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 The constant need to improve helicopter performance requires the optimization of existing and 

future rotor designs. A crucial indicator of rotor capability is hover performance, which depends 

on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing 

edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational 

expenses with preservation of the flow, and to limit computational expenses the mesh is often 

coarsened in the outer regions of the computational domain. This can lead to degradation of the 

vortex structures which compose the rotor wake. The current work conducts three-dimensional 

simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow 

field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen 

as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve 

the rotor wake. Using the hover condition, various computational domains, spatial schemes, and 

boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, 

allowing for the increased refinement of the mesh in areas of turbulent flow without the need to 

add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch 

angles, comparing the resolved wake and integrated forces to existing computational and 

experimental results. The integrated thrust values saw very close agreement across all tested pitch 

angles, while the power was slightly over predicted, resulting in under prediction of the Figure of 



 

 

Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an 

improvement in vortex preservation when compared with previous work. Finally, further results 

from a single collective pitch case were presented to provide a more complete picture of the solver 

results.  
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Chapter 1. Introduction 
 

1.1 Motivation 

 

 The field of rotorcraft is constantly evolving and the next step in its development will 

necessitate improvements of current rotor designs. The rotor design affects numerous aspects of 

the flow field, including the behavior of the helicopter wake, a region formed by the tip vortices 

shed from the trailing edges of the rotor blades. These structures may encounter the advancing 

blade behind it, leading to unsteady airloads. Better understanding of these interactions will 

improve the analysis of rotor performance necessary to improve future rotor designs. Consistent 

and accurate prediction of hover performance has proven especially challenging, given the 

importance of the condition in the design of the final rotorcraft1. Computational fluid dynamics 

(CFD) provides an alternative to experimental testing, allowing quicker development and testing 

of potential rotor designs.  

 

1.1.1 Overview of Rotor in Hover 

 

 Hover denotes a flight condition in which the helicopter is stationary, necessitating the 

balancing of the aerodynamic and gravitational forces acting on the vehicle. The hover condition 

presents a number of additional challenges when compared with a fixed wing aircraft in steady 

flight, namely the variation of velocity with rotor radius. In flow over a fixed wing the velocity is 

largely constant except at the edges of the wing; meanwhile the velocity changes over the rotor 

blades, rising from zero at the center of the hub to maximum value at the tip. Figure 1.1 illustrates 

this behavior while also showing that the velocity along the blade is azimuthally axisymmetric and 

varies linearly. Knowing that dynamic pressure is proportional to the square of the velocity, it 

results that the dynamic pressure is concentrated near the blade tips.   

 

 
Figure 1.1 Radial velocity distribution over rotor in hover2 
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 The high dynamic pressure near the blade tips leads to a concentration of aerodynamic forces 

in these regions. This imbalanced inflow, and the resulting aerodynamic forces, produces a strong 

wake in the tip region, creating tip vortices trailing from each blade. When analyzing a fixed wing, 

the wake will convect away from the surface and no longer interfere with the flow. However, the 

vortices produced in hover form a helical wake below the rotor, in which the trailing flow from 

one blade may alter the flow over the other surfaces. The slipstream velocity increases as the wake 

convects downward, causing contraction in accordance with the theory of conservation of fluid 

mass. Tracking these vortex structures has proven challenging due to the highly turbulent nature 

of the flow in the tip vortices. Therefore, models and experimental methods have been developed 

to predict these structures.  

 

 The rotor wake model describes the airflow coming off of the rotor during flight and includes 

a series of vortices shed by the blades. This flow is partly turbulent and therefore an exact 

understanding of vortices does not exist. However, sufficient modeling exists to allow the 

depiction of the flow coming off a blade in three main forms. These structures form primarily at 3 

locations, the root of the blades, the blade tips, and the trailing edges of the blades. An example of 

a single blade vortex system can be found below in Figure 1.2. The vortex sheet emerging from 

the trailing edge of the blade is clearly visible along the length of the blade while the more localized 

tip vortex develops from the blade tip. Not shown here is the root vortex, which bears a close 

resemblance to the tip vortex.  

 

 

 

Figure 1.2 Model of vortex sheet and tip vortex shedding from a single blade3 

 In hover flight this wake is radially axisymmetric and may be visualized by successive views 

of a single blade at advancing azimuth angles. Figure 1.3 below demonstrates the behavior of the 

rotor vortex as a whole, highlighted by the tip vortices but with the vortex sheet visible just off of 



3 

 

the blades. The vortex sheet forms when the boundary layers over the upper and lower blade 

surfaces merge, creating a structure containing positive and negative vorticity. The tip vortices 

descend at the same rate, while contracting in accordance with the predicted behavior. These 

structures initially descend slowly but the rate increases past the first blade passage due to the 

downwash from the passing blade. Finally, notice in Figure 1.3 below that the separate tip vortices 

merge into a single vortex after a few blade passages.  

 

 
Figure 1.3 Merging of tip vortices from two-bladed rotor in hover4 

 

 Hover presents an especially critical case, as it is often one of the defining parameters of 

helicopter design and performance. Even a small amount of inaccuracy in estimating the hover 

performance can drastically reduce the performance or payload of the final vehicle. Therefore, a 

great deal of effort has been put into modeling and capturing the wake structure to ensure accurate 

prediction4. Accurate experimental capturing of the wake has proven challenging, requiring large 

facilities to minimize recirculation in the test chamber, while outdoor testing presents an 

uncontrolled environment where winds may disrupt the test. For example, work by Shinoda and 

Johnson demonstrates that testing results for the S-76 rotor have varied between testing facilities, 

including the NASA-Ames 80’ x 120’ wind tunnel5. This uncertainty necessitates large power 

margins in the design process to ensure sufficient power in the final vehicle. An overview of 

available experimental methods for rotorcraft is presented in the following section.  
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1.1.2 Overview of Experimental Methods 

 

 Leishman and Bagai have described some of the challenges facing analysis of helicopter 

performance in hover, along with the disturbances which can take place6. As illustrated below in 

Figure 1.4, a helicopter in hover sees an axial flow through the rotor, leading to a relatively uniform 

helical structure formed by the tip vortices. The vortices are visible for about two complete rotor 

revolutions, or 720o and the contraction of the wake is visible as the flow continues downward 

from the rotor plane. Figure 1.4 demonstrates the ability to observe the rotor wake using natural 

condensation in the air, one of the numerous ways to experimentally investigate the dynamics of 

vortices. This is but one of the methods available to obtain quantitative results concerning rotor 

wakes. 

 

 Knowing the importance of the rotor wake in helicopter analysis, one must understand the 

experimental methods available to capture and analyze it. Among the most notable techniques 

applicable to a helicopter in hover are the smoke and light sheet7-10, natural condensation11,12, 

schlieren13,14, and shadowgraphy15-20. Each of these methods provides some level of visualization 

of the rotor wake, though not all provide readily available quantitative data.  

 

 The smoke and light sheet method injects a white smoke into the rotor wake and then 

illuminates a plane of the flow, allowing for an accurate photograph of the flow structure. Figure 

1.4 below demonstrates the method in use on a rotor in hover, with three distinct vortices rendered 

in the smoke. This process requires a very strong light produced quickly and is quite time 

consuming in forward flight, though it does allow precision mapping of vortex structures. The 

method does produce clear images of vortex cores, as the centrifugal forces in the vortex core 

scatter the smoke particles, leaving a void within the flow. 

 

 The smoke particles must be large enough to appear clearly in the photos while remaining small 

enough to follow the flow. Thus particle size may interfere with the results of the test, for example 

the apparent vortex core size may varies with particle size due to the centrifugal force produced 

within the vortex core6. Furthermore, as seen in Figure 1.4, the smoke particles diffuse as the 

vortex ages, leading to decreased resolution of the vortices. Due to the dispersion of smoke 

particles and setup required, smoke flow visualization has been used primarily in subscale cases, 

only rarely being applied to full-scale rotors2. In addition to the smoke and light sheet method, 

natural condensation provides flow visualization of the rotor wake. 
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Figure 1.4 Flow visualization of a rotor plane using the smoke and light sheet method6 

 

 

 
Figure 1.5 Flow visualization of tip vortices in hover due to natural condensation6 
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 Natural condensation of water vapor allows observers to track the tip vortex location generated 

by the rotor blades18. As seen in Figure 1.5 above, the results are similar to those generated by the 

smoke and light sheet method. While only occurring under certain atmospheric conditions, usually 

in outdoor testing, this has the advantage of not introducing any foreign particulates into the test. 

Unfortunately, the quantitative results on tip vortex locations have proven difficult to measure, as 

the water vapor dissipates similarly to the smoke particles in the previous method6. Therefore 

visualization through natural condensation does not lend itself to precise measurements, but 

provides an unmodified view of the rotor wake. The last experimental methods of measuring rotor 

wake to be discussed here are the density gradient methods, including shadowgraphy and schlieren. 

 

 Both shadowgraphy and schlieren rely on a large density inhomogeneity in the flow, distorting 

the light in regions of high or low density6. However, not all vortical fields contain sufficient 

density gradients to allow for proper imaging. This is primarily an issue with subscale rotors, which 

must operate at a close to full-scale tip speed and relatively high thrust to generate vortices strong 

enough to capture. Figure 1.6.a below shows a shadowgraph of a curved vortex, with the view 

nearly parallel to the vortex axis. The bright ring surrounding the nucleus denotes the edge of the 

vortex as seen on the shadowgraph. Knowing the refractive index of the fluid, one can calculate 

the actual size of the vortex core based off of the size of the core within the shadowgraph. Figure 

1.6.b shows a separate set of results, demonstrating the ability to track vortex positions through 

the use of shadowgraphy. One can even see the upward convection of the tip vortex at the front of 

the rotor, denoting an area in which blade/vortex interactions (BVI) are present. While such precise 

results are difficult to obtain, they demonstrate the capabilities of density imaging methods. 

 

  
 

 

 

Figure 1.6 Results from Leishman and Bagai using shadowgraph techniques6 

 

 

 

(a) Flow visualization of a tip vortex using 

shadowgraph technique

(b) Wake displacement positions obtained 

using shadowgraph technique 
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1.1.3 Overview of Common Mathematical Models 

 

 In addition to the experimental methods discussed in the previous section, there exist 

mathematical models which are used to predict performance and wake structure in various flow 

regimes. These methods can be split into two broad categories, those used to predict performance 

and those used to model the rotor wake. 

 

 Performance models allow for the quantification of thrust and power values for a given rotor 

and flight condition, enabling analysts to predict certain parameters on which to base a more 

detailed design. The two primary performance models in modern use are the Rankine-Froude 

momentum theory and the Blade Element Momentum Theory proposed by Gustafson and 

Gessow2. Momentum theory entails the derivation of a first-order model of the rotor thrust and 

power values using a quasi-one-dimensional integration of the control volume enclosing the rotor 

and its wake. Figure 1.7 below illustrates the flow around a rotor in hover as predicted by 

momentum theory, traveling through the plane of the rotor disk and contracting and speeding up 

as the air convects downward. Here the rotor is treated as an actuator disk, a surface over which 

there is a pressure difference. By making a few assumptions about the flow, namely that it is one-

dimensional, quasi-steady, incompressible, and inviscid, one can employ the principles of 

conservation of momentum and energy to calculate the velocity at the rotor-disk and the far wake.  

 

 Further parameters such as induced velocity, disk loading, power required to hover, and 

coefficients of thrust and power may be calculated through manipulations to the initial 

conservation equations and knowledge of the flow. An induced power correction factor, κ is used 

to represent a number of physical effects within the flow which are not accounted for in the 

conservation equations. This correction factor is based on experimental results taken by various 

manufacturers and may vary depending on the source used but serves to more accurately represent 

the flight conditions. While this method provides basic performance aspects, it is limited and 

provides no information as to the blade loading or design of the rotor itself2.  



8 

 

 
Figure 1.7 Flow model as predicted by momentum theory in hovering flight2 

  

In addition to the wake structure, the other primary values for analyzing rotor performance in hover 

are the integrated thrust and power coefficients. Momentum theory gives the ideal values of the 

coefficient of thrust (CT) and (CP) as follows, 

 

𝐶𝑇 =
𝑇

𝜌𝐴Ω2R2
           (1.1) 

𝐶𝑃 = (
𝑇

𝜌𝐴Ω2R2
) (

𝑣𝑖

Ω𝑅
) = 𝐶𝑇𝜆𝑖 =

𝐶𝑇
3/2

√2
        (1.2) 

where  

 

𝜆𝑖 =
𝑣𝑖

Ω𝑅
√

𝑇

2𝜌𝐴Ω2R2
= √

𝐶𝑇

2
           (1.3) 

 

in which T is thrust, ρ is density, A is the rotor disk area, ΩR is the blade tip speed, vi is the inflow 

velocity, and λi is the non-dimensionalized inflow ratio. These parameters are useful as non-

dimensional values of thrust and power, ensuring that a wide range of cases may be easily 

compared with one another, independent of individual conditions and testing configurations. The 

above values represent idealized values and the computational coefficients of thrust and power 

values are calculated using the flow field values as discussed later in the current work. The final 

commonly used parameter when discussing helicopter performance is Figure of Merit (FM).  
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 Figure of Merit denotes the ratio of the ideal power required to hover to the actual power 

required to hover. FM was introduced in the 1940s as a standard, non-dimensional measurement 

of hover efficiency2. Due to non-ideal effects such as tip loss, turbulence, and viscous losses the 

FM will always be less than one. By taking non-ideal effects such as induced power and profile 

power into account the FM can be written as follows, 

 

𝐹𝑀 =
𝐶𝑇
3/2

𝜅𝐶𝑇
3/2

√2
+
𝜎𝐶𝑑𝑜
8

           (1.4) 

 

where κ is the induced power factor, σ is the rotor solidity, and Cdo is the profile drag coefficient. 

Here the induced power factor is a value accounting for numerous non-ideal effects in the flow, 

derived from experimental results and rotor measurements. Solidity represents the ratio of the 

blade area to the rotor disk area and the profile drag coefficient accounts for the drag over the 

blade. 

 

 Figure of Merit, along with the coefficients of thrust and power, provide non-dimensional 

values to compare the efficiency and performance of multiple rotorcraft. By performing collective 

sweeps for a range of test conditions, one can quickly compare these integrated values to determine 

relative performance. The current work employs these values in analyzing the hover condition, as 

presented later in this report. 
 

 Blade element momentum theory (BEMT) builds on the momentum theory presented above, 

analyzing the radial and azimuthal distribution of aerodynamic loading over the rotor. This is 

accomplished by treating each blade as a series of quasi-2D airfoils, integrating spanwise forces 

and moments to obtain the thrust and power estimates for the rotor. BEMT analyzes the inflow as 

it varies over the blade, accounting for such effects as tip loss, airfoil shape, blade twist, blade 

taper, and number of blades in the rotor. The effects of other blades and the vortical wake are 

included through an induced Angle of Attack (AoA) computed using the Biot-Savart law2. 

Numerical solutions employing these methods are accurate across a range of flight conditions and 

rotor designs. While BEMT does not provide a complete picture of the complicated flow caused 

by the tip vortices of the rotor, prescribed- and free-vortex methods (FVM) have been developed 

to provide more accurate predictions, though with a greater numerical cost.  

 

 Vortex wake models explicitly track the convection of tip vortices relative to the rotor while 

treating the convection and diffusion of these structures separately. There exists a number of wake 

models but all employ the Biot-Savart Law2 to calculate the induced velocity at any point in the 

flow caused by a vortex element. Figure 1.8 below shows a number of representations of the vortex 

wake behind a rotor blade2 illustrating the trailed and shed circulation behind a single blade of the 

rotor. Figure 1.8.a demonstrates a straight-line element model composed of trailed and shed 
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circulation while 1.8.b shows a vortex lattice generating a roll-up vortex. Figure 1.8.c traces lines 

of constant strength vorticity and 1.8.d uses points to denote paths of trailed and shed circulation. 

These methods require many individual elements to model the wake, usually on the order of 

thousands of points or segments depending on the method. In comparison to finite-difference and 

finite-volume CFD methods the vortex models are far less computationally expensive but require 

varying degrees of assumptions depending on the type of model used.  

 

 
Figure 1.8 Visualizations of the vortex wake generated by a rotor blade2 

 

1.1.4 Overview of CFD Methods 

 

Computational Fluid Dynamics (CFD) methods employ first principles to simulate the entire 

flow within the rotor plane and wake, including compressibility effects, unsteady flow, separation, 

and other real-world issues which models do not capture. Older works employed simpler methods, 

such as irrotational, inviscid flow approximations but most modern solvers evaluate the full 
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Navier-Stokes equations2.  Because the CFD method makes fewer assumptions about the flow it 

can generate more accurate results for any number of designs. However, this precision comes with 

the cost of massive computational requirements. A single run may use dozens or hundreds of 

processors within a cluster with a runtime of multiple days or even weeks. Modern CFD solutions 

can be run with tens or hundreds of millions of mesh points, allowing sufficient numerical 

resolution to capture the entirety of the flow. 

 There are two primary types of CFD models, those employing a finite-difference method and 

those employing a finite-volume method. Finite-difference methods estimate spatial derivatives 

using equations based on Taylor series approximations evaluated at each point within the 

computational grid. Meanwhile, finite-volume methods solve an integral form of the Navier-

Stokes equations and operate at each cell rather than at nodes in the grid. The integral values of 

mass, momentum, and energy of each cell is divided by the cell volume to calculate average 

conserved variables and fluxes over cell boundaries. Both methods will produce the same results 

when properly implemented but finite-difference methods are restricted to use on structured 

meshes while finite-volume methods may operate across structured or unstructured meshes2.  

 

1.2 Literature Review 

 

 The current work is aimed at employing CFD in predicting the performance of the S-76 rotor 

in hover, as part of the concerted effort of the AIAA Invited Hover Session to evaluate and improve 

CFD methodology. To ensure each participant had the same baseline results for comparison, a test 

rotor based on the S-76 rotor as evaluated in the “Experimental Study of Main Rotor/Tail 

Rotor/Airframe Interactions in Hover” report composed by Balch et. al21 was chosen as the 

baseline experimental case. Finally, results from a number of organizations have been presented 

at previous Scitech conventions, of which two were chosen to be reviewed here as an overview of 

the current state of various CFD solvers.  

 

1.2.1 Invited Hover Session 

 

 In an effort to ensure accurate prediction of rotor capability the AIAA Applied Aerodynamics 

Technical Committee Rotorcraft Simulation Working Group1 was formed. The stated goals of the 

committee are to coordinate participants from DoD, NASA, Industry, and Academia to evaluate 

the state of CFD across the group, determine future challenges, and direct the development of new 

capabilities. Due to the existence of workshops focusing on the forward flight condition, this 

working group elected to focus on the hover condition. To ensure accurate comparisons the S-76 

benchmark case was chosen, as defined by the test rotor work undertaken by Balch et. al21.  
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1.2.2 Experimental Study 

 

Balch et. al21 performed experiments on the S-76 test rotor which the Working Group uses as 

the baseline integrated thrust and power values results. The testing was performed using a four-

bladed rotor in hover, a 1/4.71 scale model of the S-76 rotor. These test blades had a radius of 55.0 

inches and chord of 3.1 inches with a linear 10 degree twist. A number of blade tips were tested, 

including a swept-tapered, straight rectangular, and swept-tapered with anhedral. Apart from this 

outer 5%, the blades tested were identical. The airfoil sections used were the SC1013-Rd, 

SC1095R8, and SC1095. The test operated at a tip Mach number of 0.65 and chord Reynolds 

number of 1.16 x 106. A range of collective pitches varying from 0o to 15o were experimented 

upon. The experiment focused primarily on measuring integrated loads, so other values such as 

distributed forces and tip vortex position are compared only to other calculations undertaken as 

part of the Working Group.  

 

 The Basic Model Test Rig (BMTR) was designed as a self-contained system which could test 

a range of rotor and fuselage systems under varying conditions. This rig was integrated into the 

Sikorsky model hover test facility as illustrated in Figure 1.9 below. The bay in which the 

experiments were conducted minimized wind conditions and ensured the quality of the acquired 

data regardless of ambient conditions. Thus, the authors were able to extract accurate 

measurements of the desired rotor forces, moments, and torque values for the scale rotor under 

specified control inputs. The S-76 blades employed in the study had a scale of 1/5 of the full rotor 

blade, while maintaining the linear twist, solidity, airfoils, and tip shapes of the original rotor. The 

out of ground effect (OGE) tests of the main rotor resulted in thrust, power, and FM trends which 

matched those of the full-scale equivalent. Figure 1.10 below presents the results acquired in the 

isolated rotor testing of the S-76. 
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Figure 1.9 Schematic of test stand employed in the S-76 rotor tests by Balch et. al2 

 

 

Figure 1.10 Integrated forces results attained by Balch et. al when testing the isolated S-76 rotor 

OGE2 

(a) Comparison of tip Mach numbers  (b) Comparison of tip shapes at M = 0.65  
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 Balch et. al conducted two sets of tests on the isolated main rotor of the S-76 in hover, OGE 

conditions. Figure 1.10.a presents the results of the sweep of tip Mach numbers while 1.10.b is the 

sweep of tip shapes for the S-76 blades. The sweep of tip Mach numbers above was conducted 

using the swept-tapered baseline blade for three values, Mtip = 0.55, 0.60, and 0.65. Meanwhile 

five tip shapes were evaluated, including the three which were ultimately chosen by the Invited 

Hover Session for testing using computational methods. The results presented in Figure 1.10 were 

digitized and used as comparison points for the CFD studies seen later in the current work. The 

work of Balch et. al discussed in the above section created a foundation for the computational 

studies undertaken by the current author and other institutes.   

1.2.3 Previous CFD Results 

 

 This work is the continuation of the Invited Hover Session efforts and therefore it is important 

to review the current state of CFD solvers used to evaluate the S-76 rotor.  

 

1.2.3.1. Assessment of Planform Effects on Rotor Hover Performance (GT) 

 

 Researchers from Georgia Tech22, in conjunction with figures from Industry, have employed a 

GT-Hybrid solver in their evaluation of the S-76 rotor case. This method evaluates the full Navier-

Stokes calculations near the blades, combined with a vortex wake model in the far-field domain. 

This represents a hybrid approach, ensuring full modeling of the viscous flow near the blades while 

modeling the wake in the more stable region away from the blade. This method shows good 

agreement with the integrated values of thrust and power taken from experimental results. That is 

due to the relative independence of these values from the wake behavior. However, the differences 

in tip vortex descent and contraction is more pronounced, as this method is not fully simulating 

the flow in those regions but instead predicting the flow using the vortex wake model.  

 

Figure 1.11 below illustrates the computational domain employed in this work. The near-body 

domain solved the full Navier-Stokes equations while away from the rotor the wake was captured 

using a Lagrangean approach. From this captured region, the full wake was modeled, enabling the 

authors to avoid diffusion of the wake normally seen in numerical solvers. The effect of the 

vortices on trailing blades is computed based on the vortex-induced velocities at the far field 

boundary of the computational grid region, neglecting contributions captured within the CFD 

region itself.  
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Figure 1.11 Computational domain employed with Georgia Tech’s GT-Hybrid solver22 

 

Figure 1.12 presents the integrated forces results attained by the authors, including comparisons to 

the experimental results and other CFD solvers. They showed good agreement with the thrust 

values while over predicting torque coefficient by a slight amount. Thus the torque coefficient for 

a given thrust value is over estimated, leading to an under prediction of the Figure of Merit. Figure 

1.12.c indicates that GT-Hybrid is not the only CFD solver to under predict the FM, with other 

sources showing similar values.  

  

 
 (a) Thrust coefficient vs. pitch (b) Power coefficient vs. pitch 
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Figure 1.12 Baseline blade forces results for a number of solvers, including Georgia Tech’s GT-

Hybrid solver22 

 

 The ideal CFD solution would produce a FM value within 1% of predicted values across all 

collective pitches. Current results show close agreement with predicted thrust coefficients but a 

larger spread of predicted power coefficients. This results from the difficulty in accurately 

predicting and modeling the transition and turbulent behavior near the blade surface. While the 

thrust is largely independent of these factors, the predicted power depends heavily on the accurate 

modeling of this behavior. These results present not only the potential of CFD solvers for 

predicting performance but also the need to further develop current solvers.  

 

 Figure 1.13 below shows the tracking of the tip vortex descent and contraction as captured by 

a number of solvers, including GT-Hybrid. Tip vortex trajectory influences the inflow seen across 

trailing blades, making the capture of these vortices essential to accurate hover performance 

analysis. The free-vortex method (FVM) used here achieves good correlation with full capture 

methods for the first rotor revolution, or 360 degrees. Past this the methods begin to diverge, and 

the FVM significantly under predicts the contraction rate of the vortex. Despite this, the method 

accurately captures the trends seen by other works while employing the less expensive Lagrangean 

methods avoid full modeling of the rotor wake.  

 

(c) Figure of Merit vs. thrust coefficient (d) Thrust coefficient vs. power coefficient 
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Figure 1.13 Tip vortex descent and contraction rates for baseline blade at trim condition22 

 

1.2.3.2. S-76 Rotor Hover Predictions Using Advanced Turbulence Models (UoT) 

 

 The University of Toledo23 has employed the unstructured CFD solver U2NCLE to analyze the 

S-76 rotor. They employ a single domain, composed of an unstructured mesh which models a 

single blade as well as a model hub. Using periodic boundary conditions, the effects of the 

remaining three blades are modeled based on the results simulated within the computational 

domain. The authors tested various levels of mesh refinement, altering the resolution near the 

leading and trailing edges of the blade as well as near the tip region. Furthermore, the work 

involved testing a number of transition models, the process which governs the transition from 

(a) Tip Vortex Descent Rate 

(b) Tip Vortex Contraction Rate 
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laminar to turbulent flow within the simulation. Studying a number of transition models, the 

participants developed a Transition and Stall Delay Model23 (TSDM) which increased turbulence 

production in regions of separated flow, striking a balance between the point of flow separation 

while capturing the transition region at the blade.  

 

 
 

Figure 1.14 Computational domain and unstructured mesh employed with the U2NCLE solver23 

 

 Figure 1.14 above displays the unstructured volume grid created for the S-76 rotor testing. 

Employing periodic boundary conditions, the authors were able to simulate a single blade, rather 

than the full 4-bladed domain. The mesh was refined such that the largest spacing near the blade 

was 1 to 2% of the tip chord, ensuring accurate prediction of the near-body flow. Employing the 

grid seen above, the authors were able to generate accurate results for sweep of hover cases as seen 

below in Figure 1.15.  

 

 

 

 

(a) Computational domain of one blade  (b) Spanwise slice of unstructured grid  
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Figure 1.15 Sweep of collective pitch angles for a range of tip shapes conducted using the 

U2NCLE solver23 

 

 Using their single bladed mesh, the authors were able to capture accurate thrust and power 

values across a range of pitch angles and blade tips. Furthermore, they captured the relative 

performance of each tip shape, showing that the anhedral shape required the least power while the 

straight tip required the most at the tested tip Mach number of 0.65. Additionally, these tests 

captured the effect of the tip vortices on rotor performance. The swept-tapered and anhedral tips 

both showed improved performance at higher thrust values as a result of the altered tip vortex 

strength. Figure 1.16 below illustrates this point, comparing the tip vortex strength, size, and 

location for each tip.  

 

   
 

(a) Figure of Merit vs. thrust coefficient  (b) Thrust coefficient vs. power coefficient 

(a) Swept-tapered tip  (b) Straight rectangular tip  
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Figure 1.16 Tip vortex strengths across three tip shapes, as predicted with the U2NCLE solver23 

 

 In addition to the integrated forces and tip vortices, the University of Toledo studied the 

spanwise sectional thrust distribution and chordwise pressure distributions for the three blade tips 

at a trimmed angle of CT/ σ = 0.09 with a tip Mach number of 0.65. Figure 1.17 below shows the 

coefficient of thrust distribution measured by U2NCLE, normalized by the local velocity. Figure 

1.18 shows the corresponding coefficient of torque distribution. It can be seen that the tip shape 

has some effect on the thrust distribution due to the different tip vortices produced and their 

subsequent effect on the flow. The sectional torque sees a smaller difference between the tip 

shapes, with the swept and anhedral results being nearly identical while the rectangular tip sees a 

slightly larger peak near the tip.  

(c) Swept-tapered tip with anhedral of 20o  
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Figure 1.17 Sectional thrust coefficient at trim condition, as predicted by U2NCLE23  

 

 
Figure 1.18 Sectional torque coefficient at trim condition, as predicted by U2NCLE23 
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 Meanwhile, Figure 1.19 shows the pressure coefficient distribution over the chord at a number 

of spanwise locations. There is a large difference in performance at r/R = 0.95, where the tip shapes 

diverge, and elsewhere there is a reduced yet noticeable impact on the pressure distribution.  

 

 
 

 
 

Figure 1.19 Chordwise pressure coefficient distribution at a range of spanwise locations at trim 

condition, as predicted by U2NCLE23 

 

 Finally, the University of Toledo also studied the tip vortex trajectories generated by each blade 

type at the same trim and tip Mach number conditions seen above. Figure 1.20 below shows the 

vortex descent and contraction paths for all three tip shapes. The contraction rates start to deviate 

after half a revolution, with the straight tip shape ultimately contracting more slowly than the other 

two shapes. Meanwhile, the descent rates remain close until ¾ a rotor revolution, at which point 

the straight tip again diverges and settles at a lower descent speed than the other tips. Overall, the 

use of the U2NCLE solver on a single blade mesh produced accurate results and demonstrated the 

viability of periodic boundary conditions as well as the need for sufficiently refined meshes.  

(a) r/R = 0.925  (b) r/R = 0.95  

(c) r/R = 0.975  (d) r/R = 0.99  
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Figure 1.20 Tip vortex trajectories in both axial and radial directions at trim condition, as predicted 

by U2NCLE23 

 

 

 

1.3 Goals and Methods of the Current Work  

 

1.3.1 Goals 

 

The primary goals of the current work are as follows: 

 

1. Maintain accurate prediction of performance of the S-76 rotor in hover. 

 

2. Successfully incorporate mesh adaption to the current work to improve resolution without 

additional computational expense to the solver.  

 

3. Better resolve the rotor wake for multiple blade passages out to convergence of the 

solution. 

 

1.3.2 Methods 

 

 The stated goals have been pursued through the following approach: 

 

1. Generation of a new computational domain on which to simulate the test case. 

 

2. Testing of multiple solver configurations on a single set of conditions to compare 

performance and accuracy. 

 

(a) Descent trajectories  (b) Contraction trajectories  
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3. Following the conclusion of initial testing, a full sweep of collective pitch angles was 

conducted to determine accuracy across a range of conditions. 

 

4. Finally further analysis of a single case was conducted to review the more detailed aspects 

of the flow as predicted by the solver.  

 

1.4 Thesis Contributions 

 

 The advancements contributed by this research are as follows: 

 

1. Development of a new blade mesh utilizing the O-O mesh design and successful generation 

of a usable mesh based on the S-76 rotor blade.  

 

2. Addition of clustering and adaption routines to the background mesh in an effort to better 

capture the tip vortices of the blade. 

 

3. Development of a periodic boundary applicable to a Cartesian background mesh, which 

allows reduction of the computational domain. 

 

4.  Implementation of the CRWENO spatial scheme to this version of OVERTURNS, to 

ensure higher spatial accuracy than previously attainable. 

 

1.5 Scope of Thesis 

 

 This thesis focuses on the performance evaluation of a rotor in hover and improvements to the 

current CFD solver in pursuit of this goal. The following section shows the organization of the 

thesis. 

 

 The second chapter outlines the computational methodology employed in the current work. 

This includes both OVERTURNS and the separate codes used to generate and modify the meshes. 

 

 The third chapter provides an overview of the results of the S-76 hover case, including a sweep 

of collective pitches as well as detailed evaluations of one set of conditions. 

 

 The fourth chapter summarizes the conclusions of the current work as well as providing 

recommendations for further study. 
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Chapter 2. Methodology 
 

 The following chapter details the numerical methods employed in simulating the aerodynamics 

of a helicopter rotor in hover. The work was performed using the structured Reynolds-Averaged 

Navier-Stokes (RANS) solver developed at UMD, OVERTURNS (Overset Transonic Unsteady 

Reynolds-Averaged Navier-Stokes). OVERTURNS is a three-dimensional MPI-parallel, 

structured, finite-difference solver which solves the RANS equations at each point in the 

computational domain. However, before discussing the solver itself, one must review the 

governing equations of the flow.  

 

 The Navier-Stokes equations comprise a system of partial differential equations (PDE’s) which 

governs unsteady, compressible flow in the Eulerian reference frame. This Eulerian reference 

frame denotes a frame in which the observer focuses on a specified location and observes as the 

flow passes through this point. The Navier-Stokes equations are applied to the   three-dimensional 

Cartesian reference frame, so a series of transformations must be applied to the original equations. 

In order, these transformations are: non-dimensionalize the NS equations, apply Reynolds-

Averaging, and transforming from the Cartesian coordinates to Curvilinear coordinates. The non-

dimensionalization serves to decrease numerical inaccuracies, Reynolds-Averaging normalizes the 

turbulence scale, and curvilinear coordinates simplify the numerical algorithms within the solver. 

Once these transformed equations are obtained, they are discretized in both time and space, 

forming a coupled system of equations to be solved.  

 

2.1 Governing Equations 

 

 The Navier-Stokes equations are three-dimensional time dependent versions of the 

conservation of the mass, momentum, and energy of a fluid. Assuming a continuous flow, the 

system of equations can be expressed in Cartesian coordinates as follows, 

 

𝜕𝑸

𝜕𝑡
+

𝜕𝑭𝑖

𝜕𝑥
+
𝜕𝑮𝑖

𝜕𝑦
+
𝜕𝑯𝑖

𝜕𝑧
=

𝜕𝑭𝑣

𝜕𝑥
+
𝜕𝑮𝑣

𝜕𝑥
+
𝜕𝑯𝑣

𝜕𝑥
+ 𝑺                            (2.1) 

 

 where Q is a vector of conserved variables, Fi, Gi, and Hi are inviscid flux vectors, and Fv, Gv, 

and Hv are viscous flux vectors. S denotes a vector of any body forces as well as changes due to 

transition from one reference frame to another, for example from inertial to rotational frames of 

reference. The vector of conserved variables, Q, is defined as, 
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𝑸 = 

{
 
 

 
 
𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑤
𝐸 }
 
 

 
 

                 (2.2) 

 

for a given flow. Density is represented by ρ, u, v, and w denote the Cartesian velocity components, 

and E represents the total energy per unit volume given as, 

 

𝐸 =  𝜌 [𝑒 +
1

2
(𝑢2 + 𝑣2 +𝑤2)]        (2.3) 

 

where e is the internal energy per unit mass. 

 

 The inviscid flux vectors (Fi, Gi, Hi) are given as, 

 

𝑭𝒊 = 

{
 
 

 
 

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝑤
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𝑮𝒊 = 

{
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𝜌𝑤𝑣
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            (2.6) 

Meanwhile the viscous flux vectors (Fv, Gv, Hv) are given as, 

 

𝑭𝒗 = 

{
 
 

 
 

0
𝜏𝑥𝑥
𝜏𝑦𝑥
𝜏𝑧𝑥

𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 +𝑤𝜏𝑥𝑧 − 𝑞𝑥}
 
 

 
 

            (2.7) 



27 

 

𝑮𝒗 = 

{
 
 

 
 

0
𝜏𝑥𝑦
𝜏𝑦𝑦
𝜏𝑧𝑦

𝑢𝜏𝑦𝑥 + 𝑣𝜏𝑦𝑦 +𝑤𝜏𝑦𝑧 − 𝑞𝑦}
 
 

 
 

        (2.8) 

𝑯𝒗 = 

{
 
 

 
 

0
𝜏𝑥𝑧
𝜏𝑦𝑧
𝜏𝑧𝑧

𝑢𝜏𝑧𝑥 + 𝑣𝜏𝑧𝑦 +𝑤𝜏𝑧𝑧 − 𝑞𝑧}
 
 

 
 

        (2.9) 

 

where qx, qy, and qz are thermal conduction terms computed as a function of temperature and 

pressure as follows,  

𝑞𝑖 = −𝑘
𝜕𝑇

𝜕𝑥𝑖
           (2.10) 

 

 Pressure, p, is given by the equation of state for a perfect gas as follows, 

 

𝑝 = 𝜌𝑅𝑇           (2.11) 

 

in which R is the specific gas constant. The current work assumes air which exists at the standard 

temperature and pressure (STP). With this assumption, the calorically perfect gas assumption is 

valid, meaning the specific heat values are constant. The specific heats for an ideal gas at constant 

volume (Cv) and constant pressure (Cp) are given as, 

 

𝐶𝑣 =
𝑅

𝛾−1
;      𝐶𝑝 =

𝛾𝑅

𝛾−1
          (2.12) 

 

Therefore the internal energy per mass, e, for a calorically perfect gas is, 

 

𝑒 = 𝐶𝑣𝑇            (2.13) 

 

Applying Eq. (2.12) and (2.13) to the equation of state Eq. (2.11), we can rewrite it as, 

 

𝑝 = (𝛾 − 1)𝜌𝑒           (2.14) 
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Now apply the new equation of state, Eq. (2.14), to the total energy equation, Eq. (2.3), and 

rearranging,  

 

𝑝 = (𝛾 − 1) [𝐸 −
1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2)]      (2.15) 

 

knowing that the ratio of specific heats (γ) is 1.4 for air at STP.  

 

 Furthermore, using Stokes’ hypothesis, the viscous stress tensor for a Newtonian fluid, τij, is 

given as, 

 

𝜏𝑖𝑗 =  𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
]        (2.16) 

 

Finally, the coefficient of molecular viscosity, μ, is given by Sutherland’s formula24 as follows, 

 

𝜇 = 𝐶1
𝑇
3
2

𝑇+𝐶2
           (2.17) 

 

Where C1 = 1.4 x 10-6 kg/(ms√𝐾) and C2 = 110.4 K for air at STP.  

 

2.2 Non-Dimensional Form of Navier-Stokes Equations 

 

 If the Navier-Stokes equations were solved in their base form, numerical inaccuracies may arise 

due to combining values of multiple orders of magnitude. Therefore, the current work non-

dimensionalizes all flow variables, normalizing them to unity, to minimize potential inaccuracies. 

These non-dimensional terms are given as follows (denoted by *), 

 

𝑥∗ =
𝑥

𝐿
;      𝑦∗ =

𝑦

𝐿
;      𝑧∗ =

𝑧

𝐿
;      𝑡∗ =

𝑡𝑎∞

𝐿
            (2.18) 

𝑢∗ =
𝑢

𝑎∞
;      𝑣∗ =

𝑣

𝑎∞
;      𝑤∗ =

𝑤

𝑎∞
;      𝜇∗ =

𝜇

𝑎∞
       (2.19) 

𝜌∗ =
𝜌

𝜌∞
;      𝑝∗ =

𝑝

𝜌∞𝑎∞
2 ;      𝑇

∗ =
𝑇

𝑇∞
             (2.20) 

 

where L is the reference length, here the chord length of the airfoil is chosen, a is the speed of 

sound, and ∞ denotes a freestream value. Further non-dimensional values are commonly used in 

aerodynamic analysis and are given below, 

 

Mach Number:   𝑀∞ =
𝑉∞𝐿

𝑎∞
            (2.21) 
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Reynolds Number:       𝑅𝑒∞ =
𝜌∞𝑉∞𝐿

𝜇∞
             (2.22) 

Prandtl Number:     𝑃𝑟 =
𝜇𝐶𝑝

𝑘
            (2.23) 

 

where V∞ is the magnitude of the freestream velocity, equal to √𝑢∞2 + 𝑣∞2 + 𝑤∞2 . Meanwhile, the 

known value of the Prandtl Number of air at STP is 0.72. 

 

 This non-dimensionalization creates a version of the Navier-Stokes equations identical to the 

original form with the exception of the viscous stress tensor and heat conduction terms. These 

altered equations are presented below, where Eq. (2.24) is the viscous stress tensor and Eq. (2.25) 

is the heat conduction term, 

 

𝜏𝑖𝑗 = 
𝜇𝑀∞

𝑅𝑒∞
[(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
]       (2.24) 

 

𝑞𝑖 = −
𝜇𝑀∞

𝑅𝑒∞Pr (𝛾−1)

𝜕𝑇

𝜕𝑥𝑖
           (2.25) 

 

 

2.3 Reynolds-Averaged Navier-Stokes (RANS) Equations 

 

 If the current work dealt only in inviscid and laminar flows, the previous assumptions would be 

enough to now solve the governing equations. However, the flow near a helicopter blade is often 

turbulent, requiring further modification to the governing equations. The most accurate potential 

method involves using a Direct Numerical Simulation (DNS) to directly calculate all spatial and 

temporal turbulence scales. However, this level of precision is tremendously computationally 

expensive, requiring more computing resources than currently available. Therefore, the current 

work employs the RANS equations, which decompose the dependent variables of the governing 

equations, Eq. (2.1), into a mean and fluctuating component. These RANS equations are then 

averaged over a prescribed time period.  

 

 The time-averaged value (mean value) of a given variable f is defined as the following,  

 

𝑓̅ =
1

∆𝑡
∫ 𝑓𝑑𝑡
𝑡𝑜+∆𝑡

𝑡𝑜
           (2.26) 

 

where to is the current time and Δt is the time step size. For the fluctuating component, the time-

averaged value is zero. Thus, any two fluctuating components, f’ and g’, the following relations 

can be shown, 
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𝑓�̅�′̅̅ ̅̅̅ = 0;     𝑓�̅�̅̅̅̅ = 𝑓�̅̅�;     𝑓 + 𝑔̅̅ ̅̅ ̅̅ ̅ = 𝑓̅ + �̅�        (2.27) 

𝑓′𝑓′̅̅ ̅̅ ̅ ≠ 0;     𝑓′𝑔′̅̅ ̅̅ ̅ ≠ 0           (2.28) 

 

Now the dependent variables of the Navier-Stokes equations may be rewritten in terms of mean 

(𝑓)̅ and fluctuating components (𝑓′) as follows, 

 

𝑢 =  �̅� + 𝑢′;  𝑣 =  �̅� + 𝑣′;  𝑤 =  �̅� + 𝑤′;  𝜌 =  �̅� + 𝜌′;  𝑝 =  �̅� + 𝑝′;  𝑇 =  �̅� + 𝑇′   (2.29) 

 

With the mean and fluctuating terms defined, the turbulence intensity (Tu) is introduced as the 

ratio of the root-mean-square of the velocity fluctuations divided by the mean velocity, 

 

𝑇𝑢 =
𝑉′

𝑉
           (2.30) 

𝑉′ = √
1

3
[(𝑢′)2 + (𝑣′)2 + (𝑤′)2];     �̅� = √(�̅�)2 + (�̅�)2 + (�̅�)2   (2.31) 

 

 Replacing the dependent variables in Eq. (2.1) with the decomposed versions from Eq. (2.29) 

and time-averaging gives the final RANS equations. This system of equations is identical to the 

original Navier-Stokes equations, with the addition of the terms representing fluctuating turbulent 

variables. These fluctuating terms behave like a viscous stress tensor, transmitting momentum due 

to turbulent fluctuations. Commonly known as the Reynolds stress tensor, these terms are 

represented as the following, 

 

(𝜏𝑖𝑗̅̅ ̅)𝑡𝑢𝑟𝑏 = −𝜌𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅          (2.32) 

 

The Reynolds stress tensor takes the form of a symmetric 3x3 matrix, adding six new unknowns 

to the Reynolds-Averaged momentum equations. During computations, the Reynolds stress tensor 

is dependent on the mean flow quantities, employing a turbulence model to calculate these 

quantities and thus close the RANS equations. The turbulence model employed in the current work 

will be discussed further in Section 2.5.3. 

 

2.4 Curvilinear Coordinate Transformation 

 

While the Cartesian form of the Navier-Stokes equations is usable on any computational grid, the 

stencils employed for the numerical spatial derivatives assume a uniform grid spacing. The non-

uniform body grid, which may include areas where the mesh stretches rapidly, is ill-suited for these 

schemes. Therefore the current work utilizes curvilinear coordinate transformation, in which the 

governing equations are mapped from the body conforming grid (x,y,z) onto a computational 

domain ( ξ,η,ζ ) with equal grid spacing. Applying chain rule differentiation to the governing 
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equations, Eq. (2.1), the Cartesian terms may be transformed to the computational domain as 

follows, 

 

𝜕�̃�

𝜕𝑡
+
𝜕�̃�

𝜕𝜉
+

𝜕�̃�

𝜕𝜂
+
𝜕�̃�

𝜕𝜁
= �̃�                                (2.33) 

 

where 

     �̃� =
1

𝐽
𝑸 

     �̃� =
1

𝐽
[𝜉𝑡𝑸+ 𝜉𝑥(𝑭𝑖 − 𝑭𝑣) + 𝜉𝑦(𝑮𝑖 − 𝑮𝑣) + 𝜉𝑧(𝑯𝑖 −𝑯𝑣)]      

�̃� =
1

𝐽
[𝜂𝑡𝑸+ 𝜂𝑥(𝑭𝑖 − 𝑭𝑣) + 𝜂𝑦(𝑮𝑖 − 𝑮𝑣) + 𝜂𝑧(𝑯𝑖 −𝑯𝑣)]    (2.34)        

    �̃� =
1

𝐽
[𝜁𝑡𝑸+ 𝜁𝑥(𝑭𝑖 − 𝑭𝑣) + 𝜁𝑦(𝑮𝑖 − 𝑮𝑣) + 𝜁𝑧(𝑯𝑖 −𝑯𝑣)]  

    �̃� =
1

𝐽
𝑺                                 

 

here J represents the Jacobian of the coordinate transformation matrix, the determinant of the 

following 3x3 matrix, 

 

[
 
 
 
 
 
𝜕𝜉

𝜕𝑥
 
𝜕𝜉

𝜕𝑦
 
𝜕𝜉

𝜕𝑧

𝜕𝜂

𝜕𝑥
 
𝜕𝜂

𝜕𝑦
 
𝜕𝜂

𝜕𝑧

𝜕𝜁

𝜕𝑥
 
𝜕𝜁

𝜕𝑦
 
𝜕𝜁

𝜕𝑧]
 
 
 
 
 

           (2.35)  

 

 Figure 2.1 below illustrates the transition from the physical body conforming domain to an 

equi-spaced computational domain. Figure 2.1 illustrates a two-dimensional transformation 

though this can easily be extended into three-dimensions, as in the current work.  
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Figure 2.1 Mapping from the physical to computational domain using curvilinear coordinate 

transformation25 

 

 

2.5 Numerical Algorithms 

 

 The following section details the numerical algorithms employed in discretizing the governing 

equations, turbulence modeling, and numerical boundary conditions employed in the 

OVERTURNS solver. A control volume is created around each point within the computational 

domain, with interfaces between these control volumes lying at the midpoint between adjacent 

points. By integrating over these cell faces the time rate of change of the conserved quantities can 

be evaluated at each time step. The semi-discrete form of the RANS equations in the curvilinear 

domain can be written as follows, 

 

𝜕�̃�

𝜕𝑡
= −

�̃�
𝑗+
1
2
−�̃�

𝑗−
1
2

∆𝜉
−
�̃�
𝑘+

1
2
−𝑮

𝑘−
1
2

∆𝜂
−
�̃�
𝑙+
1
2
−�̃�

𝑙−
1
2

∆𝜁
+ �̃�𝑗,𝑘,𝑙                                 (2.36) 

 

where (j,k,l) are the indices of the computational domain, corresponding to the ( ξ,η,ζ ) directions. 

Meanwhile (𝑗 ±
1

2
, 𝑘 ±

1

2
, 𝑙 ±

1

2
) denote the interfaces between computational cells. The following 

section discusses the inviscid and viscous flux contributions seen at these cell interfaces. 
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2.5.1 Inviscid Fluxes 

 

 OVERTURNS evaluates the inviscid fluxes in two steps: 

 

1. Reconstructing the conserved variables from Eq. (2.4-2.6) at the cell faces 

 

2. Evaluating the fluxes at the cell faces using these reconstructed variables 

 

These inviscid fluxes represent the convection of the flow field between cells in the computational 

domain. Figure 2.2 below demonstrates calculations of two flow states, to the left and right of the 

cell interface j + 
1

2
, based on the conservative variables at cells j and j+1.   

 
Figure 2.2 Illustration of a one-dimensional piecewise reconstruction26 

 

 The current version of OVERTURNS contains three available reconstruction schemes to 

calculate the flow at the left and right cell faces: 

 

1. MUSCL – Monotone Upstream-Centered Scheme for Conservation Laws27 

 

2. WENO – Weighted Essentially Non-Oscillatory28 

 

3. CRWENO – Compact-Reconstruction Weighted Essentially Non-Oscillatory29 

 

In all cases the left and right states are first used to define a local Riemann problem and the 

interface flux is obtained using Roe flux difference splitting30 as follows, 

 

𝑭(𝑞𝐿, 𝑞𝑅) =
𝑭(𝑞𝐿)+𝑭(𝑞𝑅)

2
− |�̃�(𝑞𝐿, 𝑞𝑅)|

𝑞𝑅−𝑞𝐿

2
      (2.37) 
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Where FL and FR are the left and right state fluxes respectively and �̃� is the Roe-averaged Jacobian 

matrix. The second term in Eq. (2.37) accounts for numerical dissipation, using Harten’s entropy 

correction to the eigenvalues of the flux Jacobian as given by,  

 

|𝜆| = {
|𝜆|,          𝑖𝑓|𝜆| > 𝛿
𝜆2+𝛿2

2𝛿
,     𝑖𝑓|𝜆| ≤ 𝛿

          (2.38) 

 

In which δ = max[0, (�̅�𝑖+1/2 − �̅�𝑖), (�̅�𝑖+1 − �̅�𝑖+1/2)]. 

 

2.5.1.1 MUSCL Scheme with Koren’s Limiter 

 

 The third-order Monotone Upstream-Centered Scheme for Conservation Laws27 (MUSCL), 

employing Koren’s differentiable limiter31, is designed as a finite-volume method which can 

provide accurate numerical solutions even in the presence of shocks or other discontinuities. 

Koren’s limiter serves to limit higher order reconstruction in regions of high gradients, thus the 

final scheme is third order accurate in regions of low gradients while decreasing to first order in 

the presence of discontinuities (as evidenced by a high gradient). Using the averaged cell values 

of �̅�𝑗+1, �̅�𝑗,  �̅�𝑗−1, the interface values 𝑞𝑗−1/2
𝐿  and 𝑞𝑗+1/2

𝑅  are given through cell reconstruction as 

follows,  

 

𝑞𝑗−1/2
𝐿 = �̅� + 𝜙𝑖 [

1

3
(�̅�𝑗+1 − �̅�𝑗) +

1

6
(�̅�𝑗 − �̅�𝑗−1)]    (2.39)        

𝑞𝑗−1/2
𝑅 = �̅� − 𝜙𝑖 [

1

3
(�̅�𝑗+1 − �̅�𝑗) +

1

6
(�̅�𝑗 − �̅�𝑗−1)]    (2.40) 

 

where 𝜙 is Koren’s differentiable limiter, given as, 

 

𝜙𝑗 =
3Δ�̅�𝑗∇�̅�𝑗+𝜖

2(Δ𝑞𝑗−∇𝑞𝑗)
2
+3Δ𝑞𝑗∇𝑞𝑗+𝜖

         (2.41) 

 

in which 𝜖 is a small constant to ensure division by zero does not occur. Δ and ∇ denote forward 

and backward operators as defined by Δ�̅�𝑗 = (𝑞𝑗+1 − 𝑞𝑗) and ∇�̅�𝑗 = (𝑞𝑗 − 𝑞𝑗−1). 

 

2.5.1.2 WENO Scheme 

 

 The following section outlines the fifth-order Weighted Essentially Non-Oscillatory28 

(WENO5) scheme as defined by Henrick et. al. This finite-volume scheme employs a cell-

averaged approach, calculating the spatial derivative through a convex combination of fluxes at 

each stencil. The contribution of each flux is weighted based on the smoothness of the solution, or 
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magnitude of the flow gradient, over each stencil. In a region of high gradient, the smoothest stencil 

is the most heavily weighted, resulting in a third order reconstruction over the five point stencil. 

Meanwhile, in smooth regions fifth order accuracy is achieved. The interface parameters are 

calculated through the following, 

 

𝑞𝑗+1/2
𝐿 = ∑ 𝑤𝑟𝑣𝑟

𝐿𝑘
𝑟=0         (2.42) 

 

in which wr are the weight terms and 𝑣𝑟
𝐿 represent the interpolations from the given stencils. Here 

q represents the interpolated flux computed based on the discrete values of the flux represented 

below by �̅�. The weight term can be further broken down as follows, 

 

 

 

𝑤𝑟 =
𝛼𝑟

∑ 𝛼𝑠
𝑘
𝑠=0

         (2.43) 

𝛼𝑟 =
𝑑𝑟

(𝛽𝑟+𝜖)
2
         (2.44) 

 

where dr are optimal weight coefficients, βr are smoothness indicators, and 𝜖 = 10-6. The values of 

𝑣𝑟
𝐿, dr, and βr are presented as follows, 

 

     𝑣0
𝐿 =

1

3
�̅�𝑗−3 −

7

6
�̅�𝑗−1 +

11

6
�̅�𝑗  

     𝑣1
𝐿 = −

1

6
�̅�𝑗−1 +

5

6
�̅�𝑗 +

1

3
�̅�𝑗+1  

     𝑣2
𝐿 =

1

3
�̅�𝑗 +

5

6
�̅�𝑗+1 −

1

6
�̅�𝑗+2  

     𝑑0 =
1

10
  

     𝑑1 =
3

5
  

     𝑑2 =
3

10
  

     𝛽0 =
13

12
(�̅�𝑗−2 − 2�̅�𝑗−1 + �̅�𝑗)

2
+
1

4
(�̅�𝑗−2 − 4�̅�𝑗−1 + 3�̅�𝑗)

2
       

     𝛽1 =
13

12
(�̅�𝑗−1 − 2�̅�𝑗 + �̅�𝑗+1)

2
+
1

4
(�̅�𝑗+1 − �̅�𝑗−1)

2
  

     𝛽2 =
13

12
(�̅�𝑗 − 2�̅�𝑗+1 + �̅�𝑗+2)

2
+
1

4
(3�̅�𝑗 − 4�̅�𝑗+1 + �̅�𝑗+2)

2
    (2.45) 
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2.5.1.3 CRWENO Scheme 

 

 This section provides an overview of the fifth-order Compact-Reconstruction Weighted 

Essentially Non-Oscillatory29 (CRWENO) scheme as presented by Ghosh et. al. Based on the 

existing WENO algorithm, this method calculates lower order compact stencils at each interface 

before computing the optimal weights to result in a higher-order scheme. As with the WENO 

scheme, the weights are calculated based on the smoothness of the stencil. The final result of these 

modifications is a scheme which provides a high-order compact scheme in smooth regions and 

lower-order biased compact scheme near discontinuities. The primary advantage of this scheme is 

not that the accuracy is improved beyond fifth-order but that the absolute error is significantly 

reduced. The interface parameters are given in the same general form as Eq. (2.42) from the 

WENO scheme while the general form of the weight term is found in Eq. (2.43-2.44). The third-

order interpolations at j+1/2 (𝑓𝑗±1/2
𝑛 ), optimal weights (cn), and smoothness indicators (βn) are 

given below, 

 

      

     
2

3
𝑞
𝑗−1/2
0 +

1

3
𝑞
𝑗+1/2
0 =

1

6
(�̅�𝑗−1 + 5�̅�𝑗)  

     
1

3
𝑞
𝑗−1/2
1 +

2

3
𝑞
𝑗+1/2
1 =

1

6
(5�̅�𝑗 + �̅�𝑗+1) 

     
2

3
𝑞
𝑗+1/2
2 +

1

3
𝑞
𝑗+3/2
2 =

1

6
(�̅�𝑗 + 5�̅�𝑗+1) 

     𝑐0 =
1

5
  

     𝑐1 =
1

2
                     (2.46) 

     𝑐2 =
3

10
  

     𝛽0 =
13

12
(�̅�𝑗−2 − 2�̅�𝑗−1 + �̅�𝑗)

2
+
1

4
(�̅�𝑗−2 − 4�̅�𝑗−1 + 3�̅�𝑗)

2
       

     𝛽1 =
13

12
(�̅�𝑗−1 − 2�̅�𝑗 + �̅�𝑗+1)

2
+
1

4
(�̅�𝑗−1 − �̅�𝑗+1)

2
  

     𝛽2 =
13

12
(�̅�𝑗 − 2�̅�𝑗+1 + �̅�𝑗+2)

2
+
1

4
(3�̅�𝑗 − 4�̅�𝑗+1 + �̅�𝑗+2)

2
     

 

2.5.2 Viscous Fluxes 

 

 The viscous fluxes of the governing equations take the following form, in terms of curvilinear 

coordinates, 

 

𝜕

𝜕𝜉
(𝛼

𝜕𝛽

𝜕𝜂
)           (2.47) 
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which the current work evaluates using the following second-order central differencing scheme, 

 

1

Δ𝜉
([𝛼𝑗+1/2,𝑘 (

𝛽
𝑗+
1
2
,𝑘+1

−𝛽
𝑗+
1
2
,𝑘

Δ𝜂
)] − [𝛼𝑗−1/2,𝑘 (

𝛽
𝑗−
1
2
,𝑘+1

−𝛽
𝑗−
1
2
,𝑘

Δ𝜂
)])   (2.48) 

 

where 𝛿𝑗+1/2,𝑘 =
𝛿𝑗,𝑘+𝛿𝑗+1,𝑘

2
 with 𝛿 = (𝛼, 𝛽). 

 

2.5.3 Turbulence Modeling 

 

 As mentioned previously, the RANS equations split the state variables into mean and 

fluctuating components to avoid modeling all turbulence effects. Instead, the fluctuating terms 

introduce new terms called the Reynolds stress tensor which consists of six transport equations as 

well as an equation of the energy dissipation rate. These models are known as the Reynolds Stress 

Models32,33, and though physically realistic, they are also computationally expensive and 

experience problems of stability and convergence. For these reasons, the more commonly used 

method is relating the Reynolds stress tensor to the mean strain rate through the Boussinesq eddy 

viscosity as follows, 

 

(𝜏̅𝑖𝑗)𝑡𝑢𝑟𝑏 = −�̅�𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ =

2

3
�̅�𝑘𝛿𝑖𝑗 − 𝜇𝑡 [(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗]   (2.49) 

 

Where k represents turbulent kinetic energy, 

 

𝑘 =
1

2
[(�̅�1

′ )2 + (�̅�1
′)2 + (�̅�1

′)2]       (2.50) 

 

and μt represents turbulent (eddy) viscosity. From Eq. (2.49) the total viscous stress tensor can be 

written as, 

 

(𝜏̅𝑖𝑗)𝑡𝑢𝑟𝑏 =
2

3
�̅�𝑘𝛿𝑖𝑗 − (𝜇 + 𝜇𝑡) [(

𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗]   (2.51) 

 

 Researchers have developed a number of models to calculate turbulent kinetic energy and eddy 

viscosity as a function of the mean quantities of the flow. The majority of these models are created 

based on experimental results and theoretical predictions, resulting in modern turbulence modeling 

being driven by empirical data. One of these methods is the one-equation Spalart-Allmaras34 (SA) 

model, which is widely used in the aerospace field. This model is employed in all cases within the 

current work. The SA model solves a transport equation for the eddy viscosity, and is detailed in 

the following section.  
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2.5.4 Spalart-Allmaras (SA) Turbulence Model 

 

 The SA turbulence model is a one-equation turbulence model commonly employed in the 

aerospace industry and used in all cases of the current work. It relates the Reynolds stresses and 

mean strain as follows, 

 

𝑢𝑖
′𝑢𝑗
′̅̅ ̅̅ ̅̅ = −2𝜇𝑡𝑆𝑖𝑗         (2.52) 

 

where the eddy viscosity in the isotropic equation above is related to the turbulence variable 𝜈 as 

the following, 

 

𝜇𝑡 = 𝜈𝑡 = 𝜌𝜈𝑓𝑣1         (2.53) 

 

in which f ν1 is a function of the turbulence variable 𝜈 and molecular viscosity ν as shown below, 

 

𝑓𝑣1 =
𝜒3

𝜒3+𝑐𝜈1
3            (2.54) 

 

where χ = 𝜈/ ν and cν1 = 7.1. Meanwhile, the turbulence field variable 𝜈 may be obtained through 

the following PDE, 

 

𝜕𝜈

𝜕𝑡
+ 𝜇𝑗

𝜕𝜈

𝜕𝑥𝑗
=

1

𝜎
[
𝜕

𝜕𝑥𝑗
((𝜈 + 𝜈)

𝜕𝜈

𝜕𝑥𝑗
) + 𝑐𝑏2

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
] + 𝑐𝑏1�̃�𝜈 − 𝑐𝑤1𝑓𝑤 (

𝜈

𝑑
)
2

 (2.55) 

 

and where d is the distance from the current point of the flow to the nearest wall. Additionally, 

 

�̃� = 𝑚𝑎𝑥 [Ω +
𝜈

𝜅2𝑑2
𝑓𝑣2 , 0.3Ω]       (2.56) 

𝑓𝑤 = 𝑔 [
1+𝑐𝑤3

6

𝑔6+𝑐𝑤3
6 ]

1/6

          (2.57) 

 

in which Ω is vorticity magnitude and fv2 and g are as follows, 

 

𝑓𝑣2 = 1 −
𝜒

1+𝜒𝑓𝑣1
           (2.58) 

𝑔 = 𝑟 + 𝑐𝑤2(𝑟
6 − 𝑟)          (2.59) 

𝑟 = 𝑚𝑖𝑛 [
𝜈

�̃�𝜅2𝑑2
 , 10]          (2.60) 
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where the constants introduced above are given as follows, 

 

         𝑐𝑏1 = 0.1355     𝑐𝑏2 = 0.622     𝜅 = 0.41     𝜎 =
2

3
    

  𝑐𝑣1 = 7.1     𝑐𝑤1 =
𝑐𝑏1

𝜅2
+
1+𝑐𝑏2

𝜎
     𝑐𝑤2 = 0.3     𝑐𝑤3 = 2   (2.61) 

 

 The left hand side (LHS) of Eq. (2.55) above represents the convection of the turbulence field 

variable (𝜈) at mean flow velocity (u). Meanwhile, on the right hand side (RHS) of Eq. (2.55) the 

first term indicates diffusion of 𝜈, second term represents production of 𝜈, and the final term 

measures the destruction of 𝜈. 

 

 

2.5.4.1 γ - Reθ SA Transition Model 

 

 Transition modeling serves to improve flow predictions in cases with significant regions of 

laminar flow. The current work employs this γ - Reθ SA Transition Model developed by Medida 

et. al35 as an addition to the base SA Turbulence Model. This method employs the local 

intermittency value, γ, to govern boundary layer transition by controlling the amount of turbulent 

kinetic energy generated. This intermittency field is computed through the following transport 

equation, 

 

𝐷(𝜌𝛾)

𝐷𝑡
= 𝑃𝛾 − 𝐷𝛾 +

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑓
)
𝜕𝛾

𝜕𝑥𝑗
]      (2.62) 

 

in which,  

 

𝑃𝛾 = 𝜌𝐹𝑜𝑛𝑠𝑒𝑡𝐺𝑜𝑛𝑠𝑒𝑡max (
Ω

𝐹𝑙𝑒𝑛𝑔𝑡ℎ
,

1.0

𝐹𝑙𝑒𝑛𝑔𝑡ℎ,𝑚𝑖𝑛
) , If 𝛾 > 1.0, 𝑃𝛾 = (1 − 𝛾)𝑃𝛾 (2.63) 

𝐷𝛾 = 𝜌Ω𝛾(1.0 − 𝐺𝑜𝑛𝑠𝑒𝑡)                (2.64) 

𝐺𝑜𝑛𝑠𝑒𝑡 = {
1.0, ifmax(𝐹𝑜𝑛𝑠𝑒𝑡) > 1.0 at a given point

0.0, otherwise
       (2.65) 

𝐹𝑜𝑛𝑠𝑒𝑡 = max (𝐹𝑜𝑛𝑠𝑒𝑡2 − 𝐹𝑜𝑛𝑠𝑒𝑡3, 0)            (2.66) 

𝐹𝑜𝑛𝑠𝑒𝑡1 =
𝑅𝑒𝑣

2.193𝑅𝑒𝜃𝑐
                  (2.67) 

𝐹𝑜𝑛𝑠𝑒𝑡2 = min (max(𝐹𝑜𝑛𝑠𝑒𝑡1, 𝐹𝑜𝑛𝑠𝑒𝑡1
4 ) , 4.0)          (2.68) 

𝐹𝑜𝑛𝑠𝑒𝑡3 = max(2 − (0.25𝑅𝑇)
3, 0)             (2.69) 

𝑅𝑒𝑣 =
𝜌𝑑2𝑆

𝜇
,     𝑅𝑒𝜃𝑐 = 0.62𝑅𝑒̅̅̅̅ 𝜃𝑡 ,     𝑅𝑇 =

𝜇

𝜇𝑡
          (2.70) 



40 

 

𝐹𝑙𝑒𝑛𝑔𝑡ℎ = 40.0,     𝐹𝑙𝑒𝑛𝑔𝑡ℎ,𝑚𝑖𝑛 = 2.5            (2.71) 

 

 In the above equations, Reθc, denotes the critical Reynolds number and governs the transition 

onset location. At this location the intermittency increases within the boundary layer. The length 

of this transition region depends on the Flength value. Both the critical Reynolds number and length 

of transition region depend on the local momentum thickness, 𝑅𝑒̅̅̅̅ 𝜃𝑡. The 𝑅𝑒̅̅̅̅ 𝜃𝑡 field is dependent 

on a new transition equation as follows,  

 

𝐷(𝜌𝑅𝑒̅̅̅̅ 𝜃𝑡)

𝐷𝑡
= 𝑃𝜃𝑡 +

𝜕

𝜕𝑥𝑗
[𝜎𝜃𝑡(𝜇 + 𝜇𝑡)

𝜕𝑅𝑒̅̅̅̅ 𝜃𝑡

𝜕𝑥𝑗
]  where 𝑅𝑒̅̅̅̅ 𝜃𝑡 =

𝜌∞𝑈∞𝜃𝑡

𝜇∞
   (2.72) 

 

where  

 

𝑃𝜃𝑡 = 𝑐𝜃𝑡
𝜌

𝑡
(𝑅𝑒𝜃𝑡 − 𝑅𝑒̅̅̅̅ 𝜃𝑡)(1.0 − 𝐹𝜃𝑡)      (2.73) 

𝐹𝜃𝑡 = 𝑚𝑖𝑛 (𝑒
−(

𝑑

𝛿
)
4

, 1.0)        (2.74) 

𝜃𝐵𝐿 =
𝑅𝑒̅̅̅̅ 𝜃𝑡𝜇

𝜌𝑈
,     𝛿𝐵𝐿 = 7.5𝜃𝐵𝐿 ,     𝛿 =

50Ω𝑑

𝑈
𝛿𝐵𝐿      (2.75) 

 

 The local momentum, 𝑅𝑒̅̅̅̅ 𝜃𝑡, is determined using experimental results while the value of 𝑅𝑒̅̅̅̅ 𝜃𝑡∞ 

results from a piecewise interpolation of the freestream turbulence values given below in Table 

2.136. Solving for 𝑅𝑒̅̅̅̅ 𝜃𝑡 in Eq. (2.72) is then done by applying the values from Table 2.1 to the 

following, 

 

𝑅𝑒𝜃𝑡 = 𝑅𝑒𝜃𝑡∞𝐹(𝜆𝜃)       (2.76) 

𝐹(𝜆𝜃) = {
−(−12.986𝜆𝜃 − 123.66𝜆𝜃

2 − 405.689𝜆𝜃
3)𝑒

−(
𝑇𝑢
1.5
)
1.5

, If 𝜆𝜃 ≤ 0

1 + 0.275(1 − 𝑒−3.5𝜆𝜃)𝑒−
𝑇𝑢
0.5,                                         If 𝜆𝜃 > 0  

  (2.77) 

𝜆𝜃 =
𝜌𝜃2

𝜇

𝑑𝑈

𝑑𝑠
         (2.78) 

𝜎𝑓 = 1.0,     𝑐𝜃𝑡 = 0.03,     𝜎𝜃𝑡 = 2.0     (2.79) 
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Tu% 𝑅𝑒𝜃𝑡∞  

0.01 1800.0 

0.03 1135.0 

0.51 894.0 

1.33 392.0 

2.00 252.0 

5.25 165.0 

6.50 100.0 

Table 2.1 Piecewise linear correlations between turbulence intensity (Tu%) and freestream 

turbulence values (𝑅𝑒𝜃𝑡∞) (Reproduced from Reference 36) 

 

 

2.5.4.2 Delayed Detached Eddy Simulation (DDES) 

 

The Delayed Detached Eddy Simulation (DDES) is a hybrid RANS-LES (Large Eddy Simulation) 

method created by Spalart et. al37-39. This method is based on DES, a modification to the SA model 

which separates the turbulence model into two types of behavior, RANS behavior within the 

boundary layer (BL) and a subgrid model outside of the BL. To do so, DDES replaces the original 

length scale, d in Eq. (2.55), with a new scale, �̃�, as follows, 

 

�̃� = min (𝑑, 𝐶𝐷𝐸𝑆Δ)        (2.80) 

 

in which CDES is a constant, normally taking the following form, 

 

Δ = max (Δ𝑥, Δ𝑦, Δ𝑧)        (2.78) 

 

To further improve the turbulence model, Scotti et. al41 developed an anisotropic grid correction 

which alters the definition of Δ to the following,  

 

Δ = cosh (√
4

27
[ln(𝑎1)

2 − ln(𝑎1) ln(𝑎2) + ln(𝑎2)
2]) × (Δ𝑥 × Δ𝑦 × Δ𝑧)

1

3 (2.79) 

 

 From Eq. (2.77-79) we can see that �̃� is dependent only on grid parameters, which may cause 

a problem known as modeled stress depletion (MSD) in regions of thick BL’s or shallow 

separation. MSD denotes an issue where the DDES method has switched to use the LES model 

but the grid is too coarse to accurately simulate the resulting effects. This may lead to a reduction 

in the Reynolds stress modeled, causing premature separation in an effect called grid induced 

separation. Therefore, this method further modifies �̃� to take the eddy viscosity into account as 

given below, 



42 

 

 

�̃� = 𝑑 − 𝑓𝑑max (0, 𝑑 − 𝐷𝐷𝐸𝑆Δ)      (2.80) 

𝑓𝑑 = 1 − tanh ([8𝑟𝑑]
3)        (2.81) 

𝑟𝑑 =
𝜈𝑡+𝜈

√𝑈𝑖,𝑗𝑈𝑖,𝑗𝜅
2𝑑2

         (2.82) 

 

The addition of eddy viscosity prevents the issue of MSD, by ensure that the DES limiter is not 

active within the boundary layer. Meanwhile, the LES is still employed in separated regions.  

 

2.5.5 Time Integration 

 

 While the RHS of Eq. (2.36) governs the inviscid and viscous fluxes in the flow, the LHS 

evaluates the conserved variables (Q) in time. There are two time marching methods available, 

explicit and implicit marching. Explicit methods employ only information from the previous time 

step when calculating the values at the current step. However, implicit methods indirectly employ 

data from the current time step when calculating the conserved variables. Implicit methods do 

require the inversion and evaluation of large matrices to accomplish this but they demonstrate 

greater stability and convergence performance compared to explicit methods. The sizes of explicit 

methods are also limited by mesh size and local flow quantities. For these reasons, the current 

work employs a second-order accurate backwards in time (BDF2) method to integrate Eq. (2.36) 

as shown below, 

 

𝜕�̃�𝑛+1

𝜕𝑡
= −

�̃�
𝑗+
1
2

𝑛+1−�̃�
𝑗−
1
2

𝑛+1

∆𝜉
−
�̃�
𝑘+

1
2

𝑛+1−�̃�
𝑘+

1
2

𝑛+1

∆𝜂
−
�̃�
𝑙+
1
2

𝑛+1−�̃�
𝑙+
1
2

𝑛+1

∆𝜁
+ �̃�𝑗,𝑘,𝑙

𝑛+1
                    (2.83) 

 

where 

 

 
𝜕�̃�𝑛+1

𝜕𝑡
=

3�̃�𝑛+1−4�̃�𝑛+1+�̃�𝑛+1

2∆𝑡
                        (2.84) 

 

 The fluxes at time step, n+1, in Eq. (2.83) are unknown, therefore they must be linearized and 

expressed as a combination of conserved variables and fluxes at the previous time step, n. Using a 

Taylor series expansion, the terms are linearized about �̃�𝑛 as seen below, 

 

�̃�𝑛+1 = �̃�𝑛 + �̃�∆�̃� + 𝑂(∆𝑡2)                        (2.85) 

�̃�𝑛+1 = �̃�𝑛 + �̃�∆�̃� + 𝑂(∆𝑡2)                        (2.86) 

�̃�𝑛+1 = �̃�𝑛 + �̃�∆�̃� + 𝑂(∆𝑡2)                        (2.87) 
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in which ∆�̃� = �̃�𝑛+1 − �̃�𝑛 represents the difference between old and linearized solutions, while 

A,B, and C are the flux Jacobians given by 
𝜕�̃�

𝜕�̃�
,
𝜕�̃�

𝜕�̃�
,
𝜕�̃�

𝜕�̃�
. Linearization is also applied to the source 

term, S. This linearization is second-order and will not degrade the accuracy of the also second-

order BDF2 scheme. The final linearized form of Eq. (2.83) is given below in terms of ∆�̃�, the 

solution update, 

 

[𝐼 + ∆𝑡(𝛿𝜉�̃�
𝑛 + 𝛿𝜂�̃�

𝑛 + 𝛿𝜁�̃�
𝑛)]�̃� = −∆𝑡(𝛿𝜉�̃�

𝑛 + 𝛿𝜂�̃�
𝑛 + 𝛿𝜁�̃�

𝑛 − �̃�𝑛) (2.88) 

 

 The RHS of the above equation includes the physical flow solution while the LHS represents 

the stability and convergence of the numerical scheme. This implicit algorithm results in a large 

banded system of algebraic equations. This matrix, while sparse, would prove expensive to solve 

directly to generate a solution for Δ�̃�𝑛. Therefore, approximations to the LHS are employed to 

simplify the matrix inversion, though at the cost of convergence speed. 

 

 OVERTURNS has two available methods for the inversion of the system equations, 

 

1. LUSGS – Lower-Upper Symmetric Gauss-Seidel40 

 

2. DADI – Diagonalized Alternate Direction Implicit41 

 

The current work employs the LUSGS method, though both are described below.  

 

2.5.5.1 Lower-Upper Symmetric Gauss-Seidel (LUSGS) Algorithm 

 

 The LUSGS algorithm denotes an approximate factorization method which evaluates the LHS 

of the linearized form of Eq. (2.88), the semi-discrete RANS equations40. The factorization 

separates the terms from the RANS equations into three distinct groups, a lower diagonal L, an 

upper diagonal U, and a main diagonal D. These groups take the following form, 

 

[𝐿 + 𝐷 + 𝑈]∆�̃�𝑛 ≈ [𝐷 + 𝐿]𝐷−1[𝐷 + 𝑈]∆�̃�𝑛 = −∆𝑡(𝛿𝜉�̃�𝑛 + 𝛿𝜂�̃�𝑛 + 𝛿𝜁�̃�𝑛 − �̃�𝑛) (2.89) 

 

in which, 

 

𝐿 = ∆𝑡(−�̃�𝑗−1,𝑘,𝑙
+ − �̃�𝑗,𝑘−1,𝑙

+ − �̃�𝑗,𝑘,𝑙−1
+ )        (2.90) 

𝑈 = ∆𝑡(�̃�𝑗+1,𝑘,𝑙
− + �̃�𝑗,𝑘+1,𝑙

− + �̃�𝑗,𝑘,𝑙+1
− )         (2.91) 

𝐷 = 𝐼 + ∆𝑡(�̃�𝑗,𝑘,𝑙
+ − �̃�𝑗,𝑘,𝑙

− + �̃�𝑗,𝑘,𝑙
+ − �̃�𝑗,𝑘,𝑙

− − �̃�𝑗,𝑘,𝑙
+ − �̃�𝑗,𝑘,𝑙

− )   (2.92) 
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The change in the solution, Δ�̃�𝑛, can then be found by solving the system of equations defined by 

Eq. (2.89) and Eq. (2.90-92) as seen below, 

 

[𝐷 + 𝐿]∆�̅� = −∆𝑡(𝛿𝜉�̃�
𝑛 + 𝛿𝜂�̃�

𝑛 + 𝛿𝜁�̃�
𝑛 − �̃�𝑛)     (2.93) 

[𝐷 + 𝑈]∆�̃� = 𝐷∆�̅�         (2.94) 

 

 Here, L, D, and U represent 5 x 5 block matrices of the three dimensional Navier-Stokes 

equations. Due to the size of these matrices, it would prove computationally expensive to invert 

the sum terms (D + L and D + U). Therefore, a spectral radius approximation is employed for the 

flux Jacobian matrices (�̃�, �̃�, �̃�) to transform the main diagonal, D, into a diagonal matrix. The 

spectral radius approximation is as follows, 

 

         �̃�+ =
1

2
(�̃� + 𝜎𝜉),     �̃�

− =
1

2
(�̃� − 𝜎𝜉)    

�̃�+ =
1

2
(�̃� + 𝜎𝜂),     �̃�

− =
1

2
(�̃� − 𝜎𝜂)       (2.95) 

         �̃�+ =
1

2
(�̃� + 𝜎𝜁),     �̃�

− =
1

2
(�̃� − 𝜎𝜁)       

 

in which �̃�+−, �̃�+−, and �̃�+− represent the right and left Jacobians. Meanwhile,  

 

         𝜎𝜉 = |𝑈𝜉| + 𝑐 +
2𝜇(𝜉𝑥

2+𝜉𝑧
2+𝜉𝑧

2)

𝜌
   

𝜎𝜂 = |𝑈𝜂| + 𝑐 +
2𝜇(𝜂𝑥

2+𝜂𝑧
2+𝜂𝑧

2)

𝜌
         (2.96) 

         𝜎𝜁 = |𝑈𝜁| + 𝑐 +
2𝜇(𝜁𝑥

2+𝜁𝑧
2+𝜁𝑧

2)

𝜌
   

 

where 𝑈𝑘 is the contravariant velocity in the k-direction. The approximate factorization leads to 

errors when compared with the exact solution which are reduced through a dual time stepping 

method employing Newton-like sub-iterations. The dual time stepping method is described fully 

in Section 2.5.5.3. 

  

2.5.5.2 Diagonalized Alternating Direction Implicit (DADI) Algorithm 

 

 The DADI algorithm inverts the LHS of the linearized form of the semi-discrete RANS 

equations, Eq. (2.36). Developed by Pulliam and Chaussee41, the method splits the LHS of Eq. 

(2.36) into three factors as below, 

 

[𝐼 + ∆𝑡(𝛿𝜉�̃� + 𝛿𝜂�̃� + 𝛿𝜁�̃�)]∆�̃� ≈ [𝐼 + ∆𝑡𝛿𝜉�̃�][𝐼 + ∆𝑡𝛿𝜂�̃�][𝐼 + ∆𝑡𝛿𝜁�̃�] 
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      = −∆𝑡(𝛿𝜉�̃�
𝑛 + 𝛿𝜂�̃�

𝑛 + 𝛿𝜁�̃�
𝑛 − �̃�𝑛)              (2.97) 

 

These factors can be further simplified by diagonalizing the inviscid components of the flux 

Jacobians, producing the following, 

 

             �̃� = 𝑇𝜉Λ𝜉𝑇𝜉
−1

  

�̃� = 𝑇𝜂Λ𝜂𝑇𝜂
−1          (2.98) 

             �̃� = 𝑇𝜁Λ𝜁𝑇𝜁
−1

        

 

in which 𝑇𝜉 is a matrix containing the set of left eigenvectors of matrix �̃� while 𝑇𝜉
−1 is the set of 

right eigenvectors of �̃�. Meanwhile 𝑇𝜂 and 𝑇𝜁 and their inverses correspond to �̃� and �̃� 

respectively. Additionally, �̃� gives the set of eigenvalues of matrix Λ𝜉, with similar relations 

between �̃� and �̃� with  Λ𝜂 and Λ𝜁.  

 

 Now the diagonalized flux Jacobians, given by Eq. (2.98), can be substituted into the LHS of 

Eq. (2.97) as follows, 

 

 

[𝑇𝜉𝑇𝜉
−1 (𝐼 + ∆𝑡𝛿𝜉𝑇𝜉Λ𝜉𝑇𝜉

−1)][𝑇𝜂𝑇𝜂
−1 (𝐼 + ∆𝑡𝛿𝜂𝑇𝜂Λ𝜂𝑇𝜂

−1)] 

[𝑇𝜁𝑇𝜁
−1 (𝐼 + ∆𝑡𝛿𝜁𝑇𝜁Λ𝜁𝑇𝜁

−1)]∆�̃� = ∆𝑡(𝛿𝜉�̃�
𝑛 + 𝛿𝜂�̃�

𝑛 + 𝛿𝜁�̃�
𝑛 − �̃�𝑛)  (2.99) 

 

Assuming the inviscid flux Jacobian eigenvectors are constant in the local area gives the following 

form of Eq. (2.99), 

 

  

[𝑇𝜉  (𝐼 + ∆𝑡𝛿𝜉Λ𝜉)𝑇𝜉
−1][𝑇𝜂  (𝐼 + ∆𝑡𝛿𝜂Λ𝜂)𝑇𝜂

−1][𝑇𝜁  (𝐼 + ∆𝑡𝛿𝜁Λ𝜁)𝑇𝜁
−1]∆�̃� =

∆𝑡(𝛿𝜉�̃�
𝑛 + 𝛿𝜂�̃�

𝑛 + 𝛿𝜁�̃�
𝑛 − �̃�𝑛)                  (2.100) 

 

Now the diagonal algorithm has reduced the system to a series of 5 x 5 matrix multiplications and 

scalar tridiagonal inversions. The inversion process is shown in the following steps, 

 

        𝑆1 = 𝑇𝜉
−1∆𝑡(𝛿𝜉�̃�

𝑛 + 𝛿𝜂�̃�
𝑛 + 𝛿𝜁�̃�

𝑛 − �̃�𝑛)            

        𝑆2 = (𝐼 + ∆𝑡𝛿𝜉Λ𝜉)
−1
𝑆1             

        𝑆3 = (𝑇𝜉
−1𝑇𝜂)

−1
𝑆2                   
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𝑆4 = (𝐼 + ∆𝑡𝛿𝜂Λ𝜂)
−1
𝑆3              (2.101) 

        𝑆5 = (𝑇𝜂
−1𝑇𝜁)

−1
𝑆4                   

        𝑆6 = (𝐼 + ∆𝑡𝛿𝜁Λ𝜁)
−1
𝑆5     

        ∆�̃� = 𝑇𝜁𝑆6                  

 

 This algorithm is only rigorously valid for the Euler equations. This results from the inability 

to diagonalize the viscous and inviscid flux Jacobians simultaneously. Therefore, the viscous flux 

Jacobian eigenvalues are approximated using the following, 

 

Λ𝑣(𝜉) = 𝜇𝐽
−1(𝜉𝑥

2 + 𝜉𝑦
2 + 𝜉𝑧

2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐽𝜌−1           

Λ𝑣(𝜂) = 𝜇𝐽
−1(𝜂𝑥

2 + 𝜂𝑦
2 + 𝜂𝑧

2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐽𝜌−1        (2.102) 

Λ𝑣(𝜁) = 𝜇𝐽
−1(𝜁𝑥

2 + 𝜁𝑦
2 + 𝜁𝑧

2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐽𝜌−1           

 

which results in the new form of the diagonal algorithm as given by, 

 

[𝑇𝜉  (𝐼 + ∆𝑡(𝛿𝜉Λ𝜉 − 𝛿𝜉𝜉Λ𝑣(𝜉))) 𝑇𝜉
−1] [𝑇𝜂  (𝐼 + ∆𝑡(𝛿𝜂Λ𝜂 − 𝛿𝜂𝜂Λ𝑣(𝜂))) 𝑇𝜂−1] [𝑇𝜁  (𝐼 +

∆𝑡(𝛿𝜁Λ𝜁 − 𝛿𝜁𝜁Λ𝑣(𝜁))) 𝑇𝜁
−1] ∆�̃� = ∆𝑡(𝛿𝜉�̃�𝑛 + 𝛿𝜂�̃�𝑛 + 𝛿𝜁�̃�𝑛 − �̃�𝑛)          (2.103) 

 

The second derivatives in Eq. (2.103) are solved through a second-order central differencing 

scheme. The errors caused by the approximation of the viscous terms are reduced through a dual 

time stepping method in conjunction with Newton-like sub-iterations, as described in Section 

2.5.5.3. 

 

2.5.5.3 Dual Time Stepping 

 

 Both time stepping methods employed in the current work necessitate approximating certain 

terms on the LHS of the semi-discrete form of the RANS equations. This leads to factorization 

errors, which must be reduced through dual time stepping, performing sub-iterations at each 

physical time step in the solution. A pseudo time, τ, is introduced to represent the sub-iterations as 

follows, 

 

𝜕�̃�

𝜕𝜏
+
𝜕�̃�

𝜕𝑡
+
𝜕�̃�

𝜕𝜉
+
𝜕�̃�

𝜕𝜂
+
𝜕�̃�

𝜕𝜁
= �̃�                                (2.104) 

 

Eq. (2.104) can be discretized as, 

 



47 

 

�̃�𝑝+1−�̃�𝑝

∆𝜏
+
�̃�𝑝+1−�̃�𝑛

∆𝑡
−
�̃�
𝑗+
1
2

𝑝+1
−�̃�

𝑗−
1
2

𝑝+1

∆𝜉
−
�̃�
𝑘+

1
2

𝑝+1
−�̃�

𝑘−
1
2

𝑝+1

∆𝜂
−
�̃�
𝑙+
1
2

𝑝+1
−�̃�

𝑙−
1
2

𝑝+1

∆𝜁
+ �̃�𝑗,𝑘,𝑙

𝑝+1
            (2.105) 

 

in which n denotes the physical time scale and p denotes the sub-iteration time scale. The first step 

of the sub-iterations, �̃�𝑝, is set to �̃�𝑛. Linearizing Eq. (2.105) around time scale n results in the 

following, 

 

[
1

∆𝜏
+

1

∆𝑡
+ (𝛿𝜉�̃�

𝑝 + 𝛿𝜂�̃�
𝑝 + 𝛿𝜁�̃�

𝑝)] ∆�̃� = −(𝛿𝜉�̃�
𝑝 + 𝛿𝜂�̃�

𝑝 + 𝛿𝜁�̃�
𝑝 − �̃�𝑝 +

�̃�𝑝−�̃�𝑛

∆𝑡
) (2.106) 

 

Introducing ℎ =
∆𝑡

1+
∆𝑡

∆𝜏

 to Eq. (2.106) allows it to be rewritten as, 

[𝐼 + ℎ(𝛿𝜉�̃�
𝑝 + 𝛿𝜂�̃�

𝑝 + 𝛿𝜁�̃�
𝑝)]∆�̃� = −ℎ (𝛿𝜉�̃�

𝑝 + 𝛿𝜂�̃�
𝑝 + 𝛿𝜁�̃�

𝑝 − �̃�𝑝 +
�̃�𝑝−�̃�𝑛

∆𝑡
) (2.107) 

 

 The previous equation resembles the final linearized equation as given by Eq. (2.88) and both 

the LUSGS or DADI methods can be employed to solve it. The unsteady residual for each time 

step follows as, 

 

𝛿𝜉�̃�
𝑝 + 𝛿𝜂�̃�

𝑝 + 𝛿𝜁�̃�
𝑝 − �̃�𝑝 +

�̃�𝑝−�̃�𝑛

∆𝑡
       (2.108) 

 

This unsteady residual should decrease towards zero over the sub-iterations to preserve accuracy. 

Normally, a drop in residual of one to two orders of magnitude is expected, ensuring the 

factorization error is smaller than the other discretization errors. If no sub-iterations are performed, 

Eq. (2.88) is recovered.  

 

2.5.6 Initial and Boundary Conditions 

 

 The unsteady Navier-Stokes equations take the form of an Initial Boundary Value Problem, 

which entails that the development of the flow solution depends on the initial and boundary 

conditions prescribed to the simulation. Therefore, the primitive variables (ρ,u,v,w,p) must be 

assigned a starting value at every point in the computational domain. In the current study, 

freestream values are assigned to each point in the flow. Due to the non-dimensionalization of the 

RANS equations, ρ∞ = 1.0, p∞ = 
1

𝛾
, and the velocity values (u,v,w) vary depending on the freestream 

Mach number. This accounts for the initial conditions prescribed to the flow, however the 

boundaries of the computational domain must also be studied.  

 

 Boundary conditions govern the behavior of the boundary cells within the computational 

domain, those cells which interact with a physical, numerical, or artificial boundary. Physical 

boundaries take the form of a wall where the no-slip condition must be enforced. Numerical 
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boundaries represent the periodicity used to shrink the computational domain from four blades to 

only one. Artificial boundaries are necessary due to the finite nature of the computational domain, 

representing the farfield conditions and imposed flow such as a sink condition. Other conditions, 

such as the wake cut numerical boundary used in a C-topology blade mesh, are present in 

OVERTURNS but not employed in the current work. Figure 2.3 below shows a 2-D cross-cut of 

the blade mesh, an overhead view of the background mesh, and an azimuthal view of the 

background mesh; detailing the boundary conditions imposed in the current work.  

 

 
(a) 2-D cross-cut of blade mesh at mid-span      (b) Top-down view of computational domain   

 

 
(c) Side view of blade and background meshes 

 

Figure 2.3  An example of the blade and background meshes comprising the computational 

domain and the respective boundary conditions 
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2.5.6.1 Farfield Boundary Condition 

 

 Farfield boundaries are artificial boundaries necessary because the computational domain has 

a finite size. The boundaries are placed far enough from solid bodies within the flow such that no 

outgoing behavior is reflected back into the domain to interfere with the flow. Previous works have 

shown that placing the boundaries 20-30 chord lengths or more from any body surfaces ensures 

that no non-physical behavior is created26. Non-reflecting boundary conditions are achieved using 

Riemann invariants to propagate ingoing or outgoing waves. In regions where the flow is outgoing, 

the Riemann invariants are extrapolated from interior cells; while in regions of ingoing flow 

freestream values are extrapolated from. Due to the distance from the excited flow, numerical 

dissipation causes strong gradients to diminish before reaching the domain boundary. Furthermore, 

the mesh is stretched in the outer regions of the domain, assisting with the dissipation of strong 

gradients. This dissipation has the potential to negatively impact the solution unless care is taken 

to create a large enough computational domain to separate the majority of the flow and the outer 

boundaries.  

 

2.5.6.2 Sink Boundary Condition 

 

 The sink boundary condition is a variation on the farfield boundary presented above. The 

primary change occurs at the bottom surface of the background mesh. Under this condition, a 

region of the surface is assigned a separate velocity than the freestream value employed by the 

farfield condition. This region sets the flow at the boundary as an outflow, pulling the surrounding 

flow towards the outer boundary and away from the rest of the flow. The sink is positioned directly 

below the rotor as the goal of the region is to simulate the movement of the starting vortex out of 

the computational domain, ensuring that it does not interfere with the flow. The boundary divides 

the lower surface of the computational domain into three regions as follows,  

 

 The inner region of the sink, in which the prescribed velocity is constant 

 The outer region of the sink, in which the prescribed velocity decreases quadratically to 

zero 

 The region outside of the sink, where the boundary reverts to the farfield conditions 

 

 The strength of the flow due to the sink is based on the induced velocity defined as follows, 

 

𝑣𝑖𝑛𝑑𝑢𝑐𝑒𝑑 = −0.5𝑤∞ +√0.25𝑤∞2 + (𝑀𝑡𝑖𝑝√
𝐶𝑇

2
)

2

       (2.109) 
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where w∞ is the vertical freestream velocity, Mtip is the tip Mach number, and CT is a prescribed 

coefficient of thrust, based on the predicted thrust value of the rotor. The sink region is divided 

into two sections, the inner and outer region, which are given as,  

 

𝐼𝑛𝑛𝑒𝑟:               0 < 𝑅𝑙𝑜𝑐𝑎𝑙 <
√2

2
𝑅𝑏𝑙𝑎𝑑𝑒       (2.110) 

𝑂𝑢𝑡𝑒𝑟:     
√2

2
𝑅𝑏𝑙𝑎𝑑𝑒 < 𝑅𝑙𝑜𝑐𝑎𝑙 ≤ 𝑅𝑏𝑙𝑎𝑑𝑒       (2.111) 

 

in which Rlocal is the distance of the current node from the center of rotation and Rblade is the radius 

of the rotor blade. Within these regions, the prescribed velocity created by the sink boundary takes 

the following form, 

 

𝐼𝑛𝑛𝑒𝑟:               𝑣𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 1.533𝑣𝑖𝑛𝑑𝑢𝑐𝑒𝑑       (2.112) 

𝑂𝑢𝑡𝑒𝑟:     𝑣𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
2

(3−2√2)
((

𝑅𝑙𝑜𝑐𝑎𝑙

𝑅𝑏𝑙𝑎𝑑𝑒
)
2

− 2(
𝑅𝑙𝑜𝑐𝑎𝑙

𝑅𝑏𝑙𝑎𝑑𝑒
) + 1) + 1.533𝑣𝑖𝑛𝑑𝑢𝑐𝑒𝑑   (2.113) 

 

This prescribed velocity is added to the local velocity and propagates from the boundary inward 

into the computational domain.  

 

 Figure 2.4 below illustrates the effect of the sink condition on the surrounding flow. The flow 

field below was extracted after only 40 iterations, or ten degrees of rotation, to allow the conditions 

at the boundary to propagate inward but not allow the solution near the blade to develop very far. 

Both images display a spanwise slice of the flow at the bottom of the background mesh, and the 

blade is not visible in the current image. Through observing the vertical momentum, one can see 

that the sink condition, Figure 2.4.a, has created a strong downwash in the neighboring region. As 

the flow convects downward it will contact this region and be drawn downward through the lower 

boundary and smooth the rotor wake.  
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Figure 2.4 Lower boundary of the computational domain with and without the sink boundary 

condition enabled, visualized using contour levels of vertical momentum 

 

2.5.6.3 Wall Boundary Condition 

 

 At a solid wall, such as the body of the rotor blade, density is extrapolated from the interior 

points of the computational domain. Viscous conditions within the flow dictate that at the wall the 

velocity of the flow relative to the wall is zero, fulfilling the no-slip condition. With this restriction 

in mind, the pressure (p) is given by the normal momentum equation as, 

 

𝑝𝜉 (
𝜕𝜉

𝜕𝑥𝑗

𝜕𝜁

𝜕𝑥𝑗
) + 𝑝𝜂 (

𝜕𝜂

𝜕𝑥𝑗

𝜕𝜁

𝜕𝑥𝑗
) + 𝑝𝜁 (

𝜕𝜁

𝜕𝑥𝑗

𝜕𝜁

𝜕𝑥𝑗
) = −𝜌𝑈 (

𝜕𝜂

𝜕𝑥𝑗

𝜕𝑄

𝜕𝜉
) − 𝜌𝑉 (

𝜕𝜁

𝜕𝑥𝑗

𝜕𝑄

𝜕𝜂
) − 𝜌𝑊 (

𝜕𝜁

𝜕𝑥𝑗

𝜕𝑄

𝜕𝜁
) (2.114) 

 

If the flow near the wall is inviscid, the velocity components of the flow (U,V,W) are extrapolated 

from the computational domain to the surface. Furthermore, the no-penetration condition must be 

enforced, ensuring that there is no flow through the solid boundary. This is accomplished by setting 

the contravariant component of velocity in the wall normal direction equal to the surface velocity.  

 

 

 

(a) Sink boundary condition 

(b) Farfield boundary condition 
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2.5.6.4 Periodic Boundary Condition  

 

 Periodicity employs ghost cells to carry density, pressure, and velocity values over from the 

boundary of the mesh to the corresponding physical points at the far boundary of the mesh. The 

current work employs periodicity in two cases, at the trailing edge of the blade mesh and the inner 

facing boundaries of the background mesh, as illustrated above in Figure 2.5. The blade mesh 

contains ghost cells at the beginning and end of the mesh, allowing the third- and fifth-order spatial 

schemes to be employed at the edges of the physical mesh by using information calculated at the 

corresponding physical cell to the ghost cell.  

 

 Meanwhile, the current work assumes that the wake of a rotor in hover is periodic, allowing 

only one blade to be modeled before using periodicity to simulate the effects of the remaining 

blades. For a four bladed rotor, such as the current case, the azimuthal period is 90o. Only one 

blade and the corresponding background area are modeled in the computational domain, with the 

remaining three blades accounted for through periodic boundaries at the inner edges of the 

background mesh. As with the blade mesh, the outermost points in these regions are treated as 

ghost cells, in which the flow quantities are prescribed by transforming the data from 

corresponding physical cells at the other boundary.  

 

2.6 Overset Mesh Connectivity 

 

 The computational domain employed in the current work is composed of two separate 

structured meshes, a blade mesh and background mesh. To ensure that data is communicated 

properly between these two meshes, OVETURNS contains an overset mesh capability. Overset 

mesh systems, also known as chimera mesh systems, denote a system of independent meshes used 

to model domain which requires fine flow resolution as well as a large domain where a coarser 

grid is preferred. The most common uses of the overset system are modeling complex geometries 

and capturing the rotor wake in addition to the near-body flow. The alignment and geometries of 

the meshes do not have to correspond, allowing a wide range of meshes to be combined in an 

overset system. A key component of an overset system is the data transfer connectivity between 

the meshes.  

 

 To transfer data between meshes, OVERTURNS employs an Implicit Hole Cutting (IHC) 

method developed by Lee42 and further developed by Lakshminarayan43 to add further boundary 

conditions and donor search methods. These search methods employ a stencil walk procedure 

developed by Gupta44. The IHC method takes the computed values from grid cells with a small 

cell size and interpolates these values to coarser cells on the other mesh. Employing the search 

algorithm discussed above, the method checks each cell in the computational domain, marking the 

smallest cell in regions of overlap. This search algorithm is discussed in detail in the works of 

Jose45. The presence of solid bodies is detected through the steadily decreasing cell sizes as a body-
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surface is approached. A hole is cut around this solid body to ensure that flow is not modeled 

within these cells. Figure 2.5 below demonstrates the IHC method when observing a circular body 

overset with a rectangular background mesh.  

 

 
Figure 2.5 Example of IHC method and terms associated with hole cutting. Reproduced from Jose 

et. al45 

 

 The IHC methodology consists of three primary steps: 1) hole cutting, 2) marking of fringe and 

receiver points (integrid boundary points), 3) identification of donor cells. Figure 2.5 above 

illustrates this process, beginning with step one. The green points denote hole points, cut out of 

the background mesh by the body mesh where no flow solution is solved for. Step two determines 

the hole fringe (chimera) points, which receives information from the other grid. These points are 

denoted by the blue points in Figure 2.5, and along with the red Integrid Boundary Points, serve 

as receiver points which have solution values interpolated from donor cells. The donor cells, 

identified in step three, compute the weight of solution values from each point of the donor cell, 

average the solution values from each point based on the weights, and donate the information to 

the receiver cells. An example of a donor cell for a given boundary point is highlighted in purple 

in Figure 2.5. Any point which does not fall in one of these categories is referred to as a field point. 

 

 The connectivity information is stored using an Iblank array. An Iblank value of 0 corresponds 

to a hole point while 1 denotes a field point. This modifies the solver, causing the governing 

equations to not be solved at the hole points, only at the field points. An Iblank value of -1 denotes 
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a fringe or chimera point during implicit inversion, but is reverted to a value of 1 when calculating 

fluxes. During the time inversion, these values are blanked by multiplying the time step by the 

function, max(Iblank, 0). Multiplying the LHS of Eq. (2.107) by this value and the RHS by the 

function, abs(Iblank), ensuring that the hole points are blanked out on both sides of the equation 

while the fringe and chimera points are blanked only on the LHS. This prevents any inaccuracies 

within the hole points from adversely affecting the flow solution. Meanwhile, donor cells still 

transfer information to the receiver cells at the boundaries between the meshes.  

 

2.7 Parallelization 

 

 As CFD has developed and simulations have become more complex the computational expense 

of the programs has also increased. Therefore, to ensure that runs are completed in a reasonable 

amount of time, parallel computing has been utilized to ensure that these large meshes are still 

solvable. The computational domain is divided into smaller areas, or sub-domains, and the solution 

is solved independently across multiple processors. The process of splitting the overset meshes 

into sub-domains is known as domain decomposition, and once split the sub-domains must be able 

to communicate information about the flow to one another. OVERTURNS employs the message 

passing interface (MPI) to support parallel computing and communication between individual 

processors.  

 

 The governing equations at a given time step are solved at each sub-domain, allowing full use 

of each available processor. Once a time step is completed at every sub-domain, solution data is 

passed between processors containing a common boundary. Figure 2.6 below demonstrates the 

domain decomposition of the blade mesh into five independent meshes. Note that the divisions 

occur only in the spanwise direction, as splits in the normal and chordwise directions may degrade 

solution accuracy. This loss in accuracy is observed when there is a strong gradient across a sub-

division boundary, for example in the boundary layer where strong wall-normal gradients may be 

found.  
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Figure 2.6 Spanwise domain decomposition of the O-O S-76 blade mesh, where individual sub-

domains are separated by color 

 

 The mesh size of each sub-division is nearly equal, ensuring that no processor bears an 

abnormally large load and slows down the rest of the solution. While Figure 2.6 shows a domain 

divided into five partitions, the number of sub-domains can be adjusted based on the memory 

requirements and number of processors available. The current work employs twenty sub-divisions 

for the blade mesh, each of which is approximately 9 Megabytes in size. Figure 2.6.a also shows 

the overlap between adjacent sub-domains necessary to maintain the spatial accuracy of the 

solution.  

 

2.8 Mesh Adaption  

 

 Cases involving viscous effects may require a very high density of points to accurately capture 

the near-body flow as well as other regions of turbulent flow. Simply increasing the number of 

points in the computational domain would make the computations very expensive and render the 

solution impossible to perform with available resources. Therefore, in addition to the overset mesh 

system employed, a clustering method was developed to increase grid resolution in regions of 

interest. Based off the work by Amiraux46, the 3D elliptic grid generation algorithm uses a 3D 

Poisson equation with source terms, in which the source terms mark the regions to be refined. By 

prescribing a radius, skew angle, and amount of refinement, the user may alter the mesh to a certain 

geometry or flow pattern. As Figure 2.7 below shows, the adaption occurs first in the 

computational domain. This baseline curvilinear mesh is then adapted to the physical domain using 

tri-cubic interpolation. The elliptic equations are Laplacian in nature, ensuring a smooth 

refinement. Poisson equations can be computationally expensive so the current work limits itself 

(a) Outer boundaries of the blade sub-

domains with the blade surface outlined 

within 

(b) Zoomed-in view of the blade surface, 

highlighting each decomposition along the 

span  
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to clustering points around prescribed sources. Figure 2.8 below demonstrates this process, 

assigning two source points in a Cartesian mesh and clustering the surrounding points.  

   

 
Figure 2.7 Mesh adaption process transitioning from the computational to physical domain46  

 

 
Figure 2.8 Clustering around a source term and corresponding change in mesh46 
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 The general form of the numerical implementation of the 3D elliptic grid generation is presented 

below, and further details may be found in the work of Amiraux46. First the transformations 

between the physical and computational domains are given as the Jacobian J and Inverse Jacobian 

J-1 matrices,  

 

𝑱 = [

𝑥𝜉 𝑥𝜂 𝑥𝜁
𝑦𝜉 𝑦𝜂 𝑦𝜁
𝑧𝜉 𝑧𝜂 𝑧𝜁

]         (2.115) 

𝑱−𝟏 = [

𝜉𝑥 𝜉𝑦 𝜉𝑧
𝜂𝑥 𝜂𝑦 𝜂𝑧
𝜁𝑥 𝜁𝑦 𝜁𝑧

]            (2.116) 

 

where the inverse terms may be found through row expansion. Meanwhile the determinant gives 

the cell volume as, 

 

det(𝑱) = 𝑗−1 = 𝑥𝜉𝑦𝜂𝑧𝜁 + 𝑥𝜁𝑦𝜉𝑧𝜂 + 𝑥𝜂𝑦𝜁𝑧𝜉 − 𝑥𝜉𝑦𝜁𝑧𝜂 − 𝑥𝜂𝑦𝜉𝑧𝜁 − 𝑥𝜁𝑦𝜂𝑧𝜉  (2.117) 

 

The Metric Tensor and Inverse Metric Tensors take the following form, 

 

 𝑮 = 𝑱𝑇𝑱 = 𝑔𝑖𝑗 = 𝑥𝜉𝑖𝑥𝜉𝑗          (2.118) 

𝑮−𝟏 = 𝑔𝑖𝑗 = ∇𝑥𝜉𝑖 ∙ ∇𝑥𝜉𝑗        (2.119) 

 

With these coordinate transformations the Laplace Equation in the computational coordinates 

(𝜉, 𝜂, 𝜁) become, 

 

𝜉𝑥𝑥 + 𝜉𝑦𝑦 + 𝜉𝑧𝑧 = 0        (2.120) 

𝜂𝑥𝑥 + 𝜂𝑦𝑦 + 𝜂𝑧𝑧 = 0        (2.121) 

𝜁𝑥𝑥 + 𝜁𝑦𝑦 + 𝜁𝑧𝑧 = 0        (2.122) 

 

and through inverting these equations and adding the source terms [𝑃 𝑄 𝑅] = [∇𝜉𝑺]𝑪 to produce 

the following Poisson Equation, 

 

𝑔11𝒙𝜉𝜉 + 𝑔
22𝒙𝜂𝜂 + 𝑔

33𝒙𝜁𝜁 + 2𝑔
12𝒙𝜉𝜂 + 2𝑔

13𝒙𝜉𝜁 + 2𝑔
23𝒙𝜂𝜁 

+𝑔11𝑃𝒙𝜉 + 𝑔
22𝑄𝒙𝜂 + 𝑔

33𝑅𝒙𝜁 = 0        (2.123) 

 

in which the source terms P,Q, and R are composed of source terms in the computational plane 

multiplied with the transformation matrix as follows, 
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𝑃 = (𝑆11)𝜉𝜉𝑥 + (𝑆12)𝜉𝜉𝑦 + (𝑆13)𝜉𝜉𝑧 + (𝑆11)𝜂𝜂𝑥 + (𝑆12)𝜂𝜂𝑦 + (𝑆13)𝜂𝜂𝑧 

+(𝑆11)𝜁𝜁𝑥 + (𝑆12)𝜁𝜁𝑦 + (𝑆13)𝜁𝜁𝑧        (2.124) 

 

𝑄 = (𝑆21)𝜉𝜉𝑥 + (𝑆22)𝜉𝜉𝑦 + (𝑆23)𝜉𝜉𝑧 + (𝑆21)𝜂𝜂𝑥 + (𝑆22)𝜂𝜂𝑦 + (𝑆23)𝜂𝜂𝑧 

+(𝑆21)𝜁𝜁𝑥 + (𝑆22)𝜁𝜁𝑦 + (𝑆23)𝜁𝜁𝑧        (2.125) 

 

𝑅 = (𝑆31)𝜉𝜉𝑥 + (𝑆32)𝜉𝜉𝑦 + (𝑆33)𝜉𝜉𝑧 + (𝑆31)𝜂𝜂𝑥 + (𝑆32)𝜂𝜂𝑦 + (𝑆33)𝜂𝜂𝑧 

+(𝑆31)𝜁𝜁𝑥 + (𝑆32)𝜁𝜁𝑦 + (𝑆33)𝜁𝜁𝑧        (2.126) 

 

Eq. (2.118-2.120) may be substituted into Eq. (2.117) to arrive at the final form of the Poisson 

Equation employed by this method. 

 

 The adaption is run independently from OVERTURNS, at one of two stages in the analysis:  

 

1. In preprocessing regions where high vorticity is expected are chosen, locations in the 

mesh are chosen as source terms, and the mesh is clustered about these points.  

 

2. In post processing regions of high vorticity are identified and input as source terms, 

around which the mesh is adapted.  

 

In both cases the adaption process is run over a number of iterations, normally a few hundred, to 

ensure that the mesh remains smooth. Between iterations the virtual coordinates defining the 

location and strength of the source terms must be re-evaluated, as the adaption process deforms 

the computational domain, altering the source locations. The change in location between iterations 

is tracked as an error value and once the change is sufficiently small the adaption is halted. In 

contrast to methods such as Automated Mesh Refinement (AMR) or Vortex Tracking Grids 

(VTG), the current method provides refinement in regions of interest without increasing the 

number of mesh points and computational cost of the system. In the current work a mesh which 

has not been adapted using this process will be referred to as a “baseline” or “unadapted” mesh 

while one on which this process has been performed is a “clustered” or “adapted” mesh.  

 

 Figure 2.9 below demonstrates the usage of the adaption routine as described in the first stage 

above. Based on the location of the blade mesh within the baseline Cartesian mesh, the regions 

where the root and tip vortices are expected to form are identified and altered. No skew angle has 

been added in this region of the mesh, only the nodal positions have been altered to decrease the 

spacing in the x-, y-, and z- directions by half. Figure 2.10 displays the same level of refinement, 

again with no skew induced, but applied only in regions of high vorticity. Using an existing 

solution, a cutoff value of vorticity was chosen and regions of high vorticity were identified. These 
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are used as the source terms for the Poisson equations, and the mesh is adapted accordingly to 

refine the cell spacing near these vortices.  

 

 
 

 

Figure 2.9 Comparison of baseline background mesh and an adapted version showing the position 

of the blade 

 

(a) Unadapted background mesh showing 

near blade region 

(b) Background mesh with clustered 

regions near root and tip 
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Figure 2.10 Comparison of baseline and adapted meshes created using the tip vortices as sources 

 

 Comparing the adapted regions in Figures 2.9 and 2.10, one can see the potential of both 

approaches. The first method provides a more controlled but less precise refinement, spreading the 

clustering over a larger zone but with less focus on the regions of interest. The second method 

results in smaller regions of refinement, centered on vorticity magnitude in this example, though 

other values may be used. This does result in a rougher transition between the clustered and 

unclustered regions due to the less structured boundaries of the refined areas. This can be alleviated 

to an extent by restricting the refinement to the more refined regions of the baseline mesh, reducing 

the skew produced by stretching further spaced cells near the boundary of the computational 

domain. While both methods were tested in the preliminary investigation, the first method, that of 

a region based adaption, was ultimately chosen for the majority of the cases tested. The nature of 

the vorticity based method requires fully developed solutions for each individual case in order to 

create the adapted mesh, followed by the re-running of the simulation with the new mesh. This 

represents a significant investment in computational resources and did not prove feasible for the 

number of cases examined in the subsequent chapter.  

 

 

(a) Unadapted background mesh showing 

location of tip vortices 

(b) Adapted mesh showing the location of 

clustering in tip vortex regions 
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2.9 Summary 

 

 The current chapter discussed the governing equations and numerical methods employed in 

OVERTURNS. Section 2.1 reviewed the governing equations of the flow, the Navier-Stokes 

equations, in their original form before non-dimensionalizing them in Section 2.2. The next section 

discussed the RANS equations, the modifications to the Navier-Stokes equations employed in the 

current work to model the flow solution. After mapping the physical coordinates to the grid 

coordinates, the spatial schemes used to reconstruct the flow variables at cell boundaries were 

discussed. The MUSCL, WENO, and CRWENO schemes were discussed before reviewing the 

second order method used to evaluate viscous fluxes. The Spalart-Allmaras model, along with the 

correction terms, was discussed in Section 2.5.4. This covered the turbulence modeling employed 

by OVERTURNS, as well as the DDES modeling employed to prevent excess turbulence from 

being generated. Meanwhile, the time stepping method, along with the sub-iterations employed to 

improve convergence are reviewed. Initial conditions were employed to begin the simulation, 

while boundary conditions ensure that the finite computational domain successfully mimics the 

expected flow. The implicit hole cutting (IHC) technique was employed to successfully transfer 

information between the overset meshes of the computational domain. MPI parallelization is 

employed to distribute the computations across multiple processors and sub-domains, ensuring 

that the computational load does not exceed the available resources. Finally, the mesh adaption 

routine employed to improve resolution in areas of active flow without additional computational 

expense is presented.   
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Chapter 3. S-76 Rotor Computational Simulations 
 

 

 In the following chapter, the OVERTURNS results of the S-76 rotor blade in hover are given. 

Multiple collective pitches have been investigated for the baseline blade and flow conditions. 

Additionally, the case of 10o collective pitch was chosen to inspect the effects of an altered tip 

shape as well as altered tip Mach numbers. Furthermore, the effects of alterations to the simulation, 

such as different spatial schemes and adapting the mesh, shall be presented. Results are compared 

to the experimental results of Balch et. al21 as well as computational results from the Invited Hover 

Session at Scitech. 

 

3.1. Computational Domain 

 

 The simulations employed an overset mesh system composed of an O-O topology blade mesh 

and a Cartesian wake mesh, as shown below in Figure 3.1. The implicit hole cutting method 

described in Section 2.6 serves to pass information between the meshes composing the 

computational domain. Due to the periodicity of a flow in hover, computational expenses were 

reduced by modeling a single blade and one quarter of the wake rather than modeling the whole 

four bladed system and corresponding wake. Periodic boundary conditions were employed to 

simulate the effects of the remaining blades.  

 

  
 

 

(a) Computational Domain (b) View from behind blade 
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Figure 3.1 S-76 computational domain composed of an overset blade mesh on a Cartesian 

background mesh. The blade is highlighted in red and the background mesh in green 

 

 As Figure 3.1 above demonstrates, X- Y- axes are aligned with the blade mesh rather than the 

background mesh. This was accomplished by simply rotating the background mesh by 45 degrees, 

ensuring that the blade is centered within the domain. Figure 3.1.a shows an isometric view of the 

blade and background mesh, with b-c presenting the vertical and horizontal placements of the 

blade. Figure 3.1.d illustrates the blade mesh topology, as seen from behind and outboard of the 

root. The chordwise planes wrap around the entire blade, overlapping at the trailing edge. 

Meanwhile the spanwise planes extend across the upper and lower surfaces of the blade, meeting 

at the root and tip.  

 

 To reduce computational expense, the simulation of the 4-bladed S-76 was restricted to a single 

blade, employing the rotational periodicity present in the hover condition. This resulted in the 

quarter domain background mesh seen above, covering 90o and a single blade of the total rotor. 

Using the periodic boundary condition described in Section 2.5.7.3, the current work simulated 

the effects of the remaining blades.    

 

 The Cartesian background mesh is composed of 146 x 146 x 204 points, totaling about 3.4 

million points. It extends from -0.04R (rotor radii) to 6.55R in the radial direction, along the Y-

axis of the computational domain. In the chordwise direction, along the X-axis of the domain, the 

mesh extends to 3.3R at the corners both in front of and behind the blade. Vertically, the 

background mesh reaches 3.7R above the blade and -7.2R below the blade. There is no root cut-

out region as would appear in most cylindrical meshes, as it is not necessary to prevent the mesh 

converging to a single point. The mesh is composed of 146 x 146 x 204 points in the X-,Y-, and 

Z- directions respectively. The finest spacing, 0.1c, occurs in a region near the blade, extending 

(c) Top down view (d) O-O mesh topology 
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from the edge of the domain horizontally to 1.3R and vertically from 0.35R to   -1.3R.  Outside of 

this region the cell spacing increases with distance from the blade, leading to a relatively coarse 

spacing of 7.0c near the outer boundaries.  

 

 The blade mesh consists of 293 x 161 x 76 points with an O-O topology, totaling approximately 

3.6 million points. This O-O topology results in a mesh which wraps around the chordwise and 

spanwise directions of the blade surface, extending outwards in an ovoid shape by about 3c at the 

maximum boundaries. The finest spacing along the surface is 0.0001c, occurring at the leading 

and trailing edges of the surface. At the middle of the chord, the spacing increases to a maximum 

of 0.01c at the blade surface. The largest spacing is 0.25c in the normal direction, near the outer 

boundary of the mesh. Figure 3.1.d shows a single chordwise plane overlaid with two spanwise 

planes, one each on the upper and lower surface. The chordwise planes collapse at the root and tip 

to close off the mesh, creating a fully enclosed near-body system.  

 

In addition to the sweep of collective pitch angles tested, the effects of coning were tested at certain 

collective pitch angles. Once the blade was rotated to the given collective pitch, it was rotated 

around a just outboard of the center of rotation by an angle of 3.5o. It was then translated downward 

to ensure that the tip of the coned blade matched the position of the pre-coned surface. Figure 3.2 

below shows the coned blade, green, compared with the original blade, shown in red.  

 

 
Figure 3.2 Blades at 10o collective pitch, with and without coning 
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3.2.  Hover Condition Simulations 

  

 These simulations were performed on the swept-tapered S-76 blades. The baseline blade 

starts to taper at 95% of the rotor radius. This taper includes a 35o degree leading edge sweep 

and taper such that the tip chord is 60% of the root chord and varies linearly along the outer 

5% of the blade. Figure 3.3 below shows the tip regions of the blade, illustrating the region 

where the blade transitions from a straight to tapered configuration. The blade contains a linear 

10o twist which persists along the length of the blade. 

 

 The flow conditions for each run were identical, only changing the collective pitch angle 

between runs. The runs were conducted using the following flow conditions: 

 

 Standard atmosphere and temperature 

 Tip Mach Number = 0.65 

 Reynolds Number = 1.1697 x 106 

 Rotor Rotation = 1483.9 RPM 

 

 The step size employed was a 1/4 o/step, resulting in 1440 iterations per rotor revolution. 

All runs employed the Spalart-Allmaras turbulence model discussed in Section 2.5.4. All 

cases were run until 10 rotor revolutions, at which point the integrated flow values had 

steadied.  At this point in the solution, the starting vortex had convected downstream and the 

rotor wake had fully developed.  
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Figure 3.3 Planform of swept-tapered tip shape for S-76 rotor 

 

3.2.1. 10o Collective Pitch Testing 

 

 Prior to running the full sweep of collective pitches, the author determined the optimal set of 

run conditions and OVERTURNS parameters for the current data set. To accomplish this, the 

swept-tapered blade at a 10o collective pitch setting was chosen as a starting point. This data set 

was chosen because there are many results from other solvers, as well as the experimental data, 

for this setting to verify and compare the results of OVERTURNS to. The current section will 

provide an overview of the initial testing to determine the most appropriate run conditions followed 

by a more detailed analysis of the results for the 10o case using the final configuration.  

 

 The following list details the various run and solver settings which were tested for the current 

work: 

 

 Cylindrical versus Cartesian background mesh 

 4-bladed simulation versus 1-bladed simulation using periodic boundary conditions 

 Unadapted Cartesian background mesh versus pre-adaption of the background mesh in 

regions of expected high vorticity 

 Comparison of three spatial schemes, the 3rd order MUSCL scheme, 5th order WENO 

scheme, and 5th order CRWENO scheme 
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 Farfield boundary conditions at the edges of the computational domain versus sink 

boundary conditions at the edges of the computational domain 

 

 All of these tests were run using the same flow conditions and options in OVERTURNS apart 

from where noted. Each case was run on the Deepthought 2 high performance computing cluster 

run by the University of Maryland, College Park. A few of the different run environments 

produced significant changes in run time, which was measured by wall clock and not total 

computing time across all nodes.  

 

3.2.1.1. Cylindrical and Cartesian Background Mesh  

 

 The first priority in the current work was to decide on the type of background mesh to employ. 

The two options reviewed by the author were a cylindrical background mesh, as shown below in 

Figure 3.4, or a Cartesian style mesh, as shown previously in Figure 3.1 and below. The Cartesian 

mesh contains 146 x 146 x 208 points for a total of approximately 3.4 million mesh points while 

the cylindrical mesh consists of 140 x 235 x 220 mesh points totaling 7.2 million nodes. As 

discussed in the previous section, the Cartesian mesh extends a total of 6.55R in the radial 

direction, 3.3R in front of and behind the blade, 3.7R above the blade, and -7.2R below the blade. 

Meanwhile, the cylindrical mesh covers an arc of 90o with the blade at the center, extending in the 

radial direction out to 4.0R, 3.0R above the rotor plane, and -4.5R below the rotor plane. The 

Cartesian mesh offers a finest spacing of 0.1c in the clustered regions near and below the root and 

tip. The cylindrical mesh is also refined near the root and tip regions to a spacing of 0.02c, though 

this fine spacing does not extend as far from the blade as the finest region of the Cartesian mesh.  

 

 While the cylindrical mesh provides a more refined mesh in the finest region, it presented a 

number of issues compared with the Cartesian topology. The cylindrical mesh covers a smaller 

area than the Cartesian mesh while containing more than double the number of nodes. The 

computational domain could be increased without sacrificing resolution by adding more points to 

the mesh, but this has the potential to increase the computational load beyond what the available 

resources can support. Alternatively, resolution could be sacrificed to expand the computational 

domain without increasing the number of points, though this leads to issues with cell size. As one 

moves away from the refined region, the size of the cells increases rapidly, with the largest cells 

occurring at the edges of the domain. Figure 3.4.b shows this in the vertical direction, where the 

cylindrical mesh sees a more rapid increase in spacing than the corresponding region of the 

Cartesian mesh. A decrease in resolution may exacerbate this problem, threatening the stability of 

the solution.  
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Figure 3.4 Comparison of the tested Cartesian (top images) and cylindrical (bottom images) 

background meshes, showing the position of the blade mesh in each domain 

 

 Cases were run on both meshes, using the same run conditions apart from the background 

meshes and corresponding changes to connectivity and boundary conditions. The results after 10 

(a) Outboard view of Cartesian (top) and cylindrical 

(bottom) meshes 

(b) View from behind the blade, showing a 

spanwise plane of the background mesh 

(c) View from above the blade, showing a horizontal 

plane of the background mesh 
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rotor revolutions are presented as follows. Table 3.1 below compares the integrated forces results 

for the same rotor conditions after 10 revolutions.  

 

 Cylindrical 

Background Mesh 

Cartesian 

Background Mesh 

Experimental Values 

(θ = 9.8o) 

Largest Percent 

Difference (%) 

CT 0.0061558 0.0065121 0.00649  5.15 

CQ 0.00062325 0.00064072 0.00054 18.7 

FM 0.54796 0.57996 0.68467 20.0 

Table 3.1 Comparison of integrated forces values between cylindrical and Cartesian background 

cases and measured values 

 

 Table 3.1 shows the predicted integrated thrust and power values, as well as the corresponding 

Figure of Merit of the current case, compared to the nearest available experimental values. The 

rightmost column compares the largest difference between the computational and experimental 

results, not necessarily the difference between the computational setup that was chosen for further 

testing and the experimental results. The computed integrated forces values are close to one 

another, with the largest difference resulting from the thrust value and carrying over to the FM 

measurement. These baseline results demonstrate that both background meshes produce similar 

results when looking at the performance metrics of the rotor and stability of the solution. Both 

solutions over predict the power requirements when compared with experimental values, leading 

to an under prediction of FM. The cylindrical mesh predicts a lower value, but the Cartesian 

solution has still under predicted FM. This under prediction is discussed further in the collective 

sweep and conclusion section of the current work. Now one may examine the flow fields seen in 

each case to determine which background mesh is suitable for the current work.  

 

 Figure 3.5 below shows a comparison of the flow fields, visualized using vorticity magnitude, 

after 10 rotor revolutions. The spanwise slice shows a range of vorticity magnitudes from 0 to 0.1 

while the iso-surfaces below trace the areas with a vorticity magnitude of 0.1. Comparing the two 

results, one can see that the cylindrical mesh has not preserved the vortices as well as the Cartesian 

mesh. Figure 3.5.a shows that two rotor passages have been clearly preserved, with the third 

passage being smeared out. Meanwhile, Figure 3.5.b shows five passages, each distinct from the 

others and more coherent than those seen in the cylindrical results. This is a result of the more 

rapid loss of resolution in the cylindrical mesh when compared with the Cartesian mesh. The 

vortices remain stable in the fine region, yet as they propagate downward the mesh becomes too 

coarse to maintain these structures and the vortices collapse as a result.  
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Figure 3.5 10 rotor revolution flow fields for the swept-tapered blade at 10o collective pitch 

 

 Comparing the two potential background meshes, the current author determined that the 

Cartesian mesh was better suited to the current work. Both meshes produced comparable integrated 

forces results as well as converging to the same order of magnitude, indicating similar stability. 

However, the two meshes deviated in the flow fields they produced. The cylindrical mesh did not 

capture as many rotor passages as the Cartesian mesh, nor did it maintain the same stable vortices. 

Despite these differences, the blade forces were similar in each solution because the flow in the 

rotor wake does not affect the near-body flow of the blade to a large extent. Because one of the 

stated goals of the current work is to improve vortex capturing, the Cartesian mesh was chosen for 

use in further testing.  

 

3.2.1.2. 4-Bladed Simulation versus 1-Bladed Simulation 

 

 Following the choice of the Cartesian mesh for the current work, the decision had to be made 

whether to run a full 4-bladed simulation with no periodic boundary conditions or a 1-bladed 

simulation using periodic boundary conditions to simulate the remaining blades. The full 

background mesh, suitable for all 4 blades, was created first and the 1-bladed background mesh 

was created by partitioning the full background mesh into quarters. Meanwhile, the same blade 

mesh was used to create all 4 blades, simply rotating the mesh as needed to properly position the 

blades. Figure 3.6 below shows the original 4-bladed domain in red with the blades positioned near 

the center at 90o to each other. The smaller, green region denotes the domain employed when only 

simulating a single blade. In this case, the quarter background mesh was rotated by 45o to align 

the blade with the center of the background mesh. The reason for rotating the background mesh 

rather than the blade mesh was to keep the blade mesh aligned with the Y-axis for ease of reference.  

 

(a) Cylindrical background mesh (b) Cartesian background mesh 
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Figure 3.6 Overlay of full computational domain as well as the quarter domain used for 

simulating only one blade 

 

 The 4-bladed simulation presents a far greater computational requirement than the 

corresponding 1-bladed simulation employing periodic boundary conditions. As there are three 

additional blades being simulated, the number of points from just the blade meshes has quadrupled 

from 3.6 million points to 14.2 million points, larger than the total domain for the 1-bladed 

simulation which totals 7 million points. Meanwhile, the size of the background mesh has nearly 

doubled in both horizontal directions, comprising 285 x 285 x 204 nodes for a total of 16.6 million 

mesh points.  Therefore, the computational domain for a 4-bladed simulation totals 30.8 million 

points, more than four times the size of the 1-bladed working space.  

 

 The larger computational domain requires a corresponding increase in computational resources. 

The quarter domain cases were run across 40 cores on the Deepthought 2 cluster, with both the 

blade and background meshes split into 20 partitions. To achieve subdomains of comparable size 

to those of the quarter domain, the full domain was split into 100 partitions, with the blades split 

into 12 larger partitions per blade and the background mesh employing the remaining 52 nodes. 

The HPC cluster contains 20 cores per node and allocates the entirety of a node to a job, hence the 

desire to restrict the subdivisions to multiples of twenty. The subdomains of both the quarter and 

full background meshes were similar in number of points, meaning that there was not a large 

difference in computational time between the two cases. However, the full domain used five times 

the number of CPU hours that the quarter domain employs, which presented a problem given the 
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finite resources available to the current author. Thus, the quarter domain was chosen to conduct 

further runs by ensuring that the maximum number of tests could be performed.  

 

3.2.1.3. Unadapted Cartesian Background Mesh versus Pre-adapted Mesh 

 

 Once the 1-bladed, Cartesian background mesh was chosen for testing, the final parameters of 

the mesh had to be decided upon. The outer boundaries of the mesh had already been determined 

to ensure that the farfield boundaries would not interfere with the simulation. To accomplish this 

without an unreasonable number of nodes the mesh becomes less refined as the boundary is 

approached, with the greatest refinement found near the rotor blade. This is in keeping with CFD 

conventions and is not unexpected when working with structured meshes. It was the near-body 

region, the finer regions visible in Figure 3.1, where the majority of the turbulent flow occurs 

which presented an opportunity for improvement.  

 

 To improve the quality of the solution, the current author decided to cluster the mesh in the 

regions of expected high vorticity, creating a pre-adapted mesh on which to compute the solution. 

As stated earlier in the work, the goal of the alteration was to improve mesh resolution in certain 

regions without adding additional points to the computational domain. To achieve this, the mesh 

adaption routine discussed in Section 2.8 was altered to modify a chosen region, rather than 

identifying and altering regions of high vorticity. Figure 3.7 below shows a comparison of the 

unadapted and adapted Cartesian meshes, with the two further refined regions visible near the root 

and tip of the blade. The left-hand images illustrate the change in vertical spacing of the 

background mesh while the right-hand images show the radial change.  

 

 
 

Figure 3.7 Comparison of Cartesian background meshes before and after further clustering near 

the root and tip  

 

(a) View from behind the blade (b) View from above the blade 



73 

 

 The near tip region extends from 10c to 22c in the radial direction and from 4c above the blade 

to 16c below it, as seen above. The smaller region near the root covers only 2c to 5c in the radial 

direction and -1.6c to 1.6c in the vertical direction. In both regions the mesh is clustered to half 

the spacing of the unclustered region. The current work uses an adapted mesh created from the 

quarter domain shown in Figure 3.6 but the method is just as easily applied to the 4-bladed domain. 

Note that this version of the background mesh is identical to that presented above in Section 3.2.1.1 

in addition to being the final choice when running the collective sweep of the rotor.  

 

 The advantage of the pre-adaption is that it does not require an existing solution to create a finer 

mesh, only a prediction as to where the majority of flow structures will appear. The finer resolution 

is accomplished by stretching the mesh in other locations, necessitating careful monitoring of the 

process to ensure the mesh is not rendered unusable elsewhere in the domain. Here the region 

based adaption has an advantage over the source based results. The large, continuous regions 

provide a smoother transition from the unclustered to clustered regions than the small, scattered 

regions such as the example in Figure 2.7. Hence, the mesh remains closer to its original layout, 

reducing the possibility of resulting errors in the solution.  

 

 The current author chose to first test this adapted mesh against the unadapted Cartesian mesh, 

using the same test conditions discussed previously. Table 3.2 below presents the integrated forces 

after 10 rotor revolutions. As seen when comparing the cylindrical and Cartesian meshes 

previously, there is not a large gap in predicted performance between the two meshes. The 

computational integrated thrust and power values differ by just under 5%. Again the computational 

results over predict the power requirement and will be discussed further in later sections.  

 

 Unadapted Cartesian 

Background Mesh  

Adapted Cartesian 

Background Mesh 

Experimental Values 

(θ = 9.8o) 

Largest Percent 

Difference (%) 

CT 0.0068380 0.0065121 0.00649  5.36 

CQ 0.00067129 0.00064072 0.00054 24.31 

FM 0.59562 0.57996 0.68467 15.29 

Table 3.2 Comparison of integrated forces values between original Cartesian and adapted 

Cartesian background cases and measured values 

 

 Figure 3.8 below shows the corresponding flow fields for this test. As with the previous cases 

the solution is presented below at 10 rotor revolutions, showing a spanwise slice with vorticity 

magnitude contours as well as an iso-surface tracing the regions with a strength of 0.1. Observing 

the spanwise slice, one can see that even the unadapted Cartesian mesh captures the wake better 

than the cylindrical mesh seen in Section 3.2.1.1. Both of these meshes have preserved multiple 

blade passages of the tip vortex and capture the structure of the wake. The root behavior shows a 

larger difference, with the unadapted mesh showing regions of higher vorticity than the clustered 
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case but lacking the high-vorticity regions near the center of rotation. While the flow near the root 

has changed, the flow near the blade tip illustrates the change between each case.  

 

 
 

Figure 3.8 Flow fields of the unadapted and adapted Cartesian meshes at 10 rotor revolutions  

 

 The flow near the tip provides a clearer difference between the two meshes. Viewing the 

spanwise slices, one can see that the vortices in the adapted background mesh are larger and have 

convected downwards slightly further than those in the unadapted mesh. Furthermore, the iso-

surfaces show that the vortices in the adapted case are stronger than those in their unadapted 

counterpart. The contraction of the adapted case is also more pronounced than that of the unadapted 

mesh, as seen in the location of the vortex cores in the spanwise slices.  

 

 The two background meshes tested here produced comparable rotor performance values but 

differed in the preservation of the rotor wake. The unadapted mesh saw quicker deterioration of 

the wake, as evidenced by the reduced number of blade passages displayed by the iso-surface 

visualization. Furthermore, the adapted mesh better shows the contraction present in the rotor 

wake. The results of this section mirror those seen when comparing the cylindrical and Cartesian 

background meshes, in which both produce similar blade forces but differ in the preservation of 

the rotor wake. In accordance with the goals of the current work, the accurate modeling of the rotor 

wake is of utmost importance and so the adapted Cartesian mesh was chosen to be employed in 

further testing. 

 

 

 

 

 

 

 

(a) Unadapted Cartesian mesh  (b) Adapted Cartesian mesh 
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3.2.1.4. Comparison of Spatial Schemes 

 

Having finalized the computational domain, the current author determined which of the 

available reconstruction schemes in OVERTURNS was best suited to the current work. These 

numerical schemes govern the convection of flow variables from cell to cell within the 

computational domain. OVERTURNS contained the MUSCL and WENO schemes previously and 

the current author added the CRWENO scheme to the current version of the program. Section 2.5.1 

discussed each of these schemes in detail, so the current section will focus on the testing and 

performance differences between each method.  

 

As with the previous tests, each scheme was tested on the computational domain discussed 

above and run to 10 rotor revolutions before comparing the results of each case. The MUSCL 

scheme, a three point scheme providing third order accuracy in regions of smooth flow and 

decreasing to first order in the presence of discontinuities, served as the starting scheme. By 

averaging cell values from each stencil point, the interface values are calculated. Meanwhile the 

WENO and CRWENO schemes are fifth order schemes, employing additional points and using a 

weighted approach when averaging the flux values. Both schemes provide fifth order accuracy in 

smooth regions which is reduced to third order accuracy in regions with discontinuities. The 

compact version employs compact, lower-order stencils to calculate the weight terms, whereas the 

non-compact method calculates the weights directly using higher order terms.   

 

 Table 3.3 below compares the results between each scheme, using identical testing conditions 

apart from the scheme employed and run to 10 rotor revolutions. As with the previous tests, the 

integrated forces do not change a great deal between runs. Each algorithm produces comparable 

thrust and power values, with the largest difference in computational results being slightly more 

than 2%. Each computational case over predicts power requirements, leading to an under 

prediction of FM as seen before. Finally, the run time of the solution using each method was 

compared, with the wall time increasing along with the complexity of the method. Given the 

additional calculations necessary for the higher order methods, this was an expected outcome and 

did not prohibitively increase the required resources.   
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 MUSCL WENO CRWENO Experimental 

Values (θ = 9.8o) 

Largest 

Percent 

Difference 

(%) 

CT 0.006599 0.0064550 0.0065121 0.00649  1.68 

CQ 0.00064263 0.00063218 0.00064072 0.00054 19.01 

FM 0.58984 0.58008 0.57996 0.68467 15.29 

Wall 

time/rev 

(hrs.) 

4.25 5.00  5.5    

Table 3.3 Comparison of integrated forces values between three spatial schemes and measured 

values 

 

 Figure 3.9 below shows a spanwise slice and iso-surface trace of the vorticity magnitude at 10 

rotor revolutions. Figure 3.9.a shows the result of the 3rd order MUSCL scheme, 3.9.b shows the 

5th order WENO scheme flow, and finally 3.9.c visualizes the solution attained with the 5th order 

CRWENO scheme. There is a significant difference between the MUSCL scheme and the two 5th 

order schemes, as evidenced in 3.9.a. The spanwise slice shows that the vortex strength has quickly 

dissipated, maintaining very few blade passages yet maintaining a large yet dissipated vortex 

structure at the bottom of the wake. The iso-surface supports this, showing only two passages 

below the rotor plane which maintain a strength of 0.1 or greater. The two 5th order solutions, b 

and c, show much more agreement and more preservation of the vortex structures. The WENO 

solution shows significantly more behavior inboard of the root, which may slow the stabilization 

of the solution. Meanwhile, in the tip region both schemes show a clear wake structure, though the 

CRWENO case has convected further downward and shows slightly more curvature than the 

WENO result.   

 

 
 (a) MUSCL scheme (b) WENO scheme  
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Figure 3.9 Flow fields of three separate numerical algorithms after 10 rotor revolutions, tested 

under identical conditions  

 

 Having viewed the numerical and flow field results of each scheme, one was chosen for use in 

further testing. All three showed good agreement of predicted blade forces, so these results did not 

affect the decision of which scheme to employ. The higher order methods necessitated an increase 

in run time but did not increase computational requirements enough to make using the WENO or 

CRWENO schemes unfeasible. The flow fields showed a significant gap in the preserved rotor 

wake between the third order MUSCL scheme and both fifth order schemes. As one of the primary 

goals of the current work is the resolution of the wake structure, the MUSCL scheme was discarded 

as an option for the current work. The more chaotic flow inboard of the root present in the WENO 

solution, as well as the slightly more smeared out vortex cores present in the rotor wake, resulted 

in the CRWENO algorithm being chosen to conduct the full range of testing with.  

 

3.2.1.5. Comparison of Farfield and Sink Boundary Conditions  

 

 The final parameter to test before conducting a full sweep of pitches were the boundary 

conditions employed at the edges of the computational domain. Section 2.5.6 discusses the 

boundary conditions present in OVERTURNS and Figure 2.3 is presented again below to aid in 

the current discussion. All of the boundary conditions within the blade mesh are unchanging, with 

only a single correct condition for each boundary location. The blade surface itself is defined as a 

solid surface, the overlapping points at the trailing edge use periodic conditions, and the outermost 

boundary uses a farfield boundary, receiving information from the background mesh. Meanwhile, 

the background mesh also contains some boundaries with set conditions but also provides the 

option to alter parts of the outer boundary. The overset boundary connects the background mesh 

to the blade mesh while the periodic boundaries transmit the information from one inner boundary 

to the other and simulate the results of the remaining blades. The bottom boundary of the 

(c) CRWENO scheme   
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computational domain, visible in 3.9.c, may be assigned as either a farfield boundary or a sink 

boundary.  

 

 
(a) 2-D cross-cut of blade mesh at mid-span      (b) Top-down view of computational domain   

 

 
(c) Side view of blade and background meshes 

 

Figure 3.10  An example of the blade and background meshes comprising the computational 

domain and the respective boundary conditions (Duplicate of Figure 2.3)  

 

 As discussed in Section 2.5.6.2, the sink boundary condition is designed to smooth the flow by 

drawing some of the initial flow downwards out of the computational domain. The startup of the 

rotor creates a large starting vortex which propagates downward, and parts of which may roll up 

back into the plane of the rotor and disrupt the near-body flow. The strong turbulent flow from the 

start up vortex should merge with the region of downward flow created by the sink condition, 



79 

 

drawing it out of the computational domain. The sink condition requires a CT value to gauge the 

strength of the boundary, so the value of 0.063 from the experimental data of Balch et. al21 was 

used. Apart from the alteration to the lower boundary the parameters of each run were identical 

and the results after 10 rotor revolutions are presented below. 

 

 Table 3.4 below presents the integrated forces and attained from the current cases. The 

computational thrust and power coefficients are very close to one another, differing by less than 

one percent. As a result, the predicted Figure of Merit values are also very similar, indicating that 

the sink has not affected the blade forces by any significant amount. Meanwhile the relation to the 

experimental values match the previous over prediction of power requirements. Overall, these 

results demonstrate that the sink condition has not greatly affected the flow near the blade, as the 

altered flow from the boundary has not propagated far upwards into the flow.  

 

 Farfield Boundary  Sink Boundary Experimental 

Values (θ = 

9.8o) 

Largest 

Percent 

Difference 

(%) 

CT 0.0065121 0.0065689 0.00649  1.22 

CQ 0.00064072 0.00064338 0.00054 19.14 

FM 0.57996 0.58513 0.68467 15.29 

Table 3.4 Comparison of integrated forces values between standard farfield boundary conditions 

and the sink boundary condition at the bottom of the computational domain and measured values 

 

 Figure 3.11 below shows the flow field under both boundary conditions. Both the spanwise 

slice and the iso-surface traces show a similar pattern. The tip vortices of each are distinct and 

follow the contraction expected from a rotor wake. The main difference is the vertical convection 

of the vortices, with the spanwise slice showing that the coherent structure of the farfield case has 

moved further downward than that of the sink case. In both instances, the starting vortex has moved 

beyond the current frame, as with the previous cases. To study the difference between these results 

further, a view of the domain nearer to the lower boundary is necessary.  
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Figure 3.11 Flow under sink and farfield conditions at the lower boundary of the computational 

domain  

 

Figure 3.12 below shows a spanwise slice of the computational domain from the rotor blade to the 

lower boundary. The rotor blade is located just under the label, with the rotor vortex visible below 

it. Again it can be seen that there is not a significant difference in the flow near the blade and the 

resulting wake. Meanwhile near the lower boundary there is a thin region of turbulent flow at the 

edge of the sink condition. This region results from the downward flow caused by the sink 

boundary and the surrounding flow which is largely stationary. This is illustrated further in Figure 

3.13.  

 

 
 

Figure 3.12 Zoomed out view of a spanwise slice illustrated with vorticity magnitude contours, 

showing the lower boundary of the domain 

 

 Figure 3.13 highlights the same region as the previous image but using a vertical momentum 

contour plot rather than the vorticity magnitude employed above. The wake is visible as a series 

(a) Sink Boundary   (b) Farfield Boundary   

(a) Sink Boundary   (b) Farfield Boundary   
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of stronger flows located in the region of the downwash of the rotor. The starting vortex is visible 

as a slight upward flow located outboard of the lowest point in the rotor wake. Again there is not 

a large difference between the cases, with the exception appearing at the bottom of the domain. 

Here the extent of the sink condition, as well as the effect on the region above it, is clearly visible. 

Also apparent is the border of the downwash region created by the sink and the surrounding 

stationary fluid, resulting in the thin region of vorticity above.  

 

 
 

Figure 3.13 The same view and cross-section as above, but visualized using vertical momentum  

 

 The integrated forces as well as the flow fields presented above indicate that the sink boundary 

condition did not have a significant impact on the flow near the rotor and the wake. The rotor wake 

does show varying levels of vertical convection between the cases, but these differences are not 

large enough to meaningfully affect the flow. Furthermore, the main portion of the wake does not 

come into direct contact with the region affected by the sink, as evidenced by Figures 3.12 and 

3.13. This may be altered by reducing the size of the computational domain, bringing the sink 

closer to the wake, but care would have to be taken to not warp the wake itself and create a non-

physical condition in the flow. As the current iteration of the sink boundary has not produced 

significant alterations in the solution, the current author chose to use the farfield boundary 

conditions when conducting further tests.  

 

3.2.2. Sweep of Collective Pitches Using Swept-Tapered Tip Blade 

 

 The experimental results of Balch et. al21 are presented here as a comparison to the 

computational results of the current work. Balch et. al primarily studied the effects of 

rotor/fuselage and main rotor/tail rotor interference using model scale testing at the Sikorsky 

Aircraft Model Rotor Hover Facility. The isolated rotor tests were conducted, both in and out of 

ground effect, to provide a baseline for their measurements. It is the out of ground effect (OGE) 

tests of the isolated S-76 rotor that the Invited Hover Session and the current work has chosen as 

(a) Sink Boundary   (b) Farfield Boundary   
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a point of reference. The experimental study positioned the rotor at a height of 3.0 Z/R to simulate 

OGE while the current work ensured the farfield boundaries of the computational domain were far 

enough from the rotor to ensure no interference.  

 

 The full sweep of collective pitches was run following testing using the baseline 10o collective 

case. As discussed in the previous section, a number of features and alterations to OVERTURNS 

were tested using this case before running the sweep of collective pitches with the final 

configuration of the program. All runs employed coned blade meshes using an O-O topology and 

Cartesian background mesh with clustering near the root and tip as shown in Figure 2.8. The solver 

employs the 5th order CRWENO spatial scheme and 2nd order BDF2 time method with an LUSGS 

approximation method. SA Turbulence modeling, with the addition of the DDES method 

developed by Spalart et. al37-39, ensured accurate turbulent modeling. Farfield conditions are 

employed at the outer boundaries of the computational domain as described in Section 2.5.7.1.  

 

 The results of the collective sweep are presented in the following pages. Each case was run to 

10 rotor revolutions, at which point the integrated forces and flow fields were extracted. The wall 

time was approximately 5 ½ hours per rotor revolution, resulting in total run times of just over two 

days. First the integrated thrust and power results, along with Figure of Merit, are compared with 

the experimental results reproduced from Balch et. al21. Next an example of the flow fields, 

visualized using the vorticity magnitudes, is presented.  

 

 Figure 3.14 below shows the integrated coefficient of thrust values generated by OVERTURNS 

as they compare to the experimental results of Balch et. al21. There is a high degree of correlation 

between the swept-tapered tip results, with the computational and measured values with the largest 

difference less than 5% at the lowest tested collective pitch while most values differ by only 1-2%. 

In all subsequent figures the experimental data is denoted by blue x’s while the computational data 

is represented using red o’s connected with a solid line.   
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Figure 3.14 Integrated thrust values over a range of collective pitch angles for swept-tapered tip  

 

 Figure 3.15 below presents the corresponding integrated coefficient of power values over the 

same range of collective pitches. Here there is a larger divergence between computational and 

experimental results, with OVERTURNS over predicting the power requirements for the given 

sweep of pitches by as much as 18%. The swept-tapered tip case sees consistent over prediction, 

matching the trend of the experimental data. The cause of the consistent over estimation of the 

power requirement is still under investigation and meanwhile the shared trends of each set of 

results is explored further. It is likely that the modeling of the near blade transition and turbulent 

regions is the cause of the problem, as this would explain the good agreement in thrust but over 

prediction of power requirements.  

 
Figure 3.15 Integrated power values over a range of collective pitch angles for swept-tapered tip  



84 

 

 

 While the trend of the computed and experimental power values match the actual values are 

offset from one another. Therefore, to better illustrate the shared trends between the data sets, a 

modification was added to the computational power requirements. First, a quadratic regression of 

both data sets was taken, to acquire a best fit function for each data set. These functions are 

presented below as,  

 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝐷𝑎𝑡𝑎:     𝐶𝑄 = 0.0001(0.0481𝜃2 − 0.0266𝜃 + 0.9974)     (3.1) 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑎𝑡𝑎:   𝐶𝑄 = 0.001(0.0058𝜃2 − 0.0154𝜃 + 0.2133)     (3.2) 

 

Knowing the best fit functions for both data sets, the computational data was re-plotted using the 

offset present in the experimental equation, Eq. (3.1). Figure 3.16 below shows this modified 

comparison. This image makes the shared trend between each data set more apparent, with the 

modified computational and experimental data showing very similar behavior.  

 

 
Figure 3.16 Modified integrated power values, with the best fit computational data displayed in 

green  

 

 Figure 3.17 below shows the Figure of Merit, or lifting efficiency of the rotor, for the sweep of 

collective pitch angles. Due to the over prediction of power requirements shown above, the figure 

of merit is consistently under predicted by OVERTURNS. Due to the accurate thrust values, and 

consistency of the predicted power, the correct trends are captured despite the decreased 

performance calculations. Below this, Figure 3.18 presents the modified FM, based on the 

modified coefficient of power presented above. Due to the lower power requirements seen above 

the FM is higher than that of the experimental predictions, trend predicted by the best fit function 

remains close to that of the experimental data.  
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Figure 3.17 Figure of Merit values over a range of integrated thrust results for swept-tapered tip 

 

 
Figure 3.18 Figure of Merit values for collective sweep including the best fit data 

 

 Figure 3.19 below compares the integrated thrust and power coefficients predicted by 

OVERTURNS to the experimental values. The power requirements for a given level of thrust are 

overestimated, due to the inflated values seen in Figure 3.15. As when observing the thrust and 

power coefficients independently, the computational data matches the experimental trend despite 

higher magnitudes for the power requirements. Meanwhile, Figure 3.20 adds the modified data 

set, and the overlap with the experimental trend is evident.  

 



86 

 

 
Figure 3.19 Integrated thrust values over a range of integrated power results for swept-tapered tip  

 

 
Figure 3.20 Integrated thrust values over a range of integrated power values with the addition of 

the modified best fit values 

 

 The following section displays the flow fields after 10 rotor revolutions visualized using 

Tecplot. All figures consist of two images, with the top displaying a slice located at the mid-chord 

of the rotor, extending spanwise past the tip to the edge of the computational domain. This slice 

shows the vorticity magnitude of the flow, on a scale from 0 to 0.1. The bottom image shows an 

iso-surface visualization of a vorticity magnitude of 0.1. In the subsequent images, the starting 

vortex of the rotor has convected well below the plane of the rotor and out of the frame of view.  
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 Figure 3.21 below shows the flow at a collective pitch of 4o. Here the vortices below the plane 

of the rotor are not very powerful. While maintaining the helical shape and contraction expected 

of a rotor in hover, the strength of the vortices is low when compared to higher angles of attack.  

 

 
Figure 3.21 Flow field of 4o collective pitch results. Top image: Vorticity magnitude in the 

spanwise plane of the rotor; Bottom image: Iso-surface at a vorticity magnitude of 0.1 

 

 Figure 3.22 visualizes the flow at 6o. As seen in the spanwise slice, the vortices have increased 

in strength. While not yet strong enough to record multiple passes of the vortex in the iso-surface 

visualization, traces of the first blade passages have started to appear.  

 

 

 
Figure 3.22 Flow field of 6o collective pitch results. Top image: Vorticity magnitude in the 

spanwise plane of the rotor; Bottom image: Iso-surface at a vorticity magnitude of 0.1 
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 Figure 3.23 presents the results at 8o. Consistent with the previous results, the vortices have 

strengthened further, now clearly visible as iso-surfaces with a magnitude of 0.1. The first passages 

of the rotor are well preserved, and the full structure of the vortex is visible. As expected, the 

vorticity near the root is far weaker than at the tip, though traces are visible below the root. 

 

 
Figure 3.23 Flow field of 8o collective pitch results. Top image: Vorticity magnitude in the 

spanwise plane of the rotor; Bottom image: Iso-surface at a vorticity magnitude of 0.1 

 

 The 9o collective pitch flow field is presented below in Figure 3.24. As the spanwise slice 

shows, the vortices have grown in size, though the difference between the 8o and 9o wakes is less 

pronounced than that between 8o and 6o cases. Meanwhile, the iso-surfaces have thickened, 

demonstrating not only that the strength of the vortices has increased, but that the regions of high 

vorticity have increased. The behavior at the root remains comparatively weak and does not show 

the same clear structure that the tip vortices form.  
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Figure 3.24 Flow field of 9o collective pitch results. Top image: Vorticity magnitude in the 

spanwise plane of the rotor; Bottom image: Iso-surface at a vorticity magnitude of 0.1 

 

 Figure 3.25 shows the continued trend of strong tip vortices at 10o highlighted by the iso-

surfaces below. The vortices further downstream have grown slightly while those further upstream 

have changed slightly from the previous results but again there is not a significant difference 

induced by the 1o difference with the previous case. The root behavior remains chaotic and weaker 

than the flow near the tip.  

 

 
Figure 3.25 Flow field of 10o collective pitch results. Top image: Vorticity magnitude in the 

spanwise plane of the rotor; Bottom image: Iso-surface at a vorticity magnitude of 0.1 
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 The last case, an 11o collective pitch, is presented below in Figure 3.26. In this flow region the 

airfoil is approaching stall and beginning to lose efficiency, as seen in Figure 3.16. Meanwhile the 

wake retains its helical shape but has started to lose coherency, with the vortex contraction showing 

a more erratic path. The vorticity magnitude remains high, indicating that regions of turbulent flow 

remain into this higher angle of attack.  

 

 
Figure 3.26 Flow field of 11o collective pitch results. Top images: Vorticity magnitude in the 

spanwise plane of the rotor; Bottom images: Iso-surface at a vorticity magnitude of 0.1 

 

 Having reviewed the flow fields at the full range of collective sweeps, a few conclusions may 

be reached. Firstly, the strength of the tip vortices steadily increased as the angle of attack 

increased, indicated by the spanwise slices and the increase in high vorticity regions traced by the 

iso-surfaces. While the Figure of Merit does level out at the higher collective pitches, the rotor has 

not yet entered the fully stalled region. This is evidenced by the collective thrust and power values 

seen in Figures 3.14 and 3.15. Furthermore it is clear that OVERTURNS has preserved the rotor 

wake across all collective pitches, allowing for observation of the changes in the rotor wake as a 

result of the altered pitch. Having reviewed the sweep of collective pitches, the 10o case was chosen 

for greater analysis in the following section.  

 

3.2.3.  Detailed Results From Selected Collective Pitch  

 

 The previous sections examined the integrated forces on the blades as well as the flow fields 

for a range of collective pitches. The current section expands on the results presented beforehand, 

focusing on a single collective pitch. As when testing various parameters of the simulation to attain 

the optimal configuration, the 10o collective pitch case was chosen for further analysis. By 
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restricting this section to a single case, more detailed results such as chordwise pressure 

distribution, sectional loading, and near-body vortices may be examined.  

 

 Figure 3.27 below shows the chordwise pressure distribution at a range of spanwise locations. 

Ranging from r/R = 0.5 to 0.99, the growing pressure loading as one moves outward along the 

blade is apparent, along with the dip in loading due to tip loss seen in 3.27.c. The largest 

distribution is seen in 3.27.f, at r/R = 0.975 before falling slightly at the very tip of the blade, 

corresponding with the expected behavior of a flow over a rotor blade.   

(a) r/R = 0.5 (b) r/R = 0.75 

(c) r/R = 0.85 (d) r/R = 0.90 



92 

 

 
 

Figure 3.27 Non-dimensional Coefficient of Pressure distribution at selected spanwise locations 

 

 Figure 3.28 below shows the corresponding sectional thrust distribution over the blade. Again 

the distribution behaves as expected, strengthening as the outer portion of the blade is approached 

before dipping, peaking, and falling off at the edge of the blade. This corresponds with the pressure 

distributions seen above, and provides further insight into the predicted behavior near the surface 

of the rotor blade.  

 

 Figure 3.29 presents the corresponding sectional torque coefficient for the 10o case. As expected 

the torque steadily increases from the root through the mid-span of the blade, before changing 

drastically along the outer 10% of the blade. As with the sectional thrust, there is a small trough 

before a large peak, though in this case the peaks and troughs are sharper than those of the thrust 

values. The discontinuity just past r/R = 1 results from the rounded tip used to close the blade 

(e) r/R = 0.95 (f) r/R = 0.975 

(g) r/R = 0.99 
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mesh, in which the adjacent mesh points are very close to one another,  and does not adversely 

affect the rest of the span.  

 

 
Figure 3.28 Sectional thrust coefficient as a function of spanwise location 
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Figure 3.29 Sectional torque coefficient as a function of spanwise location 

 

 The previous discussion focused on the integrated forces over the blade, specifically the 

coefficient of pressure distribution over the chord and the sectional thrust and torque coefficients 

along the span of the blade. In addition to reviewing the forces on the blade, it is useful to visualize 

the near-body flow. These results correspond directly with the data seen above and drives the rest 

of the flow field, primarily the wake created by the rotor blades. The following paragraphs present 

the near-body flow as well as a discussion of the images presented in Figure 3.30. 

 

 Figure 3.30 below shows the vorticity contours near the body of the rotor blade. The images 

show a series of 8 slices, beginning at the leading edge of the blade and spaced 0.2 c apart. The 

magnitude of the vorticity values displayed here is greater than in previous images to ensure a 

clear image, with values smaller than 1 being blanked out. Figure 3.30.a shows the view from 

behind the blade, slightly outboard of the tip to allow clear images of the growing vorticity 

contours. Meanwhile, 3.30.b provides a spanwise view of the blade, demonstrating the 

strengthening vortex sheet along and behind the mid-span of the blade.  
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Figure 3.30 Contour plots of vorticity magnitude near the blade 

 

(a) View from behind the TE 

(b) View from outboard of the blade tip 
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 Both images demonstrate the large region of higher vorticity flow present at the transition from 

the rectangular cross-section of the inner 95% of the blade to the swept-tapered blade tip. Near the 

LE of the blade there is no apparent jump but closer to the TE and behind the blade it is clear that 

the transition has produced a significant vortex structure. In addition to the chaotic near-body flow 

seen above, the tip vortices which define the rotor wake represent another region which has a large 

effect on the flow field.  

 

 The tip vortices consist of regions of turbulent flow generated at the tips of the rotor blades, 

propagating out behind the blade and downward to form the helical rotor wake seen in hover. The 

current work tracked the wake trajectory for the 10o collective pitch case and the contraction and 

descent rates are presented below. However, first a brief discussion of the tracking method used is 

presented.  

 

 The tracking method employed in the current work calculates the vorticity of each point in the 

domain as seen below in Figure 3.31. As expected the shape of the wake and regions of higher 

vorticity follow the same pattern as the vorticity magnitude and iso-surfaces presented in Figure 

3.25. Choosing the TE of the blade tip as the starting point, the method evaluates the vorticity and 

azimuth angle of the neighboring cells before stepping to the cell that fulfills two conditions: 

 

1. First the neighboring cells are sorted by vorticity and checked against the vorticity of the 

current cell. 

 

2. The neighbor with the highest vorticity and a higher azimuth angle, to ensure stepping in 

the correct direction, becomes the new center point and the process is repeated. 

 

Using this method, the path of the vortex is tracked and the radial and vertical positions of each 

point are stored. Adjusting the azimuth angle such that the starting point has a wake age of 0 

degrees, the contraction and descent rates measured are presented in Figure 3.32 below.  
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Figure 3.31 Vorticity as seen by the vortex tracking method  

 

 
 

Figure 3.32 Measured tip vortex contraction and descent rates at 10o collective pitch 

 

 Figure 3.32 shows that in the first blade passage the wake has shrunk by approximately 20% of 

the rotor radius while descending by 40%. While experimental values are not available, the 

computational results of Kim et. al22, presented in Figure 1.13, and Sheng et. al23, presented in 

Figure 1.20, provide opportunities for comparison. Note that the results of Kim and Sheng are 

(a) Tip vortex descent rate (b) Tip vortex contraction rate 



98 

 

taken at the trim condition of CT/σ = 0.09 (collective pitch = 9.3o) while the current work’s results 

were taken at a collective pitch of 10o, so a slight divergence is expected. The current work shows 

a slower descent than that of Sheng et. al by approximately 1/3 and a comparable descent rate to 

that of Kim et. al. Comparing the contraction rates, OVERTURNS shows less contraction than 

Sheng et. al, a difference of 5% of the rotor radius, but both predict more contraction than that of 

Kim et. al, which predicts a shrinkage of 10% of the rotor radius. Figure 1.13 shows that Kim et. 

al included results from a number of other solvers, including a previous version of OVERTURNS. 

The current work shows good agreement with these predictions in both descent and contraction 

rate.  

 

3.3. Summary 

 

In this chapter the sweep of collective pitches of the S-76 rotor in hover was evaluated to ensure 

the accuracy and functionality of the OVERTURNS solver. Initially the 10o collective case was 

used to test various operating conditions and arrive at the optimal configuration of the solver. 

Using the quarter-domain adapted Cartesian mesh and the 5th order CRWENO spatial scheme, the 

full range of collective pitches was tested. The thrust values showed excellent agreement with the 

experimental results while the power requirements were over-predicted while maintaining the 

expected trend. The rotor wake was captured for multiple blade revolutions at all pitch values, 

capturing the increased strength of the tip vortices at higher pitch angles. Following the collective 

sweep, a few more detailed results from the 10o case were reviewed, including pressure 

distribution, spanwise loading, and vortex behavior. 
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Chapter 4. Conclusion 
 

4.1.  Summary 

 

 The field of rotor craft is progressing at a rapid rate, requiring new developments in rotor design 

and the technology employed to test these designs. Simplified aerodynamic models provide quick 

evaluations of rotor performance but are not valid across all cases and cannot capture all behaviors 

of a turbulent flow. Three-dimensional computational fluid dynamics simulations provide an 

additional method of testing, allowing designers to study aspects such as the near-body flow, 

helicopter wake, and rotor efficiency under fully modeled operating conditions.  

 

 The present work evaluates the S-76 rotor in hover using the three-dimensional solver, 

OVERTURNS. Employing a structured mesh built around a single blade, periodic boundary 

conditions were implemented to simulate the remaining blades and conserve computational 

resources. The baseline S-76 blade was used to test a number of options within the solver to 

discover the optimal configuration. Following this, a sweep of collective pitch angles was 

performed, as well as a more detailed analysis of the 10o case.  These results were compared with 

prior computational results from the AIAA Invited Hover Session as well as the experimental 

results available.  

 

4.2.  Observations and Conclusions 

 

 The current section summarizes the primary observations and conclusions from the current 

work. 

 

4.2.1. OVERTURNS Conditions Testing 

 

1. Both the tested cylindrical and Cartesian background meshes predicted integrated 

performance values within 5.5% of one another. However, the cylindrical mesh did not 

preserve the tip vortices past the first rotor revolution due to deteriorating mesh resolution. 

Therefore the Cartesian mesh was employed for further testing. 

 

2. The full 4-bladed simulation would have proved too computationally expensive for 

available resources. By introducing periodic boundaries, the computational domain could 

be reduced to a single blade, while the effects of the remaining blades are simulated due to 

the periodic boundaries.  

 

3. By altering the mesh adaption routine to cluster prescribed regions of the computational 

domain, resolution could be improved without adding nodes to the mesh. The additional 
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resolution in areas of high vorticity aided the preservation of the wake structure without 

sacrificing accuracy in other areas. Both meshes gave similar performance predictions, 

predicting thrust and power coefficients within 5% of one another.   

 

4. The 5th order CRWENO reconstruction scheme proved superior to the 3rd order MUSCL 

and 5th order WENO schemes which were previously implemented in OVERTURNS. 

Again each method predicted thrust and power within 2% of one another but differed in 

the wake preservation. The MUSCL scheme showed the worst preservation, while the two 

5th order schemes were closer in performance but ultimately the CRWENO scheme 

produced superior results. 

 

5. Ultimately both the farfield and sink boundaries predicted the integrated forces within 1% 

of one another. There was a slight difference in the descent speed between the two cases 

but the sink boundary itself did not propagate far enough into the computational domain to 

meaningfully affect the solution.  

 

4.2.2. Sweep of Collective Pitches 

 

1. Thrust coefficients saw excellent agreement with experimental values across all tested 

pitch angles, with a maximum difference of under 5% at the lowest collective pitch and 

close to 1-2% at most values. 

 

2. The computational power coefficients were over predicted by as much as 20%, though 

shared the same trend as the experimental values. This is likely a result of the differences 

in the measured and modeled transition and turbulent flow in the near-body region. By 

performing a quadratic regression on both data sets, the shared trend was verified and 

discussed. 

 

3. As a result of the power over prediction, the Figure of Merit was under predicted across 

tested collective pitches, also by as much as 20% at most and closer to 15% at most 

collective pitches. As with the power coefficient results, the shared trend was examined 

and considered. 

  

4. The flow field results show a gradual strengthening of the tip vortices as collective pitch 

increased. Stronger tip vortices began to appear at 8o and the rotor wake was captured for 

multiple blade passages.  
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4.2.3. Analysis of 10o Case 

 

1. The chordwise pressure distributions showed the growth in pressure loading from the root 

to tip of the blade, including the trough and peak seen near the tip of the blade.  

 

2. The sectional thrust and torque distributions were consistent with expected results. A slight 

discontinuity occurred at the very tip of the blade but this can be attributed to the rounded 

tip used to close the blade mesh and the very small spacing of the mesh in this region. 

 

3. The near-body vorticity contours showed a large region of vorticity at the transition point 

between the swept-tapered tip and the remainder of the blade. The chordwise slices showed 

the gradual strengthening of the vorticity moving from the LE to the TE of the blade.   

 

4. The tracking method successfully captured the tip vortex trajectory and change in the rotor 

wake through the first blade passage. 

 

5. Both descent and contraction rates showed good agreement with previous computational 

studies.  

 

4.0.  Contributions of the Current Work 

 

This section summarizes the contributions from the current work: 

 

1. Creation of an O-O blade mesh and refinement of the mesh generator, culminating in the 

usable S-76 rotor blade employed in the current work.  

 

2. Creation of the quarter domain Cartesian background mesh, as well as the periodic 

boundary conditions necessary for a Cartesian topology. 

 

3. Implementation of the mesh adaption program, resulting in a clustered mesh to better 

capture the tip vortices without sacrificing solution accuracy. 

 

4. Implementation of the CRWENO numerical reconstruction scheme, a 5th order spatial 

scheme resulting in better preservation of the tip vortices.  

 

5. Full testing of the S-76 baseline blade in hover, to validate the additions to OVERTURNS 

through comparison with other computational results as well as the experimental data. 
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4.1.  Future Work 

 

 The final section presents recommendations and possibilities for further research: 

 

1. The solver currently consistently over predicted the coefficient of power values for the 

sweep of collective pitches. Additional investigation into this issue would lend further 

validation to predictions made with the current solver.  

 

2. In addition to the baseline S-76 blade, alternate blade tips exist and provide further 

opportunities for testing. The creation of usable blade meshes and validation of these blades 

presents test case of particular interest.   

 

3. Currently the mesh adaption program is run separately from the OVERTURNS solver. 

Integration of this into the run environment of OVERTURNS would allow for adaption in 

tandem with the running of the solution. This would reduce the user input required, 

negating the need to manually output a solution for use with the mesh adaption routine, 

before restarting OVERTURNS with the newly altered mesh. 

 

4. The vortex based mesh adaption method represents a significant set up and computational 

cost, especially when studying a large number of cases. Further work, limited to a small 

number of tests, may provide further insight into streamlining and optimizing the method.  

 

5. The current work assumes a rigid blade, with no blade deformation capability built into the 

current routine. Coupling of aerodynamic and structural predictors would result in more 

realistic predictions, furthering the capabilities of the current software.  

 

6. The current work focused on a tip Mach number of 0.65 and did not produce any trans-

sonic or super-sonic regions of flow. Testing a trans-sonic case using the additions to 

OVERTURNS presented here would ensure that the spatial schemes perform as expected 

and ensure the additional refinement could handle discontinuities present in trans-sonic 

flows.  
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