
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-03-01

Neutral Parametric Database, Server, Logic Layers,
and Clients to Facilitate Multi-
EngineerSynchronous Heterogeneous CAD
Kelly Eric Bowman
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Bowman, Kelly Eric, "Neutral Parametric Database, Server, Logic Layers, and Clients to Facilitate Multi-EngineerSynchronous
Heterogeneous CAD" (2016). All Theses and Dissertations. 5656.
https://scholarsarchive.byu.edu/etd/5656

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5656?utm_source=scholarsarchive.byu.edu%2Fetd%2F5656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Neutral Parametric Database, Server, Logic Layers, and Clients to Facilitate Multi-Engineer

Synchronous Heterogeneous CAD

Kelly Eric Bowman

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

C. Greg Jensen, Chair
Walter E. Red

John L. Salmon
Christopher A. Mattson

Alan R. Parkinson

Department of Mechanical Engineering

Brigham Young University

March 2016

Copyright © 2016 Kelly Eric Bowman

All Rights Reserved

ABSTRACT

Neutral Parametric Database, Server, Logic Layers, and Clients to Facilitate Multi-Engineer
Synchronous Heterogeneous CAD

Kelly Eric Bowman
Department of Mechanical Engineering, BYU

Doctor of Philosophy

Engineering companies are sociotechnical systems in which engineers, designers, analysts,
etc. use an array of software tools to follow prescribed product-development processes. The pur-
pose of these amalgamated systems is to develop new products as quickly as possible while main-
taining quality and meeting customer and market demands. Researchers at Brigham Young Uni-
versity have shortened engineering design cycle times through the development and use of multi-
engineer synchronous (MES) CAD tools. Other research teams have shortened design cycle-times
by extending seamless interoperability across heterogeneous design tools and domains. Seamless
multi-engineer synchronous heterogeneous (MESH) CAD environments is the focus of this disser-
tation. An architecture that supports both MES collaboration and interoperability is defined, tested
for robustness, and proposed as the start of a new standard for interoperability. An N-tiered ar-
chitecture with four layers is used. These layers are data storage, server communication, business
logic, and client. Perhaps the most critical part of the architecture is the new neutral parametric
database (NPDB) standard which can generically store associative CAD geometry from hetero-
geneous CAD systems. A practical application has been developed using the architecture which
demonstrates design and modeling interoperability between Siemens NX, PTC’s Creo, and Das-
sault Systemes CATIA CAD applications; Interoperability between Siemens’ NX and Dassault
Systemes’ CATIA are specifically outlined in this dissertation. The 2D point, 2D line, 2D arc, 2D
circle, 2D spline, 3D point, extrude, and revolve features have been developed. Complex models
have successfully been modeled and exchanged in real time across heterogeneous CAD clients and
have validated this approach for MESH CAD collaboration.

Keywords: Multi-user CAD, Heterogeneous CAD

ACKNOWLEDGMENTS

Research of this type does not happen in a vacuum. I would like to thank those who have

worked on this problem before me because their ideas were inspirational. I would like to thank all

the members of the BYU CADLab, including Dr. Jensen, Dr. Red, and Dr. Salmon. Thanks go to

Dr. Tew for his contributions to our server. I could not have done this without Raytheon Missile

Systems or the members of the National Science Foundation Center for e-Design: Belcan, Boeing,

PCC Airfoils, Pratt & Whitney, CD-adapco, UTC Aerospace Systems, and ARDEC.

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

LISTINGS . viii

NOMENCLATURE . ix

Chapter 1 Introduction . 1
1.1 Synchronous vs Asynchronous Collaboration . 5
1.2 Homogeneous vs Heterogeneous Collaboration 6
1.3 Neutral Parametric Database Mathematical Model 8
1.4 Neutral Parametric Database Structured Query Language Model 9
1.5 Multi-Reference Interface Inheritance . 9
1.6 Multi-engineer Synchronous Heterogeneous Server, Logic, and Client 9

Chapter 2 Background . 10
2.1 Current Neutral Formats . 10
2.2 Multi-Engineer Synchronous CAD . 14
2.3 Architecture . 17
2.4 NPDB Mathematical Model . 18
2.5 NPDB Structured Query Language Model . 19
2.6 Multi-Reference Interface Inheritance . 20
2.7 MESH Server, Logic, and Client . 22
2.8 Background Summary . 23

Chapter 3 Neutral Parametric Database Mathematical Framework 24
3.1 Neutral Representation . 25

3.1.1 Sketch Point . 28
3.1.2 Sketch Line . 29
3.1.3 Sketch Arc . 29
3.1.4 Sketch Spline . 30

3.2 Asynchronous Communication Support . 31
3.2.1 Database Normalization . 32
3.2.2 Object-Oriented Mapping . 34

3.3 Remarks on NPDB Mathematical Framework . 35

Chapter 4 Neutral Parametric Database Structured Query Language Model 37
4.1 Methods . 38

4.1.1 Determining a Feature Set . 39
4.1.2 Defining a Neutral Format . 40
4.1.3 MUObject Structure . 40

iv

4.1.4 Client-Server Architecture . 41
4.1.5 NPDB Verification . 41

4.2 Implementation . 41
4.2.1 3D Point Implementation . 42
4.2.2 2D Point Implementation . 44
4.2.3 2D Line Implementation . 45
4.2.4 2D Spline Implementation . 46
4.2.5 Feature Capabilities and Limitations . 48
4.2.6 Remarks on NPDB Structured Query Language Model 49

Chapter 5 Multi-Reference Interface Inheritance . 50
5.1 CAD Object Mirroring . 51
5.2 Referential Integrity . 52
5.3 Implementation . 54
5.4 Remarks on Multi-Reference Interface Inheritance 56

Chapter 6 Multi-User Heterogeneous Server, Logic, and Client Layers 57
6.1 The Psuedo-Singleton Pattern . 58
6.2 Agnostic Business Layer . 67
6.3 Modeling Demonstration . 68
6.4 Remarks on Multi-User Heterogeneous Server, Logic, and Client Layers 70

Chapter 7 Conclusions and Future Work . 71
7.1 Dissertation Review . 71

7.1.1 Neutral Parametric Database Mathematical Model 71
7.1.2 Neutral Parametric Database Structured Query Language Model 72
7.1.3 Multi-Reference Interface Inheritance . 72
7.1.4 Multi-User Synchronous Heterogeneous Server, Logic, and Client 73

7.2 Future Recommendations . 74

REFERENCES . 76

v

LIST OF TABLES

3.1 Comparison of Data Storage Methods . 32

4.1 Interoperability Program Initial Feature Set . 40

5.1 Reserved Names Associate an Interface with a Navigation Property 56

vi

LIST OF FIGURES

1.1 Ships Are Large, Complex Design Problems . 2
1.2 Initial Waterlines on a Conceptual Hull . 3
1.3 A Typical Product Development Process Has Several Sources of Feedback Loops . 4
1.4 Social Situations Are Easy to Navigate Because We Are Aware of Each Other . . . 5
1.5 Multi-engineer Synchronous CAD Reduces Feedback Loops 6
1.6 Multi-engineer Synchronous Heterogeneous CAD Eliminates Many Feedback Loops 7

2.1 World of Warcraft Gameplay . 15
2.2 Starcraft Gameplay . 15
2.3 Minecraft Gameplay . 16
2.4 N-Tier Architecture . 17
2.5 UAV Designed in 1.5 Hours Collaboratively Compared to 9 Hours Alone 18
2.6 The Sketch Creation Dialog in Siemens NX 8.0 References either a Planar Face or

a Plane. 22

3.1 Graphical Representation of a CAD Part . 26
3.2 Sketch Arc with Redundant Data . 33
3.3 Sketch and Sketch Arc that Meet First Normal Form 33
3.4 Part Database Diagram . 34
3.5 Part, Sketch, and Sketch Arc without Object Oriented Hierarchy 35
3.6 Part, Sketch, and Sketch Arc with Object Oriented Hierarchy 36

4.1 Interoperability Program Architecture . 43
4.2 NPDB For 3D Point Feature . 44
4.3 NPDB for 2D Point Feature . 46
4.4 NPDB for 2D Line Feature . 47
4.5 NPDB for 2D Spline Feature . 48

5.1 Database Schema for Sketch Features and Plane Features. 52
5.2 The Planar Reference Field Is Associated with the Generic Object Table. 53

6.1 CAD Data Should Be Represented as a Directed, Acyclic Graph 58
6.2 A Consistency Manager Is the Intuitive Approach to Maintain Model Build Order . 59
6.3 A Sample DAG of a CAD Part with a Line Between Two Points 62
6.4 Multiple Operators Collaborating in Real Time in a Heterogeneous CAD Environ-

ment . 69
6.5 Sample Workflow Using a MES Heterogeneous CAD Environment 70

vii

LISTINGS

6.1 The Singleton Design Pattern . 60
6.2 The Pseudo-Singleton Design Pattern . 61
6.3 Base Object Implementation using the Pseudo-Singleton Pattern 63
6.4 3D Point Implementation . 64
6.5 Implementation of the Pseudo-Singleton Pattern 65
6.6 CreateCATIASphere Method Demonstrating Pseudo-Singleton Pattern Use 66

viii

NOMENCLATURE

API Application Programming Interface
BREP Boundary Representation
B Serial Fraction of Algorithm
CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Aided Manufacturing
CAx CAD/CAE/CAM, etc.
IAB Industrial Advisory Board
IGES Initial Graphics Exchange Specification
ISO International Organization for Standards
MES Multi-Engineer Syncronous
MESH Multi-Engineere Synchronous Heterogeneous
MMORPG Massive Multiplayer Online Role Playing Game
n Number of Processors
NIST National Institute of Standards and Technology
NMC Neutral Modeling Command
NPDB Neutral Parametric Database
NSF National Science Foundation
NXConnect MUS NX Plugin Developed at Brigham Young University
OEM Original Equipment Manufacturer
S Processor Speed Up
SMCH Solid Model Construction History
SQL Structured Query Language
STEP Standard for the Exchange of Product Model Data (ISO 10303)
UFO Universal Features Object
UML Unified Modeling Language
UPR Universal Product Representation

ix

CHAPTER 1. INTRODUCTION

The National Institute for Standards and Technology (NIST) performed a study in 1999

and made a conservative estimate that inadequate interoperability cost the automotive industry

one billion dollars per year [1]. Interaction with Industry Advisory Board (IAB) members of the

National Science Foundation (NSF) Center for e-Design has revealed similar waste in the U.S.

aerospace industry. The cost of interoperability problems comes from the time and money spent

to convert and rework data that was not converted correctly or suffered data loss. Iterating on a

design is an essential aspect of engineering to produce an optimal design, so if the turnaround time

on each iteration could be shortened, then time and money would be saved.

Engineering companies are sociotechnical systems in which engineers use an array of soft-

ware tools and methods to execute standard product development processes. Their practices and

purposes are to design new products in as short of a design cycle as possible while maintaining

high product quality and meeting or exceeding customer demands. Speedup of a parallel comput-

ing system is based on number of processors and S(n), and is modeled by Amdahls law [2]

S(n) =
1

B+ 1
n(1−B)

(1.1)

where n is the number of threads of execution and B is the fraction of the algorithm that is strictly

serial. Generalizing speedup of any complex system, such as design, due to adding processors

is bounded by what portion of the tasks can be run in parallel and what portion must be run in

serial. In this dissertation we propose a new multi-engineer synchronous heterogeneous (MESH)

CAD application architecture that will allow improved parallelization of collaborative design and

therefore increase the overall speedup of the engineering sociotechnical system’s design cycle.

Another way of thinking of the design process is as a divide-and-conquer algorithm where

an increased number of looping operations means a reduced algorithmic speed. Within a typical

product development process, where many activities are serialized by workflow programs and

1

tracking, several sources of turnback/feedback loops occur when teams attempt parallel work.

Historically, whenever these loops appear, supervisors, managers, and lead engineers rework and

serialize the workflow so that no two individuals are using or touching the same set of data, thus

greatly restricting collaboration and parallelization.

For example, large ship designs and construction are an extremely complex type of project

undertaken by engineers. Clearly they represent the largest man-made mobile structures and are

vitally important, carrying over 90% of global trade and moving massive numbers of passengers.

Ships like the Allure or Oasis of the Seas exceed 350 meters in length, 60 meters in height and

carry more than 6,000 passengers (see Figure 1.1a). Or, consider the CSCL Globe or Barzan at

over 400 meters in length, capable of transporting 19,000 containers (see Figure 1.1b).

(a) Oasis of the Seas (b) CSCL Globe

Figure 1.1: Ships Are Large, Complex Design Problems

The process of designing any ship begins as a huge systems design, layout, and analysis

project to predict and determine the characteristics and performance of the ship prior to its con-

struction. Owners want to know the costs to build, operate, and maintain [3]. Before computers,

this was all done on very large design tables with the use of ship curves backed by a myriad of hull

form calculations. Figure 1.2 illustrates a graphical representation of an initial layout of water-

lines, butt lines, and station lines for a conceptual hull. Imagine doing this a dozen or more times

before getting the system parameter correct in order to begin the phase of detail design. Before

computers, large teams of ship designers worked in close collaboration with each other to ensure

quick and seamless tweaking of the conceptual design. These teams consisted of designers and

naval architects working side-by-sidesteam on J-size Mylar and/or velum sheets of paper.

Today, designers and naval architects are using Computer-Aided Design (CAD) software

to conceptually design and layout. While these systems have added greater detail and accuracy,

2

Figure 1.2: Initial Waterlines on a Conceptual Hull

they also limit access to the part, sub-assemblies, and master assembly. Only one person can have

access to any one CAD file at a given moment in time. Also challenging is the fact that a 3D

layout of a ship consists of millions of part files. The master ship assembly is a file consisting of

location, orientation, and component information on all the millions of digital parts, which only

one individual can checkout and manipulate. This is one of the major bottlenecks in todays CAD

systems for naval architecture. These digital ships can be 350-400 meters in length but only one

designer, architect, or engineer can be in any single part, sub-assembly, or master ship assembly.

Pre-CAD naval design was much more a team effort on the largest most complex part and assembly

models and drawings.

Please note that engineers who collaborate on projects must resolve design conflicts regu-

larly, which causes costly design feedback loops. Next, take note that data must often be converted

before it can be sent to suppliers. This creates another form of feedback loop; whenever there is

data conversion, there is a chance for data corruption or data loss, which triggers a feedback loop.

Finally, whenever supply chain members merge their work there is a chance for a design-conflict

feedback loop. All these types of feedback loops are more frequent and costly the larger the project

and the team. They are also more costly the later they occur within a project lifecycle.

In fact, surveys by NIST and feedback from industry members have shown the high costs

of inadequate interoperability between CAD systems. As stated earlier regarding Amdahl’s law,

3

it will be necessary to improve the parallelization of design tasks in order to accelerate design

processes and reduce non-recurring production costs. A flow chart that represents a typical design

work flow is shown in Figure 1.3.

Figure 1.3: A Typical Product Development Process Has Several Sources of Feedback Loops

In this simplified product development process, there are three sources of feedback loops

that prevent parallel workflows. First, when designers work in parallel without awareness of each

others actions, design conflicts frequently occur and are more severe in proportion to the length

of time the designers worked in isolation from each other. Second, whenever data is translated

from one digital application to another (like one CAD system to another), data is often corrupted

and engineering knowledge is lost, which leads to downstream confusion and thus feedback loops.

This commonly occurs between OEMs and suppliers because both parties must translate between

the different CAx software they use. Finally, there are cases where supply-chain members work

designs in parallel with the OEM. When they synchronize their work they not only convert their

4

data between CAD systems (the second cause of feedback loops), but they must also resolve any

design conflicts caused from working in isolation from each other. The next few sections will

discuss the causes and solutions of these feedback loops in more detail.

1.1 Synchronous vs Asynchronous Collaboration

The first source of collaboration feedback loops is internal design conflicts. These occur

because of the inherently asynchronous nature of collaboration using modern CAD software. That

is to say that engineers using CAD software may be working on the same product at the same

time, but they cannot see what each other is doing and thus cannot work together effectively. On

the other hand, individuals collaborating synchronously are aware of what each other is doing and

can thus respond to each other in a social way. Social awareness is a critical concept for effective

collaboration. Below in Figure 1.4 is an image of a common social situation. Presented with this

situation, where would you sit at the table?

Figure 1.4: Social Situations Are Easy to Navigate Because We Are Aware of Each Other

The answer is obvious because you are socially aware; you can see that there is only one

seat available. It would be ridiculous to expect each member of the dinner group to select a seat

without knowing where anyone else had chosen to sit and expect them to sit without conflict, yet

this is the way we ask our engineers to work in CAx environments. We hold weekly meetings

5

to define rudimentary interfaces; following these meetings, each individual works on their own

components without awareness of what others are doing. At the next review meeting, design

conflicts are identified and resolution plans are determined and the cycle continues. In order to

reduce these costly design cycles, we have introduced the concept of awareness into the CAD

environment, changing it from an asynchronous to a synchronous collaborative environment. This

is done through multi-engineer synchronous (MES) software and can reduce the flow chart shown

in Figure 1.3 to that shown in Figure 1.5.

Figure 1.5: Multi-engineer Synchronous CAD Reduces Feedback Loops

1.2 Homogeneous vs Heterogeneous Collaboration

Collaborating across supply chains and disciplines simultaneously has the additional road-

block of working with heterogeneous data. That is to say that the data formats that different supply

chain members use to store their CAD data or the data formats that varying engineering disciplines

6

use to store their data are not the same and are not synchronously shareable. There are ways to

translate or transfer data across supply chains and disciplines, but the translations are sequential

and thus do not allow for synchronous collaboration. In order to bring the concept of awareness

to supply chain and multi-disciplinary collaboration, it will be necessary to allow for collaboration

on and synchronization of heterogeneous data.

The purpose of this dissertation is to create a system that can resolve the other types of

feedback loops by creating a multi-engineer synchronous heterogeneous (MESH) CAD system,

meaning a system that allows different CAD clients to interoperate seamlessly in real time. The

result of such an appliction would be a design process with significantly reduced feedback loops

as illustrated in Figure 1.6.

Figure 1.6: Multi-engineer Synchronous Heterogeneous CAD Eliminates Many Feedback Loops

Jensen et al. [4] have addressed “Awareness,” the first source of feedback loops through

the use of CAD tools that enable synchronous collaboration by making engineers aware of what

7

their teammates are doing. They have created a multi-engineer CAD tool, NXConnect, which is a

multi-engineer plug-in to Siemens NX®. This tool eliminates the homogeneous CAD collaboration

feedback loops by allowing engineers within a team to see, add, or manipulate each other’s work.

This turns severe design conflicts into micro-corrections that do not prohibit parallel collaboration.

Chapter 2 of this dissertation provides a review of multi-engineer Awareness, CAD interoperable

translation languages, and heterogeneous CAD. This background and foundational material allow

one to judge the merits and contributions this work provides in the following areas:

1. Neutral Parametric Database Mathematical Model

2. Neutral Parametric Database Structured Query Language Model

3. Multi-Reference Interface Inheritance

4. MESH Server, Logic, and Client Layers

5. Large-scale MESH Considerations

The next four sections (1.5–1.8) give a brief introduction into each of these topics which

are then addressed individually in their own chapters of this dissertation.

1.3 Neutral Parametric Database Mathematical Model

Modern commercial CAD systems represent their entities in a variety of different ways

which greatly restricts interoperability from one system to the next. A canonical way of repre-

senting CAD entities is essential for building a heterogeneous multi-CAD collaborative design

environment or multi-engineer simultaneous heterogeneous (MESH) system. Chapter 3 discusses

the development and benefits of a Neutral Parametric Mathematical Model. The primary benefit

of this model is that by using a core mathematical definition, the NPDB can be truly CAD-system

independent.

8

1.4 Neutral Parametric Database Structured Query Language Model

Using a core mathematical definition for data storage can ensure that any CAD application

can interoperate with the data in the NPDB, but there are other requirements for a MESH applica-

tion to function. Chapter 4 discusses the benefits and process of implementing the NPDB in SQL.

In short, the benefits are a high level of scalability and the prevention of data update anomalies

regardless of the client or clients that are making use of the database.

1.5 Multi-Reference Interface Inheritance

One key challenge when creating a neutral parametric database is handling mutable refer-

ences. For example, a sketch can be built off of a plan or a planar face. Chapter 5 describes how

references of this type can be stored generically in the NPDB while avoiding update anomalies

from heterogeneous clients.

1.6 Multi-engineer Synchronous Heterogeneous Server, Logic, and Client

In order to prove the concept of the NPDB, a fully functional MESH application was writ-

ten. Technical challenges apart from the challenges in creating the NPDB are discussed in Chapter

6. In particular, the server must function independent of client and asynchronous data must be

queried to form the CAD model tree graph in a stable way.

9

CHAPTER 2. BACKGROUND

Companies choose a CAD system based on many criteria, including cost, functionality, and

ease of use. Each CAD system has a different feature set; that is to say that while many features

overlap exactly between CAD systems, others have different but mathematically equivalent asso-

ciative definitions and yet others have an equivalent mathematical boundary representation but are

associatively incompatible.

In order for two CAD systems to truly interoperate, a engineer in each system should be

able to take advantage of all tools that system offers. So, a neutral format should support the union

of CAD features across an arbitrary set of CAD systems rather than their intersection. For example,

in Siemens NX (NX), 2D sketch points can be constrained to the quadrant boundaries of a circle

whereas in Dassault Systemes CATIA, they cannot. In order for engineers to collaborate across

these two systems, engineers using NX should be able to use that type of constraint even though it

is not supported in CATIA.

Section 2.1 will review the research that has been done in order to create a neutral CAD

file format or a robust CAD translation scheme. Follwing, section 2.2 will discuss the research that

has been done to develop MES CAD software. Finally, sections 2.3–2.7 outline the background of

each of the core research topics will be outlined.

2.1 Current Neutral Formats

In 1979, roughly 300 major engineering firms met together and proposed the International

Graphics Exchange Standard (IGES). The intent of this standard was to allow the commercial,

proprietary, non-parametric CAD systems of that day to exchange wireframe and surface data

(solid entities were not defined at this time) [5]. IGES was the first attempt at resolving data ex-

change challenges between CAD systems and is still widely used by many sectors industry. Its

primary weakness is its sole focus on transferring geometric information. Additional problems are

10

its limited geometric definitions and data corruption resulting from geometry tessellation or sim-

plification. Holes, gaps, and slivers are common in the translated or simplified geometry, which

requires significant resources to repair. IGES data corruption resulting from numerical approxi-

mations done during the outbound (CAD to IGES) and inbound (IGES to CAD) conversions must

be repaired [6]. The NPDB aims to create a fully parametric CAD data standard that resolves

these issues by not only representing resultant geometry but also storing the parametric modeling

definition engineers need in order to edit CAD data.

To improve model data representation, the Standard for the Exchange of Product Model

Data (STEP) was created in 1984 [7]. It has the advantages over IGES of storing product life-

cycle information, separating the application specific data from the general shape data, and using

a formal language to define the data structure, avoiding ambiguities when interpreting data [8].

As with IGES data corruption is a common problem. Unlike IGES, STEP is continuing to adapt

and improve. The latest developments with STEP are Solid Model Construction History (SMCH),

which is a hybrid approach [9]. B-rep and modeling construction history information are used to

define features that provide both design intent and geometry information. A drawback for porta-

bility and network transfer of SMCH is that the file size can become extremely large due to B-rep

and construction history [10]. In a multi-engineer environment that is constantly sending data back

and forth between clients, a compact data format is necessary. Light-weight data transfer is one of

the core features of the NPDB.

Another neutral format used in commercial translation software is the Universal Features

Object (UFO) used by Iyer and Ganapathi in their research [11, 12]. The program created by Iyer

and Ganapathi’s research used the UFO to transfer binary files and translate them using the Fea-

tureExchanger program. The FeatureExchanger is a collection of CAD application programing

interface (API) calls and methods that has CAD to UFO and UFO to CAD translation processes.

The UFO is a superset of all the CAD features that existed in the CAD industry at the time. The

CAD translation company Aspire3D uses the UFO to perform their translations [13]. The Feature-

Exchanger software successfully translated a feature-based model in SolidWorks to a feature-based

model in Mechanical Desktop. Ganapathi expanded the research to include CATIA V5 R8 and Un-

igraphics V 18.0 [12]. The limitation of the method is that the entire model is translated at once,

rendering it incompatible with real-time collaborative heterogeneous CAD software.

11

The macro-parametric approach introduced by Guk-Heon Choi et al. has made strides in

transferring features between heterogeneous CAD environments [10]. Choi came up with 167

standard modeling commands which were derived from the modeling commands of CAD systems.

The research produced an external GUI where the translation of macro files between CAD sys-

tems could be handled. Duhwan Mun et al. continued the macro-parametric approach research

by deciding upon a common set of modeling commands after surveying six different CAD sys-

tems [14]. A pre-processor was created that separates the source CAD system from the neutral

modeling commands and a post-processor which separates the neutral modeling commands from

the target CAD system. The pre- and post-processors map modeling commands between CAD

system and neutral representation. This research was able to successfully translate simple parts

from SolidWorks into CATIA with the feature trees in each being correct. The use of an external

program, however, deters multi-engineer CAD. Standard modeling commands do not work with

the actual feature data and therefore do not define a neutral format into which all CAD systems can

translate.

Min Li also compiled a set of modeling commands, calling them neutral modeling com-

mands (NMCs), and successfully translated data on a command-by-command basis [15–17]. Since

the model is not translated all at once, engineers are able to collaborate more effectively by see-

ing updates as another engineer makes changes to the model. Each client has an add-on that

performs the translation of modeling commands from the source CAD system into neutral mod-

eling commands. The server relays messages between clients to keep each system synchronized.

The command-by-command translation makes a multi-engineer experience possible but currently

forces each engineer to take turns making edits. In other words, it operates like a WebEx session

by passing control back and forth between engineers rather than allowing them to collaborate. The

database of modeling commands in Li’s research is a superset containing all modeling commands

found in the CAD systems surveyed. Wanfeng Dou et al., created a similar program but instead

of compiling the union of all modeling commands they created a minimum command set [18, 19].

A CAD Adaptor was attached to each CAD system that kept track of all the operations being

performed in the CAD system and prepared them for transfer. A CoCAD middleware module

converts the local operations from the CAD Adaptor to a neutral command and vice versa. Other

contributors to the NMC approach are Song [20], Chen [21], and Zhang [22]. While these ap-

12

proaches almost achieve multi-engineer CAD by allowing multiple engineers to be in a session at

the same time, they only allow one engineer to make edits at a time and so the environment does

not truly support concurrent, synchronous collaboration. Finally, their focus was on the modeling

commands themselves rather than a neutral data format with referential integrity.

Rappoport introduced a new neutral architecture called the Universal Product Representa-

tion (UPR), which provided universal support for all known data levels employed by the existing

CAD systems [23]. It represented the union of data types supported by CAD systems, not just

the intersection like other previous formats and methods. When the target CAD system doesn’t

support an incoming data type, a rewrite is performed that attempts to convert the data type into

something usable by the target. The results of this research have been implemented in the commer-

cial translation software Proficiency [24]. Feature-based CAD data translation is possible between

five high-end CAD systems with high accuracy in translation. The drawback of this approach is

that translation is tied to a binary file and occurs all at once. Bulk translation methods of this type

do not lend themselves to synchronous applications due to their high computing overhead.

Using the neutral modeling commands of the macro-parametric approach, Tae-Sul Seo

et al., presented an ontology approach [25]. The meaning, or semantics, associated with each

modeling command was added to improve the interpreting of modeling commands based on what

they were trying to create. A source ontology was created for each CAD system used along with

a shared ontology that acts as the neutral representation. Axioms were used between source and

shared ontologies to interpret the data. Sun [26] and Tessier [27] also used these methods and

developed similar programs. This approach is potentially more flexible than previous approaches

because the architecture can handle a wider variety of inputs. So far, the results of the approach

have been the translation of very simple models. The disadvantage is still the same as with previous

modeling command approaches because a neutral data representation for features is not defined and

multi-engineer interaction is still limited.

Thus, while there is a significant body of research related to heterogeneous CAD transla-

tion, there is very little with respect to multi-engineer synchronous heterogeneous CAD clients.

Existing applications that support real-time collaboration do so by requiring engineers to pass con-

trol back and forth so that while multiple engineers can observe at once, only one can make edits.

While it is a large step forward from the isolated environment of single-engineer CAD, it is not

13

synchronous collaboration. In order for synchronous collaboration to exist, the NPDB must sup-

port the qualities demonstrated by previous researchers while also resolving their weaknesses. In

addition, the NPDB must take advantage of multi-engineer technology, which will be discussed in

the next section.

2.2 Multi-Engineer Synchronous CAD

Although MES engineering software is a new development, video games have been “multi-

player” since Tennis for Two in 1958. They have been network multiplayer in real-time since

CAVE in 1975. Due to the early adoption of multi-player as an important concept in gaming,

there has been significant development in asynchronous client-server architectures that support

synchronous collaboration within the gaming industry, as well as user-interface technologies that

aid in collaboration.

Three video game genres1 of interest that have applicable collaborative technologies are

massive multiplayer online role-playing games (MMORPG), real-time strategy games, and sand-

box games. MMORPGs involve tens of thousands of gamers playing on the same server in the same

environment simultaneously. They typically control a single hero and work together in groups to

fight adversaires, defeating enemies a single player never could; World of Warcraft is an example.

Real-time strategy games are those in which small teams, with specialized personnel, build armies

and control them in real-time against other teams; StarCraft is an example. The sandbox or open-

world genre is one in which groups of people coexist in a virtual world where they can add and

remove material and elements from the game in order to create whatever they wish; Minecraft is

an example.

World of Warcraft has collaborative elements that allow very large groups of engineers to

coexist in the same virtual world. A screenshot of the gameplay can be seen in Figure 2.1.

Teammates can be identified by the green text above their heads. Each gamer can quickly see their

teammates, what they are doing, and what their status is. This allows them to work together to

accomplish tasks they could not efficiently complete alone.

StarCraft has elements that allow smaller teams to manage complex groups of virtual sol-

diers. A screenshot of the gameplay can be seen in Figure 2.2.

14

Figure 2.1: World of Warcraft Gameplay

Figure 2.2: Starcraft Gameplay

15

Note that the engineer can quickly view the army status, troop by troop. They can see and ad-

just their resources, view the status of their allies, view the overall battle, accept and carry out

objectives, and view alerts to any abnormal state.

Minecraft has features that aid groups in creating structures in collaboration. A screenshot

of the gameplay can be seen in Figure 2.3a. Note that the engineer can quickly see other players,

their health status, and an overall map of their world. The engineer interface and the building

blocks of the game are simple, but the results can be surprisingly detailed, as shown in Figure 2.3b.

(a) Minecraft engineer View (b) Complex Minecraft Design

Figure 2.3: Minecraft Gameplay

Video games have been developing synchronous collaborative technology for decades. Its

no surprise that this generation of university engineering, computer science, and information tech-

nologies researchers want their engineering applications to work in the same way. Starting in 2008,

the BYU CADLab (sometimes called the NSF Center for e-Design) researchers began studying

how to transform single engineer commercial CAx applications into multi-engineer collaborative

aware environments.

Jensen et al. have developed NXConnect which provides real-time multi-engineer model-

ing between multiple NX clients [4,28–32]. This technology is currently under commercialization.

Cai created a multi-engineer SolidWorks experience using similar ideas to NXConnect [33]. Maher

did similar research using AutoCAD [34]. While these systems support concurrent collaboration

within a homogeneous CAD environment, they do not support a synchronous heterogeneous CAD

design environment.

16

The ideal CAD environment would support concurrent collaboration with the union of

CAD features across heterogeneous CAD environments. The purpose of this research is to define

a neutral format that begins to merge the principles used to create a multi-engineer simultaneous

CAD system with those used to create a heterogeneous CAD environment.

2.3 Architecture

It is important to use efficient architectural principles in order to create software of signifi-

cant complexity . It is a widely accepted practice to use an N-tier architecture for applications that

require data storage, logic, and presentation. Separating application functions into tiers lets devel-

opers focus on specific functionality within each tier. Having a few, well-made tiers might require

more lines of code than writing a single procedural application, but each tier is much more clearly

written and if the tiers are loosely coupled tiers can be replaced individually without disrupting

the entire architecture. The tier structure used in BYU’s homogeneous multi-engineer CAD tools,

NXConnect, is shown in Figure 2.4.

Figure 2.4: N-Tier Architecture

In the NXConnect application, client applications capture each action performed by the

CAD engineers and then transmit those to a server. The server broadcasts those actions to the other

17

clients and also saves them to a database. In this way, multiple engineers can all work on the same

part at the same time.

The result is a truly collaborative CAD environment in which a team of operators are all

aware of what their teammates are doing. They can respond to each others actions and resolve

conflicts as they occur without causing costly feedback loops. For example, using multi-engineer

CAD, the UAV shown in Figure 2.5 took a student 9 hours to model but can be modelled in only

1.5 hours by a team of six students.

Figure 2.5: UAV Designed in 1.5 Hours Collaboratively Compared to 9 Hours Alone

This environment makes operators aware of each others actions and thus facilitates real-

time collaboration. The same effect, but in a heterogeneous CAD environment, is the goal of this

dissertation and so key changes and improvements must be made to the NXConnect architecture.

2.4 NPDB Mathematical Model

The most basic requirement of any CAD data format is that it represents the current state

of the models under work. This is a trivial requirement for homogeneous CAD formats but not

for heterogeneous CAD formats. Given a neutral data format, a CAD system should be able to

read from and write to the neutral format and produce the same geometric result as another CAD

system. An individual from one company or discipline cannot effectively collaborate with someone

from another company or discipline using a different CAD system if they cannot both read and edit

geometrically equivalent CAD models.

As stated earlier, there are many who have worked toward interoperability between hetero-

geneous CAD environments. The primary approach of these researchers has been to translate from

18

one system to another using APIs like the macro-parametric approach developed by Choi [10]. The

MESH architecture discussed in this dissertation takes a different approach. It develops a method

to store parametric CAD data persistently in a database. This neutral parametric or NPDB is the

foundation of the MESH CAD software developed in this dissertation. The contribution of this

research is an architecture that combines the multi-engineer functionality developed by Jensen et

al. with the heterogeneous technologies developed elsewhere. This new technology can resolve

the third type of feedback loop where suppliers collaborate in parallel using heterogeneous CAD

clients. The foundation of such an architecture is a data storage format that transfers full-fidelity

models between heterogeneous CAD clients and can support asynchronous read/write operations

from numerous clients. In order to transfer engineering knowledge across multiple heterogeneous

clients, the data format should be neutral and parametric. In order to support real-world engineer-

ing projects the data should persist in a database, thus the Neutral Parametric Database (NPDB)

format will be discussed in this dissertation and proposed as a new heterogeneous CAD standard.

2.5 NPDB Structured Query Language Model

Referential integrity in a CAD system provides consistency and stability in storing the data

for the model. This is especially important in CAD translation software because the data is at the

center of the process. Deficiencies in referential integrity are the source of data corruption when

using existing neutral formats. The NPDB uses a relational database that links tables together

using primary and foreign keys to preserve data consistency. This approach allows the model to be

the same on all CAD systems. The language chosen to represent this relational database was the

Structured Query Language (SQL). It is possible that Li used a similar database storage method

but that is not clear from the literature [15–17]. If a SQL model was used then it was not the focus

of the publications.

Multi-engineer CAD interaction allows multiple people who are geographically dispersed

to create and edit a model collaboratively in real time. NXConnect, developed by BYU, suc-

cessfully implemented a multi-engineer approach between NX clients [4]. This research has used

the multi-engineer approach of NXConnect, which has a client-server architecture that can handle

messages asynchronously while supporting modeling synchronously. Multi-engineer capability is

the future of CAD modeling and greatly improves collaboration across the supply chain.

19

The BYU CADLab has been researching new tools, methods, and data structures to support

the needs of its industrial members. The main body of this research has addressed the long lead

times required to design complex mechanical components and assemblies by developing multi-

engineer synchronous collaborative design tools. These tools reduce costs by reducing the time

to design long lead time components and thus overall design cycle times. The NPDB defines the

neutral data structure for many basic CAD features to enable translation between heterogeneous

CAD environments. The architecture of the NPDB supports the multi-engineer CAD initiatives

of the lab and is currently being developed to promote interoperability between NX, CATIA, and

Creo CAD systems. The NPDB for a core set of features is defined in this dissertation and used to

demonstrate multi-engineer data interoperability between Siemens NX and CATIA CAD systems.

2.6 Multi-Reference Interface Inheritance

Another important aspect of a CAD data format is that it support associative geometry.

Associativity is the relationship between CAD features and is included in homogeneous CAD

formats. For example, an associative line stores a pointer to 3D point features for its endpoints

rather than the endpoint coordinates themselves. In this way, if one of the 3D points is edited, all

associated geometry is automatically updated. This builds design intent into the models, which

helps engineers collaborate with each other, and it facilitates editing the model without creating

invalid geometry, which speeds up the design iteration process.

The approaches that have stemmed from Choi, Li, and Rappoport’s work [10, 16, 17, 23]

primarily focused on data translation rather than data neutralization and storage. Because of this,

there has been very little discussion on how to store feature-to-feature references. Their publica-

tions either used text files, temporary classes, or did not outline their data storage methods. So, one

important question that remains is how to store multi-reference types such as planar faces where

more than one feature type could be referenced.

Most modern CAD packages store data in a proprietary format and only support inter-

operability through the translation of boundary representation (BREP) data through formats like

IGES and STEP. BREP data is the resulting geometry of a CAD part rather than the editable,

parametric definition. While this translation method has been extensively and successfully used in

industry, the translation process does not result in associative geometry, limiting the applications

20

of the transferred model. By only translating BREP data, design intent and the ability to edit are

lost during translation. Any modifications or adjustments to the model must either be made on

the originating system or redesigned in a new system that adds constraints and limitations to the

design process. On top of these limitations, this method is inherently single-engineer. Before a

design can be shared, it must be exported in a neutral format and sent to the end-engineer. Since

only one engineer at a time can work on the part in a workflow like this, concurrent engineering is

severely impeded.

A number of solutions have been proposed and developed to enhance the productivity and

fidelity of design sharing while maintaining design intent. MES CAD implementations, which uti-

lize a central server to route CAD commands to multiple clients, are able to accomplish the sharing

of both high-fidelity models and design intent by sharing feature information. These systems al-

low multiple engineers dispersed both in time and space to view and actively contribute to a CAD

model. While there are multiple implementations of this client-server architecture, those utilizing

a thin-server, thick-client scheme are able to work with the commercial CAD systems used in in-

dustry. On this system, when a engineer performs an operation, data defining the operation is sent

to the server and redistributed to all other clients. Each client machine then performs the command

on the local system, generating the model. To support heterogeneous CAD environments simul-

taneously, CAD commands performed on a local machine must be translated to a neutral format

before being transmitted to remote clients. The neutral format must contain all the data to perform

the operation in any other supported CAD system. An example of this type of system is CAD In-

terop, a MESH CAD plug-in for Siemens NX, Dassault CATIA, and PTC Creo, which is currently

being developed at the BYU CADLab.

Chapter 5 describes a method for storing the CAD neutral data in a database to ensure all

associations between features are valid. This referential integrity limits the object associations to

valid types only. The dialog window of a 2D sketch feature in NX 8.0 is shown in Figure 2.6.

When open, the designer can choose to build the sketch on a plane feature, or on any planar surface

described by BREP geometry. No other type of object can be selected. This method for referential

integrity blocks corrupt, or invalid, data from being sent to other clients, or saved in the database,

by ensuring that only these valid methods can be associated with the sketch.

21

Figure 2.6: The Sketch Creation Dialog in Siemens NX 8.0 References either a Planar Face or a
Plane.

2.7 MESH Server, Logic, and Client

Authors such as Choi, Li, and Rappoport [10, 16, 17, 23] typically outlined a translation

method or one part of a complete system. This dissertation outlines an entire MESH architecture.

While the NPDB is the foundation of this architecture, there are critical aspects of the rest of the

application worthy of discussion. An N-tiered application can have N layers but the common tiers

are a data storage layer that is fulfilled by the NPDB, a data translation layer that adds, reads,

updates, and deletes data in the database from object-oriented classes, a communication layer

that handles all communication between the multiple clients and the database, a logic layer that

handles any computations necessary between the multiple clients and the database, and finally the

individual client layers. In this case, both the data translation and communication tiers reside in

a server application. The logic tier is referenced by both the server application and the individual

client applications. The client tier resides in the client applications.

A logical architecture that supports both multi-engineer synchronous collaboration and in-

teroperability is defined and tested for robustness and proposed as the start of a new standard for

interoperability. In particular, a pseudo-singleton pattern is proposed to ensure data stability de-

22

spite unordered data and a multi-engineer object class pattern is proposed to allow heterogeneous

clients to interoperate even if the server has no knowledge of the client.

The singleton pattern is a design-pattern in software engineering where the instantiation

of a class is limited to the creation of one object. This is done primarily to eliminate the use of

global objects and variables but still allow the programmer to access static data. It also allows the

user to implement interfaces which allows them to pass the singleton as an object into functions.

This ability is the main difference that separates the singleton pattern from a static class. The

pseudo-singleton pattern developed in this dissertation is an extension of the singleton pattern.

A MESH CAD client requires an asynchronous client-server architecture in order to allow

simultaneous communication between CAD clients. The focus of this dissertation is an architecture

with two core elements. First, it can communicate with the neutral parametric database (NPDB)

format in a stable and efficient way. Second, it can work with unknown CAD clients in a standard

way.

2.8 Background Summary

At the core of this dissertation is the idea that collaboration should be natural. We all

collaborate with each other daily in many ways, but until now, CAx collaboration is unnatural.

The research to date has not addressed this issue but continues to exacerbate it by ignoring the

core mathematical foundation of engineering data, overlooking computer science best practices,

and following oppressive practices from a socio-technical perspective. This dissertation takes a

fresh look at these issues with a fundamental mathematical perspective, practical computer science

approach, and modern social ideology.

23

CHAPTER 3. NEUTRAL PARAMETRIC DATABASE MATHEMATICAL FRAME-
WORK

In order to affect MESH CAD an architecture similar to that used in NXConnect is required.

That is to say that a data layer to store CAD geometry, a server layer to handle communication

between clients and the server, a logic layer to translate between CAD client formats and data

layer formats, and client layers for the users to interact with will be necessary. The first of these,

the data layer, is the topic of this chapter. In order for MESH CAD to function this data layer

must be neutral across the heterogeneous clients, it must store CAD data parametrically so that it

is editable and it must be a database in the sense that it must store the CAD data persistently. These

data storage needs give us the first requirement of this system, Requirement 1.

Requirement 1 MESH CAD is only obtainable through the development, implementation, and

acceptance of a Neutral Parametric Database (NPDB).

The CAD translation methods discussed in the background have one common flaw: a de-

pendence on CAD system APIs. CAD system APIs do not describe part geometry completely

because they depend on the CAD system’s kernal for geometric computation. Rather than a com-

plete definition of the parts, they represent a set of parameters the CAD system needs to reproduce

the geometry. This poses a serious flaw because a format that depends on today’s CAD system

APIs will not work if those APIs change or if one of those CAD systems ceases to exist. For this

reason, the NPDB must contain a complete representation of any parts which leads us to Require-

ment 2.

Requirement 2 The NPDB must be based on fundamental mathematical representations of CAD

features.

If the NPDB is based on a sound mathematical framework its data will be useful regardless of the

CAD system used.

24

A common problem industry members have while working with CAD data is with data

corruption. Corrupt CAD data is occasionally produced within single-user, homogeneous environ-

ments and is common when working with neutral data formats like IGES and STEP. In fact, the

NIST survey cited earlier found that the majority of the billions spent due to inadequate interop-

erability was spent re-modeling parts that were insufficiently translated [1]. In order to allow any

client written by any party to interact with a neutral data format it is critical that it prevent data

corruption when data is written to the storage medium. In database terminology, any corruption of

this type is called an “update anomoly” which leads us to Requirement 3.

Requirement 3 The NPDB must prevent update anomalies.

Another common mistake with existing neutral formats is that while they may store data

well in theory, they are difficult to use in practice. A practical implementation of a MESH CAD

system requires a data storage medium that is easy to work with. For this reason it should work well

with the server, logic and client layers which will be written using object-oriented programming

methods. This leads us to Requirement 4.

Requirement 4 The NPDB must be compatible with an object-oriented class structure.

Making the NPDB compatible with object-oriented classes will not only allow researchers to work

with it efficiently but will help ensure timely commercialization of the technology.

3.1 Neutral Representation

The methods typically used to translate between CAD systems like Li and Mun’s approach

represent a part as a “part history” or list of commands that, if performed in order using CAD

system APIs, would reproduce any given part. This is a natural approach to take when converting

data, but is not sufficient for data storage for a few reasons. First, the set of all CAD systems

with their respective APIs is unknown. Second, it does not show the relationships between fea-

tures. Third, the list must be in the proper order and so has poor compatibility with asynchronous

client-server architectures where messages may come out of order. Fourth, a wide variety of part

histories could be derived from the same part. Finally, it will be shown that the API method does

25

not correctly translate complex curves and surfaces like NURBS because a part history is depen-

dant on the CAD system to produce the geometry rather than storing its complete representation.

The approach taken in this research is to represent the geometry completely using a mathemati-

cal framework which includes both graphical representations and geometric definitions (canonical

form) in order to meet Requirement 2. In this way, even if two CAD systems store geometry using

different parameters, an affine transformation can be performed between the two.

Rather than a sequential part history, a part can be represented as a directed acyclic graph

(DAG) from graph theory as shown in 3.1.

Feature 1

Feature 2 Feature 3

Feature 4

Feature 5

(a) Part Graph with Feature Labels

N0

N2 N3

N4

N1

E1 E3

E2

E4

E5
E6

(b) Part Graph with Node and Edge Labels

Figure 3.1: Graphical Representation of a CAD Part

A graph is an ordered pair of a set N of nodes and a set E of edges. In the image above the nodes

are boxes which represent each feature within the part and the edges are arrows which represent

the relationships between the features. Additionally there are variables like lengths and booleans

which can modify any given node N. So, a part P can be represented as shown in equation 3.1.

P = (N,E) (3.1)

In the sample part graph above, the set of nodes comprises each feature as shown in equation 3.2

and the set of edges comprises each inter-feature relationship as shown in equations 3.3–3.9.

N = {N0,N1,N2,N3,N4} (3.2)

26

E = {E1,E2,E3,E4,E5,E6} (3.3)

E1→ [N0,N1] (3.4)

E2→ [N0,N2] (3.5)

E3→ [N0,N3] (3.6)

E4→ [N3,N2] (3.7)

E5→ [N3,N4] (3.8)

E6→ [N2,N4] (3.9)

The graph edges are directed because references between features are one-way parent-child

relationships in nature. Parts are acyclic graphs because cyclical references cannot be resolved. For

example, if a part had 3 points that were built from each other in a cycle trying to determine the

location of those points would result in an infinite loop, preventing the resolution of the geometry.

Each different type of CAD feature represents a distinct node type and has a set of variables v

which act on the node and set of references r which denote an edge relationship to a parent node.

These can be written as demonstrated in equation 3.10.

N→ [{v1,v2,v3, ...,vn};{r1,r2,r3, ...,rn}] (3.10)

Each node type must be determined individually based on the feature’s canonical form. The follow-

ing sections will illustrate the process for identifying each feature’s parameters and whether they

27

are variables or references. The sketch point, sketch line, sketch arc, and sketch spline features are

used as examples and demonstrate how Requirement 2 is met.

3.1.1 Sketch Point

A sketch is simply a collection of geometric elements that lie on a plane. The sketch node

itself can be thought of as a horizontal and vertical coordinate reference frame used to position

children and a plane whose vector equation is shown in 3.11.

n · (~r−~r0) = 0 (3.11)

Where n is the plane normal vector, r is a known point on the plane and r0 is any other point that

satisfies this equation. In order to efficiently store a sketch S only an origin point reference O, a

horizontal axis reference H, and a vertical axis reference V need be stored as demonstrated in 3.12

because r can be any point along either the horizontal or vertical axis, r0 can be the origin, and n

is the cross product of the horizontal and vertical axes.

S→ [∅;{O,H,V}] (3.12)

A sketch point P can be created in two distinct, affine ways. Its coordinates can be stored

in either the part’s global coordinate system as shown in 3.13 or in the sketch’s local coordinate

system as shown in 3.14, in which the point’s Z′ coordinate is always zero and need not be stored.

P→ [{X ,Y,Z};S] (3.13)

P→ [{X ′,Y ′};S] (3.14)

It is more efficient to store the point in the sketch’s local coordinate system because one

data member fewer need be stored and so a sketch point is represented in the NPDB by a reference

S, a variable X ′, and a variable Y ′.

28

3.1.2 Sketch Line

A line L in a CAD sketch is typically a line segment and can be modeled parametrically by

3.15,

L = Pi(1− t)+Pjt (3.15)

where Pi is one sketch point, Pj is another, and t is a parameter that varies from 0 to 1. So, a sketch

line can be stored by a reference to its parent sketch, a reference to its start point, and a reference

to its end point as shown in 3.16.

L→ [∅;{S,Pi,Pj}] (3.16)

For many sketch features, the API function calls match well with the parametric definition

of the geometry. In this case, one can simply look at the API methods from the CAD systems and

determine a storage format from any of them as long as an affine transformation exists. This is

straightforward in the case of the sketch line because the creation method of a line is equivalent in

all CAD systems we have seen.

3.1.3 Sketch Arc

The base of a sketch arc is a sketch circle. A circle C has the parametric equation shown in

3.17, where r is the circle radius and t is a parameter that varies from 1 to 2π . It is stored as shown

in 3.18, in which S is a reference to the parent sketch, P is a reference to the center point, and the

variable r is the circle radius.

x = rcos(t)

y = rsin(t)
(3.17)

C→ [r;{S,P}] (3.18)

29

The parametric definition of an arc is the same as that of a circle except the range of the

parameter t is from the start angle to the end angle of the arc. Some CAD systems work directly

with this definition in their API and the storage method for an arc A would be as shown in 3.19,

where θi and θ j are the start and end angles, respectively.

A→ [{r,θi,θ j};{S,P}] (3.19)

This method has the advantage that it is very close to the geometric definition of an arc.

However, it has the disadvantage of low connectivity with surrounding geometry. If the arc and

another sketch element both terminate at a sketch point, it is easier to handle sketch changes if

the arc is directly associated to the point rather than simply an angle. For this reason, other CAD

systems store sketches as shown in 3.20,

A→ [r;{S,Pc,Pi,Pj}] (3.20)

where Pc is the arc center point, Pi is the arc start point, and Pj is the arc end point. The start angle

can be found as follows in 3.21,

θi = acos
(

H · (Pi−Pc)

‖H‖‖Pi−Pc‖

)
(3.21)

where H is the horizontal vector of the parent sketch. The end angle can be found in similar

fashion. The endpoint coordinates can be found from start and end angles, but it is difficult to

connect multiple geometric elements in such a fashion so the points are stored as references in the

NPDB rather than the start and end angles.

3.1.4 Sketch Spline

Sketch splines are an element for which the inputs obtained from API methods form an

incomplete parametric definition. If the API method inputs are used to create a database storage

method, the inputs for a spline, Sp, in most systems would be as shown in 3.22,

Sp→ [{t0, t1, ..., tn};{S,P0,P1, ...,Pn}] (3.22)

30

where the spline interpolates the points P and there is an optional tension t at each point. This

storage method has very little to do with the actual mathematics of the curve. Any point on a

degree d B-spline can be found using 3.23,

P(t) =
n

∑
i=1

PiBd
i (t) (3.23)

where Pi is the ith control point and Bd
i is the B-spline basis function for the ith control point. It

is important to distinguish between the B-spline through points and the B-spline control points.

A B-spline typically does not pass through its control points. For a more detailed treatment of

B-splines and polynomial interpolation the reader is referred to Sederberg [35].

To make editing easier for end engineers, most CAD systems store points and then use

some interpolation scheme to create a B-spline through those points. As a result, different CAD

systems produce varying geometric results from the same set of control points. The full solution

to this problem is outside the scope of this dissertation, but in short, the geometric definition of the

splines could be stored as a variable in the graph and the parametric definition could be stored by

references to the control points, allowing either CAD system to edit the same parametric definition

while viewing an accurate geometric representation.

3.2 Asynchronous Communication Support

Storing features by their core definition ensures interoperability across heterogeneous CAD

systems. The other core attribute the NPDB should have is multi-engineer simultaneous support.

There are a multitude of different data storage solutions including plain text files, XML files,

binary files, relational databases, object oriented databases, and NoSQL databases. A few criteria

were considered when choosing a storage medium. The medium must support a high volume

of simultaneous reads and writes, ensure data integrity, map to programmatic classes, and be in

common use among developers. The different storage media are compared in 3.1.

Based on these criteria, a relational database was chosen. Relational databases exist in a server

environment where they can support a very high volume of reads and writes, they were specifically

designed to ensure data integrity, there are object relational mappers in wide use, and they are

very common. In fact, most PLM solutions use a relational database to store their data for these

31

Table 3.1: Comparison of Data Storage Methods

Method Name Simultaneous Data Integrity Class Mapping Common Use
Text File X
XML File X X

Binary File X
Relational Database X X X X

Object Oriented Database X X X
NoSQL Database X X X

very reasons. This database should be normalized in order to prevent data corruption and it should

support an object-oriented class-structure mapping.

3.2.1 Database Normalization

To have a relational database that meets requirement 3 by avoiding modification anomalies,

the database must be normalized. While there are numerous normal forms that can be met, it is a

generally accepted practice to meet only the first three normal forms, which are primarily focused

on allowing for efficient data queries and data integrity. Later normal forms are more aimed at

reducing data redundancy but come at the cost of data usability.

The first normal form of database design designates that the database should (1) eliminate

repeating groups in individual tables, (2) create a separate table for each set of related data, and

(3) identify each set of related data with a primary key. Taking the sketch and its elements as an

example, some might store a data for each sketch arc as shown in the database diagram in Figure

3.2.

In this type of a table structure, the data for the parent sketch would be repeated in each

sketch feature. In addition, it would be difficult to query all children of a particular sketch. In order

to meet the first normal form, the sketch and sketch arc elements are separated into two separate

tables and each is given a primary key. A primary key is a unique identifier for each entry in each

table and is used to link tables together. While a primary key could be any unique attribute of

a data item, it is a generally accepted practice to use a surrogate key for each table in order to

ensure efficient queries. In most databases this would be a simple integer value, but in the case of

32

Sketch Arc
Sketch O Point
Sketch H Direction
Sketch V Direction

Center Point Point
Radius Double

Start Point Point
End Point Point

Figure 3.2: Sketch Arc with Redundant Data

a client-server architecture where the client should set the key rather than the database, a globally

unique identifier (GUID) is a superior choice. Data that meets the first normal form is shown in

Figure 3.3. Please note that the connections show a one-to-many cardinality where one sketch can

have many sketch arcs.

Sketch Arc
GUID GUID

SketchGUID GUID
Center Point Point

Radius Double
Start Point Point
End Point Point

Sketch
GUID GUID
Origin Point

Horizontal Direction
Vertical Direction

Figure 3.3: Sketch and Sketch Arc that Meet First Normal Form

The second and third normal forms respectively state that no non-prime attribute is depen-

dent on any proper subset of any candidate key of the table and that all attributes in the table are

determined only by the candidate keys of that table and not by any non-prime attributes. In other

words, each table should distinctly represent one logical item and no data in each table should

relate to anything except that specific logical item. These are both satisfied by the separation of

sketch and sketch arc shown above. The normalization of the database prevents update anomalies

and so meets Requirement 3.

33

3.2.2 Object-Oriented Mapping

As mentioned above in Requirement 4, another important consideration when creating an

efficient storage data structure is to support hierarchical class inheritance while working with the

data. The applications should be object-oriented programs that take full advantage of the benefits

of class inheritance. In relational databases the two most common ways to support a class hierarchy

in mapped objects are a table-per-hierarchy (TPH) and a table-per-type (TPT) method. Generally

speaking, a TPH can support faster queries but allows many nullable fields, which can lead to data

corruption. A TPT hierarchy, on the other hand, maintains tighter referential integrity at the cost of

query speed. In the case of a neutral format like this, data integrity was placed at a higher priority

than query speed and thus a TPT mapping method has been used. In order to illustrate this method

we must first add a few more properties to the database that are conceptually basic but necessary

for the application to function and helpful in illustrating the value of a TPT architecture.

First, more than one part will be stored in the database so a part type should be added to

the database. The part type is defined as shown in Figure 3.4.

Part
GUID GUID

PartNumber String

Figure 3.4: Part Database Diagram

Every feature should reference its part so that it can be easily queried. Additionally, every

item in the database should have a time stamp when it was added to the database (for convenience),

as well as a Boolean that marks whether or not the feature has been deleted. Items should not

be truly deleted from the database except in extreme circumstances. This gives us the database

structure shown in Figure 3.5.

Not only will these tables be difficult to manage because time-stamp and deletion code will

have to be written for each table, but they no longer obey the third normal form because there is

data in each table that does not pertain to only that table. In order to fix this, we break out all

repetitive properties into their own tables. In addition, it is helpful to add a standard prefix to each

34

Sketch Arc
GUID GUID

PartGUID GUID
SketchGUID GUID
Center Point Point

Radius Double
Start Point Point
End Point Point

TimeStamp DateTime
isDeleted Bool

Sketch
GUID GUID

PartGUID GUID
Origin Point

Horizontal Direction
Vertical Direction

TimeStamp DateTime
isDeleted Bool

Part
GUID GUID

PartNumber String
TimeStamp DateTime
isDeleted Bool

Figure 3.5: Part, Sketch, and Sketch Arc without Object Oriented Hierarchy

table and remove all white spaces from the table names in order to avoid class name conflicts and

problems later on in development. The resulting hierarchy is shown in Figure 3.6 where an open

arrow designates inheritance.

Please note that all tables must still have a GUID primary key in order to satisfy the first

normal form, but that the GUID of a child table has a foreign key constraint to its parent table in

order to maintain an inheritance relationship. By creating a table-per-type hierarchy, the database

meets Requirement 4.

3.3 Remarks on NPDB Mathematical Framework

So, this chapter has described a neutral database format that is mathematically based (Re-

quirement 2) prevents update anomalies (Requirement 3) and is compatible with an object-oriented

class structure (Requirement 4). It is the NPDB and the foundation of a MESH CAD environment

(Requirement 1). The first four requirements to create a MESH CAD environment are at a high,

theoretical level. In order to create a practical system, the NPDB must be implemented in a lan-

guage that supports these requirements. The next step is to implement a database that meets these

requirements.

35

NPDBSketchArc
GUID GUID

SketchGUID GUID
Center Point Point

Radius Double
Start Point Point
End Point Point

NPDBSketch
GUID GUID
Origin Point

Horizontal Direction
Vertical Direction

NPDBPart
GUID GUID

PartNumber String
TimeStamp DateTime

NPDBObject
GUID GUID

PartNumber String
TimeStamp DateTime

NPDBFeature
GUID GUID

PartGuid GUID

Figure 3.6: Part, Sketch, and Sketch Arc with Object Oriented Hierarchy

36

CHAPTER 4. NEUTRAL PARAMETRIC DATABASE STRUCTURED QUERY LAN-
GUAGE MODEL

In the previous chapter, a mathematical framework was laid for the NPDB standard which

can support a MESH envrionment. In this chapter a practical foundation is laid for this format.

This chapter will discuss the requirements to create an initial implementation that proves the NPDB

concept and is later extensible to a large-scale enterprise environment through commercialization.

A common pitfall in application development is professionally known as “scope creep”.

Scope creep is the condition when the requirements for an application change continuously over

time and prevent the completion of that application. In order to avoid this a clear scope must

be defined which achieves the core goals of the application while meeting a limited scope. The

snare in this situation is to attempt the impossible task of defining an application which solves all

problems in the first try rather than simply taking important steps forward from the current state.

This problem is so common it has its own fallacy, the nirvana fallacy, which is characterized by

comparing actual things with unrealistic, idealized alternatives. This leads to Requirement 5.

Requirement 5 The nirvana fallacy must be avoided by proving the concept with a partial feature

set.

Rather than try to develop the ideal CAD solution, this dissertation aims to prove the concept of a

framework that solves a few key CAD interoperability issues using a small subset of CAD features.

Another common mistake related to the nirvana fallacy is the inability to choose a pro-

gramming tool set because there is no perfect tool set. Developers and engineers often try to write

their own tool sets rather than use existing ones. It is often said in industry that “Everyone wants

to follow standards as long as it’s their standard”. This is even true for the developers of the STEP

standard who, rather than use the IDEF1X data modeling standard that had already existed for

decades or use the mature unified modeling language (UML) diagrams common to computer sci-

ence professionals, invented their own data modeling language and diagrams called EXPRESS. It

37

is important to use existing tools that are common to industry if there is to be an open dialogue

with industry members which leads us to Requirement 6.

Requirement 6 The NPDB standard must be implemented using industry best practice tools and

methods.

While it is important to use industry-standard tools and methods in order to garner the

respect of industry members, is also necessary to create an application that has a clear application

to their environment. Creating an application that can be scaled up to their environment is not only

important in order to hold their interest, but it is also important to truly prove the possibility of a

MESH CAD software system. If the application is oversimplified and if non-standard, custom tools

are used then the application will not be a true test of the technology. This leads us to Requirement

7.

Requirement 7 MESH software must be scalable to an enterprise-scale design environment

Even though it is not necessary to create an enterprise-level application to prove MESH CAD

feasibility, it is necessary to use tools and write the application in such a way that there is a clear

path to commercialization.

4.1 Methods

The methods used to create the Neutral Parametric Database and test if it better solves the

interoperability problem will be explained in this section. The NPDB was defined for a set of com-

monly used graphical commands and elements called features. The initial feature set was chosen

based on engineer experience and time constraints. Journaling, where a engineer’s modeling com-

mands are recorded and saved as a text file, was used to determine the important methods needed

in creating the features in each CAD system. The required data to define a feature was found by

viewing the inputs to the methods. By comparing the data needed in each CAD system a neu-

tral representation became apparent and could be defined. Multi-User Object (MUObject) classes

which contain all the needed logic to translate a feature between the CAD systems supported were

used to store the neutral and CAD specific data for each feature. A client-server architecture con-

nects all the participating clients to the server which relays messages between systems and uses

38

the MUObject classes to translate the data. By using these methods the neutral format for a feature

was defined and its validity was tested within a multi-engineer CAD setting.

4.1.1 Determining a Feature Set

The ultimate goal of the interoperability project is to support the union of all CAD features.

In order to avoid the nirvana fallacy and meet Requirement 5, the goal of this particular research

was to support enough basic features that moderately complex parts could be modeled. An initial

feature set was constructed by using the design experience of those familiar with CAD systems.

The scope of this dissertation was to define a neutral format for basic sketch and solid modeling

features and test their effectiveness.

An aerospace senior design project where complex CAD models of aerospace parts were

created in NXConnect was analyzed as a starting point in determining the most common features

used during typical modeling. NXConnect is a multi-engineer version of NX developed by BYU.

The database of features created in the NXConnect software during modeling was queried to find

the features used. Based on these findings and the CAD experience of others working on the project

the current feature set was chosen. The features that were minimally used during the project were

not listed because they weren’t required for basic modeling. Also, individual sketch features were

not able to be queried in the database so the sketch feature set had to be determined by experience.

Many of the features listed are advanced features that can be replicated using other, simpler features

and were not implemented to save time. The mirror feature, for instance, could be replicated by

modeling both sides of a symmetrical model instead of just one. Sew, trimmed sheet, and thicken

sheet are surface modeling features and will be implemented in later releases of the interoperability

software. Any features that were auto-generated by NX during modeling were also not included.

After considering the above points, Table 4.1 provides the initial feature set chosen for the CAD

interoperability software. This basic set of features makes the modeling of complex parts possible.

This dissertation will only discuss the 3D point, 2D point, 2D line, and 2D spline features.

By instrumenting an existing project for the features to be implemented, a reduced fea-

ture set was identified which could sufficiently prove the concept of MESH CAD in a reasonable

amount of time, thus avoiding the Nirvana Fallacy and meeting Requirement 5.

39

Table 4.1: Interoperability Program Initial Feature Set

Sketch Features 3D Modeling Features
Point2D Datum CSYS
Line2D Datum Plane
Arc2D Point
Circle2D Line
Spline2D Spline

Extrude
Revolve
Sketch

4.1.2 Defining a Neutral Format

A great starting point to understanding the data requirements for CAD features is to record

a journal or a script of the feature being used. Li and Mun used this idea to determine a set of

neutral modeling commands that could be used as an intermediary between CAD specific com-

mands [14] [15]. Most major CAD systems have journaling capability but a good understanding of

the CAD system’s API can allow a developer to program without it. NX and CATIA both provide

journaling capabilities where the engineer starts recording, uses the feature within the program,

and then stops recording. A text or script file is created which provides the actual functions called

to create the feature. The inputs to the functions used are often the data needed to define the fea-

ture. This approach sheds light on the data required to define a neutral format and was done before

implementing the feature in the interoperability program.

4.1.3 MUObject Structure

The architecture of the program consists in multi-engineer object classes (MUObject) which

store the neutral and CAD specific versions of each feature. This is necessary to support the cre-

ation, editing, and deletion of features. These classes are written in the C# language and extract the

feature data using the CAD systems’ API’s. Within the multi-engineer class there are methods that

translate back and forth between server features and CAD specific features. These methods are

called when messages are received by the server that changes have been made by a engineer. Each

feature has its own multi-engineer class which handles translations on a feature by feature basis.

40

These approaches makes multi-engineer CAD interaction possible which greatly reduces the time

to market for products. Efficiency is increased because the process becomes more parallel when

collaborating through multi-engineer software.

4.1.4 Client-Server Architecture

Multi-engineer CAD requires a messaging system that can handle messages asynchronously

while supporting modeling synchronously. A thick client thin server architecture achieves this by

storing messages in a queue and then executing them in between the creation of other features. The

interoperability program features a plug-in that is installed on each client which can communicate

with a server running on the same client or elsewhere. A class for each CAD system is in charge of

sending and receiving messages from the server via the MUObject classes and calls the appropri-

ate feature class to create the needed feature on the client. The versions of each of the features are

stored in MUObject classes on each client as discussed earlier. The server communicates with the

database and stores the neutral data of the feature. Since translations are performed on a feature by

feature basis, multi-engineer modeling is supported.

4.1.5 NPDB Verification

Creating, editing, and deleting of features in both CAD systems were tested to verify the

NPDB approach. After all features passed the initial stages of testing, the modeling of a moderately

complex part was tested. When features are used in combination with each other and dependencies

are generated the code is required to be more robust to work properly. This last test verified that the

code is stable so focus could be turned to adding more features and functionality to the program.

The features tested in this research were the 3D point, 2D point, 2D line, and 2D spline features.

4.2 Implementation

Work has been done on the NPDB which defines the neutral data structure for many basic

CAD features to enable translation between heterogeneous CAD systems. The architecture of the

program consists of database, communication, logic, and client tiers. In order to meet Require-

ments 6 and 7 a standard programming tool set was chosen which is commonly used in industry.

41

In the database tier, data is stored in a structured query language (SQL) database which has

a table for each feature type supported in the program. Microsoft SQL server was chosen because

it is well integrated with the Microsoft .NET toolset but other relational databases could be used.

This database is mapped to classes using an object-relational mapper (ORM). Microsoft Entity

Framework was chosen as the ORM because once again, it is integrated with the .NET toolset, but

another commercial ORM could be used or a custom ORM could be developed. The ORM is used

so that when changes are made to the database, the communication tier handles messages to and

from the server, client, and database. The logic tier contains C# classes with methods for creating

and updating neutral features from CAD system features and vice versa but other languages such

as C++ could be used. It is worth noting that other tool sets such as those associated with the

c++ and custom ORMs offer performance improvements at significant developmental cost. In the

opinion of the author these should be avoided for student projects but may be the right choice for

a commercial application. The client tier tracks a engineers actions and tells the logic tier what

features need translation. The overall program architecture is illustrated in Figure 4.1.

The architecture of the NPDB supports the multi-engineer CAD initiatives of the lab and is

being developed to promote interoperability between NX, CATIA, and Creo CAD systems. This

dissertation focuses on interoperability between NX and CATIA only. The 3D point, 2D point, 2D

line, and 2D spline features have been implemented and will be discussed in this section. They have

all been implemented using standard industry tools and have been described using standard UML

diagrams in order to meet Requirement 6. These industry standard tools are meant to support

an n-tiered application architecture which is specifically meant for enterprise-scale application

development and so this tool set also meets Requirement 7.

4.2.1 3D Point Implementation

The first 3D modeling feature implemented was the 3D point feature because it is relatively

easy to understand. The specific data for the NPDB of a 3D Point feature was chosen to be an X,

Y, and Z coordinate. While the definition is simple, extracting the data from each CAD system and

translating between the two requires more effort. NX and CATIA have their own unique methods

and approaches to creating 3D points in their respective CAD systems. For example, to get the

point coordinates from a CATIA point the GetCoordinates() method needs an empty array passed

42

Figure 4.1: Interoperability Program Architecture

in which can be filled with the coordinate values. An NX point uses a builder which links the point

created by the CreatePoint() method to a PointFeature object. Even though the methods between

CAD systems differ the data they are manipulating is the same so a neutral representation can be

defined.

The 3D point object is connected directly to the Feature object as seen in Figure 4.2. Out-

lined arrows indicate inheritance relationships and a short line crossing a main line on one end

with three lines spreading out on the other end represents a one-to-many relationship. The GUID

for the point is inherited from the Interop Object and other important properties are inherited from

43

the Feature object. GUID stands for Global Unique IDentifier and ensures that each point created

can be uniquely chosen from a list of others. The 3D point feature is the simplest feature that can

be implemented.

Figure 4.2: NPDB For 3D Point Feature

The NPDB for a feature encompasses more than just the basic data required to define it. It also

includes the feature’s relationships with other base objects in the architecture. All features imple-

mented inherit from the Feature object so the top three boxes in the figure are the foundation of the

NPDB. To extract and define the data that goes into a 3D point, the MUPoint3D class is used. This

class contains the methods which assign the properties.

4.2.2 2D Point Implementation

A 2D point is the most basic sketch element that can be created. It is an important feature

because many other sketch features are based on it, such as 2D lines. Even though a 2D point is the

44

same as a 3D point constrained to a specific plane, the addition of a sketch greatly complicates the

translation process. Most of these complications, however, are managed by the MESketch class

created by others in this research group and only the MUPoint2D class will be explained. The

unique data in the NPDB for a 2D point is an x and y coordinate. The GUID which uniquely

identifies the 2D point from other 2D points is again inherited from the Interop Object through the

Feature and Sketch Feature objects. The x and y coordinates position the point on the sketch plane

and the SketchGUID inherited from the Sketch Feature object links it to a specific sketch. The

Sketch Feature object and the Sketch object both inherit from the Feature object and the Feature

and Part objects inherit from the Interop Object. The Feature object is linked to the Part object

through a one-to-many relationship which means that a part can have many features. Figure 4.3

illustrates the 2D point NPDB.

4.2.3 2D Line Implementation

The 2D line feature adds some complexity to translation because a 2D line depends on two

2D points. The NPDB for the 2D line feature is a start point GUID and an end point GUID. The

2D line feature inherits a sketch GUID from the Sketch Feature object just like a 2D point. Just

as a Sketch Feature object’s SketchGUID property links the feature to the proper sketch, the start

and end point GUID properties link the line to the proper 2D points in the database. Figure 4.4

shows the added complexity of the NPDB for the 2D line feature. Notice that the foundation of the

NPDB is the same but there are some added relationships and data for the 2D line.

Two one-to-many relationships attach two 2D point objects to the 2D line object. The

MULine2D class extracts the data for the 2D line NPDB and differs from the MUPoint2D class

in the inputs required for the methods. Instead of just needing the feature and the sketch to be

passed in, a 2D line also needs the start and end points passed in. This is because when a line is

created or edited the start and end points need to be created or edited first. The MULine2D class

is able to call the MUPoint2D class and use it to create the points. The same thing is done with the

sketch. Separating the code into feature based classes is central to the software’s ability to perform

translation on a feature by feature basis.

45

Figure 4.3: NPDB for 2D Point Feature

4.2.4 2D Spline Implementation

A 2D spline allows complex surfaces and shapes to be generated through extrusion or

revolution. The NPDB consists of an array of control points and is shown in Figure 4.5. Other

important properties such as the GUID and sketch are inherited as was the case for the other sketch

features.

Implementing the 2D spline feature was similar to what was done for the 2D line feature

but the addition of control points complicated the translation. Instead of passing in the start and

end points to the class methods the control points array is passed in.

46

Figure 4.4: NPDB for 2D Line Feature

2D Control Point Implementation

A 2D control point is its own sketch element and a separate multi-engineer class was written

for it. The extra data for the NPDB of a control point is a 2D spline GUID and an order number.

Figure 4.5 shows how the NPDB for a 2D control point feature relates to the 2D spline feature

NPDB. The relationship between a 2D spline and a 2D control point is a one-to-many relationship

because one 2D spline has multiple 2D control points. The 2D control point inherits its X and Y

coordinates from a 2D point object as shown in the figure. The use of an unspecified number of

control points makes implementing the 2D spline more complicated. When translating, the number

of control points for the specific 2D spline needs to be extracted using the CAD API’s to properly

47

Figure 4.5: NPDB for 2D Spline Feature

fill the array of control points. The order in which the control points are added to the 2D spline is

also very important which is why an order number is assigned to each control point.

4.2.5 Feature Capabilities and Limitations

All the features discussed can be created, edited, and deleted in either CAD system during

modeling. Multiple engineers using either NX or CATIA can collaborate on models without re-

strictions. While this research has focused on a limited set of the features, it is not difficult to add

more to the database. In fact, the 2D circle, 2D arc, extrude, revolve, datum CSYS, datum plane,

3D line, and 3D spline have all been added since the experimentation described in this dissertation.

Current limitations of the program include, no undo/redo functionality, and no conflict res-

olution logic. Unexpected bugs also occur during modeling and more work is needed to make

48

the program more stable and robust. While there is edit functionality the undo/redo options are

currently not implemented. Finally, if two people attempt to edit the same feature at the same

time there is no logic in place to lock a feature being edited by another engineer. This can cause

inconsistencies in the model. Ammon Hepworth and Robert Moncur implemented conflict resolu-

tion and feature locking in NXConnect and similar ideas could be applied to the interoperability

software [30] [36] In spite of these limitations the existing software is effective.

4.2.6 Remarks on NPDB Structured Query Language Model

By implementing a core feature set rather than a complete feature set (Requirement 5) and

using industry standard tools (Requirement 6) an architecture has been developed which not only

proves the concept of MESH CAD but is also extensible into an fully scaled enterprise environment

(Requirement 7). While this and the previous chapter have outlined a theoretical and practical

foundation for the NPDB, there is one open issue with the format. The references between features

in a parametric model can be difficult to model while avoiding update anomalies. The discussion

up to this point has been limited to references that point to one type of CAD feature. This focus has

been maintained in order to develop the critical mathematical representations of features including

the tree graph that represents their most fundamental dependencies. The next chapter will define a

method to deal with the more complex case of references which can be directed to multiple feature

types.

49

CHAPTER 5. MULTI-REFERENCE INTERFACE INHERITANCE

The previous chapters have laid out a theoretical and practical foundation for the NPDB

but one that only supports simple inter-feature references. This chapter discusses what is required

to support the more common, multi-feature type references which model associative relationships

between features. Associativity in CAD systems is one of the most powerful ways for a designer to

express design intent. By building a 2D-sketch feature on a datum plane, the designer signifies to

others that the sketch, and any child features of the sketch, are associated with the location of the

plane. Any neutral format used to translate CAD features from one CAD system to another should

retain these associations to preserve the design intent of the designer. This leads to Requirement 8.

Requirement 8 The NPDB must store inter-feature references in a way that mirrors existing com-

mercial CAD systems.

That is to say that the NPDB must be able to reproduce any type of reference that can be found in

an associative CAD part.

Also due to this highly-relational nature of modern feature-based CAD, it is important that

data being sent between clients is accurate. This is especially important for the thin-server, thick-

client architecture of MESH CAD implementations because each operation must be performed in

the exact same way on each client to ensure model consistency. If any data is corrupt or missing,

it is not guaranteed that each client will be viewing and interacting with the same model which

provides Requirement 9.

Requirement 9 Complex inter-feature reference storage must prevent update anomalies.

To ensure data validity, a number of enhancements have been made to previous work in this area.

The first enhancement stores the CAD Neutral data in an object-oriented way which mirror the

way CAD programs store their own data. By preserving the object hierarchy, much fewer mistakes

are made when incorporating a new CAD system into the interoperability client.

50

5.1 CAD Object Mirroring

To support real-time collaboration in a multi-engineer CAD environment, a central rela-

tional database is used to record and store CAD operations as they are performed and sent to other

clients. The NPDB saves the commands used to create the model - alleviating the need to save

local copies and ensuring all clients have access to the same version of the model. To support

the associative parametric abilities of modern CAD software in a MESH CAD environment which

utilizes a database, a CAD-neutral operation must be formatted in a database-friendly manner. To

accelerate the process of incorporating new CAD packages, the neutral data should also be stored

in a manner consistent with the way the native CAD system represents CAD objects. To accom-

plish both of these requirements, the database should contain a table for each type of supported

CAD object. Database relationships are created to mimic inheritance of objects. For example, the

feature table implements a one-to-many relationship with the 2d-sketch table, as seen in Figure

5.1. CAD objects that have multiple supported creation methods are represented with multiple

tables. The plane-feature table implements the one-to-many relationship with both offset-plane

and fixed-plane. features that reference other features, such as the build plane for a sketch-feature,

are represented by a one-to-one relationship. Making a database table for each CAD type helps

meet Requirement 8. An Object Relational Map (ORM) is used to represent the database tables as

programming objects.

A wrapper class is created in code for each CAD object that is responsible for translating

between the CAD-specific version of the object to the neutral representation created by the ORM.

The wrapper classes follow the same inheritance hierarchy as the neutral objects, and map one-

to-one with the CAD-specific features that can be created by the engineer. As new objects are

created on one client, the translation method in the respective CAD operation’s wrapper class is

called to gather all necessary information to recreate the operation on any other system, and fill out

the neutral object created by the ORM. The netural object is then transmitted to the central server

to be distributed to the other clients in the model and to the database. Each of the remote clients

receives a copy of the neutral object, which is then translated to the CAD-specific version by the

corresponding wrapper class, and put in the model.

51

Figure 5.1: Database Schema for Sketch Features and Plane Features.

Besides gathering all required information necessary for recreating a CAD object remotely,

the wrapper classes are responsible for applying unique identifiers to each translated object. These

identifiers are used to query and either delete or redefine the objects.

5.2 Referential Integrity

The NPDB is integral to facilitating collaboration between multiple engineers by preventing

data corruption through referential integrity. This means that each data field in the database can

only refer to one other table rather than multiple tables. This means that each reference can only

be directed at one other type of feature. Current MES software works around this problem by

creating a null-able column for each type of object that could be referenced by a CAD feature. In

this case, a sketch-feature table would have a column for a referenced plane as well as a column

for a referenced planar BREP face. For a valid sketch, only one of these fields can be filled out

52

- the other would be null. This does not meet Requirement 9 because with nullable fields of this

type multiple or no fields could hold data, resulting in an invalid data state.

To meet this requirement, each property of a CAD feature referencing another object has a

foreign key constraint pointing to the most generic table, as seen in Figure 5.2.

Figure 5.2: The Planar Reference Field Is Associated with the Generic Object Table.

Since each table has an association with the generic table, any object can be referenced

by the property. When a new CAD feature is created that has a reference to another CAD object,

the unique identifier for the CAD object is stored in the object reference column. This allows

references to be stored in the database in such a way that mirrors the CAD clients and so meets

Requirement 8.

Because the reference object field is associated with the most generic object table, the

database would allow any CAD object be used as a reference - potentially allowing invalid or cor-

rupt data to be saved. Because all read/write methods are abstracted by the ORM, we can ensure

that only valid data is written to these fields by enabling ORM objects to implement interfaces.

53

Neutral CAD objects implement interfaces based on the way they can be referenced. For example,

a plane feature can be referenced both as a surface for construction, as well as a direction by its

normal vector. In this case, the plane object implements both IPlanarObject and IDirectionalOb-

ject interfaces. The planar surface of BREP geometry data also implements IPlanarObject. The

attach plane property of the neutral 2d-sketch object is of type IPlanarObject, so only objects that

implement this interface can be assigned to this property.

5.3 Implementation

Multi-Reference inheritance was implemented into CAD Interop, a thin-server thick-client,

CAD interoperability program developed to integrate the design of part models from Siemens’ NX,

Dassault’s CATIA, and PTC’s Creo. Both the client and server programs are written in C#, a .NET

programming language. A database, hosted on a SQL server running Microsoft SQL Server 2012,

contains a table for each supported CAD feature - with each property represented as a column in

the table. As features are created on client computers, data required to create that feature on remote

clients is sent in a neutral format through the server to be distributed to the other clients and to the

database.

Entity Framework 6 is used as the Object Relational Map (ORM) to represent the database

tables as programming objects. Each table on the database implements an association with related

tables which, in combination with the ORM, represent an inheritance hierarchy among the objects

which mirror the object hierarchy of a typical CAD system. Features with multiple supported

creation methods are represented as separate tables which inherit from a more generic table. For

example, the DBPlane table represents a plane feature in a CAD system and can be created either

as a fixed object by coordinates and a normal, or by an offset from another planar object. Both

the DBFixedPlane table and the DBOffsetPlane table implement an association with the DBPlane

table which is represented as an inheritance in the ORM object.

The columns for each table on the database are mapped by the ORM into properties for

the resulting object. These properties represent the values required to exactly recreate the feature

on any supported CAD system, and can include numbers, strings, and references to other features.

Entity Framework automatically generates a class for each database table through the use of a

template file. As the template file is updated, either from changes made to the database or though

54

changes made to template itself, these classes are automatically overwritten to reflect the change.

This in turn updates the ORM object. The database schema is downloaded and, based on the asso-

ciations set up on the database, a class hierarchy is created with objects representing the database

table. Through the use of a graphical engineer interface (GUI), the associations representing an in-

heritance connection were changed to an inheritance type. By default, associations between tables,

such as the association an extrude-feature has with the sketch-feature to be extruded, are preserved

and represented as a property of the referenced type in the ORM object. These properties are

called navigation properties in entity framework. In the extrude example, the DBExtrude object

has a DBSketch property.

To handle properties which can reference more than one type of object, an association on

the database between the column representing the reference and the most generic DBInteropObject

is created. This allows the unique identifier of any other object to be referenced and stored in the

column. By default, the template class translates this navigation property to a DBInteropObject

which can accept any object translated by the ORM. To ensure the field allows only valid objects

to be referenced, various interfaces representing categories of objects to be referenced were cre-

ated. For example, the interfaces IPlanarObject and IAxisObject represent objects which can be

referenced as a plane or axis respectively. The names of any properties which must reference an

interface were changed in the entity framework GUI to a reserved name based on the type of inter-

face they must reference, seen in Table 5.1. The name of the referenced planar object navigation

property of an offset-plane-feature, for example, was changed to “ReferencedPlane”. In the tem-

plate file, the method which assigns the navigation properties was modified to include a conditional

statement to change the navigation property type when a navigation property name was one of our

reserved names. The modified template file then automatically updates the navigation properties

for all the class objects with the reserved name to be the correct interface type.

With the navigation properties correctly set to preclude storing invalid data, objects which

satisfy the conditions imposed by the interface must implement those interfaces to be referenced

by those objects. This maintains referential integrity and so meets Requirement 9. Because classes

automatically generated by the template file are automatically overwritten after updates to the

template are made, partial classes were written for each object needing to implement one or more

interfaces. In C#, a partial class is a continuation of a class declaration which can be written in a

55

Table 5.1: Reserved Names Associate an Interface with a Navigation Property

Reserved Name Associated Interface
ReferencedPlane IPlanarObject
ReferencedAxis IAxisObject
ReferencedDirection IDirectionObject
ReferencedPoint IPointObject
ReferencedLine ILinearObject

separate file. The partial class then implements the required interfaces. When the template file is

used to update the class declaration, the original file will be overwritten but the partial class file,

with its interface implementations, will remain unmodified.

5.4 Remarks on Multi-Reference Interface Inheritance

The multi-reference interface inheritance method allows references to mirror the structure

of the CAD system rather than allowing multiple vacant data fields (Requirement 8) and maintains

referential integrity with these complex references (Requirement 9). With the requirements of the

NPDB met for the mathematical and practical foundations including support for complex refer-

ences between features, the next step is to prove the concepts discussed through the creation of a

full implementation of a MESH environment. The development of the remainder of the application

had a few unique requirements which will be discussed in the next chapter. Specifically, a pattern

to allow the stable use of asynchronous data to generate client-side CAD data tree graphs and a

method to enforce proper communication between unknown clients and the server are discussed.

56

CHAPTER 6. MULTI-USER HETEROGENEOUS SERVER, LOGIC, AND CLIENT
LAYERS

With the NPDB fully developed and implemented including complex references, the next

step is to create a full application suitable to prove the NPDB concept. In order to extend multi-

engineer homogeneous CAD software there are a number of problems that must be solved. Two

key problems that must be solved to implement a MESH application effectively are first that a

MESH client must be feature-order independent and second that the system be client-agnostic.

One of the issues previously mentioned with respect to the part history representation of

CAD data is that it is difficult to determine if CAD feature messages are ordered so that the part

can be built. This is particularly important in an asynchronous client-server environment where

server messages can arrive at clients out of order. Because of the asynchronous nature of real-time

collaboration, a MESH architecture must be able to handle these unordered messages in a stable

way, giving Requirement 10.

Requirement 10 A MESH application must maintain stability despite unordered feature mes-

sages.

Finally, in a MESH architecture the server should behave in exactly the same way regard-

less of the client it is connected to. If the server must be modified whenever a new client is added

to its ecosystem than it is not truly neutral. In fact, to be truly neutral the server should not even

be aware what client types are connected to it and the messages to and from heterogeneous clients

should be exactly the same. In other words, the MESH application should be client-agnostic as

stated in Requirement 11.

Requirement 11 A MESH application must support clients agnostically.

57

6.1 The Psuedo-Singleton Pattern

In order for a system to support parametric CAD models properly, it must represent them

as a directed acyclic graph (DAG) where the nodes are features and the edges are parent-child

relationships between features as shown in Figure 6.1

Figure 6.1: CAD Data Should Be Represented as a Directed, Acyclic Graph

This is difficult in a client-server architecture because computer queries typically return a

list of features with no regard for their dependencies. The listed features not only do not clearly

display dependencies but they can also be returned in a random order. For example, if you queried

all of the features from Figure 2 the result might look like the following numbered list:

1. Feature 2

2. Feature 3

3. Feature 4

4. Feature 1

Unfortunately, the part model cannot be built in this order because feature 4 depends on

features 2 and 3, feature 3 depends on feature 1, and feature 2 depends on feature 1. A client that

simply builds whatever feature messages it receives in order would be unstable and would not meet

Requirement 10. So, the order this model must be built in is as follows:

58

1. Feature 1

2. Feature 3

3. Feature 2

4. Feature 4
Any other build order would result in a fatal application exception. Finding the correct build order

for a part is a critically important and difficult task necessary to meet Requirement 10.

The intuitive approach to solve a problem like this is to explicitly find and maintain the

correct feature order using consistency managers. Each part could have an overall consistency

manager which manages dependencies of all features within the part. This manager could be made

more efficient by dividing features into logical groups in a divide-and-conquer style algorithm. All

part-level consistency managers in a session would need to be managed by an overall consistency

manager. This type of architecture is shown in Figure 6.2

Figure 6.2: A Consistency Manager Is the Intuitive Approach to Maintain Model Build Order

This method would function for a time but has several drawbacks. Specifically, the logic for

this type of architecture is difficult to develop and must be changed whenever feature definitions

are modified. It also requires significant computation time to determine the dependency order and

59

significant memory to store all dependencies for all features of all parts within the assembly. This

approach is unlikely to scale to a large assembly with hundreds of thousands of parts and millions

of features.

Another way to solve this issue is through the pseudo-singleton pattern which is a devel-

opment from the singleton pattern shown in Listing 6.1. The pseudo-singleton pattern makes its

class constructor private and only allows uniquely identified instances of itself to be queried. If

the uniquely identified instance exists it is returned from a static dictionary. If the instance has not

been created the class queries the server for the instance, adds it to the static dictionary and returns

it. In this way feature instances can be used by a client developer without taking concern for their

associations. In other words, any feature built from the pseudo-singleton pattern maintains its own

dependencies with no further logic. Sample code that illustrates this pattern is shown in Listing

6.2.

Listing 6.1: The Singleton Design Pattern

1 public class Singleton

2 {

3 private static Singleton Instance {get; set;}

4

5 private Singleton () { }

6

7 public static Singleteon GetInstance ()

8 {

9 if (Instance == null)

10 Instance = new Singleton ();

11

12 return Instance;

13 }

14 }

60

Listing 6.2: The Pseudo-Singleton Design Pattern

1 public class PseudoSingleton

2 {

3 private static Dictionary <Guid , PseudoSingleton > Instances

4 {

5 get

6 {

7 if (instances == null)

8 instances = new Dictionary <Guid , PseudoSingleton >();

9

10 return instances

11 }

12 }

13 private static Dictioanry <Guid , PseudoSingleton > instances;

14

15 private PseudoSingleton(Guid Id) { }

16

17 public static PseudoSingleton GetInstance(Guid Id)

18 {

19 if (! Instances.ContainsKey(Id))

20 Instances.Add(Id, new PseudoSingleton(Id));

21

22 return Instances[Id];

23 }

24 }

The utility of this pattern can be demonstrated by assigning features to the DAG shown in

Figure 6.1. Below in Figure 6.3 is a DAG representation of a part containing a coordinate system

(CSYS), a 3D Point built from that CSYS, another point built from the CSYS and relative to the

first point, and and a line connecting the two points.

Assigning those features to the queried feature list mentioned above we would get the following

list of feature messages:

61

Figure 6.3: A Sample DAG of a CAD Part with a Line Between Two Points

1. 3D Point 2

2. 3D Point 1

3. Line

4. CSYS

The first feature, 3D Point 2 has a dependency on CSYS and a dependency on 3D Point

1. When this message is processed, 3D Point 2 calls the GetInstance method, passing in CSYSs

GUID. Since CSYS is not yet in the feature dictionary its constructor is called, it is added to the

feature dictionary and it is returned to 3D Point 2. 3D Point 2 then calls the GetInstance method

passing in 3D Point 1s GUID Since 3D Point 1 is not yet in the feature dictionary its constructor

is called. 3D Point 1 is built off of CSYS so 3D Point 1s constructor calls the GetInstance method

passing in CSYSs GUID. Since CSYS is already in the feature dictionary it is simply returned. 3D

Point 1 is then added to the feature dictionary and returned. The dependency graph for 3D Point 2

has automatically been assembled. The point is created and added to the feature dictionary.

The second feature, 3D Point 1 has already been placed in the feature dictionary so when the

loading algorithm reaches its message it simply verifies that it is already in the feature dictionary

and moves on.

The third feature, Line has a dependency on 3D Point 1 and 3D Point 2. When this message

is processed, Line calls the GetInstance method, passing in 3D Point 1s GUID. Since 3D Point 1 is

62

already in the feature dictionary it is simply returned. The same happens for 3D Point 2 since it is

also in the feature dictionary. The dependency graph for Line has automatically been assembled.

The line is created and added to the feature dictionary.

The final feature, CSYS, has already been placed in the feature dictionary so when the

loading algorithm reaches its message it simply verifies that it is already in the feature dictionary

and moves on.

To implement this pattern, first all CAD feature classes should inherit from a base class

which contains a dictionary of all features. As shown in Listing 6.3.

Listing 6.3: Base Object Implementation using the Pseudo-Singleton Pattern

1 public abstract class MUObject

2 {

3 //The GUID of this Object

4 public Guid GUID ...

5 private Guid guid;

6

7 prublic static Dictionary <Guid , MUObject > MUFeatures {get; set;}

8

9 //Sends a Message to the server to delete the server version of

this MUObject

10 public void DeleteFromClient ()...

11

12 //Upon recieving a message from the server ,

13 //this method shall remove the deleted MUObject from the client

14 public abstract void DeleteFromServer(MUObject ObjectToDelete ,

CADTypes CADType);

15 }

Since all features will inherit from this base class they have access to this dictionary. Note

also the utility of using inheritance to ensure that every feature will have a GUID to uniquely

identify it which matches the GUID primary key in the NPDB. There is also a DeleteFromClient

method that is fully implemented in this base class and a DeleteFromServer method signature that

63

all sub-types must implement. Pertinent portions of the 3D Point class from the CATIA client are

shown in Listing 6.4.

Listing 6.4: 3D Point Implementation

1 public class MUPoint : MUObject

2 {

3 // properties

4 public override DBInteropObject serverObject

5 {

6 get { retukrn ServerPoint; }

7 }

8 public DBPoint ServerPoint { get; private set; }

9 public HybridShapePointCoord CATIAPoint { get; private set; }

10

11 // Public

12 // Creates CAD specific point from the server point

13 public static MUPoint GetInstanceFromServer(DBPoint Point , CADTypes

CADType)...

14

15 // Checks to see if the CATIA point is already in the dictionary

16 //If it is it returns it. If it is not it creates it

17 public statice GetInstanceFromCATIA(HybridShapePointCoord

clientPoint , Guid partGuid)...

18

19 //Use this method when the server version has changed

20 public void UpdateFromServer(ConnectData.DBPoint serverPoint ,

CADTypes CADType)...

21

22 //Use this method when the CATIA version has changed

23 public void UpdateFromCATIA(HybridShapePointCoord ClientPoint)...

24

25 public override void DeleteFromServer(MUObject.ObjectToDelete ,

CADDypes CADType)...

26 }

64

The pseudo-singleton pattern is implemented in the GetInstanceFromCATIA and the GetInstance-

FromServer mothods. The GetInstanceFromServer method is shown in Figure 6.5.

Listing 6.5: Implementation of the Pseudo-Singleton Pattern

1 // Creates CAD specific point from the server point and CAD system

2 public static MUPoint GetInstanceFromServer(DBPoint Point , CADTypes

CADType)

3 {

4 //If the server point already exists in the dictionary return it

5 if (MUFeatures.ContainsKey(Point.GUID))

6 return (MUPoint)MUFeatures[Point.GUID]

7

8 //If the point doesn ’t exist it is created

9 MUPoint result = new MUPoint ();

10 result.CreateCATIAPoint(Point);

11

12 //The newly created MUPoint object is added to the dictionary

13 MUFeatures.add(result.GUID , result);

14

15 return result;

16 }

Any other place the application needs to reference a point, it must do so through this method rather

than creating the point. This can be seen in the Sphere implementation shown in Figure 6.6.

65

Listing 6.6: CreateCATIASphere Method Demonstrating Pseudo-Singleton Pattern Use

1 \\ Creates a CATIA Sphere

2 void CreateCATIASphere(DBSphere serverSphere)

3 {

4 HybridShapeSphere sphere;

5 GUID = serverSphere.GUID;

6

7 HybridShapePointSphere center = (MUPoint.GetInstanceFromServer(

serverSphere.CenterPoint , CADTypes.CATIA)).CATIAPoint

8

9 PartDocument partDoc = CurrentPart.CATIAPart;

10

11 HybridShapeFactory hybridShapeFactory = (HybridShapeFactory)partDoc

.Part.ShapeFactory;

12 partDoc.Part.InWorkObject = MUObject.currentBody;

13

14 INFITF.Reference centerRef = partDoc.Part.CreateReferenceFromObject

(center);

15

16 sphere = hybridShapeFactory.AddNewSphere(centerRef , null ,

serverSphere.Radius , 0, 90, 0, 90);

17 sphere.Limitation = 1;

18 sphere.set_Name(serverSphere.Name);

19 Utilities.SetGuid(sphere , GUID);

20

21 MUObject.currentBody.InsertHybridShape(sphere);

22

23 partDoc.Part.Update ();

24

25 CATIASphere = sphere;

26 ServerSphere = serverSphere;

27 }

66

Note that when the sphere center is used, rather than perform any logic checks or take

concern whether the center point has been received yet or not, the code simply grabs the point of

interest. If the point has been created already it will simply be returned from the dictionary. If

the point has not been created it will be automatically created in the correct dependency order.

Because of this pattern it does not matter if the point message or the sphere message is sent from

the server first, the sphere will assemble its own dependency graph in the correct order.

6.2 Agnostic Business Layer

In addition to working with unordered feature data, a heterogeneous server should work the

same irrespective of the client that is connected to it as stated in Requirement 11. From a data stor-

age perspective this has been addressed by creating a neutral parametric database (NPDB) which

maintains referential integrity, thus preventing data corruption. From the server perspective this is

further enforced by requiring all clients to use a standard set of messages. From a client perspec-

tive there must be a standard, documented architecture that any developer can use to integrate their

client with the heterogeneous server.

In this case the NPDB was mapped to server-side classes which enforce full referential

integrity of the database. Once those classes were made, a standard set of methods was created

which performs the standard create, read, update and delete (CRUD) operations both from the

client to the server and from the server to the client. The standard methods use the mapped classes

as arguments and the server. Inheritance can be used to enforce that any client implement the exact

set of methods with the correct arguments. Since data integrity is enforced by those server objects,

any client that uses the standard set of methods can fully interact with the heterogeneous server

architecture and Requirement 11 is met. The standard set of methods can be seen in Figure 6.4 and

the delete methods are enforced in the proposed way as shown in Figure 6.3

With the architecture of a MESH CAD client developed, discussed and implemented the

final step to demonstrate that requirements have been met is to demonstrate the software system.

This chapter will first review a demonstration of the system, then review the research that has been

done and finally make recommendations for the continuation of the research.

67

6.3 Modeling Demonstration

A sample rocket assembly was modeled by seven engineers on seven different comput-

ers. Users worked with a mixture of NX, CATIA and Creo clients. All engineers were given

instructions for modeling their individual parts of the assembly. All the features implemented in

this research were used in the modeling of the various rocket parts. This project was selected be-

cause it has enough complexity to demonstrate feasibility of the MESH architecture while avoiding

heterogeneous modeling conflicts between users and the need for heterogeneous undo or redo ca-

pability. While methods for homogeneous modeling conflict resolution, undo, and redo have been

developed by Red et al. [31,36], there are enough differences between a homogeneous and hetero-

geneous environment that these methods must be adapted to the heterogeneous environment before

they can be used.

All engineers work at the same time creating features on their own CAD client. Unlike

other technologies where engineers can all view but only one can edit, all engineers can view and

edit the model collaboratively. This allows for a truly parallel work flow where multiple engineers

are all editing simultaneously rather than a work flow where one engineer is editing and other

engineers are watching or where multiple engineer are editing but cannot see what their team

mates are doing.A close-up of the finished assembly in NX, CATIA and Creo is shown in Figure

6.4. The parts are not only the same geometry but are editable, parametric models. A CATIA, NX

or Creo engineer can edit the model and the other engineer can see what is being edited in real-time

This architecture not only allows for collaboration within a company, but also real-time

collaboration across supply chains. It simplifies the workflow in Figure 1.3 even more than the

multi-engineer homogeneous environment. A sample workflow can be seen in Figure 6.5.

Note that not only the conflict resolution tasks within a company have been eliminated, but

also the conflict resolution tasks that span multiple companies as well as all data conversion and

check workflows and feedback loops. By reducing design-time conflicts engineers will be able to

collaborate on large projects effectively. It is also worth noting that because the NPDB has been

implemented using a SQL database it can store very large amounts of data effecively.

68

Figure 6.4: Multiple Operators Collaborating in Real Time in a Heterogeneous CAD Environment

69

Figure 6.5: Sample Workflow Using a MES Heterogeneous CAD Environment

6.4 Remarks on Multi-User Heterogeneous Server, Logic, and Client Layers

This architecture can be used to create an application that has a stable, easy to use data stor-

age method and a client server architecture which can not only maintain stability despite unordered

data (Requirement 10) but also work irrespective of client (Requirement 11). An implementation

of this architecture will prove the concept of a MESH CAD architecture. The next chapter will

discuss a few other needs which have been expressed by our industry partners and then the actual

results of implementing the MESH CAD client will be discussed.

70

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Dissertation Review

In this dissertation a software architecture that facilitates MESH CAD has been developed

and discussed in such a way that key system requirements have been met. The next four sub-

sections review these requirements and how they were met.

7.1.1 Neutral Parametric Database Mathematical Model

Chapter 3 set four requirements:

1. MESH CAD is only obtainable through the development, implementation and acceptance of

a Neutral Paramatric Database.

2. The NPDB must be based on fundamental mathematical representations of CAD features.

3. The NPDB must prevent update anomalies.

4. The NPDB must be compatible with an object oriented class structure.

A MESH CAD system must be built on a sound foundation that represents CAD features generi-

cally and accurately, maintains data integrity and maintains clear relationships. In order to achieve

this, a neutral parametric database or NPDB was created. In order to ensure that CAD features are

well represented, the fundamental mathematical definition of the CAD elements was used rather

than simply using API function arguments. This ensures that the CAD features can be read from

the database and recreated in any CAD system for any length of time into the future. Update

anomalies are prevented by normalizing the database. This is critical because it ensures that no

mater how many clients interact with the database or how poorly written they are, they cannot

corrupt the CAD data. Finally, by mapping the NPDB database tables to an object oriented class

71

structure the intent of the storage model is clear and the elements are straight forward to work

with. While these requirements are necessary in order to create a MESH CAD system they are not

sufficient and so the next section will review additional requirements.

7.1.2 Neutral Parametric Database Structured Query Language Model

Chapter 4 set three additional requirements:

5. The Nirvana Fallacy must be avoided by proving the concept with a partial feature set.

6. The NPDB standard must be implemented using industry best practice tools and methods.

7. MESH software must be scalable to an enterprise-scale design environment

It is a common error when developing engineering software to fall victim to scope creep and

because of it never complete a development project. The way to avoid this is to acknowledge the

Nirvana fallacy and choose a clear, succinct scope. This research accomplished this by working

with a central set of the most used sketch and solid features rather than the full set of CAD features.

Another common mistake is to try to use the newest, most exciting tools and methods rather than

the most established ones. This mistake would result in a system that would not be open to further

development because of obscure coding language and tool usage. To avoid this pitfall industry-

standard tools such as SQL, C#, and Entity Framework were used. Not only is using a standard

tool set important to ensure a smooth development project, but these standard tools are commonly

used by industry members and so are designed to scale to their needs. By meeting these three

requirements, the architecture not only has a sound foundation but also has a highly pragmatic

implementation that can be built and expanded upon.

7.1.3 Multi-Reference Interface Inheritance

Chapter 5 set forth two additional requirement:

8. The NPDB must store inter-feature references in a way that mirrors existing commercial

CAD systems.

9. Complex inter-feature reference storage must prevent update anomalies.

72

One very important and often overlooked aspect of CAD data storage are the relationships between

the CAD features. Research typically focuses on the features themselves while neglecting how

they associate with each other. It is critical that a system meant to store CAD data represents all

aspects of the data. For this reason all references between features must be accurately stored in

the database. Not only must they be stored, but they must be stored in such a way that update

anomalies are prevented. For this reason the NPDB was designed to support mutable inter-feature

references accurately, succinctly, and in a way that only allows the appropriate data elements to

be written to the database. Without meeting these requirements, a MESH CAD system would

have low data integrity and thus be highly unstable. One mistake could corrupt an entire assembly

structure, rendering it unusable.

7.1.4 Multi-User Synchronous Heterogeneous Server, Logic, and Client

Chapter 6 lays out two more requirements:

10. A MESH application must maintain stability despite unordered feature messages.

11. A MESH application must support clients agnostically.

Finally, a MESH CAD system’s logic and client layers must be as stable and ordered as the data

layer they are built upon. For this reason it is important that a logic layer be written which maintains

the proper order and relationships between features received from the server. While it is possible

to maintain these relationships through complex algorithms, it is far superior to do so through an

elegant design pattern and so the pseudo-singleton pattern was developed to automatically main-

tain these relationships regardless of how data is received from the server. Additionally, standard

function methods were developed so that even a novice programmer can write a new MESH CAD

client which interacts with the NPDB. This will allow future students to continue to improve and

work with the MESH CAD architecture developed for this dissertation. These eleven requirements

are necessary to build a MESH CAD environment and they are sufficient to prove the conceptual

architecture.

73

7.2 Future Recommendations

While this dissertation represents a strong start at creating a MESH CAD system, there

is still much to be done. With a project of this nature where many doubt the possibility of the

approach, the first step is to create a proof of concept which was done in this case. The next

step is to identify key research questions and resolve them in order to prepare the technology for

commercialization. In this spirit a few particular problems that are currently under research by

students of the BYU CADLab are:

• Model History

• Version Control

• Variant Branching

• Variant Merging

• Consistent BREP Naming

A model history is an important part of the data integrity of a CAD system and is a foun-

dational step towards supporting heterogeneous undo and redo operation. With a model history in

place, if designers make mistakes in their work those mistakes can be reversed, either at a local

or a global level as described for a homogeneous environment by Red et al. [36] Version con-

trol allows engineers to flag important milestones in their design project. This will allow them to

prepare models for a design review and then continue working uninterrupted. Variant branching

and merging will allow engineers to explore the design space without corrupting the production

product. Defining branch and merge operations for the part graphs within this MESH CAD system

is also foundationally important in order to support heterogeneous optimistic conflict resolution,

similar to what was researched for a homogeneous enviornment by Red et al. [31] Finally, Con-

sistent BREP naming is a critical piece of a MESH CAD system because it will allow the storage

of items like edges, vertices and faces which do not exist as independent features but rather as the

result of features. Once these research projects are completed there is still more work to be done.

A few items to start with are:

• Heterogeneous Global Undo and Redo Operations

74

• Heterogeneous Local Undo and Redo Operations

• Heterogeneous Optimistic Conflict Resolution

• Complex Curves and Surfaces With Proprietary Interpolation Algorithms

• Features Exclusive to One CAD System

• Multi-disciplinary View Management

Engineers frequently make mistakes as they work and so undo and redo operations on both

a global and local scale are critical for a smooth work flow in a heterogeneous environment. With

multiple engineers working together in close quarters operational conflicts are a regular occur-

rence. Because of this automated conflict resolution operations will be necessary for MESH CAD

system stability. As was mentioned in the dissertation, some elements like curves and surfaces

have different mathematical and API definitions. A robust method to store these elements and

allow them to be both accurately viewed and easily edited must be developed. Similarly, features

that are exclusive to one CAD system or are missing from one CAD system must be represented

in the system so that it can work with the union of all CAD features rather than their intersection.

Finally, an important step in engineering design will be to take the MESH CAD system developed

in this dissertation to become a MESH CAx system which can store and work with all types of

engineering data.

75

REFERENCES

[1] Brunnermeier, S. B., and Martin, S. a., 1999. Interoperability cost analysis of the US auto-
motive supply chain: Final report Tech. Rep. 7007. 1, 25

[2] Amdahl, G. M., 1967. “Validity of the single processor approach to achieving large scale
computing capabilities.” In AFIPS spring joint computer conference, pp. 187–196. 1

[3] Tupper, E. C., 2013. Introduction to Naval Architecture, 5th Edition. Elsevier. 2

[4] Red, E., Jensen, G., French, D., and Weerakoon, P., 2011. “Multi-user architectures for
computer-aided engineering collaboration.” 2011 17th International Conference on Concur-
rent Enterprising(Ice), pp. 1–10. 7, 16, 19

[5] Basu, D., and Kumar, S. S., 1995. “Importing mesh entities through IGES/PDES.” Advances
in Engineering Software, 23(3), pp. 151–161. 10

[6] Gu, H., Chase, T. R., Cheney, D. C., Bailey, T. ., and Johnson, D., 2001. “Identifying, Correct-
ing, and Avoiding Errors in Computer-Aided Design Models Which Affect Interoperability.”
Journal of Computing and Information Science in Engineering, 1(June 2001), p. 156. 11

[7] Tien-Chien Chang, Richard A. Wysk, H.-P. W., 2006. Computer-Aided Manufacturing.,
3rd ed. Prentice Hall. 11

[8] Marjudi, S., Amran, M. F. M., Abdullah, K. A., Widyarto, S., Majid, N. A. A. M., and
Sulaiman, R., 2010. “A Review and Comparison of IGES and STEP.” Proceedings Of World
Academy Of Science, Engineering And Technology(January 2016), pp. 1013–1017. 11

[9] Ranyak, P., 1994. “Application Interface Specification (AIS), Version 2.1.” Consortium for
Advanced Manufacturing International (CAM-I). Integrity Systems, USA. 11

[10] Choi, G., Mun, D., and Han, S., 2002. “Exchange of CAD part models based on the macro-
parametric approach.” International Journal of CAD/CAM, 2(1), pp. 13–21. 11, 12, 19, 20,
22

[11] Iyer, G. R., 2001. “Development of API-Based Interfaces to Enable Interoperability Be-
tween CAD Systems During Design Collaboration.” PhD thesis, The University of Texas at
Arlington. 11

[12] Ganapathi, S., 2002. “A Software Model for Interoperability.” PhD thesis, The University of
Texas at Arlington. 11

[13] Aspire3D. 11

76

[14] Mun, D., Han, S., Kim, J., and Oh, Y., 2003. “A set of standard modeling commands for the
history-based parametric approach.” CAD Computer Aided Design, 35, pp. 1171–1179. 12,
40

[15] Li, W., Ong, S., Fuh, J., Wong, Y., Lu, Y., and a.Y.C. Nee, 2004. “Feature-based design in
a distributed and collaborative environment.” Computer-Aided Design, 36, pp. 775–797. 12,
19, 40

[16] Li, M., Yang, Y., Li, J., and Gao, S., 2004. “A preliminary study on synchronized collabora-
tive design based on heterogeneous CAD systems.” . . . Cooperative Work in Design, 2004.
. . . (310027). 12, 19, 20, 22

[17] Li, M., Gao, S., and Wang, C. C. L., 2007. “Real-Time Collaborative Design With Hetero-
geneous CAD Systems Based on Neutral Modeling Commands.” Journal of Computing and
Information Science in Engineering, 7(June), p. 113. 12, 19, 20, 22

[18] Dou, W., Song, X., and Zhang, X., 2009. “A language of neutral modeling command for syn-
chronized collaborative design among heterogeneous CAD systems.” 2009 1st International
Conference on Information Science and Engineering, ICISE 2009, pp. 12–15. 12

[19] Dou, W., and Song, X., 2013. “Operation Command Transformation of Synchronized Collab-
orative Design Upon Heterogeneous CAD Systems.” Journal of Algorithms & Computational
Technology, 7(4), pp. 423–448. 12

[20] Song, X., Dou, W., and Zhu, J., 2010. “Implementation of collaborative design system upon
heterogeneous CAD systems using a feature-based mapping set.” Proceedings of the 2010
14th International Conference on Computer Supported Cooperative Work in Design, CSCWD
2010, pp. 510–515. 12

[21] J. Chen, Y. M. C. W. C. A., 2005. “Collaborative Design Environment with Multiple CAD
Systems.” pp. 367–376. 12

[22] Zhang, X., and Dou, W., 2009. “An approach of constructing neutral modeling command
set of synchronized collaborative design upon heterogeneous CAD systems.” Proceedings -
International Conference on Management and Service Science, MASS 2009, pp. 0–3. 12

[23] Rappoport, A., 2003. “An architecture for universal CAD data exchange.” Proceedings of
the eighth ACM symposium on Solid modeling and applications - SM ’03, p. 266. 13, 20, 22

[24] Proficiency. 13

[25] Tae-Sul Seo Sang-Uk Cheon Soonhung Han Lalit Patil Debasish Dutta, Y. L., 2005. “Sharing
CAD models based on feature ontology of commands history.” International Journal of
CAD/CAM, Vol 5, No(0). 13

[26] Sun, L. J., and Ding, B., 2009. “Heterogeneous CAD data exchange based on cellular ontol-
ogy model.” 2009 WRI World Congress on Software Engineering, WCSE 2009, 1, pp. 46–50.
13

[27] Tessier, S., 2011. “Ontology-Based Approach To Enable Feature Interoperability Between
Cad Systems.” PhD thesis, Georgia Institute of Technology. 13

77

[28] Hepworth, A., Tew, K., Trent, M., Ricks, D., Jensen, C. G., and Red, W. E., 2014. “Model
Consistency and Conflict Resolution With Data Preservation in Multi-User Computer Aided
Design.” Journal of Computing and Information Science in Engineering, 14(June), p. 021008.
16

[29] Hepworth, A. I., Tew, K., Nysetvold, T., Bennett, M., and Greg Jensen, C., 2014. “Automated
Conflict Avoidance in Multi-user CAD.” Computer-Aided Design and Applications, 11(May
2014), pp. 141–152. 16

[30] Hepworth, A. I., Nysetvold, T., Bennett, J., Phelps, G., and Jensen, C. G., 2014. “Scalable
Integration of Commercial File Types in Multi-User CAD.” Computer-Aided Design and
Applications, 11(May), pp. 459–467. 16, 49

[31] Red, E., French, D., Jensen, G., Walker, S. S., and Madsen, P., 2013. “Emerging Design
Methods and Tools in Collaborative Product Development.” Journal of Computing and In-
formation Science in Engineering, 13(September), p. 031001. 16, 68, 74

[32] Red, E., Holyoak, V., Jensen, C. G., Marshall, F., Ryskamp, J., and Xu, Y., 2010. “V-CAx: A
research agenda for collaborative Computer-Aided Applications.” Computer-Aided Design
and Applications, 7(3), pp. 387–404. 16

[33] Cai, X., Li, X., He, F., Han, S., and Chen, X., 2012. “Flexible Concurrency Control for
Legacy CAD to Construct Collaborative CAD Environment.” Journal of Advanced Mechan-
ical Design, Systems, and Manufacturing, 6(3), pp. 324–339. 16

[34] Maher, M. L., and Rutherford, J. H., 1997. “A model for synchronous collaborative design
using CAD and database management.” Research in Engineering Design, 9, pp. 85–98. 16

[35] Sederberg, T. W., 2011. Computer Aided Geometric Design Course Notes. 31

[36] Moncur, R. a., Greg Jensen, C., Teng, C. C., and Red, E., 2013. “Data consistency and conflict
avoidance in a multi-user CAx environment.” Computer-Aided Design and Applications,
10(May 2014), pp. 727–744. 49, 68, 74

78

