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SUMMARY 
 

 

This thesis describes the spatio/temporal dynamics of the harmonically excited 

flames.  Analytical and numerical analyses were performed to study excitation and 

dissipation of wrinkles on the flame front.  Modern gas turbine systems face major 

challenges from the onset of combustion instabilities.  In order to avoid this problem, in-

depth understanding of the dynamics of the flame front is required.  This thesis is devoted 

to provide insights into complex combustion dynamic problems. 

        Dynamics of the flame front are tracked by the so-called G-equation.  The G-

equation relates the motion of the flame front with the laminar flame speed and the 

velocity on the flame front.  This partial differential equation is quite complex so that 

obtaining the explicit solution is not generally possible.  Firstly, this equation is 

inherently nonlinear because of flame propagation normal to the flame.  Secondly, 

velocity terms involve stochastic components with the presence of turbulent 

flow.  Finally, the laminar flame speed, which has a dependence on geometric shapes, 

increases the order of the partial differential equation.  Therefore, extensive mathematical 

techniques are used to obtain explicit solutions to the flame dynamics. 

        Previous studies pointed out a generic feature about the flame response to the 

harmonic velocity disturbances: the magnitude of the flame response grows, reaches a 

peak or multiple peaks, and then decays with axial distance.  This evolution can be 

understood by a competition between the excitation and the dissipation of the flame 

response.  Excitation processes controls the flame response in the near field, while 

dissipation processes controls the response in the far field.   The excitation processes are 



 xxi 

studied in two regions, the near field and the far field.  The near field analysis is universal 

so that it applies to a general velocity disturbance field.  On the other hand, the far field 

analysis requires spatial characteristics of the velocity fluctuations so that a specific 

velocity disturbance model was used.  For the dissipating processes, three mechanisms 

are studied: kinematic restoration, flame stretch, and turbulent flow effects.  Asymptotic 

analysis identifies key dimensionless parameters and compares their relative 

contributions in dissipating the flame response. 

In the near field, two mechanisms can excite the flame response.  They are the 

unsteady flame base motion and the normal velocity fluctuation.  The unsteady motion 

propagates downstream with the tangential velocity, while maintaining its magnitude.  In 

addition, the normal velocity fluctuation causes a linear increase in the flame response 

either by harmonic or stochastic velocity fluctuations.  Furthermore, the growth rate of 

the flame response is proportional to the ratio of normal velocity disturbance to the 

tangential velocity.  This relationship was verified with measurements of bluff-body 

stabilized flames. 

Moving into the far field, spatial characteristics of the velocity fluctuation are 

required to understand the flame response.  It is found that depending on the decay rate of 

the velocity fluctuation, the flame response shows two different behaviors.  If the velocity 

fluctuation persists further downstream, the flame response shows oscillatory gains as a 

result of interference between waves propagating along the flame sheet.  However, this 

interference behavior can change due to the decay of the velocity disturbances.  With 

high decay of velocity fluctuations, the corresponding wave cannot cause interference, 
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allowing the other wave to dominate further downstream.  This dominance leads to a 

constant magnitude for the flame response in the far field. 

Kinematic restoration, one of the dissipation processes, shows a two zone 

behavior in smoothing flame wrinkles.  A wrinkle on a flame excited with a single 

frequency decays quadratically in the near field at an amplitude dependent rate.  The 

presence of multiple frequencies in the excitation, such as an additional harmonic, leads 

to a linear decay in the near field amplitude.  Thus, the harmonic content of the excitation 

plays an important role in the decay rate of flame wrinkles.  In the far field, the wrinkle 

decays inversely with downstream distance at a rate that is independent of forcing 

amplitude.  

The smoothing of flame wrinkles by stretch effects in positive Markstein length 

flames can be understood from linear analysis.  The analysis shows that the wrinkle 

decay rate is an exponential function of Markstein length and downstream distance. 

Finally, the effect of turbulent flow in smoothing out the ensemble-averaged 

flame front is analyzed.  In the near field, asymptotic results show three leading order 

contributions: (i) the phase jitter associated with random tangential convection of flame 

wrinkles, (ii) random flame angle changes, and (iii) kinematic restoration coupled with 

length scales of the velocity fluctuations.  Farther downstream, additional processes 

become important.  First, the time averaged turbulent burning velocity increases with 

downstream distance and turbulence intensity.  This faster average displacement velocity 

of the front leads to an increase in the destruction of flame wrinkles.  In addition, the 

ensemble averaged turbulent burning velocity is modulated by the harmonic forcing, with 

an inverse dependence upon ensemble averaged flame curvature, i.e., the turbulent 
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burning velocity changes in time.  This effect is exactly analogous to positive Markstein 

length flames in the laminar flame case, but applies even to the ensemble averaged 

characteristics of stretch-insensitive turbulent flames. 



 

1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Fire, one form of combustion, has helped people civilize.  From prehistoric times, 

people have used fire to cook food in order to increase the variety and availability of 

nutrients and to create warmth and light in order to overcome harsh winter and dark 

nights.  By gaining control of fire, people were able to develop civilizations.  The ability 

to smelt metals from ore opened a new era of the Bronze Age and later opened the Iron 

Age. 

Extracting energy from nature has given humanity the ability to conquer nature 

and produce conveniences for people.  The steam engine powered the Industrial 

Revolution, when people learned to draw energy effectively from coal, and it changed the 

paradigm of agriculture, manufacturing, mining, and transportation.  Later, electricity 

became the popular medium for energy consumptions.  Nowadays, people can fly to 

opposite sides of the world in a day and even further into space. 

In extracting energy from nature, burning fossil fuel has long existed, and it is still 

the most effective and popular way to draw energy.  Burning fossil fuel powers 

transportation, factories, and electricity generation for general purposes.  Fossil fuels will 

be a major energy resource for the next decades. 

With all these benefits, people slowly started to realize the side effects of burning 

fossil fuel.  This combustion process produces harmful products such as nitrogen oxides 
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(NOx), sulfur oxides (SOx), and etc.  Nitrogen oxides and sulfur oxides cause acid rain 

and respiratory symptoms to people [1, 2].  For sulfur oxide, its emission can be 

effectively minimized by removing sulfur from the fuel in the preprocessing stage.  

However, nitrogen oxide, both of whose elements originate from air, cannot be 

completely removed in the burning process, but its production can be minimized by 

controlling the combustion process. 

Therefore, many recent developments to combustion systems is driven by the goal 

of minimizing NOx emission.  The main driver in reducing NOx emission is to decrease 

the operating temperature because the major production of nitrogen oxide is from high 

temperature zone [3].  Accordingly, new systems have been proposed to lower the 

operating temperature.  For example, these include catalytic combustion, rich-burn quick-

quench lean-burn combustion (RQL), and lean-premixed combustion.  However, each 

system comes with its own disadvantages.  Catalytic combustion comes with high cost, 

low durability and safety issues.  RQL suffers from soot formation and mixing problems.  

Lean premixed combustion has challenges with flame stabilities, flashback, lean blow out.  

Significant efforts have been expanded toward these operability issues in premixed 

systems.  Combustion instability, or combustion dynamics in bigger scope, is the key 

motivator for this work.  

Although understanding combustion instability is an eminent problem, difficulties 

arise in attempting to understand the dynamics of the combustion of practical systems.  

For example, combustion research involves the coupling of fluid dynamics and chemical 

reactions.  Fluid dynamics in the combustion system is complicated by the presence of 

turbulent flow, and chemical reaction is complicated by the thousands of elementary 
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reactions.  However, among all these processes, some are more important and some are 

less.  Identifying key processes on combustion system will clear the dust cloud and helps 

to design a better combustion system.  Therefore, this thesis focuses on identifying 

leading order processes to provide insights in the combustion dynamics. 

 

1.2 Combustion Instability 

Combustion instability generally refers to the self-excited pressure fluctuations of 

acoustic nature in a combustion chamber.  It is not limited to the gas turbine systems; 

rather it includes all combustion systems such as liquid rockets and industrial boilers.  In 

order to develop efficient, safe, and eco-friendly combustion system, the understanding 

on combustion instability is crucial. 

 

1.2.1 Previous Studies on Combustion Instability 

Historically, combustion instability arises as a major challenge during the early 

fifties and sixties on aircraft and rockets.  For example, Pogo oscillation, a term used in 

liquid rockets, delayed several rocket launching missions [4].  However, with lack of 

proper understanding, engineers had to rely on expensive repeated experiments.  

Especially, for Saturn V rocket motor, 2000 full scale tests were conducted to avoid 

combustion instability [5]. 

In the rocket engines, it is known that longitudinal oscillations cause severe 

damage to the combustion chamber.  Figure 1.1 shows the time trace of unsteady pressure 

inside a solid rocket motor, where two pulses are forced to excite instabilities.  The first 

pulse excites the tangential oscillation, but the oscillation is small compared to the mean 

pressure.  However, when the second pulse is applied, the longitudinal oscillations are 



 4 

excited, leading to large fluctuations in the pressure accompanied with the increased 

mean pressure.  This experiment illustrates the high sensitivity of the rocket system to  

small external disturbances. 

 

Figure 1.1. Example of solid rocket motor experience from Blomshield [6].  

 

 Later, gas turbine systems face a major challenge of combustion instability.  

Previously, industrial gas turbine systems operated with diffusion flames, where fuel and 

oxidizers are mixed at the combustion chamber.  However, due to recent restrictions on 

emissions, engineers have moved to lean-premixed systems, where flame stability is the 

main challenge.  This flame stability problem leads to frequent hardware failures and 

increased maintenance costs. 

Combustion instability will continue to be a challenge as long as heat is a main 

energy source for human activities.  Therefore, we should understand combustion 

dynamics better in order to extract energy from chemical reaction in clean, safe, and 

efficient ways. 

1.2.2 Understanding the Combustion Instability 

Lord Rayleigh was the first one to state a criterion, which describes the conditions 

under which a periodic heat addition process adds energy to acoustic oscillations.  

Following is a quote from his book, The Theory of Sound [7]. 
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“If heat be given to the air at the moment of greatest condensation, or be taken 

from it at the moment of greatest rarefaction, the vibration is encouraged.” 

 

This criterion states that energy is added to the acoustic disturbances if unsteady heat 

release and unsteady pressure are in phase, which can be formulated as [8]: 

 
0

1
0

T

p q dt
T

    (1.1) 

Superficially, combustion instabilities seem to be easy to identify simply by knowing 

pressure and unsteady heat release.  However, these identifications are quite difficult in 

real applications.   

When it comes to prediction capabilities, evaluating Eq. (1.1) becomes 

extraordinarily difficult.  Pressure and heat release are highly coupled and related by 

various flow/chemical/geometric parameters.  For example, pressure fluctuations 

influence the fuel feeding system, which leads to the fluctuation in heat release [9], and 

unsteady heat release is a well known monopole acoustic source [10].  Therefore, instead 

of attempting to dissect Eq. (1.1) right away, people start to look at more elementary 

mechanisms in understanding interactions between pressure and unsteady heat release. 

One promising approach to understanding these interactions is by utilizing so-

called flame transfer functions.  Dowling proposed that gas dynamic processes essentially 

remain in the linear regime, even under limit cycle operation [11].  For a linear process, a 

transfer function is a useful tool to understand instability.  Subsequently, indentifying the 

heat release transfer function upon the flow oscillations becomes the major objectives for 

understanding combustion instability.  Extensive measurements were performed to 

measure the heat release transfer function for various combustor designs.  Santavicca and 

coworkers measured the various flame transfer function for a single nozzle configuration, 

and correlate with minimum response frequency with heat release center of mass [12, 13].  
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Candel and coworkers also performed flame transfer function measurements for various 

combustor configurations, such as Bunsen and slot burners [14-16].  One of their 

measurements is illustrated in Figure 1.2.  These flame transfer function are also obtained 

by numerical simulations.  Kornilov et al. performed numerical simulation with detailed 

binary diffusion with four species along with tabulation of CHEMKIN® package on 

multi-slit Bunsen burners and compare [17].  Poinsot and coworkers includes turbulent 

fluctuation and obtained many results [18, 19].  

Modelling effort was followed as well.  Modeling the flame transfer function 

using the G-equation was first attempted by Fleifil et al. [20], where they considered 

Poiseulle flow in a ducted chamber with a bulk velocity disturbance.  Later, Lieuwen and 

coauthors developed more sophisticated models for transfer functions including fuel-air 

ratio fluctuations [13, 21], velocity disturbance [22],  turbulent disturbance [23], and 

pressure disturbances [24].  One of the comparison shown in Figure 1.2b shows good 

agreement with measurements shown in Figure 1.2a, capturing quantitative/qualitative 

features. At low frequencies, gain approaches unity, and increases subsequently with the 

frequency.  Then, the modeling predicts the oscillatory behavior which is also present in 

the measurements.   Candel and coworkers also performed extensive study on modeling 

the flame transfer function using the G-equation [15, 16, 25].  

a)  b)  

Figure 1.2  Dependency of gain of flame transfer function on frequency. a) Measured from  

V-flame [15], b) theoretical estimation by flamelet model [22]. 
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However, most previous studies focused on obtaining the flame transfer function, 

an integrated value of distributed heat release.  Significantly less attention was made to 

understand the spatio/temporal dynamics of the flame on the combustion instability.  In 

addition, most previous studies have focused on the mechanisms for excitation of flame 

wrinkling, with significantly less attention given to the processes that smooth these 

wrinkles out.  

 

1.3 Overview of Present Work 

The objective of this research is to understand the spatio-temporal characteristics 

of harmonically forced premixed flames including processes that excites, transport and 

smooth-out flame perturbations. The remainder of this thesis is divided as follows.  

Chapter 2 starts with formulating the kinematic equation relating flame motion with 

various disturbances.  Then, it reviews the early studies on combustion kinematics 

including kinematic restoration effect, flame stretch effect, and turbulent effect.  Chapter 

3 describes the methods used in this thesis to solve the flame front kinematic equations.  

Details about analytic and numerical methods are described. For the analytic methods, 

small perturbation methods, Hopf-Lax formula, and method of characteristics are 

presented with examples.  For the numerical methods, two methods are presented.  The 

first method is a level set method which can handle topological changes of flame front.  

The second method is solving its reduced model equation.  This method is less general 

than the level set method, but still applicable to most laminar flames.  Lastly, special 

treatments for the flame boundary and post-processing methods are explained, too. 



 8 

New findings are presented in Chapter 4 through Chapter 7.  Chapter 4 and 

Chapter 5 present analysis on excitations of the spatio/temporal response of the flame, 

while Chapter 6 and Chapter 7 cover analysis on dissipations of the response of the flame. 

Chapter 4 covers the flame response near the flame holder, where the flame 

response starts to grow.  It was found out that the growth rate of the flame response is 

proportional to the flow disturbance acting in flame normal direction.  Quantitative 

comparison with measurements shows very good agreements.  Chapter 5 extends this 

analysis further downstream and identifies two regimes by a flow dissipation parameter; 

interference dominated regime and dissipation dominated regime.  In the interference 

dominated regime, the gain of flame response shows multiple peaks, and its peak axial 

locations can be predicted from an interference wavelength.  In contrast, in the 

dissipation dominated regime, the gain of the flame response shows only single peak and 

decreases subsequently in a nonlinear fashion.  Quantitative and qualitative comparisons 

with measurements are presented for both regimes. 

Chapter 6 and Chapter 7 cover the processes leading to smoothing out wrinkles on 

the flame front.  The Chapter 6 describes numerical and theoretical analyses of the 

nonlinear dynamics of harmonically forced, stretch-sensitive premixed flames.  A key 

objective of this chapter is to analyze the relative contributions of kinematic restoration 

and flame stretch upon the rate at which flame wrinkles, excited by harmonic forcing, are 

smoothed out.  Which process dominates is a function of the perturbation amplitude, 

frequency, stretch sensitivity of the mixture, and spatial location.  Next, Chapter 7 

describes numerical and theoretical analyses of the dynamics of harmonically forced, 

turbulent premixed flames.  A key objective is to understand the role of the turbulent flow 

in dissipating the harmonic wrinkles on flames.  In the near field, three mechanisms 

contribute to the decay of the flame response in the leading order; phase jitter, random 

flame angle change, and kinematic restoration induced by small scale velocity 

fluctuations.  In the far field, ensemble-averaged flame fronts are further smoothed out by 
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the increase of the flame speed and the curvature-dependent flame speed fluctuations, 

whose effect is similar to thermodiffusive laminar flames.  The dominant contributors 

vary with perturbation amplitude, turbulence intensity, and spatial location. 
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CHAPTER 2 

FLAME FRONT KINEMATIC EQUATION 

 

This chapter explains modeling approaches in the flamelet regime, and introduces the 

kinematic equation in the flamelet regime.  Then, this chapter presents some of the 

general features found in the spatio/temporal flame response and reviews the elementary 

mechanisms influencing the flame response. 

2.1 Flamelet Regime 

Combustion in practical systems usually occurs in turbulent flows due to complex 

combustor geometries and high flow speeds.  These turbulent flows consist of wide range 

fluctuations in length, time, and velocity scales.  Therefore, it is beneficial to know 

different flame regimes of turbulent combustion.  One of this categorization for premixed 

flames is the Borghi diagram [26, 27], where flame regimes are classified by two 

parameters, a normalized turbulent intensity, rms Lu S , and a normalized turbulent length 

scale, 11 FL  , as shown in Figure 2.1.   

The discussion of this regime diagram closely follows Ref. [27].  Starting from 

the bottom left, the line of 11 1rms

L f

u L

S 
  separates all turbulent regimes from the laminar 

flames due to low turbulent intensities.  Moving into the turbulent regimes, there are two 

different regimes; the quasi-steady flamelet regime and the distributed reaction zone.  If 

rms Lu S  is lower than  
1/3

11 FL   (quasi-steady flamelet regime), then turbulent length 

scale is not yet small enough to break thin flame thickness.  Then, in the opposite case, 

( rms Lu S >  
1/3

11 FL  ), lengths scales of turbulent flow get smaller than the flame 
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thickness so that turbulent fluctuation interferes the flame structure.  This leads to 

reaction to occur all over the place inside the combustion chamber (Distributed reaction 

zone).   

 

 

Figure 2.1 Turbulent combustion diagram illustrating different combustion regimes as a 

function of 11 FL   (integral length scale/flame thickness) and LS
rms

u  (turbulent velocity 

fluctuations/flame speed), reproduced from Ref. [27]. 

 

As many practical combustion systems operate within the quasi-steady flamelet 

regime [11], this thesis focuses on the analysis on the flamelet regime and laminar regime.  

In this flamelet regime, combustion processes occur within a very thin zone relative to 

different types of disturbance length scale.  Therefore, the flame consists of thin layers 

separating reactants and products, and this layer is also called the flame front [27].  

Details about dynamics of flame front in this regime are explained in the following 

section. 
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2.2 Flame Front Kinematic Equation 

The flame front in the flamelet regime can be tracked by the so-called G-equation, which 

was first formulated by F. Williams [28] and is used extensively for various combustion 

problems such as theoretical flame transfer functions [20], theoretical turbulent 

consumption rate [29], and many computational fluid dynamics [30-32].   

 

 

Figure 2.2 Instantaneous snapshot of a wrinkled laminar flame sheet, whose instantaneous 

positions are given by the parametric equation = 0G(x, y, z, t)  [26]. 

  

The flame front kinematic equation relates the motion of the flame front with 

various flow/flame parameters.  Consider the flamelet as a gas dynamic discontinuity in 

three dimensional space described by the parametric equation,  , 0G x t  .  In a flame 

fixed coordinate system (Lagrangian), the evolution of the G values on the flame does not 

change, which is expressed as: 

  , , , 0
at the flame front

D
G x y z t

Dt
  (2.1) 

The above equation is, written in an Eulerian form as: 

 0f

G
u G

t


  


 (2.2) 

Product

G>0

Reactant

G<0

Flame surface

G=0

n

n

n

n
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where 
fu  is the velocity of the flame front.  The velocity is then decomposed into sum of 

flow velocity and the normal flame propagation speed as 
f Lu u S n   .  Note that the 

normal direction to the flame front is / | |n G G   (see Figure 2.2).  Then, Eq. (2.2) is 

rewritten as: 

 | |L

G
u G S G

t


   


 (2.3) 

 

In addition, the only condition of G outside the flamelet is non-zero.  However, it is 

convenient to have negative values on the reactants side and positive values on the 

products side as shown in Figure 2.2.   

In the unsteady case, the flame is being continually wrinkled by the unsteady flow 

field.  On the contrary, the action of flame propagation normal to itself, the term on the 

right side of Eq. (2.3), is to smooth these wrinkles out through “Huygens propagation” / 

“kinematic restoration”. A wrinkle created at one point of the flame due to a velocity 

perturbation propagates downstream and diminishes in size due to kinematic restoration. 

Indeed, the interaction between the excitation (acoustic/vortical flow oscillations) and the 

damping (restoration property of the flame) can lead to a range of effects depending upon 

flame stabilization and the relative values of the flow oscillations and flame speed.  This 

equation is quite general so that it handles flames with complex, multi-connected 

surfaces, such as the flame shown in Figure 2.3.   
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Figure 2.3 Instantaneous edge of a highly contorted flame front [27]. 

 

 A useful transformation of the G-equation is done by converting Eq. (2.3) in 

terms of the flame position, .  Although the equation for the flame position becomes less 

general than the G-equation, it enables us to track flame locations explicitly - note that in 

G-equation, the flame position is implicit function of G.  Once these explicit flame 

positions are obtained, we can evaluate quantities such as flame surface area and flame 

curvature.  A common way of transforming the G-equation to the flame position equation 

in 2D is by substituting    , , ,G x y t y x t  , where  represents the locations of the 

flame front, see Figure 2.4 for illustration.  Then Eq. (2.3) is transformed into: 

 

2

1x y Lu u S
t x x

     
     

   
 (2.4) 

The left hand side of this equation is the usual convective operator.  Therefore, in 

the absence of right hand side, any disturbance on the flame front is simply convected in 

the flow direction.  The nonlinear forcing on the RHS in Eq. (2.4) originates from the 

property that flame fronts propagate normal to themselves.  Geometrically, this property 

is similar to waves which propagate from every point source.  This nonlinear operator can 

cause discontinuities in the slope of flame fronts, which is very hard to track by 

conventional asymptotic analysis. 
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Figure 2.4. Schematic of bluff-body stabilized flame with its corresponding 

coordinates. red solid : instantaneous flame front, red dash : mean flame position. 

 

2.3 Overview of Spatio/temporal Flame Response 

We next discuss some general features of the spatio-temporal flame response to flow 

oscillations, summarizing results from the work of Shanbhogue et al. [33].  Figure 2.5 

illustrates a typical image of the instantaneous edge of a flame forced by axial acoustic 

oscillations at a frequency, f0.  These acoustic fluctuations excite vortical disturbances 

whose influence on the flame is evident from the periodic wrinkles of the flame, 

quantified with the variable (x,t).   
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Figure 2.5. Instantaneous image of the flame front location (solid) and the underlying 

vorticity field [33] and corresponding coordinates.  

 

The spatial distribution of the flame response is non-monotonic, as can be seen 

from typical measurements reproduced in Figure 2.6, which plots several spectra of the 

flame sheet location at different axial locations.  This spectrum was determined from the 

Fourier transform of the flame front position, (x,t), indicated in Figure 2.5. The envelope 

of the flame response at f=f0 is also drawn.  
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Figure 2.6. Dependence of the flame front fluctuation spectrum, | ( , ) |x f  upon the 

axial location (f0=300hz, u0=4.5m/s, 9.5mm triangular bluff-body) [33] . 

  

Figure 2.7a and Figure 2.7b plot other results at different operating conditions, 

focusing upon the flame response at the forcing frequency. From these plots, we can 

observe several generic features of the flame response, 0| ( , ) |x f .  First, 0| ( , ) |x f starts 

near zero and grows monotonically with downstream distance.  This near-flame holder 

behavior is controlled by flame anchoring.  Shanbhogue showed that the slope of this 

rise, 0| ( , ) | /x f x  , is proportional to the magnitude of velocity forcing, indicating the 

flame response is linear in this region [34]. 

 Next, the flame wrinkling amplitude exhibits a peak as in Figure 2.7b, or multiple 

peaks as in Figure 2.7a.  This indicates that the flame response shows different behaviors 

by different flow conditions.  Finally, the general trend for the magnitude of flame 

wrinkling is to decay with downstream distance.  This decay length scale can be long or 

short relative to the interference length scale, as shown in Figure 2.7a and Figure 2.7b, 
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respectively.  Especially, in Figure 2.7a, the decay does not scale with the magnitude of 

excitations, indicating nonlinear response of the flame. 

 

a) b)  

Figure 2.7. Dependence of flame front fluctuation magnitude for circular bluff-body with 

9.52mm diameter (a) 230hz, u0=2.0m/s (b) 200hz, u0=2.52m/s (ua’ represents acoustic forcingvelocity 

fluctuation upstream of bluff-body).  Reproduced from Shanbhogue[34].  

 

A complete description of the flame response to harmonic forcing requires 

capabilities to predict the flame wrinkling characteristics in regions of the flame 

controlled by flame anchoring, interference behavior, and flame wrinkle destruction, all 

of which will be addressed in this thesis. 

2.4 Mechanisms Influencing Flame Kinematics 

Mechanisms influencing the flame kinematic include kinematic restoration, flame 

stretch, and turbulent flow effect, which are reviewed in the followings. 

2.4.1 Kinematic Restoration 

Kinematic restoration refers to one of the dissipation mechanisms on the flame wrinkle 

through flame front propagation in its normal direction.  This term is used in Peters’ book 

where he states that the kinematic restoration acts as a sink term since the perturbed 

flame position will be restored to be smooth by the flame position [26]. 
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For example, if we neglected the kinematic restoration term, the RHS of Eq. (2.4), 

the equation becomes a transport equation, with a velocity forcing.  By further neglecting 

the axial velocities, Eq. (2.4) becomes: 

 yu
t





 (2.5) 

This equation is Langevan’s equation with the forcing term on the RHS. The solution for 

the random velocity term will be similar to the random walk.  In this case, the variance of 

the flame speed will grow linearly with time.  Therefore, without kinematic restoration, 

wrinkles will persist indefinitely. 

A very well known manifestation of kinematic restoration is cusp formation as 

shown in Figure 2.8, where convex regions of the flame front become sharp edges.  In the 

author’s knowledge, the first appearance capturing cusps on flames is in Maxworthy’s 

work, where he named it as nodal shape [35]. 

 

 

Figure 2.8.  Development of cusps on the flame front for a bluff-body stabilized flame [35]. 

 

The first solution considering the kinematic restoration appeared in Petersen and 

Emmons’s work where they referred to it as the Huygens’ propagation [36].  In this paper, 

they evaluated the decrease of flame wrinkle height over the downstream distance as 
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shown in Figure 2.9.  It was shown that the flame wrinkle height remains constant until it 

cusps, and then, the height starts to decrease further downstream.  This trend was 

partially explained by Law and coworkers [37] where cusp formation time and its trace 

velocity were derived.  Still, many dynamic behaviors of the flame front caused by the 

kinematic restoration are not well understood for combustion dynamics. 

 

 

Figure 2.9.  Dependency of the flame wrinkle height on the downstream distance assuming 

the Huygens’s propagation of the initially sinusoidal flame front. Reproduced from Ref. [36]. 

 

2.4.2 Flame Stretch 

The flame front kinematic equation, Eq. (2.3), seems quite simple.  However, all 

complex chemistries and mass transports are buried in one parameter, SL, the laminar 

flame speed.  This laminar flame speed mainly depends on chemical processes and 

diffusive mass transport.  However, the laminar flame speed depends on the flow 

parameters as well as flame geometry.  For one dimensional flames, the flame speed is 

well understood [38] and many measurements show good agreements with models [39, 

40].  However, as flames become multi-dimensional, chemical species and heat can 
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escape through transverse directions due to the finite thickness of the flame, leading to 

the flame speed varying a lot depending on flow/geometry conditions [41].  In order to 

model this effect, Williams related the change of the flame speed with a measure of the 

flame front distortion parameter, , defined as: 

 
1 dA

A dt
   (2.6) 

where, A is the surface area of an infinitesimal element of the flame front.  Therefore,  

represents the logarithmic stretching/compressing rate of a surface area.  This stretch rate, 

, can be decomposed into hydrodynamic and flame front curvature effects as [37]: 

  f fu u n c      t  (2.7) 

where  t  and c are the tangential derivative operator and twice the mean curvature, 

respectively.  Two representative examples, illustrating the hydrodynamic strain and the 

curvature terms, are shown in Figure 2.10a and Figure 2.10b, respectively. 

 

a)  b)  

Figure 2.10 Conceptual demonstration of stretched flames: a) a stagnation flame where 

hydrodynamic strain is present on the flame, b) a Bunsen flame tip where the curvature causes the 

flame stretch [37]. 
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First, looking at the curvature effect, its linear dependency on the flame speed for 

weakly curved flames is related by the Markstein length, , as [37]: 

 
,0

1L

L

S
c

S
    (2.8) 

However, this relationship is problematic for high curvature flames as the flame speed 

can reach negative values.  Hence, Poinsot et. al. proposed a similar expression for the 

flame speed relationship [41], whose linear limit matches with Eq. (2.8) as: 

 
,0

1

1

L

L

S

S c


 
 (2.9) 

 Measured dependencies of the flame curvature are shown in Figure 2.11 from a 

direct numerical simulation [42].  This data shows that as curvature deviate from zero, the 

flame speed lost linear dependency quickly; rather this measurement is similar to 

expression in Eq. (2.9).  

 

 

Figure 2.11 Correlation of the flame speed, SL, at the flame reference location with 

respect to the local gas speed with curvature [42].  
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 The next discussion is about the hydrodynamic strain rate dependency.  Some 

common features regarding hydrodynamic strain rate can be found from Figure 2.12, 

where the flame speeds are calculated by CHEMKIN-PRO© with Davis and GRI 3.0 

Mechanisms [43, 44].  The flame speed evaluation is performed on positively strained 

flames.  From this figure, it is seen that the as the strain rate increases, the flame speed 

increases as well.  The increases are steep near =0, however, the curves slightly bend 

down until the flames finally extinguish (the positions where each line stops represent the 

points of extinction). 

  

 

Figure 2.12 Calculated hydrodynamic strain sensitivity of H2/CO mixtures (Calculation 

is done by opposed flames by CHEMKIN-PRO©) [45].  

 

Prior studies related to flame dynamics have assumed that the burning velocity 

was constant [16], so that the flame speed is independent of the flow field.  In reality, 

hydrodynamic strain and flame curvature introduced by the flow oscillations lead to 

perturbations in flame speed.  In flames that are thermo-diffusively stable, these unsteady 

stretch effects act to smooth out the flame front corrugation. This causes the amplitude of 

the flame wrinkles to diminish as they propagate along the flame. As the radius of flame 
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wrinkling is approximately proportional to the inverse of the squared frequency, it can be 

anticipated that this effect grows in significance with frequency. 

  

2.4.3 Turbulent Flames 

Understanding of the dynamics of turbulent flames is crucial for combustion 

instability as most practical combustion systems operate under strong turbulent flows.  

Specifically, a study on turbulent flame speed, denoted as ST, is one of the main research 

areas in turbulent combustion.  Figure 2.13 shows some measurements and numerical 

calculations of the turbulent flame speed for different turbulent intensities.  Lipatnikov 

and Chomiak summarized the recent development of studies of the turbulent flame speed 

in their paper [46].   They pointed out some of the common trends found on the turbulent 

flame speed: (1) an increase of ST  by increasing turbulent intensity, u’, (2) an increase in 

ST and dST/du’ by the laminar burning velocity, and (3) an increase in ST by pressure.   

 

Figure 2.13.  Dependencies of combustion velocities on turbulent intensity.  Symbols show 

the experimental data of Karpov and Severin [47].  Solid and dashed curves have been computed 

with and without flamelet quenching submodel [48], repsectively.  
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It is also important to note that ST is definition dependent.  Extensive discussion 

of the advantages and disadvantages of various definitions are covered in the literature.  

Some resolution has been achieved in two recent reviews [49, 50] and through the 

International Workshop on Premixed Flames [51], where it is noted that there are actually 

multiple useful definitions for ST that are relevant for different combustion issues (e.g., 

flashback and heat release rate).  Four definitions of ST have been proposed as local 

displacement speed, global displacement speed, local consumption speed, and global 

consumption speed. 

There are also many efforts to obtain theoretical expressions for the turbulent 

flame speed.  Clavin and Williams initiated the study on the turbulent flame speed using 

the G-equation and formulated an unclosed form solution [52].  Later, Aldredge and 

Williams calculated turbulent flame speeds for flat flames based on assumed isotropic 

turbulent flow [53].  Then, Aldredge extended his analysis with more general turbulent 

flows [29].  Creta and coworkers performed the numerical simulations solving Kuramoto-

Sivashinsky equation [54] and G-equation [55] with prescribed turbulent flow to obtain 

effect of the turbulent velocity fluctuation on the flame propagation speed.  Santosh and 

Lieuwen also performed analytical turbulent flame speed analysis for anchored flames 

[23].  They suggested that turbulent flame speed evolves from the flame holding points 

due to the tangential flow on the flame.  This idea of an evolving turbulent flame from an 

initial state is consistent with a finding from spark-ignited spherical flames [46].  

However, in these studies, they neglected the nonlinearities associated with kinematic 

restoration.  Therefore, their solution shows that turbulent flame speed increases 

indefinitely with a positive integral time scale. 
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CHAPTER 3 

G-EQUATION SOLUTION METHODS 

 

The flame kinematic equation is a nonlinear partial differential equation rendering 

difficulties in obtaining analytic solutions.  This chapter describes the methodology of 

solving the flame kinematic equation, a 3D version of Eq. (2.3) as: 

 | |L

G
u G S G

t


   


 (3.1) 

where, points satisfying   0G x   represent coordinates of flame positions.  Then, the 

equation for the flame position, , reproduced from Eq. (2.4) is: 

 

2 2

1x y z Lu u u S
t x z x z

           
        

       
 (3.2) 

While Eq. (3.1) can only be solved by numerical methods, Eq. (3.2) can be solved 

by various analytical methods as well as a numerical method.  Analytic methods to be 

presented are the Hopf-Lax formula, the method of characteristics, and the perturbation 

methods.  The Hopf-Lax formula and the method of characteristics render the exact 

solution for limited conditions.  In contrast, the asymptotic method can be applied to 

many applications, but it provides an approximate solution.  Still, this approximate 

solution is helpful in providing insight to the problems, and one can improve accuracy by 

keeping higher order of expansions if necessary.  Lastly, numerical methods provide the 

exact solutions for wider range of applications, but the accuracy and domain size are 

limited. 
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3.1 Hopf-Lax Formula 

The Hopf-Lax formula can give the exact explicit solution for limited cases.  We 

will consider a class of problems where the flame propagates into a quiescent flow
i
 with 

the given initial flame front. 

    0, , 0x y initu u x t t      (3.3) 

In addition, we use = - in this section to be consistent with the form  used in 

Ref. [56].  Then, the governing equation for the flame position, Eq. (3.2), is rewritten as: 

 

2

1LS
t x

   
    

  
 (3.4) 

The Legendre transformation of the RHS of Eq. (3.4) is: 
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 (3.5) 

Then, the general solution of Eq. (3.4) is described by the Hopf-Lax formula as [56]:  

        
*

22* *, min
L L

init L
x S t x x S t

x t x S t x x 
   

 
    

 
 (3.6) 

Although the deriving steps and the solution seem quite complicated, the solution states a 

simple, well-known physical process.  This solution simply states that the flame 

propagates in every radial direction from all points on flame fronts at the local 

displacement speed, LS .  Then, the new flame fronts become the set of outer most points 

from all circles.  This process is also referred to as “Huygens propagation”, see Ref. [57].  

                                                 

 

 

i
 In reality with flame wrinkles, moving flame induces a flow field ahead of it.  So this assumption 

implicitly assumes a low density jump across the flame.  



 28 

To illustrate, Figure 3.1 shows the instantaneous flame location at two instances of time, 

at t=0 and dt.  The dashed lines indicate circles with radius, SLdt, centered at points on 

the flame fronts at t=0.  The flame position at later times can be drawn by connecting 

outer most points from all circles centered at the flame as shown in the figure.  If the 

flame is curved, different points influenced new flame positions in different ways.  For 

example, in the new flame fronts, less amounts originate from circles from concave 

region of old flame fronts (point B) than the convex region (point A).  In the radical case, 

some concave region does not contributes at all to the new flame fronts (point D) as the 

new flame fronts are overshadowed by propagation from points C and E.  In other word, 

the only convex region is important in determining the new flame fronts in the far later 

time.  This also indicates that you cannot calculate back the initial flame front from the 

later flame front, which is called irreversibility. 

 

Figure 3.1 Sketch illustrating Huygens propagation and outer most flame fronts described 

by the Hopf-Lax solution for flame propagation.  

 

3.2 Method of Characteristics 

The method of characteristic is a powerful technique for solving nonlinear partial 

differential equations.  Consider a example where the flame has an initial steady state 
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shape matching the given the flow condition, then suddenly the axial velocity changes 

from ux,a to ux,b, which are described as: 
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,
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0
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x b

u t
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u t


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 (3.7) 

When the flame equilibrates at steady states, the two steady state solutions are obtained 

from Eq. (3.2) as: 
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 (3.8) 

The transient solution after t=0 can be obtained by the method of characteristics as 

followings.  First, differentiate Eq. (3.2) with respect to x, and the equation becomes a 

special case of the more general equation as [58]: 

   0
g g

c g
t x

 
 

 
 (3.9) 

where, /g x    and   2/ 1x Lc g u S g g    .  The solution of this equation can be 

obtained by the method of characteristics.  We will look at the case ux,a < ux,b for 

illustration.  The other case is solved in APPENDIX A.  The characteristics are illustrated 

below:  



 30 

 

 

Figure 3.2 Illustration of space-time evolution of solution characteristics and formation of a 

shock. 

 

Because 
, ,x a x bu u , the characteristic lines intersect and thus form "shocks". The “shock” 

location, shockx  can be obtained from the Rankine-Hugoniot jump condition [56] as 

following: 

 
   

shock
F g F gd x

dt g g

 

 


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
 (3.10) 

where, F(g) is an indefinite integral of c(g), i.e.,   2

, 1x b LF g u g s g   .  Here, F(g) 

only uses ux,b because the axial velocity is ux,b during all calculation time.  The values 

with superscript ‘+’ and ‘-‘ represent the values before and after the jump, respectively.   

Then, it solves as: 
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


 (3.11) 

Lastly, the solution becomes 
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This example illustrates the use of methods of characteristics in solving dynamics 

of the flame front. 

3.3 Asymptotic Analysis 

Asymptotic analysis is popular methods to solve nonlinear partial differential 

equations as it is applicable to many applications.  Fundamental idea behind the 

asymptotic analysis is based on the continuity of solutions over small parameters.  For 

example, let’s consider a small parameter .  If we know a solution when =0, then the 

solution for nonzero  can be approximated by the known solution, and the difference is 

proportional to the nonzero . 

The procedure for our problem is followings.  First decompose the input 

parameter into mean and perturbation.  Here, we will impose small perturbation in the 

velocity field with perturbation amplitude of .  For the convention, we use subscript ‘0’ 

for unperturbed values and superscript prime as the perturbed values.  
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 (3.13) 

Next, we consider both the linear and nonlinear response character of the flame. 

Hence, , is written as: 

        2

0, ,x t x x t O         (3.14) 

By expanding the solution in powers of [59], the zeroth order equation for the 

flame fluctuation is written as follows : 
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The general solution of the zeroth order solution can be obtained by solving the 

following ordinary differential equation. 
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 (3.16) 

The solutions for Eq. (3.16) are geometrically illustrated in Figure 3.3.  Given the 

mean flow velocities, the flame propagation with SL should be perpendicular to the mean 

flame position.  Therefore, we can draw a circle centered at end point of the mean flow 

vector with a radius of SL.  Then, draw tangent line to the circle in dashed line.  The 

solution in Eq. (3.16) as well as the drawing in Figure 3.3 shows two possible slopes of 

the mean flame position.  The uniqueness of the solution can be obtained once the 

location of the reactants is known.  For example, if the reactants are on the top side, the 

mean flame position becomes Flame 1 as the flame should propagate into the top 

direction and vice versa.   Also, note that for Flame 1, as v0 increases, the flame becomes 

more vertical (i.e. flame will be more perpendicular to the axial direction), and as u0 

increases, the flame becomes horizontal.   
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Figure 3.3 Geometric illustration of possible mean flame positions for given mean velocities. 

 

Next consider the first order equation.  Inserting this expansion into Eq. (3.2) and 

retaining only the first order terms leads to: 
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  (3.17) 

where,  d0/dx are obtained by eq. (3.16), and new parameters are illustrated in Figure 3.4. 
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Figure 3.4 An illustration of the top half of an attached flame, indicating the velocity 

components tangential and normal to the flame. Reproduced from [27].  

 

 If d0/dx is substituted with 1/tan, Eq. (3.17) can be rewritten as: 
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where v’F,n1 and 
,0su  denote a fluctuation of normal component to the flame (

,1 ,1n Lu S  ) 

and a mean velocity in the tangential direction of the flame, respectively. Note that it is a 

sub-class of the more general equation of 

  1 1 ,f x t
t x
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

 
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 (3.19) 

The flame position at a given  ,s sx t  is a superposition of wrinkles from upstream 

points that were generated at earlier times and have propagated along the flame front at 

the velocity, 
,0 cossu  . This can be seen from the solution of Eq. (3.17). To simplify the 

presentation, we assume that the mean velocity field is spatially uniform. Assuming a 

flame position boundary condition at 0x  , ( 0, ) ( )bx t t   , the general solution of 

the G-equation is:   
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This solution shows that the flame response at each spatial position and time is a 

superposition of two waves that propagate along the flame front.  The first wave, denoted 

as the “Homogeneous part” is excited at the flame anchoring point and propagates along 

the flame sheet at an axial velocity of 
,0 cossu  , together with what was already 

presented by the boundary condition. The second wave propagates at the excitation phase 

velocity.  Note that the particular solution is a convolution of the velocity at all points 

upstream of x while the homogeneous solution is only influenced by the velocity field 

near the attachment point. The spatial variation in amplitude and phase of these two 

solutions leads to interesting interference phenomenon, as will be described later. 

3.4 Numerical Methods 

3.4.1 The Kinematic Equation for the Flame Position,  

For the fully nonlinear solutions, Eq. (3.2) can be obtained by numerical calculation.  

Spatial derivatives are discretized using a Weighted Essentially Non-Oscillatory 

(WENO) [60] scheme designed for Hamilton-Jacobi equations.  This scheme is uniformly 

fifth order accurate in regions where the spatial gradients are smooth and third order 

accurate in discontinuous regions.  Derivatives at the boundary nodes are calculated using 

fifth order accurate upwind-differencing schemes so that only the nodes inside the 

computational domain were utilized.  A Total Variation Diminishing (TVD) Runge-Kutta 

scheme [61], up to third order accurate, was used for time integration and Local Lax-

Friedrich (LLF) scheme, which is detailed in APPENDIX B, was used for improved 

stability [60].  The spatial and temporal grid size were 0/100 and 1/(10,000f0), 

respectively. 
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3.4.2 Level Set Method 

This section describes the computational approach used to solve the level-set equation in 

Eq. (6.1).  These computations closely follow previously reported work which are 

detailed in Sethian and Osher [62, 63], and by Hemchandra and Lieuwen [64] for this 

particular application. The level set equation is solved using the semi-Lagrangian 

Courant–Isaacson–Rees scheme together with the back and forth error compensation and 

correction (BFECC) technique [65].  This is a second order scheme with low numerical 

dissipation and dispersion errors. The local level-set method is adopted to achieve 

significant reduction in computation time [66].  The level-set field is reset to a signed 

distance function by solving an auxiliary re-distancing equation using the prescription of 

Dupont and Liu [65].  

The computational domain consists of 201x201x801 grid cells with a spatial 

resolution of (us,0/f0)/100, L11/10, and the time step of 1/1000f0.  Several grid convergence 

studies were performed.  First, a grid study was performed for a laminar case with the 

baseline and factor of ten increased grid density, showing less than a 1% difference in 

flame position at  ,0 0/ /ss u  =25.  A similar comparison of calculations using the 

baseline and factor of two increased density for 7% turbulent intensity case showed a 3% 

difference in ensemble averaged flame position at  ,0 0/ /xx u  =15.   

The instantaneous flame position is evaluated numerically from the level set field 

using numerical approximations for the Heaviside function [63] and the delta function 

[67].  The numerical results are then phase-averaged over 160 ensembles to produce one 

time series in the forcing period. 
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In order to compare these computations with analytical results, it is necessary to 

calculate the ensemble averaged flame positions,  .  At lower turbulence intensities, 

the instantaneous flame position is a single valued function of  ,s z  for the majority of 

time instants; e.g., the flame is multi-valued in less than 1% of realizations for 

,0/ 0.07su u  .  However, the occurrence of multi-valuedness increases significantly with 

increasing turbulent intensity (e.g., see Figure 3.5); e.g., in about 25% of the realizations 

for 
,0/ 0.34su u  . 

 

a) b)  

c) d)  

Figure 3.5. Instantaneous realizations of the flame sheet extracted from solution of full level 

set equation, Eq. (6.1).  a,b)  
,0/ su u =0.07, c,d) 

,0/ su u =0.35 (
,0/L sS u =0.25,  ,0 0/ /su  =0.65, 

 11 ,0 0/ /sL u  = 0.65). 
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3.4.2.1 Applying Moving Flame Holder in Uniform Grid 

This subsection describes the numerical implementation on specifying the 

boundary conditions of the level set equation, when grid points do not align with the 

boundaries.  Figure 3.6 shows the schematics of the flame position at an instance where 

the top side is reactant and bottom side is product.  Flame holder, marked in the solid 

black circle, is oscillating on a thick solid line. A sample flame front is marked in a solid 

red line, which starts from the flame holder and extends further to the right direction. 

 

 

Figure 3.6.  Schematic of the motion of the flame holder in the uniform grid.  A solid red line 

is the flame front, and a dashed redline is a tangent of the flame front at the flame holder. 

 

As the flame holder location is not on the grid, we need to specify level set values 

in the neighboring grid points.  As seen from Figure 3.6, we need to know the tangent of 

the flame position (a red dashed line in Figure 3.6) so that we put positive values on 

reactant side and positive values on product side.  Furthermore, once the tangent line is 

determined, neighboring values are determined from bilinear interpolation [68].  Note 

that s and n coordinates are chosen to align with the flame tangential and normal 

direction in this example (i.e., =0 in Eq. (3.18)).  Then Eq. (3.18) is rewritten as: 
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Therefore, the initial slope in the normal-tangential coordinate system, it is obtained as: 
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Then, based on this slope, the neighboring points marked in the empty circle are 

prescribed at each time before the computation. 

 

3.4.2.2 Determination of Flame Position from Level Set Field 

The level set simulation gives outputs as the level set values in the uniform grid.  

Two difficulties arise from evaluating the flame position from the given level set field.  

The first difficulty is the misalignment of the grid directions and the desired flame 

coordinate.  Grid direction aligns with the mean flow direction (for the easy of flow field 

implementation), but the flame coordinates aligns with the flame tangential/normal 

directions.  As shown in Figure 3.6, the flame position is measured in the y-direction.  

Therefore, simply marching in one direction and find a value where the level set value 

becomes zero is not trivial. 

The second difficulty is multi-valued flame position (i.e., for one n-direction, 

there are multiple flame fronts).  There are several choices.  The first choice is using the 

average of progress variables for the turbulent flame [27].  First, binarize the G field into 

progress variable space, c , defined as: 
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c x y z
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 



 (3.23) 

Then, take ensemble average over many realizations, and obtain the contour 

satisfying c =0.5 for the representative flame position.  However, this definition of 

progress variable contour 0.5 is different definition of the mean of the flame position.  

APPENDIX D shows that the progress variable contour 0.5 represents the median of the 
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flame position while conventional definition of the flame position is the mean of the 

flame position for the single valued flame.  However, this median of the flame position is 

hard to express by the flame position kinematic equation.   

The third choice, which we chose to use, is using average of the multiple flame 

position at every instant.  Then the flame position is evaluated by integrating the product 

of y, delta function and Heaviside function in the domain as: 
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Therefore, the flame position is the average of the flame position over the x-

domain of width W. In order to integrate with in the specified region, the 3D delta 

function is from Ref. [67], and the numerical heaviside function [62] is: 
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 (3.25) 

where, dx is the grid size.  In addition, if the flame position is multi-valued, Eq. (3.24) 

will provide the area weighted mean flame position of the multiple locations (the 3D 

delta function itself is an area weighted function). 
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Figure 3.7 The schematics of integration domain in order to evaluate the flame position and 

the local surface area at  s0. 

 

3.4.2.3 Progress Variable and Mean Flame Position 

Different approaches can be used to specify the ensemble averaged flame position in 

these cases.  One approach is to turn each realization into a field of binarized values, with 

zero and unity denoting reactants and products, respectively.  These fields can then be 

averaged and the ensemble averaged value associated with some progress variable, C , 

such as C =0.5 as [49]: 

 
1

0

in the product side
C

in the reactant side


 


 (C26) 

 This is a fairly standard way in which ensemble averaged flame characteristics are 

presented in experimental turbulent combustion studies.  The problem with this 

binarization approach, however, is that it is a nonlinear operation.  Consequently, even 
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for a single valued flame front, the C =0.5 iso-contour describes the median as shown 

in APPENDIX D, not the mean, of the flame position.  However, the asymptotic analysis 

quantifies the mean, so the two calculations approaches cannot be quantitatively 

compared.  Therefore, we did not utilize this progress variable approach.  Rather, we 

extracted the instantaneous flame position coordinates and defined   as the average of 

each transverse value at a given axial location.  This result leads to a consistent 

comparison approach for single valued flames where the asymptotic analysis can be 

performed.   Practically speaking, the difference between the two calculation approaches 

does not appear to be significant, as Figure 3.8 compares the C =0.5 iso-contour and 

  for a typical case showing that they are nearly identical.  Figure 3.8 shows the 

comparison of the ensemble average of the flame position and 0.5-contour of ensemble-

averaged progress variable.  The maximum difference, which occurs at trailing edge of 

the flame in the far field, was 5% of the harmonic excitation (  ). 
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Figure 3.8. Comparison of ensemble average of instantaneous flame position and progress 

variable contour of 0.5 at one phase of the forcing period ( t =0). (Conditions are =0.65,  =0.04, 

LS =0.25, and 
11L =0.65). 

 

 

3.4.2.4 Prescribed Turbulent Velocity 

In order to be consistent with the theoretical analysis, the velocity field in the 

current computations in prescribed rather than solved for.  This is done for two reasons.  

Firstly, the aim is to compare the numerical solution with the linear theoretical solutions 

in order to study the effect of non-linearity on the non-local nature of the flame response.  

Secondly, physical processes controlling the flame response are independent of how the 

turbulence field was generated.  Hence the computationally cheaper approach of 

specifying the velocity field has been adopted so that a larger parametric space could be 

explored. 

The prescribed turbulent velocities also closely follows Hemchandra’s approach, 

which are detailed in his thesis [69].  The turbulent velocities fields are incompressible 

and isotropic.  The longitudinal correlation function is specified as [70]: 

  
2

11 2

11

exp
4

r
R r

L

 
  

 
 (3.27) 

where, L11 is the longitudinal integral length scale and r is the spatial separation between 

two points for which the correlation is sought.  The above correlation function is 

representative of that of low intensity large scale turbulence.  Such correlation functions 

have been used in the prior analyses of local consumption speed of freely propagating 

flame flames of Aldredge et al. [53] and Creta et al. [54].  Assuming spatial isotropy, the 

energy spectrum function corresponding to the above correlation function is: 
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Lastly, this turbulent flow fluctuation is convected downstream with the mean flow,  the 

Taylor’s hypothesis.  These hypothesis enables us to relate the time correlation with 

space correlations, which are derived in APPENDIX H. 



 45 

CHAPTER 4 

FLAME WRINKLE EXCITATION PROCESSES – BASIC 

CONSIDERATIONS 

 

This chapter describes the excitation of the flame response for the nominally 

2D/axisymmetric flame.  The flame front can be excited through unsteady motion of the 

flame base, or it can be continuously perturbed by field disturbances such as velocity or 

fuel/air ratio fluctuations.  The analysis in this chapter is limited to the linear regime.  

Nonlinearities and wrinkle decay mechanisms will be covered in the following chapters.  

The first section presents the general analysis of the flame response and provides an 

explicit form for the unsteady flame position.  Then, three specific model problems will 

be examined along with experimental validation.  The first problem deals with a flame 

which is excited through the oscillating flame holder in a steady flow.  In the second and 

third problems, the flame base is set to be fixed, and the flame is excited by harmonic and 

broadband velocity disturbances, respectively.  It is shown that the unsteady flame base 

motion propagates with a velocity equal to the tangential velocity and its oscillation 

magnitude remains constant in the subsequent region.  Furthermore, among the field 

disturbances, it is the normal components acting on the normal direction which disturbs 

the flame front position.  For the harmonic disturbance or the broadband velocity 

disturbances, the flame response increase linearly downstream in the near field. 
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4.1 Linear Flame Response 

The investigated configuration is a nominally 2D flame
ii
 as shown in Figure 4.1. 

The coordinate system is also drawn.  The 2D surface in Figure 4.1 is the flame front 

separating reactants (top region) and products (bottom region).  The position of the flame 

front, denoted as , is assumed to be a single valued function of x, z and t.  This single 

valued assumption may break down for highly wrinkled flames, such as vortex driven 

flames or strong turbulent flames.  For small disturbance, however, the flame front 

remains single valued [34], which enables to track the problem analytically.  

 

 

Figure 4.1.  An illustration of a nominally 2D flame and its coordinate system.  The position 

of the surface, or the flame front, is denoted as . 

 

For this configuration, the kinematic equation for the flame position, , is (a 

repetition of Eq. (3.2) for convenience): 

                                                 

 

 

ii
 The nominally 2D flame denotes the flame which is 2D in the absence of any disturbance.  

However, the nominally 2D flame becomes 3D if any of disturbance is 3D. 
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2 2

1x y z Lu u u S
t x z x z
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    
 (4.1) 

Equation (4.1) is a nonlinear partial differential equation (PDE), which is difficult 

to solve analytically.  Alternatively, asymptotic analysis can be applied to convert the 

nonlinear PDE into a series of linear PDEs, which give the approximate solutions for 

small fluctuations of the flame position.  In performing the asymptotic analysis, we first 

expand the flame position, the flame speed and the velocity as sums of mean and 

fluctuation components as (see Sec. 3.3): 

 

   
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u u x z u x z t

   

 
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 (4.2) 

Inserting these expansions into Eq. (4.1) and retaining only the linear terms lead to: 
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 (4.3) 

where,    
2 2

0 0/ / 1N x z        .  This equation can be simplified in terms of the 

flame normal vector ( 0n ), the tangential velocity ( su ), and the normal velocity ( nu ), 

which are defined respectively as: 

 0 0
0 ,0 0 ,0 0 ,1 1 0

1
, ,x y z s d nn e e e u u s n and u u n

N x z

   
       

  
 (4.4) 

Note that the flame normal vector, 0n , is chosen to point into the products as shown in 

Figure 4.2.  For the 2D flame, those velocity components are depicted in Figure 4.2 for 

reference.  The simplified form of Eq. (4.3) is then: 

 ,0 1
1

, 1s F nu N v
t







 


  (4.5) 
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where, 

 
,1 ,1, 1 n dF n u sv     (4.6) 

This equation shows that the linearized kinematic equation is a convective equation with 

a forcing term.  The convective operator on the LHS of Eq. (4.5) indicates that the flame 

wrinkle propagates in the tangential direction, while the RHS of Eq. (4.5) shows that the 

flame is perturbed by the normal component of the velocity disturbance and the flame 

speed disturbance. Note that flame speed and the velocity disturbances can be lumped as 

vF,n1. 

Furthermore, if the flame is assumed to be 2D/axisymmetric, then Eq. (4.5) can be 

further simplified in physically more revealing form.  After using the identities, 

0tan / x     and 1/ cosN   (see Figure 4.2 for ), Eq. (4.5) is rewritten as:  

 ,0

, 11 1cos
cos

s

F nv
u

t x




  
 

 
 (4.7) 

where, ,0 ,0s su u .  The velocity, 
,0su , represents the mean tangential velocity along the 

flame while ,1nu  denotes the fluctuating velocity component in the direction normal to the 

unperturbed flame front.  The cos  term on both sides comes from the choice of the 

flame position coordinate; i.e., if   is written instead as a function of vertical coordinate 

y, then sin  arises.  Alternatively, if the coordinate system is aligned with the 

unperturbed flame position (tangential direction), this term does not appear at all.  This 

propagation speed is equal to the x-component of the mean flow velocity in the tangential 

direction along the flame, 
,c fu , as illustrated in Figure 4.2.  
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Figure 4.2 An illustration of the top half of an attached flame, indicating the velocity 

components tangential and normal to the flame. Reproduced from [27].  

 

4.1.1 Generic Solution for the Linearized Equation 

This section describes the linearized dynamics of flames with tangential flow, i.e., 

flows where 
,0su  is not equal to zero, and illustrates the effects of flame attachment, flow 

forcing, and advection processes on the flame response.  Note that in the absence of 

tangential flow the linearized flame dynamics are described by Langevin's equation, 

which is an ordinary differential equation.  In this case, the unsteady flame motion at 

each point is a function of the local disturbance field, 
, 1F nv .  In contrast, flame dynamics 

with tangential flow are described by a partial differential equation, usually introducing 

an additional spatial boundary condition to the problem and making the local flame 

position a non-local function of the disturbance field. 

In addition, we will drop the z-dependency on the flame response (2D assumption) 

until the last section.  This assumption simplifies the analysis and provides the physical 

insight in understanding the flame kinematics.  We will come back with 3D consideration 

in the last section, where we deal with the turbulent disturbance.   Until then, flame 

response is a function of x and t. 

Unperturbed

flame frontReactants

Products

,1 ,1n Lu S
,0LS

,0xu

,0su

x

y 

0n

,c fu
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The flame position at a given  ,x t  is a superposition of wrinkles from all 

upstream points that were generated at earlier times and have propagated along the flame 

front at the velocity
,0su . This can be seen from the solution of Eq. (4.7). To simplify the 

presentation, we assume that the mean velocity field is spatially uniform. Assuming the 

flame boundary condition of ( 0, ) ( )bx t t    and the flow disturbance of  , 1 ,F nv x t ,  

the general solution of the -equation is: 

  1 , 1
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,0 ,0 ,0

1 1
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x x
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   
  (4.8) 

Specific examples will be further examined in the following sections.  

 

4.2 Example 1: Flame Excitation by the Unsteady Flame Base Motion 

The first example considers the oscillating flame holder in a uniform steady flow.  

This example simulates the experiments by Petersen and Emmons
iii

 [36].  The boundary 

and flow conditions are: 

    1 ,00, ,b x xx t t u u e     (4.9) 

The linear solution of this example is deduced from Eq. (4.8), which is: 
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iii
 However, in the experiments, the steady flow condition cannot be achieved because the 

oscillating flame holder induced velocity fluctuations.  Those effects can be minimized by using small 

flame holder. 
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If the flame base motion is harmonic, such as    0cosb t t    , then the gain 

and the phase of the flame position at the frequency, 0 are: 

  1 0: | , |Gain x    (4.11) 

    1 0 ,0: , / cossPhase x x u        (4.12) 

These results indicate that the gain, or equivalently the magnitude of the 

oscillation, remains constant over the downstream distance while the phase decrease 

linearly with a slope of  ,02 / cossu  .  These phase result physically represents that the 

shape of the flame front convects downstream with a velocity of 
,0 cossu  . 

The magnitude of the flame position oscillation was measured by Petersen and 

Emmons [36].  Note that the magnitude they measured is not exactly the gain of the 

flame response at the forcing frequency; rather it is the peak-to-peak amplitude within 

which the flame position fluctuates (i.e., the total variation).  Figure 4.3 depicts the 

evolution of the flame front magnitude over the downstream distance.  The dashed line is 

the theoretical estimation, including nonlinearities associated with kinematic restoration 

if the flame wrinkle is perfectly sinusoidal.  This dashed line is initially flat because the 

peak-to-peak amplitude remains the same until the flame front develops cups [35].  Then, 

by kinematic restoration processes, the peak-to-peak amplitude will decrease 

subsequently [26].  This decrease of the total variation due to the kinematic restoration is 

not covered in this chapter; rather it will be covered in CHAPTER 5 and CHAPTER 7 in 

more detail.   

The solution in Eq. (4.10) indicates that the flame response remains constant.  

However, in reality nonlinear and additional disturbance field will cause the change of 

the oscillation magnitude in the real flame.  However, the results with symbol * in Figure 

4.3 shows that the flame wrinkle maintains quite constant magnitude for some 

downstream distance because of its small nonlinearity. 
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Figure 4.3. Dependency of the magnitude of the flame position fluctuation on the 

downstream distance for different conditions.  Initial flame wrinkle is excited by the oscillating flame 

holder [36]. 

 

4.3 Flame Excitation for Attached Flames 

The second and the third examples are the flame response of the attached flame to 

velocity disturbances; either harmonic or broadband.  For the harmonic velocity 

disturbance case, the flame response at the forcing frequency will be analyzed, while for 

the broadband velocity disturbance case, the root mean square value of the flame position 

will be analyzed.  Equations (4.5) and (4.6) suggested that the velocity disturbance and 

the flame speed disturbance can be lumped together as 
, 1F nv . 

With the flame attachment and unsteady normal velocity assumptions, Eq. (4.8)  

is reduced to: 

  1 , 12 0
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First, this solution suggests that the flame response is proportional to the 

integration of the normal velocity disturbance over the downstream distance.  Therefore, 

if we drop the time dependency on the velocity disturbance, the flame response linearly 

increases over the downstream distance.  However, note that the time dependency on the 

integration will cause the flame to respond non-monotonically because of interference, a 

topic which will be covered in the next section.  Second, this equation suggests that the 

flame response is inversely proportional to the mean tangential velocity. 

4.3.1 Example 2: Harmonic Velocity Disturbance 

In this section, we assume that the velocity disturbance is harmonic and obtain the 

flame response at the forcing frequency.  It is convenient to decompose the velocity field 

in terms of gain and phase, where gain is varying arbitrarily over the downstream 

distance and phase is simply convected with constant phase speed of uc,v.  Then, the 

velocity is expressed in terms of Taylor series as: 
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 (4.14) 

Similarly, we can assume the form of the flame response as following: 

        0, Re | | exp fx t x i t x       
 

 (4.15) 

At the flame attachment point (x=0), the flame attachment condition indicates 

’(t)=0, or d’/dt=0. Taking the absolute value of the remaining terms and noting that 

| / | | |/x x       since ’(t) = 0, leads to: 
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x x x O x

u u


 
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 
 (4.16) 

Expanding the solution in Eq. (4.15) around x=0 subject to the boundary conditions there 

leads to: 
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Lastly, at x=0, the gain and the slope of phase can be derived as follows: 
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 (4.19) 

Equation (4.18) shows that the increase of the flame response as a function of 

downstream distance is proportional to the magnitude of the normal velocity fluctuation.  

There are additional factors which contribute, such as the inverse relation with the mean 

tangential velocity and the flame angle.   For the phase in Eq. (4.19), the slope of the 

phase is equal to the harmonic mean of the disturbance convective velocity and the mean 

tangential velocity. 

This linear relationship between the rate of the flame response increase and the 

magnitude of the velocity fluctuation is verified in the bluff-body stabilized flame.  

Shanbhogue measured the flame response at the forcing frequency at various conditions 

using the Mie scattering image [34].  In Figure 4.4, he showed that the flame responses in 

the near field increase linearly over the downstream distance. Furthermore, all data 

collapse into a single line in the near field (x/0<1.5) when the gains are scaled by a 

reference velocity, u’a.  Note that the reference velocity disturbance used in these 

measurements is not the velocity right at the flame front, but the one measured well ahead 

of the flame holder.  However it is hypothesized that the reference velocity disturbance is 

proportional to the actual velocity disturbance with a constant.  
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Figure 4.4. Measured amplitude response normalized by acoustic velocity amplitude upon 

normalized axial distance, 0=u0/f0  : (o) f0 = 150 Hz, ua’/u0 = 0.028/2.27, () f0 = 150 Hz, ua’/u0 = 

0.01/2.27, () f0 = 180 Hz, ua’/u0 = 0.015/2.27, () f0 = 150 Hz, ua’/u0 = 0.021/3.37 (cylindrical bluff 

body, reproduced from Shanbhogue [34]) 

 

Among the flame response shown in Figure 4.4, he also measured 

spatial/temporal velocity field by particle image velocimetry.  Based on this data set, we 

tried to validate the relationship between the flame response with the velocity as shown in 

Eq. (4.18).  Figure 4.5a and Figure 4.5b show the measured flame response and the 

measured normal velocity disturbance, respectively.  Around x/0=0.3~0.6, the rate of the 

increase of the flame response is around 0.14 and the corresponding the normalized 

velocity disturbance is 0.15, indicating the good match of Eq. (4.18). 
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a) b)  

Figure 4.5. a) Dependence of flame front fluctuation spectrum, 0 0| ( , ) | /x f   upon 

axial location. b) Dependence of normal velocity fluctuation amplitude, 
2

0 ,0| ( , ) | / ( cos )n su x f u   

upon axial direction. (u0 = 4.5 m/s, f0 = 300 Hz) 

 

Equation (4.18) is also validated for the high velocity flow flame [71].  The 

investigated flame is also the bluff-body stabilized flame but in a closed chamber.  In this 

experiment, the flame position is measured by luminosity of the flame and the velocity is 

measured by the particle image velocimetry.  Figure 4.6a and Figure 4.6b show the 

measured flame response and the measured normal velocity with the error bar, 

respectively.  Around 0.1<x/c<0.7, the rate of the increase of the flame response is 0.109, 

and the normal velocity measurement suggests that the value is 0.11.  Therefore within 

the error bound, it shows the good match of Eq. (4.18).   

 

a)  b)  

Figure 4.6. a) Normalized flame edge amplitude and best-fit line to the initial linear region. 

b) Ratio of transverse velocity amplitude to mean axial velocity as a function of downstream distance. 

The slope of the best-fit line from a) is the dashed line. The excitation voltage is 12V and the mean 

flow velocity is 38 m/s.  
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Therefore, the gain relationship equation is verified in the bluff-body stabilized 

flames, where the attachment condition is a valid assumption. 

 

4.3.2 Example 3: Broadband Velocity Forcing 

This section presents an example focusing on the anchored flame with tangential 

flow as shown in Figure 4.7, subjected to random turbulent fluctuations.  This problem is 

analogous to the harmonically forced problem considered in the previous section with the 

velocity model replaced by a random function.  

 

 

Figure 4.7 Schematic of an anchored turbulent flame with tangential flow showing the 

coordinate system used for the model problem. 

 

Here, for the simple presentation, a coordinate system is fixed to the tangential-

normal coordinates,  , ,s n z , as opposed to flow direction coordinates,  , ,x y z , which 
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was used in previous sections.  The governing equation for the three dimensional flame 

front is: 

 

2 2
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 (4.20) 

The turbulent velocity assumed to be isotropic combined with Taylor's hypothesis 

in order to relate space and time correlations and explicitly specify the following 

longitudinal velocity space correlation function: 
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where r and L11 are the distance between two points and the longitudinal integral length 

scale, respectively.  With the similar decomposition as in Sec. 4.1, the linearized version 

of the flame position is obtained as: 
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From this relationship, since the ensemble average of the velocity fluctuation is zero, i.e., 

, 1 0F nv  , the ensemble average of the flame position, 1 , also vanishes.  Therefore, 

in order to illustrate the magnitude of the unsteady motion, the root mean squared value 

of the flame position is considered, which is: 
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As the equation involves the product of two velocities, the velocity correlations are 

required.  The derivations for the correlation function are in APPENDIX H.  Then, the 

solutions for 
1/2

2

1  is: 
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whose leading order contribution for small 11s L  value is given by: 
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This equation shows that the flame brush thickness grow linearly with downstream 

distance, s.  The downstream growth in flame brush thickness is a well known 

experimental result for turbulent flames [46]. 

Figure 4.8 compares these flame brush calculations with the solutions for |1| for 

the homogeneous harmonic forcing case, i.e.,  , 1 0sin 2F nv f t .  Note the identical 

behavior of both curves near the attachment point, but then the sharp difference farther 

downstream, with interference effects dominating the behavior of the harmonic case and 

turbulent diffusion in the random case.  The interference effect will be detailed in the next 

chapter. 
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Figure 4.8. Comparison of the axial dependence of the flame brush thickness of a flame 

subjected to harmonic (   / f
ref F,n1 rms
ξ = v ) and random    LS

ref rms 11
ξ = u L3 disturbances. 

Reproduced from [27]. 
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CHAPTER 5 

FLAME WRINKLE EXCITATION PROCESSES – DISTURBANCE 

DECAY EFFECTS 

 

This chapter covers the flame response excited by a decaying disturbance.  It 

presents analytic and numerical results along with the experimental validation to 

understand the temporal/spatial flame response.  While the previous chapter covers the 

excitation of the flame response in the near field, this chapter extends the analysis further 

downstream with the decaying disturbance.  Furthermore, we also try to understand the 

factors controlling the different types of behaviors as shown in Figure 5.1; Figure 5.1a 

shows  a repeating node/antinode behavior, while Figure 5.1b shows a single peak in the 

similar downstream domain. 

a b  

Figure 5.1. Dependence of flame front fluctuation magnitude and effective convection speed 

of flame response for circular bluff-body with 9.52mm diameter (a) 230hz, ux,0=2.0m/s (b) 200hz, 

u0=2.52m/s (“A” represents the excitation voltage to the loud speaker. Reproduced from Shanbhogue 

et al.[72, 73]) 

 

The first two sections introduce the decaying velocity model and the flame 

kinematic model.  In the third section, the analytic solution shows that the flame response 
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exhibit two fundamentally different behaviors, referred to here as “interference 

dominated” and “dissipation dominated” behaviors.  The last section validates two 

different behaviors with experimental data.  A key contribution of this chapter is to focus 

on the flame characteristics farther downstream where interference of excitations and 

decay of vorticity fundamentally control the flame characteristics. 

 

5.1 Decaying Disturbance Velocity Field 

In unsteady flows, the velocity fluctuations can be decomposed into three 

components: vortical, entropy, and acoustic disturbances [30].  Among these disturbances, 

the vortical disturbance is suspected to be the main driver for the unsteady flame response 

[12].  The vortical disturbance is generated by the flame holder or the abrupt change of 

the combustor geometry.  Once generated, the vortical disturbance is dissipated further 

downstream by various mechanisms; they include vortex stretch, baroclinic torque, 

viscosity, and gas expansion [74].  Especially, inside the combustion chamber, the 

temperature rises significantly, leading to high gas-expansion and an increase of viscosity, 

both of which accelerate the dissipation of the vortical disturbances.   

In order to model the flame response in the further downstream, we first need to 

better characterize the velocity disturbance, mainly a vortical disturbance.  Many vortex 

models have been developed including the Rankine vortex, the Bachelor vortex, and the 

Oseen vortex [75].  Among those models, a distinctive feature of the Bachelor vortex and 

the Oseen vortex is that the strength of the velocity disturbance decays exponentially in 

time.  The decay in time of these two models can be applied to the decay in space in our 

problem through the convection of the vortex - this convection speed of vortices 



 63 

determines the conversion factor from time to space.  The convection velocity, uc,v, is 

similar to the mean flow velocity, but not necessarily same, as the vortices usually lie in 

the shear layer. 

Although those vortex models specify velocities at all points, the flame kinematic 

equation in Eq. (2.4) only requires the velocities at the flame front, a 2D surface.  

Therefore, those vortex models can be reduced to specify the velocity on the flame front.  

Furthermore, Eq. (4.7) indicates that only the normal velocity has the leading order effect 

for the flame response.  Therefore, the vortex models are further reduced to specify the 

normal velocity disturbance at the flame front in the following form: 

   , 1 ,0 0 ,/ cos 2 /x

F n x c vv u e f t x u       (5.1) 

where, 
, 1 ,1 ,1 ,1sin cosF n x y Lv u u S     as defined in Eq. (4.6) (see Figure 5.2 for 

symbols).  This Eq. (5.1) describes periodic flow disturbances with an initial amplitude, , 

an initial phase,  and an exponential decay rate, , that propagate downstream with a 

speed, uc,v. 

Several prior studies have considered the flame response to convecting velocity 

disturbances whose amplitudes do not decay [76]; i.e., setting =0.  However, this is a 

problematic assumption as it implies that the excitation source of flame wrinkling persists 

indefinitely downstream, and this leads to predicted flame wrinkling fluctuations that also 

persists indefinitely – a prediction that is clearly at odds with data, such as shown in 

Figure 5.1. 

In addition, we assume a spatially uniform axial mean velocity, a zero mean 

transverse velocity, and a flame attachment condition [33], which are expressed as: 

  0 ,0 , 0, 0x xu u e x t    (5.2) 
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These assumptions can be readily relaxed, but do not fundamentally change the solution 

characteristics. 

 

 

Figure 5.2. Schematic of bluff-body stabilized flame with its corresponding 

coordinates. red solid : instantaneous flame front, red dash : mean flame position,  = the angle of 

mean flame position measured from the flow direction. 

 

5.2 Kinematic Model 

The investigated geometry is a 2D/axi-symmetric bluff-body stabilized flame, as shown 

in Figure 5.2.  The instantaneous location of the flame surface is determined from the G-

equation. The principal assumptions made in this analysis are that: (i) the flame is a thin 

interface, dividing reactants and products, (ii) the velocity perturbation is prescribed, (iii) 

the flame speed, SL is a constant. For small velocity fluctuation, the flame front position 

is single-valued, an approximation that breaks at high amplitude fluctuations. This leads 

to the following equation for the flame position, (x,t), or a 2D version of Eq. (3.2) as: 

 

1/2
2

1x y Lu u S
t x x

      
     

     

 (5.3) 
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This equation was solved both analytically by linearization, and numerically for 

the general case of large amplitudes.  The analytical solution was obtained by 

decomposing ux, uy, and  into its time average and perturbation as described in Section 

3.3.  For the fully nonlinear case, Eq. (5.3) is solved numerically by the methods 

described in Section 3.4.1.   

 

5.3 Solution Characteristics: Interference/Dissipation Dominated Flame 

Response Regimes 

The solution for the linearized equation of Eq. (5.3) with the velocity models and 

the flame boundary condition specified in Eq. (5.1) and (5.2) is given by: 

 

      1 0 , 0 , 0

,0

0 , 0 , ,

Re exp 2 / exp 2 / exp 2

tan
,

( / 2 (1 / )

c v c f

i

x

c f c f c v

A x i f x u i f x u i f t

u e
where A

f u f i u u



    

 

 



      
 


 

 (5.4) 

Wrinkles excited on the flame front propagate downstream at the characteristic velocity, 

2

, ,0 cosc f xu u   (see Figure 5.3), which equals the axial component of the tangential 

mean velocity; i.e.,  , ,0c f x L xu u S n e   , where n  is the normal unit vector to the flame 

front pointing to products. 
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Figure 5.3 An illustration of the top half of an attached flame, indicating the velocity 

components tangential and normal to the flame and a disturbance which convects downstream at a 

speed of uc,v. 

 

Note that the solution consists of two parts.  First, the particular solution is excited 

by the unsteady velocity field at all positions upstream of x.  Second, the homogeneous 

solution is controlled by the boundary condition at x=0, (x=0,t)=0.  Mirroring the 

underlying perturbation velocity field, the particular solution propagates with the same 

phase velocity as the excitation, uc,v.  In contrast, the homogenous solution propagates at 

a phase velocity, uc,f. 

Next, it is useful to start with the solution characteristics when =0, in which case 

the spatially dependent gain term in Eq. (5.4) is: 

  1 , ,| | sin( ( / 1) / )c f c v fx A u u x      (5.5) 

where, 
, 0/f c fu f  .  This shows that the gain oscillates periodically over the length 

scale, 
, ,/ | / 1 |f c f c vu u  , with the first maximum occurring at  , ,/ 2 / 1f c f c vx u u  .  

In other words, the magnitude of flame front oscillations will be near zero at some 

locations, large at other locations, and oscillate spatially downstream, repeating this 

pattern. This spatial behavior is identical to that of a standing acoustic wave, but for 
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entirely different reasons.  In a standing wave, this alternating node/antinode behavior is 

due to the superposition of two waves propagating at the same speeds, but in opposite 

directions.  For this problem, this behavior is due to two waves propagating in the same 

direction, but at different speeds. This behavior reflects the important role of interference 

between the particular and homogeneous solution.   

The above solution in Eq. (5.5) clearly shows the significance of two length scales 

to the problem: the convective wavelength, 
f , and the interference wavelength, 

, ,/ | / 1 |f c f c vu u  .  The length scale over which the velocity magnitude is significant, 1/, 

is also significant as discussed next.   

The flame exhibits two limiting behaviors based upon the relative magnitudes of 

the latter two length scales, 
, ,/ | / 1 |f c f c vu u   and 1/.  In other words, if the disturbance 

persists far downstream relative to the interference wavelength, then the flame behavior 

will resemble that described by Eq. (5.5) and exhibit significant oscillatory gain behavior 

as shown in Figure 5.1a.  Moreover, the drop in gain after a local maximum is not due to 

dissipation, but interference.  In contrast, if the velocity disturbance decays quickly 

relative to this interference wavelength, then this oscillatory gain behavior does not 

occur.  The drop in flame gain after the point of peak response in this case is due to 

dissipation of velocity disturbances and destruction of flame wrinkles as shown in Figure 

5.1b.   

Moreover, the flame response for spatial regimes where x >>1 will be dominated 

by a single flame wrinkling source, the homogeneous solution, which propagates at the 

speed uc,f. The first limit we title the Interference dominated regime, where two waves 

with similar magnitudes interfere with each other to result in an oscillatory gain. The 
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other limit is Dissipation dominated regime, where the velocity disturbance dissipates 

rapidly relative to the interference wavelength: 

 
, ,

, ,

: / | / 1 | 1

 :  / | / 1 | 1
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f c f c v
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Interference dominated regime u u





 

 
 (5.6) 

Recognizing these two limiting behaviors is very helpful for interpreting the range of 

different types of flame response behaviors that are experimentally observed, such as 

those seen in Figure 5.1. 

Typical values of uc,fuc,v for vortical disturbances are on the order of unity.  For 

example, Michalke calculates values of 0.5<uc,v/ux,0<1.25 for the propagation velocity of 

the most amplified axisymmetric shear layer disturbance [77].  This indicates that 

vortically disturbed flame characteristics are quite sensitive to small changes in the 

propagation velocity.  For example, a 20% increase in uc,v/ux,0 from 0.7 to 0.84 changes 

the first maximum location in flame gain from 1.5f to 2.6f, see Eq. (5.5).  In contrast, 

typical values of uc,fuc,v for  acoustic disturbances are quite small, approaching zero for a 

plain wave.  The interference wavelength is quite close to the convective wavelength in 

this case, 
, ,/ | / 1|f c f c v fu u   .  

It is also useful to consider the phase variation of the flame response.  Far 

downstream where the vortex has decayed, flame wrinkles propagate at the speed uc,f.  

This corresponds to a phase slope, / ( / ) 2fx     Phase characteristics are more 

complex close to the flame holder where the velocity disturbance is strong.  In this 

region, the net flame wrinkling is a superposition of two disturbances.  Henceforth, the 

resultant phase slope does not correspond to the propagation speed of any physical 
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disturbance, but rather the vector summation of multiple disturbances.  A simple result 

for this phase variation can be derived when x<<1see Eq. (5.4),  

 
, ,/ ( / ) ( / 1)f c f c vx u u       (5.7) 

This discussion shows that the slope of the axial phase variation changes with 

downstream distance, evolving from a value of  , ,/ 1c f c vu u   near the flame holder 

(x<<1), to a value of 2 farther downstream (x>>1).  

These linearized solution characteristics are helpful for understanding the 

important roles of propagation velocity disparities between the flame wrinkles and the 

vortex, and the rate of vortex decay, in controlling the solution characteristics.  However, 

nonlinear effects are required to capture the far field decay in flame response.  For 

example, the linearized solution, to be shown in the following section, approaches a non-

zero steady state (i.e., oscillation about a non-zero value), which is not consistent with the 

data shown in Figure 5.1a.  This nonlinear process arise from  the inherently nonlinear 

kinematic restoration processes, whereby the flame propagates normal to itself.  This 

nonlinear process leads to a gradual reduction in flame wrinkling amplitude with 

increasing distance downstream [78], which will be deeply covered in Section 6.3.1.  

 

5.4 Simulation Results and Analysis of Data 

Having discussed general solution characteristics and obtained the ranges of parameters, 

this section presents and discusses results from these simulations and the implications of 

these results on understanding flame response data. 

In order to compare the analysis with measurements, the model requires 

specification of several parameters specified in Eq. (5.1).  Unfortunately, we do not have 
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simultaneous flame and flow field data.  Extensive separate flame and flow field 

measurements were obtained by Shanbogue [79], which allow some assessment of 

bounds on these parameters.  More details about post-processing procedures can be found 

in Ref. [80], which suggest that uc,v/uc,f ranges from 0.5 to 1.4 and 0 ranges from 0.3 to 

2.4 for vortical disturbances.  For reference, other measurements indicate values of 

uc,v/ux,0 = 1 or 1.13 for the vortical convection speed [81-83]. 

 

5.4.1 Predictions of the Flame Response in the Interference Dominated Regime 

First, the axial location at which the flame response peaks, xpeak, is examined.  

This axial location cannot be precisely determined since the flame edge is blurred by the 

line of sight measurement.  But the sensitivity study on the threshhold values, It suggests 

the peak lies between 0.4 < xpeak/λc < 0.6 (See Figure 5.4).  

 

 
Figure 5.4. Dependence of flame edge response amplitude on threshold value, It and 

theoretical estimation of the peak location shown in dashed line.  Fow conditions: 38 m/s mean flow 

velocity, 644 K approach temperature, and 12V excitation [71]. 

 

Simple theoretical calculations of xpeak cannot be developed, since xpeak depends 

upon amplitude of perturbation and the detailed character of the velocity field.  However, 
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an approximate expression for xpeak can be derived using wave interference arguments, as 

shown in Eq. (5.5). Since flame excitation and flame response disturbances do not 

propagate at the same speed, they lead to constructive and destructive interference along 

the flame [84].  The location of xpeak approximately coincides with the point where they 

constructively superpose with each other; i.e., where they are in phase. As shown in Eq. 

(5.5), this leads to the following predicted location for xpeak:   

 
2

2

0 ,

cos
/

2 cos / 1
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c v

x
u u








 (5.8) 

It should be noted that this equation assumes the decay in the exciting vortex is negligible 

at xpeak, which appears to be the case as from Figure 5.5.  Using the value of uc,v/u0 = 0.48 

(see Ref. [71]), Eq. (5.8) predicts that xpeak/c=0.45. This prediction, indicated by the 

dashed vertical line in See Figure 5.4, is in good agreement with the data.  Note that when 

uc,v ~ ux,0, the sensitivity of xpeak to parameter values and uncertainties is very large, 

making it more difficult to accurately predict.  

 
Figure 5.5. Ratio of transverse velocity amplitude to mean axial velocity as a function of 

downstream distance. The slope of the best-fit line from a) is the dashed line. The excitation voltage is 

12V and the mean flow velocity is 38 m/s [71].  
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5.4.2 Solution Characteristics in the Far Field 

5.4.2.1 Interference Dominated Regime 

We start with linear and nonlinear solution characteristics for the interference 

dominated case. Figure 5.6 plot the calculated spatial distributions of the flame gain and 

phase for f /|uc,f /uc,v-1|=0.36 with uc,f /uc,v=0.006 (i.e., an acoustic disturbance with 

slow decay). 

a) b)  

Figure 5.6. Dependence of flame front fluctuation magnitude and effective convection speed 

of flame response a) gain, and b) slope of phase. Simulation with uc,f/uc,v=0.006, f=0.36 . 

 

Starting with the linear case, note the periodic undulations in flame gain.  For 

example, at x=0.5f in the former case, the flame exhibits large amplitude wrinkling, 

while at x=f, the flame response is approximately zero.  This repeating node/anti-node 

behavior was anticipated by the discussion in the context of Eq. (5.5).  The amplitude of 

undulation slowly decreases with downstream distance, due to the small but nonzero 

value of .  The undulation amplitude of the linearized solution does not decay to 1| | =0, 

however, but oscillates around some offset value corresponding to the homogeneous 

solution.  Nonlinear effects cause the gain response to actually tend toward a zero value 
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through the action of kinematic restoration.  However, this occurs farther downstream 

than what is shown in this graph. 

Turning to the phase, note the roughly constant value of the phase slope at -, 

accompanied by rapid phase changes near nodal points. In addition, the phase slope 

gradually drifts toward -2, the value associated with the homogeneous solution alone. 

This drift is slow because of the low value of the dissipation parameter. 

 

a) b)  

Figure 5.7. Dependence of flame front fluctuation magnitude and effective convection speed 

of flame response for circular bluff-body with 9.52mm diameter measurements a) gain, and b) slope 

of the phase.  (conditions: f0=230hz, u0=2.0m/s, =4, A describes the excitation voltage to the loud 

speaker. Reproduced from Shanbhogue et al.[72, 73]) 

 

These flame gains and phase characteristics are very similar to the experimental 

results shown in Figure 5.7. Specifically, the experimental data clearly show the 

oscillatory flame gain, associated with repeating nodes and antinodes, spaced at even 

intervals of f. This nodal spacing suggests that the dominant velocity disturbance is a 

fast propagating acoustic disturbance. Although not shown, an even better fit to these 

gain/phase measurements is obtained assuming the additional presence of a smaller 

convecting vortical disturbance.  
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5.4.2.2 Dissipation Dominated Regime 

We next consider the solution characteristics for the dissipation dominated case. 

Figure 5.8 plot the spatial distribution of the flame gain and phase for f /|uc,f /uc,v-

1|=3.64 with uc,f/uc,v=1.33 (i.e., a decaying vortical disturbance). Starting with the linear 

case, note that only a single peak in flame gain is observed, followed by a decay in 

amplitude of the linearized solution toward a non-zero | |  value. The effect of 

nonlinearity is clearly evident by the monotonic reduction in | |  amplitude toward zero 

in the far field, at a relative rate that increases with disturbance amplitude. Turning to the 

phase, note the roughly constant value of the phase slope at -2.4 near the flame 

attachment point. Here, the drift in phase slope toward -2 with increasing downstream 

distance is clearly evident, the value associated with the homogeneous solution alone. 

 

a) b)  

Figure 5.8. Dependence of flame front fluctuation magnitude and effective convection speed 

of flame response a) gain, and b) slope of phase. Simulation with uc,f/uc,v=1.33, f= 1.20. 

  

These flame gain and phase characteristics can be seen to be very similar to the 

experimental results shown in Figure 5.9.  For example, both experiment and theory 
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clearly show the nearly constant phase slope near the flame holder, followed by a gradual 

drift upward.  Note that the experimental data does not appear to trend toward the 

theoretically predicted value of -2.  We believe that this is due to the assumed value of 

ux,0 used here, a value based upon the measured average approach velocity at the bluff 

body lip. 

 

a) b)  

Figure 5.9. Dependence of flame front fluctuation magnitude and effective convection speed 

of flame response for circular bluff-body with 9.52mm diameter a) gain, and b) slope of phase  

(conditions: f0=200hz, u0=2.52m/s, =4.3, A describes the excitation voltage to the loud speaker.. 

Reproduced from Shanbhogue et al. [72, 73])  

 

This latter point is illustrative of the need for careful simultaneous measurements 

of the unsteady velocity characteristics and flame position to enable quantitative 

comparisons of measurement and theory.  In the previous chapter in CHAPTER 4, efforts 

has been put along these lines for the near-attachment point region.  Required 

measurements for theory validation farther downstream are more involved, however, 

requiring estimates of convection velocity (noting also the very significant sensitivity of 

the gain curves to uc,v noted in the context of Eq. (5.5)), decay rate, phase, and amplitude 

of simultaneously present acoustic and vortical disturbances.  In another combustor 
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facility in the aerospace combustion lab, they measured simultaneous flow/flame 

conditions and has compared these results with model predictions [85, 86].  



 77 

CHAPTER 6 

FLAME WRINKLE DECAY PROCESSES IN A LAMINAR FLOW 

 

This chapter describes numerical and theoretical analyses of the nonlinear 

dynamics of harmonically forced, stretch-sensitive premixed flames.  A key objective of 

this work is to analyze the relative contributions of kinematic restoration and flame 

stretch upon the rate at which flame wrinkles, excited by harmonic forcing, are smoothed 

out.  Kinematic restoration is an intrinsically nonlinear process with a two spatial-zone 

structure, whose amplitude dependence is fundamentally different near and far from the 

wrinkle excitation source.  Flame stretch processes appear even in the small perturbation 

limit, and smooth out flame wrinkles in thermodiffusively stable mixtures.  Which 

process dominates is a function of the perturbation amplitude, frequency, stretch 

sensitivity of the mixture, and spatial location.  This chapter presents computed results 

illustrating the solution characteristics, as well as key dimensionless parameters 

controlling the solution based upon a third order perturbation analysis. 

6.1 Decaying Mechanisms in the Laminar Flames 

In a laminar flame, there are two mechanisms, one linear and the other nonlinear 

that lead to smoothing of flame wrinkles on individual flame branches. The first 

mechanism, which is inherently nonlinear, is kinematic restoration; i.e., the propagation 

of the flame normal to itself leads to smoothing of flame wrinkles [33, 87]. The second, 

which is linear, is flame stretch, which leads to smoothing of flame wrinkles in thermo-

diffusively stable flames, i.e., flames with positive Markstein lengths [22, 88].  To 
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illustrate, Figure 6.1 depicts an experimental image of a harmonically excited, 

thermodiffusively stable flame, showing the smoothing of flame wrinkling by stretch 

effects.  Note that for negative Markstein length flames, stretch effects cause 

amplification of flame wrinkles so that flame wrinkle destruction is controlled by 

kinematic restoration.  While both kinematic restoration and flame stretch processes have 

been individually studied [22, 37, 88], their relative significance in anchored, 

harmonically forced flames has not yet been analyzed.  The specific objective of this 

work is to analyze this problem in order to determine the conditions when the 

downstream decay of the flame is controlled by stretch or kinematic restoration within a 

constant density framework. 

 

  
Figure 6.1. Visualization of a propane flame excited by a longitudinal acoustic disturbance at 

190 Hz ( = 0.7, ux,0 = 0.8 m/s) [22].  

 

In order to study this decaying mechanisms, we analyze an oscillating flame holder 

with no velocity fluctuations, emulating the study of Petersen and Emmons [36] shown in 

Figure 6.2.  This is a useful problem for this study as the amplitude of flame wrinkling, 

within a stretch-free and linear analysis framework, is constant with axial location; i.e., 
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|L(x,0)|= |L(x=0,0)|.  In contrast, the velocity forced flame has a spatially modulated 

flame wrinkling character, as shown in Figure 2.7, leading to a complex modulation of 

nonlinear processes [69].  This oscillating flame holder problem allows us to develop 

relatively simple expressions for the key dimensionless parameters controlling the 

problem, and thus, to isolate the critical processes controlling the far field evolution of 

harmonically forced flames.  We will show that the dominant wrinkle damping process 

depends upon the amplitude of excitation, Markstein length, frequency, and axial location. 

 

 

Figure 6.2. Visualization of a propane flame stabilized on a transversely oscillating flame 

holder at 625 Hz ( = 1, u0 = 4.8 m/s)[36]. 
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6.2 Formulation 

The investigated geometry is a 2D flame that is stabilized at a point as shown in 

Figure 6.3
iv

.  The coordinate system is aligned with the unperturbed flame position, so 

that the s- and n-coordinates are tangential and normal to the unperturbed flame, 

respectively.  The flow field is steady and the flame holder vibrates in the n-direction, 

creating wrinkles on the flame at s=0 which propagate downstream. 

 

Figure 6.3. Diagram of flame/flow configuration and the coordinates (: flame front location) 

 

The principal assumptions made in this analysis are that: (i) the flame is a thin, two-

dimensional interface, dividing reactants and products, (ii) the velocity (us ,un) is 

prescribed, (iii) the flame speed, SL, is related to the flame curvature through the 

Markstein length, and (iv) the flame remains attached to the flame holder.  The 

                                                 

 

 

iv
 The analysis in this chapter is limited to the 2D flames as opposed to the previous two chapters, 

where the analysis is also applied to axi-symmetric flames.  This is because the curvature expressions are 

different between 2D and axi-symmetric cases. 
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instantaneous location of the flame front is determined from the G-equation [28], given 

by: 

 

1/2
2 2

s n L

G G G G G
u u S

t s n s n

        
       

         

 (6.1) 

For this problem, the flame front position is single-valued on the variables, s and t, 

suggesting the substitution  G=n -(s,t) [89].   This substitution leads to the following 

explicit equation for the flame position, (s,t): 

 

1/2
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1s n Lu u S
t s s

      
     

     

 (6.2) 

The velocity field as shown in Figure 6.3 is given by:  

 
,0

,0

s s

n L

u u

u S




 (6.3) 

It is assumed that there are no velocity fluctuations.  Note that this assumption is 

rigorously valid in the limit of an iso-density flow, but neglects the influence that a finite 

density change across the flame has on the approach flow, as the oscillatory flame sheet 

would otherwise induce an oscillatory approach flow.  Because of the mutual interaction 

between the flame position and the flow field, free boundary problems such as this are 

otherwise difficult to handle analytically.  This issue has been discussed by Lee and 

Lieuwen [90] and Preetham et al. [22] who argue that the qualitative linear dynamics of 

the harmonically excited flame are captured by constant density analyses, although the 

quantitative accuracy of the results deteriorates as Tb/Tu increases.  In contrast, the 

nonlinear dynamics of the flame are only correctly described by such analyses for lower 

Tb/Tu values, i.e., new dynamics appear for simultaneously high values of Tb/Tu and 

perturbation amplitude due to the appearance of a parametric flame instability [91-93].  
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Finally, we should note that the general legitimacy of using the iso-density approximation 

to understand the dynamics of real flames is well supported by the good agreement that 

has been achieved between analysis and experiment, such as demonstrated in, for 

example, Refs. [14-16, 33, 82].   

Consider next the flame speed, which is related to the unstretched flame speed, 

the instantaneous curvature, and the hydrodynamic strain rate [37].  Since the 

hydrodynamic strain rate is zero (see Eq. (6.3)), the flame speed is only a function of the 

flame curvature, c [37]: 

 
,0 ( )L LS S f c  (6.4) 

where 

 

  

2 2

3/22

/

1 /

s
c

s





 
 

  

 (6.5) 

 The function f(c) is expanded in a Taylor series as: 

 
2 3

,0 1 21 ( ) ( )L LS S c A c A c        (6.6) 

where is the Markstein length.  The Markstein length is a familiar quantity in the 

combustion literature and has been extensively studied both theoretically and numerically 

[94].  The higher order correction terms, Ai, however are not as well understood.   Poinsot 

et al. [41] suggested a flame speed expression,  ,0 1LS c , which matches the linear 

behavior for small c and ensures positive flame speed for large positive flame curvatures.  

Assuming  ~ 1iA O , it can be shown that the higher order flame stretch corrections do 

not influence 0( , )s   for the third order asymptotic analysis presented here.  Therefore, 

the analysis in the next section truncates Eq. (6.6) to the first order as the higher order 

terms are not needed for the asymptotic and this simplifies the presentation. 
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 Two boundary conditions are needed for the governing, second order partial 

differential equation, Eq. (6.9).  First, it is assumed that the flame is attached to the flame 

holder which is oscillating in the n-direction harmonically, which is expressed as: 

    00, coss t t      (6.7) 

where  and 0 denote the magnitude and angular frequency of the flame holder 

oscillation.  Second, a characteristic boundary condition is applied at the downstream end 

of the calculation domain to ensure that information travels only in the downstream axial 

direction. 

 Finally, the governing equation is non-dimensionalized, using the following 

scheme: 
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 (6.8) 

Thus, the flame front equation, Eq. (6.2), with the flame speed expression, Eq. (6.6), is 

re-written as: 
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            

 (6.9) 

where the first term on the RHS is the nonlinearity associated with kinematic 

restoration and the second is the flame stretch term.  The solution to this equation will be 

examined using computations as described by Section 3.4.1 and the third order 

asymptotic analysis in perturbation amplitude, which is described next. 

6.2.1 Asymptotic Analysis  

Asymptotic analyses of the governing equations were performed to obtain insight 

into key parameters controlling the flame wrinkle decay rate.  The resulting explicit 
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solutions enable identification of the key dimensionless parameters controlling the 

problem, and the functional dependence of the solution upon them.  Since the objective of 

this study is to analyze nonlinear corrections to the flame response at the forcing 

frequency, the analysis must, at minimum, obtain up to the third order in products of the 

parameters   and  .  Consequently, the flame position,  , is expanded as: 
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 (6.10) 

The corresponding boundary conditions for each function are 
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 (6.11) 

After inserting the expansion in Eq. (6.10) into Eq. (6.9) and matching terms with the 

same order, we obtain a series of partial differential equations for each function,  , 

which are listed in APPENDIX E.  For example, the equation for 2   is: 

  
2

2

,0 2
: LO S

t s s s s s s

            
 

       
    

       
 (6.12) 

These equations are then solved sequentially with the boundary conditions in Eq. (6.11).  

For example, the first order solutions are: 
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 (6.13) 

Thus, the flame wrinkle amplitude is constant at the first order; i.e., it does not decay. 

The solution,  , mimics the forcing and describes a flame wrinkle of constant amplitude 
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that convects downstream as a traveling wave at the tangential velocity, 
,0su  

(
, / cosc fu  ). 

 

6.3 Results and Analysis 

This section presents analyses of the computational and asymptotic flame response 

results to understand the factors controlling the downstream dissipation of the flame 

wrinkles.  First, it presents results for kinematic restoration in isolation, then stretch 

effects in isolation, and finally considers their cumulative effects and the conditions 

under which one is dominant over the other. 

 

6.3.1 Kinematic Restoration Effects 

This section provides results illustrating the role of kinematic restoration in destroying 

flame wrinkles, in the absence of flame stretch effects (i.e.,   is set to zero in Eq. (6.9)).  

The analysis will show that kinematic restoration exhibits a two-zone spatial structure. 

Near the oscillatory flame holder, the flame reponse is nonlinearly dependent on the 

flame wrinkling amplitude while far from the anchoring point, the response is 

independent of the amplitude. 

Figure 6.4a plots a typical calculation for the instantaneous flame position at four 

instances during a forcing period.  The plot clearly indicates the spatial distortion in the 

shape of the flame wrinkles, which start as sinusoidal wrinkles near 0s   to sharply 

cusped fronts in the concave portion farther downstream.  Also, note that as the flame 

wrinkle propagates downstream, the trailing edges shift upward while the leading edges 
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stay at the same height.  This indicates that the time averaged flame position is shifting 

toward the reactants and that the magnitude of the wrinkling is decreasing.  These points 

also can be seen in Figure 6.4b, which shows the corresponding spectral representation of 

the flame position, depicting the magnitude of flame wrinkling at the forcing frequency 

and its harmonics.  This plot shows the monotonic reduction in magnitude at 0 and the 

monotonic rise in the time average flame position.  The oscillations at 20 and 30 are 

excited in the near field and then decay farther downstream. 

a) b)  

Figure 6.4. a) Instantaneous computed flame front position,  , at four instances during a 

forcing period. b) Fourier coefficients of a flame front from the numerical solution (solid) and 

corresponding asymptotic solutions  (dashed).  Conditions are ,0LS =0.1,  =0.63,  =0. 

 

The asymptotic solutions for the flame position are given by: 
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(6.14) 

These solutions are also drawn into Figure 6.4b, where it can be seen that they closely 

follow the exact solution in the bluff body near field but diverge with downstream 
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distance.  Thus, the asymptotic results are useful for analyzing the near field influence of 

kinematic restoration. 

We next consider the amplitude dependence of the flame response at the forcing 

frequency.  The asymptotic behavior of the flame response at the forcing frequency can 

be extracted from Eqs. (6.13) and (6.14) as: 

      
2

3

0 ,0/ 1 / 8LS s O          (6.15) 

This solution shows that the leading order correction to the flame position scales as 

 
2

,0LS s . The parameter, ,0LS s , indicates that the kinematic restoration effect is a 

quadratic function of disturbance amplitude, flame speed, and downstream distance.  

Note that this same parameter also naturally appears in calculations of, for example, cusp 

formation time, ,0 1LS t  , in temporally evolving initial value problems where 

downstream distance is replaced with time [37]. 

Equation (6.15) can also be manipulated to show that the axial rate of decay in flame 

wrinkle size is given by: 
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which can also be written in the following form which explicitly illustrates the nonlinear 

amplitude dependence of the wrinkle destruction rate: 
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Insight into the flame dynamics farther downstream, where the asymptotic 

expressions in Eqs. (6.16) and (6.17) break down, can be obtained by expanding the 
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solution around its exact value at some nonzero s s  value.  To see this, write the exact 

solution for the flame position at s s  as:   

      0 0

1

, cos sinn n

n

s t a n t b n t   
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Without loss of generality, we can set b1 =0 (which is equivalent to shifting the 

time coordinate) and, by following a similar perturbation procedure as outlined in Eqs. 

(6.10) and (6.11) (see APPENDIX G for detailed solution), we obtain:  
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The rate of change of the flame response can be obtained by differentiating Eq. 

(6.19) with respect to s .  The expression for flame wrinkle magnitude is: 
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where n is the phase of  0,s n  . 

A key difference between Eq. (6.15) and Eq. (6.19) is the presence of a term that 

is linear in s .  This term is non-zero if the flame sheet contains oscillations at two 

frequencies, such as the forcing frequency and its harmonic.  In contrast, | |  only decays 

quadratically in s  if a single frequency component is present.  This explains the slow 

initial decay of the flame response in Figure 6.4b.  This result also shows the importance 

of the presence of harmonic content in the forcing signal, as it changes the axial decay 

rate from  2O s  to  O s .  Given that unstable combustors generally have oscillations at 

multiple frequencies associated with different natural combustor modes, this analysis 

shows that the nonlinear interactions of these different frequencies on the flame sheet can 

have very important influences on its dynamics.   
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Having considered some basic features of the flame response, we next consider its 

amplitude dependence more explicitly.  Figure 6.5a plots the magnitude of  0   as a 

function of scaled axial location for five different forcing amplitudes.  The nonlinear 

character of the kinematic restoration process is clearly evident in this figure, as it shows 

the faster decay in flame wrinkling magnitude with increasing  .  This result can be 

expected from Eq. (6.15).  Also interesting to note is the convergence of the unscaled 

 0   results to the same curve for large s , irrespective of initial forcing amplitudes.  

This behavior is a manifestation of the two-zone structure of kinematic restoration 

processes and is discussed further next.  This result reflects the fact that at a sufficiently 

large distance downstream, the flame position is completely controlled by the leading 

points on the flame, indicated in Figure 6.4a.  In other words, while the flame near field 

behavior is controlled by flame wrinkling wavelength and amplitude, the far field 

behavior is only a function of wrinkling wavelength.  The reasons for this behavior are 

discussed in APPENDIX C, which also presents an approximate analysis showing that 

the flame wrinkling amplitude converges to the following result, which is independent of 

forcing amplitude: 

  0
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s
S s

    (6.21) 

 This expression can be rearranged to show: 

 
 

 
20 ,0

0

,
,

2

L
d s S

s
ds

 
    (6.22) 



 90 

 

Figure 6.5. Computed dependence of flame position magnitude on downstream distance at 

different excitation amplitudes.  ( ,0LS =0.1 and  =0). 

 

 This two-zone structure of kinematic restoration processes, and their different 

amplitude sensitivities, provides insights into the experimental data shown in Figure 2.7b.  

Downstream of the peak, all four different forcing amplitudes decay, with the highest 

amplitude decaying the fastest.  Farther downstream, however, the curves converge 

towards a common asymptotic solution.  

 Finally, we note that all of the above results, whether in the near- or far field, 

show that kinematic restoration effects can be parameterized by the two quantities, 

 0, /s    and ,0LS s .  In order to illustrate the adequacy of this scaling, Figure 6.6 

replots the calculation in Figure 6.5 using these two parameters.  Note how all the 

different amplitudes converge to what is nearly a common line, with the largest 

deviations observed around ,0 3LS s  . 
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Figure 6.6. Results from Figure 6.5 replotted in scaled form. 

 

6.3.2 Flame Stretch Effects 

This section presents results illustrating the role of flame stretch in dissipating flame 

wrinkles.  An exact linearized expression for   is obtained by solving the linearized form 

of Eq. (6.9): 
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 (6.23) 

a) b)  

Figure 6.7. a) Instantaneous flame front position,  , at four instances during a forcing 

period. b) Fourier coefficient of a  flame front.  (conditions: ,0LS =0.1,  =0.63). 
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 Figure 6.7a plots the spatial variation in the flame position at four instances 

during a forcing period.  The plot clearly shows the dissipation of wrinkles with 

downstream distance.  However, there are distinct differences between this result and 

Figure 6.4a.  In this case, the flame wrinkles dissipate symmetrically about zero and the 

flame retains a smoothly varying slope with axial position.  The magnitude of flame 

wrinkling as a function of axial distance at the forcing frequency is quantified in Figure 

6.7b, showing a similar result - namely the asymptotic decay of flame wrinkling with 

downstream distance. 

 When Eq. (6.23) is expanded out in powers of  , the solution is consistent with 

the results of the asymptotic expansion introduced in Eq. (6.10): 
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 (6.24) 

This solution is indicated in Figure 6.7b.  A better approximation of Eq. (6.23), which 

also works for larger s  values, can be obtained by expanding the argument, but 

maintaining the structure of the exponential function: 

    0 ,0, exp Ls S s      (6.25) 

This equation indicates that stretch effects cause an exponential decay of flame wrinkles, 

with a rate given by ,0LS s , showing the faster destruction of flame wrinkles with 

increasing Markstein length values.  Also, the exponential dependence indicates that the 

decay rate is proportional to the local magnitude of the flame response, which can be 

expressed for the general n
th

 harmonic of the forcing frequency as: 
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This result will be returned to in analyzing coupled effects of stretch and kinematic 

restoration in the next section. 

6.3.3 Stretch-Kinematic Restoration Coupling 

The two previous sections have analyzed stretch and kinematic restoration effects 

in isolation.  This section considers their coupled effects.  Figure 6.8a presents a typical 

computed result showing four instantaneous flame locations when both effects are 

present.  A key difference from the "kinematic restoration only" results is the smoothing 

out of the flame cusps by stretch effects.  Figure 6.8b shows the flame response at the 

corresponding frequencies. It shows the decay of the response at 0 and slight increase of 

the mean flame position, as well as the excitation of higher harmonics.  

a)  b)  

Figure 6.8. a) Instantaneous flame front position,  , at four instances during a forcing 

period from a numerical simulation. b) Fourier coefficients of flame front from a numerical solution 

and corresponding asymptotic solutions (conditions: ,0LS =0.1,  =0.63,  =0.13). 

 

An important result from the asymptotic analysis is that stretch and kinematic 

restoration effects are decoupled up to third order for the single frequency forcing case.  
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This can be seen from the perturbation solution for  , which contains the only 

coupling term between the excitation and stretch:  

      2 2 2
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 (6.27) 

In other words, coupling effects introduce corrections to the time-averaged flame 

response and harmonics, but not to the response at the forcing frequency itself, to this 

order of approximation.  As a result, to this order, the decoupled flame response can be 

obtained from the linear sum of the flame responses associated with each isolated 

mechanism as: 
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However, this result is limited to the near field as the asymptotic solution in Eq. (6.27) 

quickly loses accuracy further downstream.  A generalization of Eq. (6.19) that is valid at 

any spatial location and incorporates both effects is: 
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To further consider coupling effects, results are shown for three sets of parameter 

values in Figure 6.9a, b, and c, where kinematic restoration is dominant, flame stretch is 

dominant, and both effects are comparable, respectively.  The solid black lines indicate 

the computed exact flame response and the two black dashed lines represent the flame 

response when the other mechanism is absent (i.e., results obtained from Section A and 

B).  The red dashed lines indicate the linear superposition of the decoupled results, 

obtained from Eq. (6.28).  Note the close correspondence between the decoupled solution 

and the exact solution in the near field, but their divergence further downstream.  
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a) b)  

c)  

Figure 6.9. Gains of the flame responses at =0 with full simulation, full simulation without 

kinematic restoration ( ~0), full simulation without flame stretch ( =0) and decoupled solution 

(i.e., using Eq. (6.28)) using values of ,0LS =0.1,  =0.63, and (a)  =0.031,( b)  =0.38, and (c) 

=0.13. 

  

 Interestingly, both curves in Figure 6.9a and Figure 6.9b show that the exact 

solution converges to the solution obtained when only one effect is included in isolation.  

In other words, the result in Figure 6.9a converges to the  =0 result, while in Figure 

6.9b it converges to the  ~0 result.  Thus, this result shows that the decay in flame 

response is dominated by one mechanism in the far field - note that this does not occur in 

the near field.  Only when both terms are of similar magnitude does the far field solution 

differ from both, as shown in Figure 6.9c.   
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 The reasons for this behavior are different for the two limiting cases.  For the 

stretch dominated flame response, stretch effects are increasingly efficient at smoothing 

out flame wrinkles associated with harmonics of the forcing frequency which are 

generated by nonlinearities associated with kinematic restoration effects, as can be seen 

from Eq. (6.29).  However, as discussed in the context of Eq. (6.19), kinematic 

restoration effects are very weak in the absence of multiple interacting frequencies.  For 

the kinematic restoration dominated case, flame stretch effects are locally very important 

at the trailing edge of the wrinkled flames.  However, beyond just smoothing out this 

sharp cusp, stretch does little to decrease the amplitude of the flame wrinkle. 

 

6.4 Discussion 

6.4.1 Relative Significance of Kinematic Restoration and Stretch 

In this section, we analyze the conditions under which flame wrinkle destruction 

is either negligible or nearly total, as well as the relative significance of kinematic 

restoration and stretch.  Consider first the condition for negligible flame wrinkle 

destruction - i.e., the conditions under which both processes analyzed in this chapter are 

negligible..  We use a somewhat arbitrary threshold for this condition, defined as the 

point where the flame maintains 99% of its initial wrinkle.  Using the perturbation 

analysis results from Eqs. (6.15) and (6.25) and noting that coupling effects are 

negligible, leads to the following condition: 
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 This line is indicated on the bottom left in Figure 6.10.  We next consider the 

conditions under which the flame wrinkle is completely smoothed out.  Again, we 

somewhat arbitrarily set the threshold for this point as the flame wrinkle amplitude 

dropping below 1% of its initial value.  Thus, from Eqs. (6.21) and (6.25), we obtain: 

 
 ,0 ,0
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

 
 (6.31) 

These two lines are also indicated in Figure 6.10. 

 

Figure 6.10. Summary of regions where flame wrinkle destruction is negligible, and when it 

is dominated by flame stretch or kinematic restoration.  

 

 We next consider the region between these two lines of negligible and near total 

dissipation of flame wrinkles.  In this region, the important question is what is the 

dominant flame wrinkle dissipation process. Near the flame holder, coupling is negligible 

and the flame wrinkle amplitude given by:  
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Equating the second and the third terms leads to following condition, also indicated by 

the line in Figure 6.10 that demarcates flame stretch vs. kinematic restoration dominated.   
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We next consider far downstream.  As shown in Sec. 6.3.3, the flame response is 

dominated by one mechanism in this region.  Thus, we can do a straightforward 

comparison of Eqs. (6.21) and (6.25) to obtain: 
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 (6.34) 

Equating these two expressions leads to: 
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S s
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which is also indicated in Figure 6.10.  For reference, the points shown in Figure 6.9 are 

indicated as gray dashed lines in Figure 6.10.  Thus, this figure provides a useful 

summary of conditions where wrinkles are negligibly or completed dissipated, as well as 

which mechanism is dominant.  

6.4.2 Contributions of the Decay in the Bluff-Body Stabilized Flame 

This section applies the analysis in Sec. 6.3 to bluff-body stabilized flames and quantifies 

the relative contributions of the flame stretch and the kinematic restoration effects in the 

decay of the flame response.  The extended analysis in 6.3.1 and 6.3.2 indicates that the 

decay of the flame response is related with the local flame response, and Sec. 6.3.3 shows 

that the two mechanisms are decoupled up to the 3
rd

 orders of the excitation amplitude () 



 99 

and Markstein length ().  Equations (6.20) and (6.26) will be used to quantifies the 

individual contributions in the decay of the flame response.  

Figure 6.11 shows the flame responses with harmonic frequencies.  Harmonic 

contents are required because the kinematic restoration effect involves nonlinear 

interactions between fundamental and harmonic frequencies.  In order to estimate the 

harmonic frequency contents, relative values of the spatial Fourier transform were used, 

which is described in the APPENDIX K.  High harmonics contents ( >30) shown in 

Figure 6.11 seems to be higher than those of the laminar simulations shown in Figure 

K0.2b.  This increased value in the high frequency is suspected to originate from the 

turbulent motion, whose influence is not quantified in APPENDIX K.  All response are 

small near the flame holder (x/0 = 0) and grow downstream, followed by the decrease 

after around x/0 = 3.  

 

Figure 6.11. Dependence of flame front fluctuation spectrum, 0| ( , ) | /x    upon 

downstream distance. (u0 = 2.27 m/s, f0 = 200 Hz) 
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 By applying Eqs. (6.20) and (6.26) from the results in Figure 6.11, the individual 

contributions to decay are estimated, and plotted in Figure 6.12.  Different estimations are 

made for the kinematic restoration contribution because the suspiciously high values of 

high frequencies may cause over-prediction.  These different estimations are done by 

adding different number of harmonics up to 40, as shown in Figure 6.12.  As including 

more number of harmonic contents, the amount of the kinematic restoration contribution 

increases due to the positive summation.  In this flame stretch contribution, the Markstein 

length is negative in this flame [95], meaning that the stretch effect excites the flame.  In 

the near field, the actual change is quite different from the sum of flame stretch effect and 

the kinematic restoration because velocity fluctuation is significant in this region.  This 

result also indicates that the kinematic restoration effect is stronger than the flame stretch 

effect in the entire region because of the small Markstein length and the high level of the 

harmonic contents as shown in Figure 6.11. 

 

Figure 6.12. The rate of change of the flame response over the downstream distance, and 

the individual contributions from the flame stretch and the kinematic restoration.  Conditions are 

same as the one shown in Figure 6.11. 
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 The individual contributions shown in Figure 6.12 were added up cumulatively 

downstream in order to enable a comparison with the actual flame response,  0| , |x  .  

This comparison was made starting from x=2.60 where the flame response starts to 

decrease.  The regions upstream of this point are strongly influenced by the velocity 

fluctuations and were covered in CHAPTER 4 and CHAPTER 5.  Figure 6.13 depicts the 

comparison between the actual flame response and the estimated flame responses.  

Different estimation was plotted by considering different number of harmonic content.  

They show good agreement with the estimation considering up to 20.  This also 

indicates that the higher harmonic contents are over-estimated by the spatial Fourier 

transform. Since the kinematic restoration is the leading order effect in the decay, the 

estimated  0| , |x   also follows the trend of the kinematic restoration shown in Figure 

6.12 – the estimated  0| , |x    has a sharp decrease near x=2.60, followed by its decay 

slowing down further downstream.   Relative magnitudes shown in Figure 6.13 indicate 

that the decay in the far field is mainly driven by the kinematic restoration. 

 



 102 

 

Figure 6.13. Comparison of the actual flame response and the estimated flame response 

by the kinematic restoration and the flame stretch.  The estimation is done using Eqs. (6.20) and 

(6.26) .  Conditions are same as the one shown in Figure 6.11. 
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CHAPTER 7 

FLAME RESPONSE IN THE DECAYING DISTURBANCE FIELD – 

TURBULENT EFFECT VS. KINEMATIC RESTORATION 

 

This chapter describes analyses of the nonlinear dynamics of harmonically forced, 

turbulent premixed flames.  A key objective of this work is to analyze the relative 

contributions of deterministic and turbulent effects upon the ensemble averaged dynamics 

of the flame front position, <>, with particular focus on the rate at which wrinkles 

excited by harmonic forcing are smoothed out and destroyed.  This is done by forcing an 

anchored premixed flame with harmonic and stochastic oscillations, parameterized by the 

amplitudes,  and , respectively.  Low amplitude and/or near field effects are quantified 

by a third order perturbation analysis, while the more general case is analyzed 

computationally by solving the three-dimensional level set equation over long time 

intervals, and ensemble averaging the results.  We show that different mechanisms 

contribute to smoothing in flame wrinkles, manifested as progress decay in the magnitude 

of <>.   Near the flame holder, random phase jitter effects dominate the smoothing of 

<>/, scaling as 
2 2 2 4

0 ,0/ 2 ss u  , where 0, us,0, and s  denote the radial forcing 

frequency, mean tangential velocity, and downstream distance, respectively.  In addition, 

random modulation of the flame angle at the separation point and destruction of flame 

wrinkles by turbulent eddies also contribute, scaling as 
2 2 2 2 6

0 ,0/ 2L sS s u   and 

2 2 2 4 6 2

0 ,0 115 / 48L sS s u L  , where SL and L11 denote the laminar flame speed and 

longitudinal length scale.  Farther downstream, two additional processes become 
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important.  The first is the rise in time averaged turbulent burning velocity with , as 

expected.  A second, new result is the demonstration that the ensemble averaged 

turbulent burning velocity is modulated by the harmonic forcing, with an inverse 

dependence upon ensemble averaged flame curvature.  This effect is exactly analogous to 

positive Markstein length flames in the laminar flame case, but applies even to the 

ensemble averaged characteristics of stretch-insensitive turbulent flames.  This result is 

shown to follow from basic geometry reasoning of flames with positive and negative 

curvatures.  We show that, depending upon turbulence intensity, the far field evolution of 

<> can be dominated by either the ,T effS  or 
,T effS  , which lead to a quadratic and linear 

decay in <>with s, respectively.  

We consider stretch-free flame dynamics in flows with both harmonic and 

turbulent flow components.  These disturbances nonlinearly interact and introduce new 

effects [55].  For example, both deterministic and stochastic processes contribute to 

smoothing of the ensemble averaged harmonic flame wrinkle [23, 87]. We will show in 

this chapter that this occurs through both stochastic kinematic restoration and phase jitter 

effects which do not average to zero.   

To illustrate the problem of interest, Figure 7.1 illustrates experimental Mie 

scattering images of a harmonically excited, turbulent Bunsen flame, illustrating the 

simultaneous presence of the coherent and broadband wrinkling on the flame front.  The 

four instantaneous images on the left show significant turbulent wrinkling of the flame 

front. The right figure overlays a number of flame edges extracted from these 

instantaneous images at the same phase, clearly showing the coherent wrinkling on the 

flame induced by the harmonic forcing. This coupling between harmonic and stochastic 
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processes on turbulent flames is not well understood [12, 96, 97].  The specific objective 

of this work is to analyze this problem and determine the interactions and relative 

significance of the deterministic and stochastic components of this problem in controlling 

the dynamics of harmonically excited flame wrinkles, such as their decay rate. 

 

a)  b)  

Figure 7.1. (a) Four instantaneous phase-locked Mie scattering images from a turbulent 

propane Bunsen flame excited by a longitudinal acoustic disturbance (b) Overlay of instantaneous 

flame edges showing flame brush and coherent wrinkling on the flame induced by the harmonic 

forcing [98]. 

 

7.1 Formulation 

In this section we consider a harmonically oscillating flame holder, emulating the 

experimental study of Petersen and Emmons [36] shown in Figure 7.2, , in the presence 

of a stochastically oscillatory background flow. This is a useful problem for this study as 

the amplitude of flame wrinkling, within a stretch-free and linear analysis framework, is 

constant with axial location; i.e., |(x,0)|=|(x=0,0)|.  In contrast, the harmonic 

velocity-forced flame has a spatially modulated flame wrinkling character, as shown in 

Figure 2.7, leading to a complex modulation of nonlinear processes [23, 99, 100].  This 
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oscillating flame holder problem allows us to develop relatively simple expressions for 

the key dimensionless parameters controlling the problem, and thus, to isolate the critical 

processes controlling the far field evolution of harmonically forced flames. 

 

Figure 7.2.  Visualization of a propane flame stabilized on a transversely oscillating flame 

holder at 625 Hz ( = 1, ux,0 = 4.8 m/s) [36]. 

 

The investigated geometry is shown in Figure 7.3. The coordinate system is aligned 

with the unperturbed flame position, so that the s and n coordinates are tangential and 

normal to the unperturbed flame, with the z coordinate pointing in the third orthogonal 

direction out of the page.  The flow field is prescribed and the flame holder vibrates in the 

n-direction, creating wrinkles on the flame at s =0 which propagate downstream. 
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Figure 7.3. Diagram of flame/flow configuration and the coordinates (: flame front 

location). 

  

The principal assumptions made in this analysis are that: (i) the flame is a thin, two-

dimensional interface, dividing reactants and products, (ii) the stochastic velocity 

fluctuations (us, un, uz) are prescribed, (iii) the flame speed, SL, is constant, (iv) the flame 

remains attached to the flame holder. Then, the instantaneous location of the flame front 

is determined from the G-equation [28], and (s,n,z)-coordinate version of Eq. (2.3) is: 

 

1/2
2 2 2

s n z L

G G G G G G G
u u u S

t s n z s n z
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           

             

 (7.1) 

For small velocity fluctuations, the flame front position is single-valued, an 

approximation that breaks down at high amplitude fluctuations.  In this low amplitude 

excitation case, a substitution, G=n -(s,z,t) leads to the following equation for the flame 

position, (s,z,t):  

 

1/2
2 2

1s n z Lu u u S
t s z s z
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         

         

 (7.2) 
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 The velocity field shown in Figure 7.3 is written as mean and perturbation 

quantities as:  
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 (7.3) 

where  and fi denote the magnitude of the velocity fluctuation and the shape function, 

respectively.  The turbulence intensity is 3  with 
2 1if  .  Note that the velocity is 

prescribed a priori.  The mean velocity of un is –SL because the unforced flame aligns 

with the s-coordinate.  Note that this assumption is rigorously valid in the limit of an iso-

density flow, but neglects the influence that a finite density change across the flame has 

on the approach flow, as the oscillatory flame sheet would otherwise induce an 

oscillatory approach flow.  Because of the mutual interaction between the flame position 

and the flow field, free boundary problems such as this are otherwise difficult to handle 

analytically.  This issue has been discussed by a number of prior workers [22, 90, 101-

103]. 

 With the velocity expression in Eq. (6.3), the single-valued flame dynamics 

equation in Eq. (6.2) is rewritten as: 

  

1/2
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,0 1 1s L s n zu S f f f
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 (7.4) 

Here, the first and the second terms on the RHS describe changes to the convecting flame 

wrinkle,  ,0/ st s u  , through kinematic restoration and turbulent flow forcing, 



 109 

respectively.  Because of nonlinearities associated with convection (e.g., /sf s  ) and 

kinematic restoration (e.g.,    
1/2

2 2
1 / /s z       
 

), these two terms interact. 

Two boundary conditions are needed.  First, it is assumed that the flame is attached to 

the flame holder which oscillates in the n-direction as: 

    00, , sins z t t      (7.5) 

where  and 0 denote the magnitude and angular frequency of the flame holder 

oscillation, respectively.  Second, a nonreflecting boundary condition is applied at the 

downstream end of the calculation domain, so that information only propagates along the 

flame in the flow direction. 

The stochastic flow fluctuations in Eq. (7.3) are assumed to be (i) isotropic, (ii) 

Gaussian distributed, (iii) propagating with the flow as per Taylor's hypothesis, and (iv) 

have Eulerian space/time correlations that decay exponentially over a longitudinal length 

scale, L11 as [53, 54]: 

    
2

11

, , , , , , exp
4

s s

r
f s n z t f s r n z t

L

  
         

 (7.6) 

The Taylor's hypothesis with the specified velocities in Eq. (6.3) implies: 

    ,0, , , , , , , ,i i s Lf s n z t t f s u t n S t z t for i s n z         (7.7) 

Based on Eqs. (7.6) and (7.7), all two point correlations can be derived from isotropy 

relations [104] as listed in APPENDIX .  For Gaussian random variables, all higher order 

correlations can be derived from sum and products of two point correlations and all odd 

order correlations are zero [105, 106].  Lastly, the following non-dimensionalization 

scheme is used for simplification: 
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 (7.8) 

The solutions to the full G-equation in Eq. (3.1) are analyzed computationally.  Solutions 

of the single-valued -equation in Eq. (7.4) are analyzed asymptotically.  This asymptotic 

analysis is performed up to third order in the oscillating amplitude,  , and the turbulence 

intensity,  .  The computational procedure is described in Sec. 3.4.2. 

7.2 Asymptotic Analysis 

Asymptotic analyses of the governing equations were performed to obtain insight into 

key parameters controlling the flame wrinkle decay rate.  Since the objective of this 

analysis is to analyze nonlinear corrections to the flame response at the forcing 

frequency, the analysis must be obtained up to the third order in   and  .  The flame 

position,  , is expanded using the following two parameter expansion in harmonic 

excitation amplitude,  , and turbulence intensity,  , as: 
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 (7.9) 

The corresponding boundary conditions for each function are: 

  
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0, ,
0

t
s z t
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 (7.10) 
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 After inserting the expansion in Eq. (7.9) into Eq. (7.4) and matching terms with 

the same order, we obtain a series of partial differential equations for each function,   

(see APPENDIX F).   For example, the equation for   is: 
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Then, these equations are solved sequentially with the boundary condition in Eq. (7.10). 

For example, the first order solutions are: 
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 (7.12) 

where,  represents the ensemble average.  Thus, the flame wrinkle amplitude is 

constant at the first order; i.e., it does not decay in the absence of stretch or nonlinear 

effects, as discussed earlier. The solution,  , mimics the forcing and convects 

downstream as a traveling wave at the tangential velocity, 
,0su . 

 The full solutions of these equations are quite lengthy, but can be developed using 

standard techniques and are presented in Sec. 3.3.  The particular focus of this study is in 

the ensemble averaged dynamics of  .  Solutions for the ensemble averaged flame 

position are: 

  
1

cos 2
4

LS s s t s       
    (7.13) 
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0         (7.15) 
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 (7.17) 

As shown in Eq. (7.15), the ensemble average of several of the terms in the expansion is 

zero.  The terms contributing to either the ensemble or time average are  ,  , 

 ,  , and  .  Note that the non-zero time averaged terms reflect a shift in 

flame position from its unperturbed location, due to the augmentation of the turbulent 

burning velocity by flow fluctuations, both narrowband and stochastic.  This solution is 

discussed further and compared with computations in the next section. 

7.3 Results and Analysis 

This section presents analyses of the computational and asymptotic flame results to 

understand the factors controlling the ensemble averaged dynamics of flame wrinkles.  

Figure 7.4a and Figure 7.4b show a typical sequence of instantaneous computational 

results at two turbulence intensities.  They show the presence of randomly distributed 

flame wrinkles with variation in both s- and z-directions; variations in the z-direction 

disappear with ensemble averaging.  Also evident in the images is the progressive decay 

in the coherent, sinuous flame sheet fluctuations with downstream distance.  As we will 
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show in this section, these wrinkles decay even in the absence of turbulence, but the 

decay rate is accelerated by turbulent fluctuations. 

a) b)  

c) d)  

Figure 7.4. Instantaneous realizations of the flame sheet extracted from solution of full level 

set equation, Eq. (6.1).  a,b)   =0.04, c,d)  =0.20 (
LS =0.25,  =0.65, 

11L = 0.65). 

 

7.3.1 Ensemble Averaged Near Field Characteristics 

This section presents results illustrating the role of turbulent fluctuations in smoothing the 

excited flame wrinkles near the flame holder, where the asymptotic results can also be 

used. These results are a generalization of those shown in Figure 6.6, that illustrated the 

role of kinematic restoration in evolving the flame wrinkle shape in a laminar flow. 
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a) b)  

Figure 7.5. a) Ensemble averaged flame position,  ,s t , at four times during a forcing 

period obtained from level set computations   b) Corresponding Fourier coefficients of ensemble 

averaged flame front (solid) and corresponding asymptotic solutions  (dashed).  Conditions are 
LS

=0.25,  =0.65,  =0.04, 
11L = 0.65. 

 

Figure 7.5a plots the ensemble averaged flame position at four phases during a 

forcing period.  For reference, the laminar case (i.e.,  =0) is also indicated by the dashed 

lines.  Several observations can be made from this first.  First, it shows that harmonically 

oscillating flame wrinkles convect downstream while decaying as damped sinusoids.  

Second, note that the overall turbulent flame position shifts upward relative to the laminar 

one with downstream distance, due to the increase of the turbulent burning velocity by 

the random fluctuations [64].  Third, the ensemble average of the turbulent case shows a 

smoothing of the trailing edges, in contrast to the discontinuity in slope of the laminar 

case.  This smoothing of the very short wavelength trailing edge resembles the effect of 

stretch in laminar flames with positive Markstein lengths, an observation that will be 

quantified and fleshed out later.  Finally, the peak-to-peak amplitude of the flame wrinkle 

is clearly different between the two curves (solid and dash), showing the accelerating 

smoothing of the flame wrinkle in the turbulent case.   
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 These observations are further quantified in Figure 7.5b, which plots the axial 

dependence of the ensemble averaged flame response at the forcing frequency, 0, and 

the time averaged position.  The figure shows the monotonic decay in flame wrinkle 

amplitude, as well as the shift outward in average flame position, due to the rise in 

turbulent burning velocity.  The asymptotic solutions, presented in Eqs. (7.12)-(7.17) are 

also indicated in Figure 7.5b by the dashed lines, which show  good agreement in the near 

field.  These asymptotic solutions can be interpreted more easily by being expanded in 

powers of tangential coordinate, s , as: 

       42 3 5 2
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where, the overbar,   , represents the time average.  Note that the second term in Eq. 

(7.19) describes the decrease in laminar flame wrinkle size due to kinematic restoration, 

which was covered in the previous study [107].  We will next focus on the remaining 

terms that are multiplied by 
2  and, thus, are due to stochastic forcing effects.  This 

equation shows that the flame wrinkle size decays quadratically with downstream 

distance, 2s , and turbulence intensity, 
2 , in the near field.  There are two terms, 

2 2 / 2s  and 2 2 2 / 2LS s , due to two fundamentally different processes, leading to this 

smoothing effect in the leading order terms.   The first of these terms, 
2 2 / 2s , is 

independent of burning velocity or equivalently, kinematic restoration effects.  Since, 
LS

<<1 in high velocity flows, this term is actually the dominant near-field effect. 
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 This dominant smoothing effect (
2 2 / 2s ) is due to phase jitter associated with 

the /sf s    term on the right side of Eq. (7.4); i.e., fluctuations in tangential flow 

velocity cause the axial position of the flame wrinkle to fluctuate randomly.  As shown in 

Figure 7.6, this leads to a reduction in ensemble averaged flame wrinkle amplitude, as the 

ensemble average of a harmonic quantity subjected to phase jitter is reduced in 

magnitude. 

 
Figure 7.6. Illustration of the reduction of ensemble averaged flame wrinkle size by random 

tangential motions of the flame wrinkle, or "phase jitter".  

 

To illustrate, consider the ensemble average of a harmonically oscillating disturbance, 

 sin 2 s , subjected to a Gaussian phase noise, N(t), with a mean of zero and a variance 

of 2 .  The ensemble average of the disturbance is written as: 

             sin 2 sin 2 cos cos 2 sins N t s N t s N t        (7.20) 

Note that     2cos exp / 2N t    and   sin 0N t   for Gaussian noise.  

Therefore, Eq. (7.20) becomes as: 
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       2sin 2 exp / 2 sin 2s N t s      (7.21) 

This equation indicates that the ensemble average of the disturbance decreases 

exponentially in magnitude with increases in variance, 2 , of the noise.  Note that this 

effect is only due to tangential velocity fluctuations, us’.  In contrast, velocity fluctuations 

normal to the flame, un’,  do not alter the ensemble average by convection effects.  This is 

analogous to additive noise addition to a harmonic disturbance: 

      sin 2 sin 2s N t s    (7.22) 

Related effects have been well documented in the general turbulent flow and flame 

literature [74, 108, 109].   

Returning to Eq. (7.19), consider the next quadratic term, 2 2 2 / 2LS s .  The fact that it is 

proportional to 
LS  indicates that it is influenced by kinematic restoration and stochastic 

forcing, but note that it is completely independent of turbulent length scale, 
11L .  This 

term reflects the effects of random flame angle changes at the attachment point by the 

stochastic velocity fluctuation normal to the front.  To see this, note that the kinematic 

restoration term in Eq. (7.4) can be rewritten as  / cos ( )L LS t S   by using the equality, 

   
2 2

1 / / 1/ cos ( )s z t         , where t is the instantaneous local flame angle 

measured relative to the s-z plane.  Since the flame angle ( consists of deterministic 

(D) and random (N) parts, i.e., D N    , the kinematic restoration effect is expanded 

for small D and N as: 
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
 (7.23) 

Ensemble averaging this expression:  
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This equation indicates the leading order effects of kinematic restoration.  The first term, 

2 / 2L DS  , is the laminar kinematic restoration term, corresponding to the 2 2 2 / 8LS s  in 

Eq. (7.19).  Similarly, the second term, 
2 / 2L NS  , corresponds to 2 2 2 / 2LS s  in Eq. 

(7.19).   

Lastly, kinematic restoration effects associated with random wrinkles excited in 

the domain itself first appear in the expansion in Eq. (7.19) at fourth order in distance, but 

second order in turbulence intensity, through the term,  
2 2

4

2

11

5

48

LS
s

L

 
.  Note that this term 

includes terms proportional to 
LS  and 

11L , indicating that it is influenced by kinematic 

restoration and turbulence length scale.  This is the leading order near field term 

describing the turbulent destruction of wrinkles in the domain itself.  It shows that 

turbulent fluctuations of shorter length scale lead to more rapid dissipation of flame 

wrinkles, scaling as 2

111/ L , an effect which would be expected given the scale-dependent 

nature of kinematic restoration. 

This asymptotic expansion shows how three fundamentally different effects come 

to play in the near field, with completely different dependencies on location (e.g., 2s  or 

4s ), flame propagation (e.g., 1 or 2

LS ), and turbulence characteristics (e.g., 
11L ).  

However, as shown in Figure 7.5b, this expansion loses validity with downstream 

distance, s > ~3 in this example, where the coupled effects of kinematic restoration and 

stochastic excitation must be studied numerically. 
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 An additional important result from the asymptotic analysis is that the 

deterministic and stochastic effects are decoupled up to third order, as 0   in Eq. 

(7.15).  As a result, to this order, the leading order correction to the flame response can be 

obtained from the following linear sum of deterministic and stochastic effects in 

isolation: 
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
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However, this result is limited to the near field as the asymptotic solution in Eqs. (7.15) 

to (6.23) quickly loses accuracy further downstream. 

 In order to illustrate the combined effects of harmonic and stochastic excitation, 

Figure 7.7 plots the results of several computations showing the axial dependence of the 

flame wrinkle fluctuation at the forcing frequency at several turbulence intensities.  The 

 =0 curve shows the laminar result, showing the monotonic decay in flame wrinkle 

amplitude with downstream distance, for reasons discussed previously.  In addition, 

curves are shown at  =0.04 and 0.10 values, showing the increased decay rate of 

 0,s   with increasing turbulence intensity.  The plot clearly shows how both 

deterministic and stochastic processes lead to a decay in flame wrinkle size.  Their 

relative significance is a function of the values of   and  . 
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Figure 7.7. Comparison of the flame responses at different turbulence intensities (

LS =0.25 

and 
11L = 0.65). 

 

The rest of this chapter considers these downstream characteristics in more detail.  In 

order to understand the factors controlling the far field region, it is first necessary to 

understand the effects of stochastic forcing on the ensemble averaged, time varying 

turbulent burning velocity, which is treated next. 

7.3.2 Ensemble Averaged Turbulent Burning Velocity 

In the laminar case, it is the propagation of the flame normal to itself that leads to 

smoothing of flame wrinkles, as illustrated in Figure 6.6 - thus the wrinkle decay rate is 

directly proportional to the laminar burning velocity, LS , as shown in Eq. (6.21).  

Important insights into the turbulent case can be obtained by considering analogies to the 

laminar problem and considering the ensemble averaged turbulent burning velocity.  An 

important generalization from the laminar problem, however, is that even in the case 
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where the flame has no stretch sensitivity, the turbulent burning velocity is time varying 

and modulated harmonically.   

 To follow this point, consider the following equation for the ensemble averaged 

flame dynamics, similar to expressions proposed heuristically by several prior studies 

[25, 71, 110]. 

 

1/2
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 (7.26) 

where, ( )
~

 represents a non-dimensional variable same as defined in Eq. (7.8) – 

velocities, lengths, and time are normalized by us,0, us,0/0, and 0, respectively.  Note 

that Eq. (7.26) is essentially a definition of ,T effS , which is then given by: 
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 (7.27) 

It is important to note that the turbulent flame speed can be defined in different ways, 

leading to different results.  The typical definition of displacement flame speed, ,T dispS , 

used in flows without harmonic forcing is [49]: 
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 (7.28) 

The time average of ,T effS , ,T effS , differs from ,T dispS  because of the non-zero time 

average produced by the multiplication of two harmonically oscillating terms.  For 

example, /su s   does not equal  /su s   in the presence of harmonic flow 
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perturbations.  This difference can be explicitly shown from the asymptotic solutions for 

,T effS  and ,T dispS  at s =0: 
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Note that these equations converge to the same result when  =0, but otherwise, ,T dispS  

has an   sensitivity while ,T effS  does not.  Similar points can be seen more generally in 

Figure 7.8a and Figure 7.8b, which plot the computed dependence of ,T effS   and ,T dispS  

upon downstream distance, s , for different   and   values. 

a) b)  

Figure 7.8.  a) Dependence of ,T effS  on downstream distance. b) Dependence of ,T dispS  on 

downstream distance (
LS =0.25 and 

11L = 0.65). 

 

At a fixed axial location, both ,T effS  and ,T dispS  are an increasing function of  , as might 

be expected.  However, ,T effS  is essentially independent of harmonic forcing amplitude, 

 , for all cases shown, as suggested by Eq. (7.29). 



 123 

 Having discussed some basic differences of ,T effS from typical definitions used in 

the turbulent combustion literature in the absence of harmonic forcing, we next consider 

its characteristics further.  The space-time dependence of ,T effS  can be directly extracted 

from computed results using Eq. (7.27).  To illustrate, Figure 7.9 plots the extracted 

dependence of ,T effS  at two time instants for the same calculation shown in Figure 7.5a, 

where the instantaneous flame position is also plotted for ease of comparison. 

 

 

 

Figure 7.9. Dependence of ensemble averaged flame position (top) and extracted ,T effS  value 

(bottom) on downstream distance at two time instants(
LS =0.25,  =0.65, 

11L = 0.65,  =0.04). 

 

This figure shows that ,T effS  is a function of both space and time.  The rest of this section 

briefly revisit its time averaged characteristics, and then focuses on its time-varying 

features.  The axial evolution of  ,T effS  shown in Figure 7.8a indicates an initial 
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development in the near field followed by the saturation far from the flame holder, 

similar to other observations in spatially or temporally evolving flames [111, 112].  The 

fact that ,T effS  exceeds 
LS , such as shown in Figure 7.8a, is important and directly 

responsible for the increasing decay rate of flame wrinkles shown in Figure 7.7.  The 

results in Figure 7.7 show that increasing   at a fixed   leads to a monotonically 

increasing smoothing rate of flame wrinkles.   In other words, a faster averaged burning 

rate leads to faster smoothing of the ensemble averaged flame wrinkles, directly 

analogous to the sensitivity of laminar flames to 
LS .  This point can also be seen by 

noting that Eqs. (6.2) and (7.26) are identical if ,T effS  is a constant, and replacing    and 

LS  with   and ,T effS , respectively. 

Having considered the effects of ,T effS  upon the decay rate of flame wrinkles, we 

next consider its space-time modulation, illustrated in Figure 7.9.  In comparing the top 

and bottom figures, note how ,T effS  instantaneously rises at points where the ensemble 

averaged front is concave to the reactants and falls at points that are convex.  This point is 

quantified inFigure 7.10a which plot values of ,T effS  extracted from calculations at points 

through the harmonic forcing cycle, as a function of ensemble averaged radius of 

curvature of the flame, c , defined as: 
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a) b)  

Figure 7.10. Correlation of the curvature of the ensemble averaged flame front and the 

turbulent flame speed defined in Eq. (7.27). (a) Scaled by by  ,T effS s  at selected downstream 

locations and (b) scaled by the laminar flame speed at downstream locations where ,T effS  has 

approached a constant value.  Values of ,
20

/T eff L
s

S S


, 
,

20
/T disp L

s
S S


, ,0 /T LS S , and ,0 /T T LS S  

are indicated for reference, whose values are 1.14, 1.15, 1.14, and -0.102, respectively (conditions are  

 =0.65,  =0.04,  
11L =0.65, 

LS =0.25). 

 

Note the clear negative correlation of burning velocity with ensemble averaged curvature.  

In other words, locations with ensemble averaged negative curvatures are associated with 

augmentation of the unsteady, ensemble averaged burning velocity and vice-versa.  This 

behavior is analogous to stretch sensitive flames with positive Markstein lengths; i.e., 

where >0.  In the laminar case, this stretch sensitivity is due to convective-diffusive flux 

imbalances in the finite thickness flame [113], while the analogous behavior in the 

turbulent case is due to the effect of stochastic flame wrinkling on the ensemble averaged 

flame wrinkle position.  However, it is important to emphasize that while the Markstein 

length concept applies instantaneously in the laminar case, this turbulent analogue applies 

only to the ensemble average. 
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The fact that the curves trace out an ellipse indicates that the relationship between 

instantaneous curvature and ,T effS  is not quasi-steady; i.e. there is a phase lag between the 

two, but this lag is not large for this condition.  Note also how ,T effS  and c  correlation 

becomes nearly independent of position at s  =10 and 20, which corresponds to locations 

where ,T effS  has approached a constant value.   

For the rest of this section, we focus on this relationship at downstream locations 

downstream where ,T effS  is approximately spatially constant. Figure 7.10b plots ,T effS  at 

a range of such positions, showing that we can write the following approximate 

expression for ,T effS  in the far field as: 

  , ,0 1T eff T TS S c    (7.32) 

where, ,0TS , and T  are the effective turbulent flame speed at zero curvature and the 

"turbulent Markstein length", respectively.  Note that ,0TS  and ,T effS  have different 

definitions in general, but are similar in value as shown by Figure 7.10b.  Also, a more 

accurate representation of the ensemble averaged burning velocity would be to include 

the phase delay between ,T effS  and c , which we will not include for simplicity here.  A 

more detailed characterization of the effects of harmonic modulation on ,T effS  is outside 

the scope of this study.   

The same behavior was observed for all computed cases.  To illustrate, Figure 

7.11 plots similar calculation results for several turbulence intensities, showing that T  is 

an increasing function of turbulence intensity, as might be expected.  The larger scatter in 

the  =0.1 case is primarily a reflection of noise introduced in calculation of the second 
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derivative of flame position, needed for the curvature.  Although the 160 ensemble 

averages are sufficient for calculation of  , the small amount of noise present in these 

ensemble average estimates are amplified significantly in estimates of the second 

derivative.  Results are shown for two   values, showing the larger range of ensemble 

averaged flame curvatures that are present with increased harmonic forcing amplitude.  

Note also the diminished range of negative curvature values for the highest   case, a 

reflection of the very rapid destruction of high curvature regions by stochastic flame 

wrinkling. 

a) b)  

Figure 7.11.  Correlation of the curvature of the ensemble averaged flame front and the 

turbulent flame speed defined in Eq. (7.27).  a)  =0.32, b)  =0.65 (other conditions are 
11L =0.65, 

LS =0.25). 

 

 While the Markstein length analogy has been quantified in Figure 7.10 based on 

post-processing calculations, the physical reasons why this behavior occurs can be 

understood from consideration of Huygens propagation.  To illustrate, Figure 7.12 

illustrates three instantaneous notational images of flames with ensemble averaged 

positive, negative, and zero curvature, with superposed wrinkles.  As shown in Figure 

7.12, the effect of kinematic restoration is most prominent at the trailing edges of the 
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flame, where the two opposing flame branches propagate into each other and annihilate 

each other.  As the trailing edges are destroyed, the flame shifts toward the reactants 

sides, which also manifests itself as an increase in turbulent flame speed.  This flame-

flame interaction and annihilation process is strongly dependent upon the ensemble 

averaged curvature of the flame, as it is suppressed in outwardly propagating, positively 

curved flames (see the different degrees of change of mean flame position from t=0 to 

t=dt marked by dash lines in Figure 7.12).  It is augmented in inwardly propagating, 

negatively curved flames.   

 

Figure 7.12. Illustration of change of curvatures on trailing edges of the flames with different 

large scale curvatures. 

 

To summarize then, ,T effS  can be written as 
, , ,T eff T eff T effS S S   , where 

,T effS   is a 

periodic function of time, that can also be approximately parameterized as a function of 

the local curvature; i.e., 

  , , 1T eff T eff TS S c    (7.33) 

Following from the analogies of the solution to the laminar flame problem, this latter 

effect has a term that is linear in harmonic perturbation amplitude,  0,s  , i.e., 

expanding the curvature in Eq. (7.31) in a Taylor series, the leading order term is given 
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by     
2

2 2

0 0, / ,c s s O s       .  This point has important implications on the 

functional dependence of   upon downstream distance, as elaborated on in the next 

section.   

7.3.3 Ensemble Averaged Far Field Characteristics 

In this section, we analyze the flame response in the far field, using results from the level 

set computations.  Figure 7.7 clearly shows the faster smoothing of ensemble averaged 

flame wrinkles in the far field with increasing   values.  As discussed in the context of 

Figure 7.8, this observation is expected based upon the increasing value of ,T effS  with 

turbulence intensity, leading to faster propagation of the ensemble averaged flame front 

normal to itself. 

While this qualitative behavior is expected, we can use the results from Section 

7.3.2 to better understand the functional dependence of  0,s   upon downstream 

distance.  To illustrate, we briefly return to the laminar flame problem where, as 

discussed in CHAPTER 6, two processes lead to flame wrinkle decay; kinematic 

restoration and flame stretch. 

Consider first the decay rate of laminar flames dominated by kinematic restoration 

effects, using the s >>1 solution from Eq. (6.15).  This equation can be differentiated and 

rewritten in the following form that eliminates the explicit dependence on downstream 

distance, by replacing downstream distance with its local magnitude as: 

 
 

  20

0

| , |
| , |
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L
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s
s

 
 


 


 (7.34) 
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This equation quantifies the decay rate in flame wrinkle amplitude in terms of the local 

magnitude, showing that the ratio, 
 

 
0

2

0

| , | /

| , |

s s

s

 

 

 
 , reaches a constant value in the far 

field, where this expression is valid.  To illustrate, Figure 7.13 plots the results of a 

calculation for  =0, i.e., a laminar flame, confirming this result.  This plot also indicates 

that this ratio varies with distance in the near field due to the two zone behavior of 

laminar flame as pointed earlier (Eq. (6.15) indicates that it varies as 2 / 4LS s ). 

 

Figure 7.13.  Downstream dependence of scaled slope in flame position, illustrating laminar 

flame scaling (conditions are  =0.65,  = 0, and 
LS =0.25). 

 

In a similar manner, the decay rate of stretch dominated laminar flames can be obtained 

from Eq. (6.25) and written as: 
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 
  


 


 (7.35) 

Therefore, this ratio is proportional to the product of the flame speed and normalized 

Markstein length,  . 
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These laminar solutions can be used to understand the functional dependence of 

 0, /s s    upon  0,s  , since the laminar instantaneous and ensemble 

averaged turbulent flame characteristics are described by analogous equations in the far 

field; i.e., 

Laminar instantaneous equation: 

  

1/2
2 2

1 1s n z Lu u u S c
t s z s z

    


        
           

         

 (7.36) 

Turbulent ensemble averaged equation: 

 

1/2
2 2

, 1 1s n z T eff Tu u u S c
t s z s z

    


        
            
        

    

(7.37) 

Increases in turbulence intensity,  , lead to two effects - increases in ,T effS  and 

the magnitude of 
,T effS  , because of the increases in “turbulent Markstein length”.  Again, 

using the previously developed laminar flame solutions as a guide, both effects lead to 

destruction of flame wrinkles.  However, the first effect is nonlinear in harmonic 

disturbance amplitude,  0,s  , while the second has a leading order linear term in 

 0,s  .  Thus, the dependence of the far field solution characteristics upon 

 0,s   are a nonlinear function of  .  In other words, consider the case where  =0 

and   is nonzero.  In this limit, only deterministic kinematic restoration processes lead to 

flame wrinkle destruction, with a decay rate that is a nonlinear function of  , as 

quantified in Eq. (6.25).  As   increases, increases in ,T effS  augment this effect, causing 

even faster increases in flame wrinkle decay rate, as shown by Figure 7.7.  In order to 
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illustrate that the same basic scaling described in Eq. (7.34) applies in the low turbulence 

intensity case as well, Figure 7.14 plots the axial dependence of both 
 

 
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, /

,

s s

s

 

 

 
  

and 
 

 

0

0

, /

,

s s

s

 

 

 
 .  In the low turbulent intensity case (  =0.02 in Figure 7.14a), 

the ratio, 
 

 

0
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0

, /

,

s s

s

 

 

 
  (the solid line) approaches a roughly constant value, while 

the ratio, 
 

 

0

0

, /

,

s s

s

 

 

 
 , continues to evolve with downstream distance.  For 

reference, note from Figure 7.14a that ,T effS  approaches a spatially constant value for s

>~10. 

 

a) b)  
Figure 7.14.  Ratios of ensemble averaged flame slope and position, using two different 

scalings derived from kinematic restoration and stretch dominated solutions a)  =0.02 and b) 

=0.08 (Conditions are  =0.65,
LS =0.25, and 

11L =0.65). 

 

However, these increases in   introduce the additional modulated flame speed effect as 

well, an effect that, in isolation, has a completely different amplitude scaling.  Moreover, 
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this effect is also a function of  , as larger modulations in c  occur as   increases.  This 

dependence of ,T effS  upon ensemble averaged curvature leads to wrinkle smoothing term 

that is linear in  0,s  , as opposed to the nonlinear mechanism through which ,T effS  

exerts an influence.  For  0, / 1s    then, this linear effect dominates the 

nonlinear effect for large enough  .  This can be seen from  =0.08 result in Figure 

7.14b, where the axial dependence of the ratio 
 

 

0
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0

, /

,

s s

s

 

 

 
  looks quite different 

from Figure 7.14a.  Rather, than approaching a roughly constant value, it increases 

monotonically with downstream distance, even at location where ,T effS  is nearly 

constant.  In contrast, the ratio, 
 

 

0

0

, /

,

s s

s

 

 

 
 , which would be expected to 

approach a constant for the stretch dominated scaling approaches a nearly constant value.   

 In either the  =0.02 or 0.08 case, the scaling is not perfect as increases in   

influences both processes.  However, the basic argument can be made more precise by 

replotting these same data.  Specifically, Figure 7.15 plots the far field dependence of 

 0,s s    upon  0,s   for several   values, where downstream distance is 

used as a parameter.  Because  0,s   monotonically decreases with downstream 

distance, axial location decreases in the positive axial direction.   
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a) b)  
Figure 7.15.  Relationship between local flame position and slope, illustrating transition from 

kinematic restoration dominated to "stretch" dominated with increasing turbulence intensity. a) 

=0.32, b)  =0.65   (
LS =0.25, and 

11L =0.65). 

 

In the near field, Eq. (7.34) shows that for  =0, the relationship between slope 

and position is described by the asymptotic result from Eqs. (6.15) and (7.34), which is 

given by:  
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 (7.38) 

 In the far field, the variation in functional dependence of  0,s s    upon 

 0   clearly transitions from the quadratic "kinematic restoration dominated" 

scaling (i.e., dominated by the ,T effS  effect) to the linear stretch dominated scalings (i.e., 

dominated by the time varying 
,T effS  ).  Thus, these results show that the downstream 

decay of ensemble averaged flame wrinkling in the high turbulence intensity case is 

dominated by the modulation in the turbulent burning velocity, a result that is analogous 

to that associated with smoothing of thermodiffusively laminar flames. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the results of this thesis and illustrates the key contributions to 

combustion research.  Then, several suggestions are remarked for future work to better 

understand flame dynamics.   

 

8.1 Concluding Remarks 

 Overall, this thesis focuses on the spatio/temporal dynamics of the flame response.  

Analytical and numerical analyses were performed to study excitations and dissipations 

of wrinkles on the flame front.   These analyses identify key dimensionless parameters 

and provide insights in the complex problems.  New findings were presented from 

chapter 4 through chapter 7. 

 Chapter 4 described the excitation of the flame response near the flame base.  In 

this chapter, the asymptotic analysis was performed on the unsteady flame position 

motion, and the explicit form for the unsteady flame position was obtained.  Two 

mechanisms exciting the flame response were studied.  The first mechanism is the effect 

of the unsteady motion of the flame base.  The analysis identifies that the flame wrinkle 

is generated by this unsteady motion of the flame base and then propagates downstream 

with the tangential velocity while maintaining the oscillation magnitude downstream.    

The second mechanism is the effect of the velocity fluctuations.  The analysis indicates 

that the flame response increases linearly downstream by either harmonic or stochastic 

velocity fluctuations.  Furthermore, the growth rate of the flame response is proportional 
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to the ratio of normal velocity disturbance to the tangential velocity.  This relationship 

was verified with measurements from bluff-body stabilized flames. 

Then, the study on the excitation was extended to further downstream with 

detailed velocity disturbance model in chapter 5.  This chapter has described the features 

and parameters that control the spatio-temporal dynamics of flame front fluctuations of a 

harmonically excited flame.  It has been shown that the magnitude of the flame response 

grows, reaches a peak or multiple peaks, and then decays with axial distance.  The key 

point of this analysis was to demonstrate the important role of interference on the flame 

response, which is caused by multiple disturbances propagating in the same direction but 

at different velocities.  Interference between waves propagating along the flame sheet is 

controlled by a ratio of two characteristic velocities; natural flame propagation speed and 

velocity disturbance speed.  However, this interference can change by dissipations of the 

velocity disturbances.  With high dissipation of a velocity fluctuation, the corresponding 

wave cannot invoke the interference, but rather renders the other wave to dominate.  This 

domination leads to the constant magnitude of the flame response.  Depending upon the 

relative values of these interference and dissipation parameters, the far field response can 

be categorized as “Interference dominated” or “Dissipation dominated”.  In the 

interference dominant regime, the flame response is oscillatory and possesses local 

maxima and minima. In the dissipation dominant regime, the flame response 

monotonically grows or exhibits no recognizable peak with the effective convection 

speed to flame convection speed. 

In the following sections, analyses cover the dissipation mechanisms for the 

excited flame response, i.e., smoothing-out action of flame wrinkles.  Chapter 6 is 
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devoted to the smooth-out of flame wrinkles in the laminar flames; the effects of flame 

stretch and kinematic restoration.  This analysis identifies the key dimensionless 

parameters controlling stretch and kinematic restoration processes, as well as the 

conditions when one or the other is dominant.  Kinematic restoration, an intrinsically 

nonlinear process, shows a two zone behavior in smoothing the flame wrinkle.  The 

wrinkle on a flame excited with a single frequency decays quadratically in the near field 

at an amplitude dependent rate.  The presence of multiple frequencies in the excitation, 

such as an additional harmonic, leads to a linear decay in near field amplitude.  Thus, the 

harmonic content of the excitation plays an important role in the decay rate of flame 

wrinkles.  In the far field, the wrinkle decays inversely with downstream distance at a rate 

that is independent of forcing amplitude.  The smoothing of flame wrinkles by stretch 

effects in positive Markstein length reactants can be understood from linear analysis, 

which shows that the wrinkle decay rate is an exponential function of Markstein length 

and downstream distance.    

Lastly, chapter 7 has described the relative contributions of deterministic and 

turbulent effects upon the dynamics of ensemble-averaged flame front with particular 

focus on the rate at which wrinkles excited by harmonic forcing are smoothed out and 

destroyed.  In the near field, asymptotic results show the three leading order contributors, 

with phase jitter associated with random tangential convection of flame wrinkles being 

the leading order effect.   Farther downstream, additional processes become important.  

First, the time averaged turbulent burning velocity, increases with downstream distance 

and turbulence intensity.  This faster average displacement velocity of the front lead to 

increases in destruction of flame wrinkles. 
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 In addition, the ensemble averaged turbulent burning velocity is modulated by the 

harmonic forcing, with an inverse dependence upon ensemble averaged flame curvature, 

i.e., the turbulent burning velocity changes in time.  This effect is exactly analogous to 

positive Markstein length flames in the laminar flame case, but applies even to the 

ensemble averaged characteristics of stretch-insensitive turbulent flames.  The degree of 

modulation of the effective turbulent flame speed is a function of the modulation 

amplitude in the flame curvature and, thus, is a function of wrinkle amplitude.  It is also a 

function of turbulence intensity, as the effect disappears in the laminar case.  This 

analysis shows that, depending upon turbulence intensity, the far field evolution of the 

ensemble-averaged flame response can be dominated by either mean and fluctuation parts 

of the effective turbulent flame speed.  These two characteristics are analogous to that of 

stretch-sensitive laminar flames, whose downstream wrinkle decay rate can be controlled 

by either kinematic restoration of stretch effects. 

 

8.2 Summary of Key Contributions 

This thesis describes the local response of premixed flames subject to harmonic 

velocity disturbance.  The analyses were performed in various angles.  Hopf-Lax formula 

was used in providing an exact explicit solution for a nonlinear problem.  Overall, the 

third order asymptotic analysis was performed to capture the effect of nonlinearities.  For 

the highly nonlinear and stochastic processes, numerical calculation was implemented for 

the exact solutions.  These numerical solutions along with asymptotic analysis provide in-

depth insights to the dynamics of the flame.  Also, models developed with the asymptotic 

analysis were validated with the measurements. 
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The first key finding is identifying the fundamental relationship between the 

velocity excitation and the flame response.  When the flame wrinkle is excited by the 

unsteady velocity fluctuation, the growth rate of the flame response is proportional to the 

ratio of the normal velocity fluctuation to the mean tangential velocity.  This relationship 

is validated with several flame measurements. 

The second finding is identifying the role of interference and dissipation effects 

on the flame response.  It was found out that if the velocity fluctuation persists further 

downstream, the flame response shows oscillatory gain due to the interference between 

different disturbance waves.  This interference pattern helps to find the axial location of 

the maximum flame response, which is proven by the measurement.  On the contrary, if 

the velocity fluctuation dissipates quickly further downstream, the interference pattern 

disappears.  Rather, the flame response shows constant magnitude.  Furthermore, this 

thesis provides criteria indicating the importance of either interference and dissipation 

effect. 

Last set of findings are related with the dissipation of the flame response.  This 

thesis studied three mechanisms in smoothing out the wrinkles on flames, and identified 

key dimensionless parameters.  Importantly, the analyses provide simple illustrations in 

understanding the role of individual mechanisms.  Dissipation mechanisms include the 

kinematic restoration, the flame stretch, and the turbulent flow effects.  We found the role 

of the leading edges of the flame front by the kinematic restoration.  Next, positive 

Markstein length effect is the linear effect and it was compared against the kinematic 

restoration effect.  The turbulent flow effect was the most challenging problem.  The third 

order asymptotic analysis identifies the leading order effect on the dynamics of the 
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ensemble-averaged flame front.  The phase jitter effect is found out to be the leading 

order effect, which is different from previous speculation.  As moving downstream, the 

concept of the effective turbulent flame speed is introduced to simplify the dynamics of 

the ensemble-averaged flame front.  This effective turbulent flame speed is higher than 

the laminar flame speed, and produces the modulation by the harmonic excitation.  This 

modulation is found to have a linear relationship with the curvatures of the ensemble 

averaged flame front.  

 

 

8.3 Recommendations for Future Work 

First, it is important to develop an approach which can handle multi-valued flame 

position analytically. A Flame front easily becomes multi-valued because of strong 

vortices which wind up the flame front.  Furthermore, the strong turbulent flow increases 

occurrence of the multi-valued flame front; pocket formations and detached flame front 

occur frequently in the turbulent combustion.  However, the incapability in capturing 

multi-valued flame front can plague the prediction capability of the heat release.  For 

example, if a flame front is rolled up by a strong vortex, the single valued flame front 

analysis cannot capture major amount of heat release produced by rolling-up.  Therefore 

it is crucial to develop analytic tools to capture multi-valued flame front. 

The next suggestion is to obtain sufficient amounts of measurements to validate 

the G-equation approach.  G-equation is very promising tool to understand the dynamics 

of the flame.  However, this approach should be thoroughly validated under real 

applications. G-equation relates the motion of the flame fronts with the laminar flame 
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speed and velocities right at the flame front.  Therefore, it is crucial to obtain the high 

space/time resolved flame measurement along with simultaneous velocity measurement.   

Thirdly, this thesis used a dynamic equation for the ensemble averaged flame 

front.  From the numerical results, it was suggested that the effective turbulent flame 

speed has a strong correlation with the curvature of the ensemble-averaged flame fronts.  

However, this correlation shows a scattered ellipsoid.  This suggests that the effective 

turbulent flame speed shows a certain phase lag.  This phase lag might originate from the 

nonlinear convective operators.  Therefore, there will be a correction to the ensemble 

average equation including this correction by the phase lag.   

Lastly, this analysis suggested that the effective flame speed has curvature 

dependence, and this curvature dependency increases with the turbulent intensity.  It will 

be ideal to perform a thorough analysis to quantify the effect of the turbulent intensity, as 

well as other parameters such as integral length scales, and magnitudes of harmonic 

forcing. 
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APPENDIX A 

 

The example in the Section 3.2 analyzed the flame response to a step-increase in flow 

velocity and showed that this leads to a cusp, or “shock” on the flame.  Here, we will 

consider a step decrease in flow velocity, which leads to an “expansion wave” type 

solution.  The boundary condition and initial condition for g are following: 
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 (A.1) 

where initg  and boundg  represents the initial condition and boundary condition, 

respectively.  The governing equation is: 
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Eq.  (A.2) can be solved by the method of characteristics to yield the solution:  
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Figure A0.1 Illustration of space-time evolution of solution characteristics 
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To complete the solution, we must solve for the “expansion wave region”, 

   2 2 2

, , , , ,/ /x b L x b x a x b L x at u S u t u u S ux     .  The solution in this region is non-

unique (in reality, the finite thickness of the flame would cause this discontinuity to be 

smoothed out, rendering the solution unique).  Following an analogous procedure to 

expansion fan solutions to the Burger’s equation [56], a smooth solution can be obtained 

assuming  g F y t .  For this exercise only, we use x t  : 

  ,
x

g F
t

    (A.4) 

Then, derivatives of g  can be written in terms of F  as:  
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Substitute Eq. (A.4)  and (A.5)  into Eq. (A.2)  leads to: 
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Eq. (A.6) is re-arranged as following: 
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One possible solution of Eq. (A.7) is 0dF d  . However this is not a smooth 

continuous solution in the entire domain. The other possible solution is: 
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Solving Eq. (A.8) results in: 
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Express Eq. (A.9) in terms of x, t , and g  resulting in: 
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Therefore combining Eq. (A.1), (A.3) and (A.10), the solution is: 
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APPENDIX B 

 

The Lax Friedrich Flux scheme [60] is derived for the flame kinematic equation.  

For the simple illustration, use a 2D version of Eq. (3.2), which is written as: 

 

2

1 0x y L

H
x

u u S
t x x



  

 
  

 

   
     

   
 (B.1) 

For convenience, define a function, H, as: 

 

2

1x y LH u u S
x x x

       
      

     
 (B.2) 

Then, the Local Lax Friedrich flux, ˆ LLFH , is: 

 
1 1ˆ , ,
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LLFH H
x x x x x x x x

       


                      
                            

 (B.3) 

where the superscript ‘+’ and ‘-’ represent the derivate evaluated using the right and left 

stencils, respectively. The function, , is defined as: 

 1 1, max ,H H
x x x x

   


            
                 

 (B.4) 

where, H1 is defined as: 
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1 1x LH u S
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       
     

    
 (B.5) 

Note that we used the property that H1 does not have local maxima inside the domain in 

order to arrive at the simple expression as in Eq. (B.4). 
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APPENDIX C 

 

This section analyzes the far field behavior of the flame wrinkles due to kinematic 

restoration effects.  This is done most easily by considering the initial value problem 

illustrated in Figure C0.1.  This initial value problem closely simulates the boundary 

value problem of interest to this section for an observer in a reference frame moving at a 

speed of 
,0su  along the flame, as long as wrinkles decay over a length scale that is long 

relative to their wavelength. 

 

Figure C0.1. Initial value problem showing a constant burning velocity, sinusoidal flame 

propagating into a quiescent flow. 

 

The governing equation for the flame position is: 

 

2

,0 1 0LS
t s

   
   

  
 (C.1) 

The general solution of Eq. (C.1) with the initial value, init, is described by the Hopf-Lax 

formula [114]: 

        
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,0 ,0
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22
, min

L L

L
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   

 
 
 

     (C.2) 
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This solution shows that the flame position is defined by the leading edge of a series of 

arcs originating from the initial flame front (i.e., Huygen’s propagation [57]).  After an 

initial transient, the flame asymptotes to a far field solution that is controlled by the 

leading edges of the flame, and has a shape which equals the arcs radiating out from these 

leading edges as shown in Figure C0.1.  The position of the periodic arcs are given by: 

    
2 2

,0, Ls t S t s    (C.3) 

The corresponding spatial Fourier transform of a periodic array of these arcs is given by:  

  
2

0
0 2

,0

2 /
2 L

k
S t


  


 


 (C.4) 

This temporal problem can be converted into a spatial one by substituting the wavelength, 

0 and the time, t, with 
,0 0/su f  and 

,0/ ss u  which results in the following expression:  

  0

,0

2

LS s
     (C.5) 
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APPENDIX D 

 

Let consider 1D flame front dynamics.  is random variable representing a flame 

position in one dimension (x-coordinate) with a PDF of f() and c is a progress variable 

defined as: 
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x
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
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


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  

 (D.1) 

Mean of the progress variable is defined as 

          
0 0

1xc x c f d H x f d     
 

          (D.2) 

where, H is a Heaviside function. Since the Heaviside function can be expressed 

as an integral form of Dirac delta function as following: 

    
0

x

H x d        (D.3) 

After plugging Eq. (D.3) into Eq. (D.2), it results into: 
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 (D.4) 

The second term in RHS of Eq. (D.4) can be rewritten as following: 
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 (D.5) 

As a result, combining Eq. (D.4) and Eq. (D.5) and switch dummy variable  into 

, then we get following: 
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    
0

1
x

c x f d     (D.6) 

Therefore, the mean of a progress variable at x represents the cumulative density 

function. 
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APPENDIX E 

 

Asymptotic expansion give series of partial differential equation in terms of  and  as 

following: 

  0: 0O u
t x

  


 
 

 
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In addition, higher order expansions for  are: 
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 (E.11) 

Then, each solutions are solved sequentially with the flame boundary condition of: 
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APPENDIX F 

 

Asymptotic expansions give series of partial differential equation in terms of  and  as 

following: 
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APPENDIX G 

 

With the specified boundary condition in Eq. (6.18), the flame position is obtained as: 
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APPENDIX H 

 

In the case of isotropic turbulence, based on the longitudinal  ,f r t  and transverse 

correlation function,  ,g r t , all corelation function can be reconstructed using the 

following [Pope page 196.] 

        
2

, , , ,
i j

i j

u u ij

rr
R r g r t f r t g r t

r
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Then, applying  
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From Eqs. (7.6) and (7.7) the full correlation functions can be derived as: 
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where, 
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APPENDIX I 

 

Figure I0.1 illustrates ,T effS  over a cycle at selected locations over a normalized curvature.  

All collection of different downstream distance is shown in Figure 7.11b. 

a) b)  

c)  

Figure I0.1  Illustration of the ,T effS  over a cycle at selected locations over a normalized 

curvature. a)  =0.04 b)  =0.08 c)   = 0.10  (Other conditions are  =0.65 
11L =0.65, 

LS =0.25). 
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APPENDIX J 

 

Grid study was performed with refinement of space and time. Figure J0.1 shows 

comparisons of instantaneous flame position and gain at the forcing frequency, 

respectively.  Twice refinement study shows that results are different by 5% around s

=12 downstream distance.  

a) b)  

Figure J0.1  Comparison of same simulation with different grid size. a) instantaneous flame 

front. b) gain of the flame response along with laminar simulation and asymptotic solution. 

(Conditions are  =0.65 
11L =0.65, 

LS =0.25,  =0.04). 
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APPENDIX K 

 

This section compares the Fourier transforms of the flame position in a forced flame by 

two methods, one by the selected spatial domain and the other by the time domain.  The 

sampling resolutions in time/space will determine the range of the frequencies/wave 

numbers.  This is needed because the temporal sampling frequency for the data shown in 

Figure 6.11  is not enough to capture the harmonics of the excitation frequency.  In the 

measurement, the sampling frequency is slightly bigger than the twice of forcing 

frequency, so the temporal Fourier transform cannot capture the harmonics of the 

fluctuation according to the Nyquist theorem.  Still, the harmonic contents can be 

estimated if the spatial resolution is fine enough.  For example, if a signal satisfies a 

generic form of  / cF t x u , then the spatial Fourier transform is equivalent to the 

spatial Fourier transform with a constant, uc. 

In order to illustrate this process, we used the results from a numerical simulation 

result from Sec 6.3.1, which has fine resolutions in space and time.  Figure K0.1a shows 

the one snapshot of the flame position, , over the downstream distance, s, which is the 

same result shown in Figure 6.4a.  Figure K0.1b depicts the time change of the flame 

position at s/c=2.17, a point indicated in Figure K0.1a.  Although Figure K0.1a and b are 

plotted over different type of domains, the flame position shape around s/c=2.17 is 

similar to that around t/T=2.  Then, the Fourier transforms will be performed to quantify 

this similarity. 
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a) b)  

Figure K0.1. a) Dependence of flame position, , upon downstream distance at t=0. b) 

Dependence of flame position, , upon time at s/c=2.17 (conditions are same as in Figure 6.4a). 

 

In order to perform the Fourier transform, the domain has to be chosen properly.  

For the time domain, the forcing period will be the proper domain as shown in Figure 

K0.1b.  On the contrary, for the spatial domain, there is no clear domain, rather it evolves 

downstream distance.  For example, the fluctuating amplitude is large near the flame 

holder and gets smaller further downstream.  Therefore, in order to represent the wave 

shape at the specific location, the minimum length of the spatial domain is required.  

This minimum length of the domain was estimated by the phase speed of the 

flame wrinkles.  Consider a signal satisfying   0cos 2 / cf t s u  .  Then, the minimum 

length representing the characteristic is the wavelength, f (= 0/cu f ), which is equivalent 

to  2 /d dx  , where  is the phase angle of the Fourier transform of the signal.  

Therefore, the size of the wave length, f, is determined by obtaining  2 /d dx   from 

the measured response.  Once the wavelength is determined, the flame position is 

sampled in a selected spatial domain, centered at a designated location with the width of 

the wavelength. 

Figure K0.2a shows the flame position with the two domains, one by the time 

domain and the other by the selected spatial domain described in the above.  Given these 
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responses in Figure K0.2a, the Fourier transform were conducted, whose results is shown 

in Figure K0.2b.  Although the domains are different, the gain in the forcing frequency is 

similar to the gain at the first wave number, and so on with higher harmonics.   

a) b)  

Figure K0.2. a) Dependence of flame position over two different domain, one by the 

forcing period (t0 = 0.5T), and the other by the selected spatial domain (s0 = 2.17c). b) Dependence of 

the Fourier transform.  Data from Figure K0.1. 

 

Lastly, same procedure was performed at all different downstream distance, 

which is plotted in Figure K0.3.  This plot shows the response at the forcing frequency 

and two harmonics along with the wave numbers (blue dash lines).  In addition, the 

spatial Fourier transform can be performed on different instance, and averaged of the 

magnitude on different times.  
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Figure K0.3. Comparison of the Fourier transforms of the flame position, , by two 

methods, one by the temporal transform and the other by the spatial transform on a selected domain.  
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