽 to be constant, since the off-
shore water depth 𝑑w is much greater compared to the bodies motion,
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Fig. 4. Sketch of the array configuration with the plane incident wave field at angle
𝜃, the mooring angle 𝛽 and the separation distance 𝑑s.

together with choosing the inertia and damping of the cables to be
negligible, the mooring force on the buoys becomes a linear function
of the vertical position greater than the calm sea surface, namely

𝐹M
b𝑖
(𝑡) = −3𝐾m sin2 (𝛽)𝑧b𝑖 (𝑡), for 𝑧b𝑖 (𝑡) > 0, (32)

and equals zero if the body is immersed below the equilibrium point.
𝐾m denotes the mooring stiffness of the deployed cables. Future work
will incorporate more detailed non-linear mooring models and in-
vestigate the differences resulting from varying configurations, e.g
inter-body moored or slack mooring. In this work we present the
effects of different numerical values of 𝐾m to illustrate the importance
of the mooring force for the power generation. Instead of using one
big turbine, two smaller identical biradial turbines with diameter 𝑑t
and moment of inertia 𝐼t are used in the first full scale Marmok-A-
5 prototype, with a total rated power of 30 kW. In our example this
is implemented by multiplying the instantaneous mass flow by two.
To obtain the hydrodynamic coefficients necessary for the forces, we
model the geometry of the array in the BEM solver ANSYS Aqwa
Release 19.1 with separation 𝑑s between each WEC system. The buoy
dimensions are as illustrated in Fig. 1 and relevant to the actual
parameters of the prototype. The OWC is modeled as a physical body
inside the BEM modeler with a diameter 𝑑BEM

p = 𝑑p−0.02m, as pictured
by the red dashed box surrounding the piston in Fig. 1. Instead of
using a weightless thin plate to represent the water surface inside the
chamber as done in the beginning of this study, we choose a full column
representation of the piston since it reduces numerical instabilities in
the frequency dependent hydrodynamic coefficients, which agrees with
the results of Sheng et al. (2014) and Bosma et al. (2017). Furthermore,
the calculated overall mass approaches the actual one, which is of
importance for the natural frequency of the piston in the time domain
simulations. The incident wave angle 𝜃 ranges from −60◦ to 60◦ in
an interval of 8◦ and from −180◦ to 180◦ in an interval of 40◦. The
wave frequency is also divided into multiple ranges 𝑓1, 𝑓2 and 𝑓3, to
better cover the areas of interest, which require a finer resolution for
low frequencies and long wave periods, respectively (See Table 1). The
approximation of the infinite frequency for 𝐴∞

𝑖𝑗 is done with the high
frequency 𝜔HF = 100.0 rad∕s in Aqwa 19.1.

3.1. Hydrodynamic coefficients

For a more detailed discussion of the hydrodynamic results the
reader is referred to Gaebele (2018). The symmetry in the array layout
reflects in the hydrodynamic characteristics of the single bodies and can
be best presented on the basis of the matrix of the added mass compo-
nents in (24), since the interactions are reduced to a single value. We
choose to arrange our matrix so that the first 𝑁 bodies are represented
by the buoys, followed by the corresponding pistons in increasing
enumeration. Additionally, we display all hydrodynamic coefficients
with their physical units, the normalization could yield to confusion
originating from the different masses of the bodies in Fig. 5. This matrix
is to be read such that the body in front of a row experiences an added
mass due to the acceleration of the corresponding body above a column.

Table 1
Numerical values of the simulation parameters. Quantities in lower part are exclusively
used in time domain simulations.

Quantity sym/var Value

Spacing distance WECs 𝑑s 40m
Water depth 𝑑w 80m
Incident wave range 1 𝜃1 −60◦:8◦:60◦
Incident wave range 2 𝜃2 −180◦:40◦:180◦
Wave frequency range 1 𝑓1 {0.015∶0.05∶0.250}[Hz]
Wave frequency range 2 𝑓2 {0.256∶0.06∶0.496}[Hz]
Wave frequency range 3 𝑓3 {0.506∶0.01∶0.606}[Hz]

Diameter buoy 𝑑b 5.00m
Diameter inner tube 𝑑p 2.82m
Piston diameter in BEM 𝑑BEM

p 2.80m

Mooring angle 𝛽 60◦

Mooring stiffness (reg) 𝐾reg
m 80 kN∕m

Mooring stiffness (irreg) 𝐾 irreg
m {60∶20∶140}[kN∕m]

Diameter turbine 𝑑t 0.5m
MOI turbine 𝐼t 5 kgm2

Number of turbines 𝑁t 2

For example element (3, 6) expresses the added mass of 15 998 kg on 𝑏3
due to 𝑝3. On the main diagonals we find the effects the individual body
experiences based on his own motion, surrounded by the solid lines.
The diagonals of the other blocks represent interactions inside the same
WEC system, namely between buoy and piston. The remaining elements
represent the cross coupling between spatially distinct WECs and are
except for numerical variations equal in between the combinations,
since the WEC are separated with the same distance from the others.
Furthermore, the symmetry of the example array configuration allows
us to state the hydrodynamic radiation damping coefficients 𝐵(𝜔) as
eight wave frequency 𝜔 dependent functions instead of 36, as illustrated
in Fig. 6. We continue to use the same color and line style notation
as used for the added mass in Fig. 5 and the results are again given
with their physical unit, since the choice for a normalization mass
would distort the magnitudes while comparing buoys and pistons. The
radiation damping characteristics induced by a buoy on itself 𝐵𝑏𝑖𝑏𝑖
and its corresponding piston 𝐵𝑝𝑖𝑏𝑖 have the largest amplitude of all
the combinations and are illustrated in solid darkblue ( ) and dash
dotted crimson ( ), respectively. The subscripts 𝑏𝑖𝑏𝑖 , 𝑝𝑖𝑏𝑖 indicate the
equivalence for all WECs 𝑖 =∈ {1, 2, 3}. Again, we observe symmetry,
namely four pairs of characteristics, each induced by a different body,
acting on the two bodies from the same WEC. In other words, the buoy
and the corresponding piston will always experience similar effects
caused by the radiation of any specific body. It has to be noted that
the radiation damping coefficients due to cross coupling change their
sign multiple times over 𝜔, best seen at the dashed blue and red line
( / ), representing the effects from a buoy on both bodies in
different WECs 𝐵𝑏𝑖𝑏𝑗 , 𝐵𝑝𝑖𝑏𝑗 , ∀𝑖, 𝑗 ∈ {1, 2, 3}, 𝑖 ≠ 𝑗. To obtain the radiation
force we would have to solve the convolution integral in (6) with the
impulse response function (IRF) of 𝐵(𝜔) in Eq. (7). Although we are
presenting eight distinct values in our case, the radiation forces are
still dependent on all other body velocities, consequently we would
need to solve (2𝑁)2 convolution integrals at every time step. This
computational effort can be reduced by approximating 𝐹R’

𝑖 with the
state space representation (26) after approximating the kernel function
with a sum of complex exponentials, as discussed in Sheng et al. (2015),
namely,

𝐾𝑛𝑚(𝑡) =
𝑁K,𝑛𝑚
∑

𝑘=1
𝛼𝑛𝑚,𝑘e𝛽𝑛𝑚,𝑘𝑡, (33)

∀𝑛, 𝑚 ∈ {𝑏𝑖, 𝑝𝑖, 𝑖 ∈ {1, 2, 3}},

since all IRFs will converge towards zero as time increases. Here 𝑁K,𝑛𝑚
denotes the order of the approximation and thus the dimension of the
intended virtual state vectors. We use Prony’s method to obtain the
coefficients 𝛼𝑛𝑚,𝑘 and 𝛽𝑛𝑚,𝑘, which arise in pairs of complex conjugates
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Fig. 5. Added mass with indicated array symmetry.

Fig. 6. Frequency dependent radiation damping coefficients.

Fig. 7. Impulse response function of 𝐵(𝜔) for the radiation effects on Buoy 1 its own
motion on the left (likewise representing the self damping of the other buoys). On the
right: The radiation damping induced on Buoy 1 due to motion of Buoy 2, equivalent
to the cross coupling between the other buoy pairs.

values. However, as the result of the sum over the pairs we receive a
real value, using the relation exp(𝑧) = exp(𝑥)(cos 𝑦+i sin 𝑦), for 𝑧 = 𝑥+i𝑦
if we choose an even order. For the body combinations within the same
WEC system we choose an order 𝑁K,𝑛𝑛 = 4,∀𝑛 ∈ {𝑏𝑖, 𝑝𝑖, 𝑖 ∈ {1, 2, 3}}.
The change of the sign in 𝐵(𝜔) for the cross coupling combinations
requires a higher order of approximation 𝑁K,𝑛𝑚, i.e. 𝑁K,𝑛𝑚 = 8,∀𝑛, 𝑚 ∈
{𝑏𝑖, 𝑝𝑖, 𝑖 ∈ {1, 2, 3}}, 𝑛 ≠ 𝑚, since the resulting IRF has its peak not at
𝑡 = 0, but shifted in time due to the wave propagation from one WEC
to another, pictured in right plot in Fig. 7 with the dotted black line
( ). We choose the example of the buoys for illustration purposes,
since in this case we observe the worst fit of all body combinations, to
show the limitations of this method for the cross coupling. However, the
characteristic behavior is mapped with the right amplitude, illustrated
in dashed blue ( ), thus we conclude that the results are reasonable
for first investigations. The causal discrete transfer functions obtained
with Prony’s method are converted from discrete to continuous time
with the used sampling frequency of 𝑓samp = 25Hz and subsequently
converted to the state space form (26).

The hydrodynamic excitation force coefficients and the correspond-
ing phase coefficient complete the necessary parameters for the time
domain simulation of (23). In Fig. 8 the combination of 𝛤𝑏1 (𝜔, 𝜃) and

Fig. 8. Excitation force coefficients 𝛤𝑏1 (top), 𝛤𝑝1 (bottom) and their corresponding
phase coefficient 𝛷𝑏1 , 𝛷𝑝1 on the right for Buoy 1 and Piston 1, respectively.

𝛷𝑏1 (𝜔, 𝜃) (top row, see Eq. (5)) and the pair of the corresponding piston
𝛤𝑝1 (𝜔, 𝜃), 𝛷𝑝1 (𝜔, 𝜃) (bottom) is illustrated as an example. We observe
the result for Buoy 2 if we mirror the current plot at 𝜃 = 0◦, due to
the symmetry how the incident waves hit the array. The plot for Buoy
3 is symmetric with respect to the 𝜃 = 0◦ axis, due to its position on
the 𝑥-axis which corresponds to the 𝜃 = 0◦ axis. For the pistons we
find 𝛤𝑝𝑖 (𝜔, 𝜃) to be independent of 𝜃. However, the associated 𝛷𝑝𝑖 (𝜔, 𝜃)
do vary in the manner described for the buoy. To compute 𝐹 Ex(𝑡)
for the irregular wave case we use a significant wave height 𝐻s and
dominant period 𝑇p to characterize a Pierson–Moskowitz (PM) wave
energy spectrum with the parameters given in Falnes (2002) and define
an incident wave angle 𝜃. The PM spectrum is sampled at 𝑁w = 200
wave frequencies 𝜔𝑘, equally distributed over 0.2 rad s−1 to 2.4 rad s−1.
During the summation over the wave frequencies 𝛤𝑖(𝜔𝑘, 𝜃) and 𝛷𝑖(𝜔𝑘, 𝜃)
are interpolated for constant 𝜃 and the corresponding 𝜔𝑘 on the basis
of the illustrated coefficients for the corresponding body. Finally the
shift around the random phase components 𝜙𝑘 gives us our six wave
excitation force time series. Regular waves are linearly scaled with
𝛤𝑖(𝜔, 𝜃) to obtain the excitation force signals for regular wave scenarios.

3.2. Stabilizing control law

Henriques et al. develop an optimal feedback control law for a
practical implementation in Henriques et al. (2017a), based on the
maximization of the aerodynamic efficiency of a fixed OWC, equipped
with the same biradial turbine, namely,

𝑢gen = 𝑎gen𝛺
𝑏gen−1. (34)

The authors compute the time-averaged turbine output power for sev-
eral sea states as a function of the rotational speed to find an optimal
set of angular velocities and determine the constants 𝑎gen and 𝑏gen with
a least-squares fitting. In this work we set the coefficients to 𝑎gen =
0.0001 and 𝑏gen = 3.6 following Henriques et al. (2017a) for the same
order and we cannot guarantee optimal values for the simulated sea
state. However, they are suitable to achieve realistic results for initial
evaluation. The exponent of the rotational speed in Eq. (34) is chosen
so that the power of an ideal generator is given by

𝑃gen = 𝑎gen𝛺
𝑏gen . (35)

In this baseline model an ideal generator is assumed by means of the
electromagnetic torque applied to the turbine will directly result in an
energy conversion. For future work, several generator types will be
incorporated into the simulation environment to assess performance
using practical devices.
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Fig. 9. Averaged generated power off the array 𝑃arr in regular waves (left) and the
corresponding array interaction factor 𝑞 (right).

4. Time domain simulation

Numerical simulations of the derived state space model (23) are
conducted with MATLAB® Simulink in the time domain taking into
account the nonlinear effects of a compressible fluid in the air chamber
and the specific turbine model.

4.1. Regular waves

The first results of the generated power of the three WECs and the
corresponding array interaction factor

𝑞(𝜃, 𝑇 ) =
𝑃arr

3𝑃single
(36)

presented in Fig. 9 are obtained using regular Stokes waves of 3rd
order (Stokes, 1847) with wave height of 𝐻s = 1m from varying
incident wave angles 𝜃 and varying wave periods 𝑇 . The concept of
the interaction factor is widely used in the literature on WEC arrays
and restated in terms of the averaged power of the array 𝑃arr(𝜃, 𝑇 ) and
the averaged power of a single isolated devise 𝑃single(𝜃, 𝑇 ) in the same
wave scenario. After sufficiently long simulation time the dynamics
reach an asymptotic behavior for every 𝜃, 𝑇 combination and the last
three entire periods of the transient oscillation of each WEC are used to
compute 𝑃arr(𝜃, 𝑇 ) which is illustrated in Fig. 9 on the left. To reduce
the simulation time around five times, we use the terminal state of the
previous simulation run as initial condition for the next simulation run
with varied incident wave angle of 𝛥𝜃 = 4◦, thus reach the transient
motion in less time. We observe two peaks in the generated power for
a varying wave period, where the peak at the lower period 𝑇 = 7.3 s
results from a decreased oscillation amplitude of the water column and
an increased amplitude of the buoy, respectively. The opposite is the
case for the second peak around 𝑇 = 11.2 s, where the amplitude of
the pistons motions is higher compared to the buoy. In both cases the
relative motion between the two bodies is locally maximized, which
is typical for floating two body heaving systems, likewise observed
for linear frequency domain simulations in Gomes et al. (2012). The
energetic long periodic waves 𝑇 ≥ 14 s result in a motion of both buoy
and piston following the water surface elevation, hence the relative
motion in the floating OWC tends towards zero, likewise the generated
power. For short wave periods the excitation force converges towards
zero (compare 𝛤𝑖 in Fig. 8), resulting in minimal body motion, which
also does not yield power generation for 𝑇 ≤ 6 s. Consequently, the
peaks in the 𝑞-factor at the boundaries of the wave period range are not
of importance, since the significance is lost when dividing a numerically
small number by a small number in Eq. (36). The area of the highest
𝑞 ≥ 1.15 around 𝑇 ∈ {9.25 s…11.2 s} implies that the power generation
inside the array is increased due to an increase of the pistons’ motion,
which can be explained by the hydrodynamic interactions affecting the
water columns more relative to the buoys.

Fig. 10. Averaged generated power off the array 𝑃arr in irregular waves versus
significant wave periods 𝑇s and mooring stiffness 𝐾m for varied incident wave angles
𝜃 in each subplot. The corresponding array interaction factor 𝑞 is represented by the
bars’ color.

4.2. Irregular waves

For more realistic sea states we choose a wave which is irregular
in the amplitude, but otherwise propagating as a plane wave, to be
able to distinguish possible interaction effects from the approximation
of the diffraction and radiation problem inside the array with the
evaluation of the generated power compared to the power generated
for the same wave in an isolated device and in terms of differences in
the motion of the bodies. A wave characterized with the PM spectrum
based on 𝐻s = 2m and different peak periods 𝑇p = {6 s, 7 s,…13 s}
is the foundation for the excitation force. The incident wave angle is
chosen to be 𝜃 = {−15◦, 0◦, 15◦, 30◦}. A further parameter we vary
is the mooring stiffness 𝐾m = {60 kN∕m, 80 kN∕m… , 140 kN∕m} to
investigate its relevance to the output. The generated power 𝑃arr is
averaged over the time window between 60 and 660 s, since we start
the simulation from the initial equilibrium and wait for steady-state
motion. In Fig. 10 𝑃arr is illustrated versus 𝐾m and 𝑇p in each subplot
for a different 𝜃. It has to be noted that the subplots are rotated to
enable visualization of each bar, but consequently the abscissa and
ordinate are decreasing. Furthermore, although unity remains the same
color as in Fig. 9, the colormap has different limits, enabling the
identification of the maximum and minimum simulated 𝑞-factor for
the irregular waves scenarios in terms of the color of the bars. Due to
symmetry the scenarios for 𝜃 = 15◦ and 𝜃 = −15◦ are equal, ignoring
minor numerical variations. Except for 𝑇p = 6 s (decrease in excitation,
compared to regular waves in Fig. 9) a decreasing 𝐾m yields an increase
in 𝑃arr, since the buoys are less restricted in motion. For the irregular
waves scenarios we do not observe the two peaks in power as in the
regular waves case in Fig. 9 over the peak wave period but a more
evenly distributed power generation. Generally, 𝑞 > 1 for 𝑇p > 9 s,
while the highest interaction factor is achieved for 𝜃 = 0◦, 𝑇p = 12 s
and 𝐾m = 140 kN∕m. However, the difference in 𝑞 is small compared to
the regular wave scenario.

Information about the time evolution of the states can be char-
acterized by a single simulation run. We set 𝐻s = 2m and 𝑇p =
10 s to emulate a wave which is typically observed in the US Pacific
Northwest (Lenee-Bluhm et al., 2011). The mooring stiffness is set to
𝐾m = 80 kN∕m, equal to the regular wave scenario and an incident
wave angle 𝜃 = 30◦ results in different arrival times at each WEC, such
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Fig. 11. Heave positions of all the bodies inside the array.

Fig. 12. Rotational speed and chamber pressure of WEC 1.

that the peaks of the bodies positions are shifted in time. In Fig. 11 we
show the heave positions between 460 and 520 s, since characteristic
effects can be observed during this time window. The solid and dashed
lines represent the positions of the buoys while the dash-dotted and
dotted lines of the same color and marker represents the corresponding
piston. In the sketch of the array in Fig. 4 the first buoy with heave
position 𝑥1 is the furthermost one, thus it is reached first by the wave,
since 𝜃 > 0 given in orange ( ) with circled marker followed by the
second WEC system illustrated with the blue green dashed line ( )
with square markers. The black dashed plot ( ) with cross markers
shows the motion of the third buoy, which is always reached last for
the used 𝜃. The differences between a local extrema for different WECs
are hard to notice with the naked eye, but e.g. the peak of 𝑥1 before 𝑡 =
490 s is 0.025m higher than those of the two other buoys. Generally it
can be observed that the motion of the piston is shifted from the buoys
motion therefore a varying relative motion inside the two-body heaving
system results, leading to the pressure change in the air chamber. This
pressure 𝑝1 is illustrated for the first WEC with the same orange in
Fig. 12 as dotted line ( ) with triangle markers and oscillates about
the atmospheric pressure. A turbine is accelerated for an inflow as well
as an outflow, thus the high frequency oscillation on the rotational
speed graph in solid orange ( ) has half of the wave and bodies
period. We notice high variations in 𝛺, for example from 480 to
490 s since it follows the peaks in the chamber pressure, reflecting the
varying oscillation amplitudes of our WEC systems. During this period
WEC 1 picks up on motion amplitude in addition to a higher difference
to the change in the relative position with the corresponding OWC.
This behavior results in an unsteady power output, because in this case
we do not control the rotational speed based on any other information
apart from itself.

5. Discussion

As illustrated by the motions in Fig. 11 the differences between
distinct systems are small compared to the total range of motion in
irregular waves. Additionally, in more realistic sea states the computed
interaction factor 𝑞 only varies by ≈ 5%. This implies that the radiation

and diffraction problem inside the investigated array has no greater
impact for this specific example, which can be explained with the
geometry of the Marmok-A-5 devices. The ratio of the diameter 𝑑b to
the draft is small, about 0.14, which is connected to weak radiation
properties. Furthermore, the separation distance compared to diameter
the has to be mentioned. With 𝑑s = 8𝑑b the buoys are far apart.
However, 𝑑s is chosen this way to guarantee that maintenance ships can
navigate between the WEC devices without colliding with them, since
the roll and pitch motion is not yet evaluated. In Appendix an outlook
to include other degrees of freedom and the phenomenon of parametric
resonance is given. The simulation results herein presented, after in-
specting the hydrodynamic coefficients of our case study, appear to be
reasonable. The added mass and especially its inverse has the largest
entries on its diagonal, which implies a high dependency on its own
component in the composite force for every WEC body. Additionally,
the magnitudes of the IRFs are small compared to the mass dimensions
of the bodies, with the cross coupling terms being even smaller by at
least an order of magnitude. The diffraction inside the array, reflected
by the differences between the excitation force coefficients, is as well
marginal and the excitation is much more related to the wave frequency
compared to anything else. Nevertheless, the simulation results in
regular wave suggest that the employment of this specific floating
OWCs in an array can widen the range of regular waves frequencies
desirable for energy conversion, which agrees with 𝑞 > 1 for 𝑇p > 9 s
for the irregular case. However, we also observe 𝑞 below unity for some
wave periods, implying destructive interference, which suggest future
investigations of different array configurations to be able to optimize
the layout and separation for different wave climates for the floating
OWCs and compare the results to existing approaches on different two-
body heaving systems (de Andrés et al., 2014) or fixed OWCs (Sharp
et al., 2017, 2018). The differences resulting from varying incident
wave angle 𝜃 are again marginal due to the symmetry of the array, but
cannot be generalized for non-symmetric configurations. Subsequent
work will also consider the effects of viscous drag forces, to obtain a
more practical representation. The PTO and the air chamber model are
highly nonlinear and the strong changes in simulated rotational speed
in Fig. 12 suggest further investigations of a sliding mode controller,
which with its discontinuous nature should perform well in maintaining
a constant 𝛺. This rotational speed will be set to a value resulting in an
improved efficiency of the turbine. To this date the authors do not know
of any studies addressing optimal control of floating OWC parks with
nonlinear PTO. Future research will aim for semi-global control of sub-
array off several devices, followed by decentralized supervising control
for entire WEC parks. Large arrays of WEC devices will need different
methodologies to model the hydrodynamic interactions. This work can
serve as basis for the comparison of results, when methods to derive
the diffraction and radiation capabilities based on the hydrodynamics
of an single device, like McNatt et al. (2015) are adapted to floating
OWCs.

6. Conclusion

We derived a methodology to efficiently model full scale arrays of
floating OWCs taking hydrodynamic interactions between all distinct
bodies into account without making simplification in the devices ge-
ometries as well as connected them to a nonlinear air chamber/turbine
model. The approach is neither limited to an symmetric array nor to
identical devices but to the availability of the linear hydrodynamic
coefficients simulated for the entire configuration. The case study of
the Marmok-A-5 is used, since it is one kind of device that has ac-
tually been deployed and tested in the ocean. We found that for the
assumed separation between the single devices, we could neglect the
cross coupling between the WECs in irregular waves but not in regular
waves. However, different mooring configurations or further insights
in the real world constraints of the array placement could justify a
smaller separation and consequently higher hydrodynamic interactions.
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Nevertheless, the analytic model can be used to design more advanced
control strategies like nonlinear sliding mode control to maintain a
constant rotational speed, or methods aiming to optimize the power
generation, for example by means of smoothing the power output. The
next step in our research will consider semi-global control approaches
for sub-arrays, followed by supervisory control for entire WEC parks.
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Appendix. Multiple degrees of freedom

Increasing the number of the degrees of freedom (DoF) in the
presented coupled model can be achieved by expanding the system
equations, namely by adding more spatial states to the sub state vectors
𝑥pos and consequently to 𝑥vel. The procedure is illustrated with help
of the roll angle 𝜙 as an example. The time derivative of the bodies
velocities from (23) evolves to

�̇�vel =
[

�̈�
�̈�

]

=

⎡

⎢

⎢

⎢

⎣

(𝑨∞)−1
(

𝑨∞
𝑧𝜙

)−1

(

𝑨∞
𝜙𝑧

)−1 (

𝑨∞
𝜙𝜙

)−1

⎤

⎥

⎥

⎥

⎦

[

 (𝒙)
 𝜙(𝒙)

]

. (37)

Here
(

𝑨∞
𝑖𝑗

)−1
∈ R2𝑁×2𝑁 is defined in the same manner as (𝑨∞)−1 is

defined in section 2.3 and the subscripts denote the interaction from
the DoF 𝑗 to 𝑖. The accumulated torques on the roll axis are represented
by  𝜙(𝒙) and would not act on the pistons. The second part of radi-
ation problem (Eq. (6)) can be obtained as described in Section 3.1.
However, the necessary interaction terms increase quadratically with
the number of DoFs 𝑁DoF, namely (2𝑁𝑁DoF)2. Therefore a trade off
between accuracy and computational effort has to be obtained by
neglecting the non-significant interactions. The coupling of at least two
DoFs enables the phenomenon of parametric resonance to occur, under
the condition that the incident wave frequency is approximately twice
the pitch or roll natural frequency (Rodríguez and Neves, 2016; Rho
et al., 2005). This dynamic instability is commonly found in spar type
oscillating water columns extracting energy in heave direction (Gomes
et al., 2017). The state equations are further coupled by the metacentric
height (GM) in  𝜙(𝒙), which varies with instantaneous heave position
of the device, directly affecting the center of buoyancy of the spar. If
the GM becomes negative, the motion becomes unstable, decreasing
the extracted power, since kinetic energy is transferred from the heave
mode to the pitch mode (Rho et al., 2005). Those phenomena have to
noted, if more detailed studies of the motion of WEC farms are desired.
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