
Theoretical Computer Science 262 (2001) 333–347
www.elsevier.com/locate/tcs

Finite maximal solid codes

Nguyen Huong Lam
Hanoi Institute of Mathematics, P.O. Box 631, Bo Ho, 10 000 Hanoi, Viet Nam

Received 30 June 1998; revised 5 April 2000; accepted 22 June 2000
Communicated by M. Nivat

Abstract

Solid codes, a special class of bi3x codes, were introduced recently in the connection with
formal languages. However, they have a much earlier history and more important motivation
in information transmission dating back to the 1960s. In this paper, they are studied as an
independent subject in the theory of variable-length codes. It is shown that every 3nite solid
code is contained in a 3nite maximal one; based on further analysis of the structure of 3nite
maximal solid codes, an algorithm is proposed to construct all of them starting from the most
simple and evident ones. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Solid code; Completion; Finite maximal solid code

1. Introduction

The concept of solid code is introduced as an auxiliary means by Shyr and Yu
[12] in the context of characterizing disjunctive domains, an object of purely language-
theoretic nature. Originally, solid codes are de3ned as codes satisfying a uniqueness
condition concerning a certain kind of factorizations of words which implies, immedi-
ately, that a solid code is a code in general. Further, JAurgensen and Yu [7] studied solid
codes in detail, revealing some basic combinatorial properties, closure and non-closure
properties of the class of solid codes. They raised the question of characterizing the
maximal solid codes and embedding 3nite solid codes in 3nite maximal solid codes.
They gave an equivalent combinatorial de3nition of solid codes, which we 3nd more
convenient for our purposes and we will reformulate in the sequel.
Solid codes as such have a communication-theoretic origin in the work of Leven-

shtein and Romanov dating back to the mid-1960s where solid codes are called codes
without overlaps. In [8] the maximal size of solid codes of a constant word length is

E-mail address: nhlam@hanimath.ac.vn (N.H. Lam).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00277 -2

334 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

bounded above and below by exponential functions in length. In [10] it is shown
that the class of 3nite solid codes coincides with the class of languages accepted by a
certain type of deterministic 3nite tranducers, the state-invariant decoders without look-
ahead (see also [6] for further details). Solid codes have not only amazing mathematical
implications but remarkable error-correcting capabilities in very noisy channels. During
transmission, encoded messages may be distorted due to environmental conditions or
faults in the channel or may be subject to noise and tampering: insertion or deletion of
symbols by a hostile party. Solid codes have a remarkable resistance to insertion and
deletion by their synchronization capabilities: Every correctly transmitted code word
can also be decoded correctly and without delay, which is not true for most kinds of
codes. This potential issue of the application makes them an object of intense attention
and motivates some further work on their communication-theoretic aspects (see [6] for
details).
In this paper we follow the traditional line in the general theory of codes, free of

error-correcting considerations [1]. First, it is a common question to embed a code of a
given class in a maximal one in this class, called a completion of the previous code in
the class (the terminology stems from the theory of codes in which for a 3nite code –
a regular code more generally – the maximality is equivalent to completeness [1]). For
instance, recall the result of Ehrenfeucht and Rozenberg that every regular code can
be embedded in a regular maximal one [4] or the result of BruyGere, Wang and Zhang
on completing codes with bounded deciphering delay [2], or the recent result of Zhang
and Shen on completing regular bi3x codes [13]. As for solid codes, JAurgensen and
Konstantinidis have conjectured in [6] – with some reservation – that the embedding
question for 3nite solid codes has a positive answer.
In this paper, we con3rm the conjecture of JAurgensen and Konstantinidis by adding

one more embedding construction to prove that each 3nite solid code always has a 3nite
completion, that is, a 3nite maximal solid code containing the given one. As a matter
of fact, our construction works primarily for the class of regular solid codes to yield
regular maximal solid codes and, when restricted to 3nite solid codes, it yields 3nite
maximal ones. It must be said that not for every 3nite code the embedding within the
class is possible. Even for 3nite bi3x codes a 3nite completion is not always possible;
for example, the bi3x code {an; bm} with the distinct positive integers m; n and letters
a; b is not included in any 3nite maximal bi3x code. The reader may consult [1, 9] for
the very interesting theory of bi3x codes. Thus, the outcome for 3nite solid codes, as
a subclass of the class of bi3x codes, is more favorable.
As the second principal result, we propose an algorithm giving all 3nite maximal

solid codes. The situation is much reminiscient of the procedure of CKesari [3, 1] giving
all 3nite maximal bi3x codes by successive internal transformations from the uniform
codes.
Thus, combined with the completion procedure, the algorithm allows one to obtain

all 1nite solid codes by taking subsets of the 3nite maximal ones, an outcome that
cannot be envisaged for bi3x codes.
Now we come to the formal and exact presentation of notions and notations.

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 335

2. Solid codes

Let A be a 3nite alphabet of at least two elements, A∗ the free monoid over A, the
elements of which are words, and the identity of which, the empty word, is denoted
by 1. The elements of A are called letters; the number of letters in a word w is the
length of w, denoted |w|. We use the notation A+ =A∗ − {1}.
For any two sets S and T we use the notation S − T and S + T to denote their

diNerence and union, respectively. For any subsets X and Y of A∗, we denote
XY = {xy: x∈X; y∈Y}; X n=XX · · ·X (n times) for a positive integer n; and X ∗
= {1}+ X + X 2 + · · · = {1}+∑

n¿1 X
n, the Kleene closure of X .

A word v is a factor of the word u if there exist two words x; y such that u= xvy;
the factor v is a pre3x if x=1, a suOx if y=1. A factor is proper if it is not the
empty word and not the whole word itself, that is, when x or y or both are not empty.
Proper pre3xes and proper suOxes are de3ned accordingly.
For a subset X of A∗ we denote by F(X), P(X) and S(X) the collections of proper

factors, proper pre3xes and proper suOxes of the words in X , respectively. X is a
pre3x code if no word in it is a proper pre3x of the others, that is X ∩P(X)= ∅ and
symmetrically, is a suOx code if X ∩ S(X)= ∅. It is a bi3x code if it is both a pre3x
code and a suOx code.
Let u and v be words. We say that u overlaps v, more speci3cally, on su3x, if

S(u)∩P(v)
= ∅, in other words, if there exist non-empty words x; y and w such that
u= xw and v=wy; moreover, u overlaps v on pre1x if v overlaps u on suOx. We
say that two words overlap if one overlaps the other. We sometimes call the factor w
an overlap of u and v and then say that u and v have an overlap w, or else u has an
overlap w with v or vice versa.
We now present the characterization due to JAurgensen and Yu [7] which we use as

de3nition.

De�nition 2.1. A subset X of A∗ is said to be a solid code if no word of it is a
factor of the others and no two words, not neccessarily distinct, overlap; equivalently,
X ∩F(X)= ∅ and P(X)∩ S(X)= ∅.

A solid code X is maximal if it ceases to be a solid code when a word from A∗−X
is added. A straightforward characterization: X is a maximal solid code if and only if
every word outside X either has an overlap with X , or is a factor of some word of X
or has a factor in X or overlaps itself. It is easy to see that a solid code is a bi3x code
and that every subset of a solid code is also a solid code. By Zorn’s lemma, every
solid code is contained in a maximal solid code. Here are some maximal solid codes.
Let A= {a; b}.

Example 2.2. The sets {abn} are maximal solid codes for each n¿1. That the code
{abn} is solid is evident. Next, if a word has no overlaps with abn then it must belong

336 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

to aA∗b, and if in addition to this, when n¿2, it has no factors abn then it has a suOx
in {ab; ab2; : : : ; abn−1} meaning that it must be a factor of abn.

The following examples are from [7], the maximal solidity of them is veri3ed directly
without great diOculty.

Example 2.3. Non-regular solid code. The set {abaib2 : i=2; 4; 8; : : :} + {abaibajb2 :
i=1; 2; 3; : : : ; j
= 2; 4; 8; : : :} is an in3nite, non-regular, maximal solid code.

Example 2.4. In3nite regular solid code. Let A be a 3nite aphabet with at least three
letters and A=X + Y + Z be an arbitrary partition of A. Then the set XY∗Z is a
maximal solid code, in3nite and regular.

The solid codes in the following assertion deserve special attention as they are the
cornerstones for all 3nite maximal solid codes to be built on.

Proposition 2.5. For every partition A= I + K + J with non-empty I and J of the
alphabet A; the subset IJ + K is a 1nite maximal solid code.

Proof. If a word u∈A∗ is in I∗ or J∗ or JA∗I or A∗KA∗ then we are done: u has
either a factor in K or overlaps with IJ . The alternative that remains guarantees that
u has a factor in IJ . This shows the maximal solidity of the code.

We now prove several properties of 3nite maximal solid codes. For a solid code X
we de3ne

I(X) = {a ∈ A : aA+ ∩ X
= ∅};
the collection of the 3rst letters of the words of length at least 2; symmetrically,

J (X) = {a ∈ A : A+a ∩ X
= ∅}
as the collection of the last letter of the words of length at least 2 in X ; and

K(X) = A ∩ X
is the set of words of X that are letters. We write I , J and K instead when X is
understood. Solidity implies that the sets I; J; K are pairwise disjoint, to avoid ovelaps.
For 3nite maximal solid codes they even cover the entire alphabet. Note that the set
K might be empty, and I is non-empty if and only if J is.

Proposition 2.6 (JAurgensen and Yu [7]). Let X be a 1nite maximal solid code then
I(X); J (X); K(X) form a partition of the alphabet; that is the union A= I(X) +
J (X) + K(X) is disjoint.

We derive a necessary condition for a 3nite solid code to be maximal. The result is
typical for this kind of maximality.

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 337

Proposition 2.7 (JAurgensen and Yu [7]). For a 1nite maximal solid code X and for
all letters a∈ I(X); b∈ J (X) there is a unique pair (m; n) of positive integers such
that X ∩ a∗b∗= {ambn}.

Proof. The uniqueness of the pair follows by the solidity of X because for any two
distinct words of a∗b∗ inevitably one overlaps the other or one is a factor of the other
one.
For the existence, consider a word apbq with p; q greater than the maximum length

of words of X . By the maximality of X and by the assumption about p; q and by the
fact that a =∈ J; b =∈ I it follows that apbq has a factor in X and such a factor has the
form ambn as was to be proved.

We present now an useful remark due to H. JAurgensen which says that concerning
maximal solid codes we can disregard the self-overlapping requirement.

Remark 2.8. A necessary and suOcient condition for a solid code X to be maxi-
mal is that every word outside X either is a factor of X or has a factor in X or
overlaps X .

Proof. If I = J = ∅ then X is the underlying alphabet and the remark is true. Otherwise,
if I and J are both non-empty we use fact that, for every word u and arbitrary two
distinct letters a and b, the word a|u|ub|u| does not overlap itself and, moreover, if we
choose a∈ I and b∈ J then a|u| and b|u| both contain no factors in X .

This argument is used also in the proof of the next proposition.
Finally, the following characterization of 3nite maximal codes will be of use in the

sequel.

Proposition 2.9. A necessary and su3cient condition for a 1nite solid code X to be
a maximal solid code is that for every word w∈A∗ and for every letters a∈ I(X)
and b∈ J (X) and for any integers m; n not less than the maximum length of X; the
word amwbn has a factor in X .

Proof. The suOciency is easy. Let w be an arbitrary word and x be a factor w in X .
Then x cannot be a factor am or bn as a =∈ J + K and b =∈ I + K . Therefore x overlaps
w or is a factor of w, or has w as a factor. Thus for w =∈X , X is not a solid code.
This shows that X is a maximal solid code.
Conversely, assume that X is a maximal solid code. With m; n is not less than the

maximum length of X , amwbn cannot be a factor of any word in X nor overlap any
word in X . As X is maximal, by the Remark 2.8, amwbn has a factor in X . The proof
is complete.

For further aspects of and background on solid codes we refer to [5–7, 11, 12].

338 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

3. Finite completion of a �nite solid code

Every solid code is included in a maximal solid code – a routine application of Zorn’s
lemma allows one to state this. Moreover, by a more sophisticated manipulation, 3nite
solid codes are shown to be contained in 3nite maximal solid codes. This section is
devoted to establish this result.
Consider the set R of the words of A∗ which are not factors of words in X , no

suOx of which is in P, but every proper pre3x of which has a suOx in P; formally

R = (A∗ − A∗P − F) ∩ P∗A:

Note that X ⊆R by the solidity of X and by the fact that X ⊆PA⊆P∗A. Here is an
essential property of the set R.

Proposition 3.1. No pair of words; not necessarily distinct; of R overlap. If a word
is a factor of another one; the 1rst one is a su3x of the latter one.

Proof. Suppose that the words r1; r2 of R overlap. We have r1 = xw; r2 =wy for x; y;
w∈A+. The overlapping factor w is a proper pre3x of r2 as y is non-empty, hence w
has a suOx in P which implies that r1, having w as a suOx, also has a suOx in P.
This contradicts the fact that r1 ∈R.
For the second claim, suppose that r1 is a factor of r2: r2 = xr1y for some x; y∈A∗.

If y is not empty, xr1 is a proper pre3x of r2, hence xr1 has a suOx p in P. Then r1
is either a suOx of p, which implies that r1 ∈F , or p is a suOx of r1, that is r1 ∈A∗P
contradicting the fact that r1 ∈R⊆A∗ − A∗P − F . Thus, we have y=1 and r1 is a
suOx of r2. This completes the proof.

De3ne now the set

Q = R− A+R

of those words of R having no proper pre3xes in R. It is noteworthy that, by de3nition,
every word in R has a suOx in Q. If X is a regular subset then R, and hence Q, is a
regular set as well.

Theorem 3.2. Let X be a solid code then X is a subset of Q and Q is a maximal
solid code. If; moreover; X is regular then Q is also regular; that is every regular
solid code is included in a regular maximal solid code.

Proof. First, as remarked X ⊆R. By de3nition no word in R is a factor of a word in
X . Thus, a fortiori, X has no proper suOx in R. This means that X ⊆R− A+R=Q.
Moreover, by Proposition 3.1, no pair of words in Q, as a subset of R, overlaps;

also, by de3nition, no word of Q is a factor of the others. This means that Q is a
solid code.

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 339

Finally, we prove that Q is maximal. It suOces to prove that an arbitrary word w
which is not a factor of X and which does not have overlaps with any word in X ,
must contain a factor in Q or have overlaps with Q.
Let w1 be a shortest non-empty, not neccessarily proper, pre3x of w with no suOx

in P. Such a pre3x always exists since the word w itself is without suOxes in P. That
is w1 ∈ (A∗ −A∗P)∩P∗A. If, in addition to this, w1 =∈F then obviously w1 ∈R and w1
has a suOx s∈Q which is a factor w and we are done.

Otherwise, if w1 ∈F then there is a word u1 ∈A+ such that u1w1 ∈P and u1 is non-
empty since w1 has no suOx in P. Now let w2 be the shortest non-empty pre3x of w
such that u1w2 has no suOx in P, that is, u1w2 =∈A∗P. This pre3x w2 exists because
u1w has no suOx in P and moreover |w2|¿|w1| since u1w1 ∈P and w1 ∈P∗A.
If u1w2 ∈F , we repeat the argument to get the pre3ces w3; w4; : : : of w and the words
u2; u3; : : : such that u2w2 ∈P; u3w3 ∈P; : : : and u2w3 ∈F; u3w4 ∈F; : : : with : : :¿|w4|¿
|w3|¿|w2|¿|w1|. Since the lengths of pre3xes wi are strictly increasing and bounded
above by |w|, the argument cannot be repeated in3nitely. It must terminate in the l-th
step with

ul−1 : : : u1wl =∈ F(X)
and

ul−1 : : : u1wl =∈ A∗P; ul−1 : : : u1wl ∈ P∗A:
Thus ul−1 : : : u1wl ∈R, hence it has a suOx s∈Q. Either s is a suOx of wl, therefore
a suOx of w, or wl is a suOx of s which implies that s overlaps w. In both cases w
has a factor in Q or an overlap with Q as was to be proved.
We show further that with the very same construction Q will be 3nite whenever X

is 3nite.

Theorem 3.3. If X is a 1nite solid code; then Q is a 1nite maximal solid code.
Precisely; let X be of maximal word length n then Q=A if n=1 or; if n¿1; Q is
of maximal word length at most 2n− 2.

Proof. If n=1, or X ⊆A, we have P= ∅, F = ∅, therefore P∗= {1}, Q=(A∗ − ∅ −
∅)∩A=A.
Now let n¿1. Suppose that there exists w∈Q with |w|¿2n − 2. We write w=

u1u2 : : : uka, where k¿1, u1; : : : ; uk ∈P, a∈A. Let l be the least index such that

|ulul+1 : : : uka|¿ 2n− 2: (∗)
Indeed l¿1 and

|ul+1 : : : uka|62n− 2:

If ul+1 : : : uka∈F then |ul+1 : : : uka|6n− 1, which implies by (∗) that |ul|¿2n− 2−
(n − 1)= n − 1. This is a contradiction as ul is a proper pre3x of some word in X

340 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

of length at most n. Thus we have ul+1 : : : uka =∈F . Besides, ul+1 : : : uka is not in A∗P
for it is a suOx of w∈Q, hence ul+1 : : : uka is in R as it is actually in A∗P. Thus
ul+1 : : : uka has a suOx in Q, that is, w has a proper suOx in Q which is again a
contradiction. The theorem is proved.

We demonstrate the completion by two examples. In the 3rst one, Q is calculated
according to the formula, while in the latter one by enumeration.

Example 3.4. Let A= {a; b}; X = {a2b2}. We have

P = {a; a2; a2b}; F = {a; a2; a2b; b; b2; ab2; ab}

R= (A∗ − A∗P − F) ∩ P∗A

= (A∗ − A∗{a; a2; a2b} − {a; a2; a2b; b; b2; ab2; ab}) ∩ {a; a2; a2b}∗A

= (A∗bab+ A∗b2 + {b}+ {ab} − {a; a2; a2b; b; b2; ab2; ab}) ∩ {a; a2b}∗b

= ((A∗ba+ A+b− {ab}) ∩ {a; a2b}∗)b

= ((A∗a2ba+ A∗a2b) ∩ {a; a2b}∗)b:

Finally,

Q = R− A+R = ({a2ba}+ {a2b})b = {a2bab; a2b2}:

Example 3.5. Let A= {a; b; c} and X = {ab}. We have n=2; so it is suOcient to
search among the words of length not exeeding 2× 2− 2=2 as candidates to include
in Q. They are ab; ac; cb; c. There are only three possibilities Q= {ab; ac}, {ab; cb} or
{ab; c}. Only {ab; c} is a maximal solid code.

4. Construction giving all �nite maximal solid codes

4.1. Transformation

The construction to be presented involves successive transformations of a solid code
that gradually lead to the desired one. Each transformation step consists essentially
of removing, from a given solid code, an arbitrary word and adding subsequently an
appropriate set of words having the chosen word as a proper pre3x (or suOx, in the
symmetric version).
Let X be a solid code and, as before, let P be the set of non-empty proper pre3xes

of X . Let M denote the set of the words all the suOxes of which are not in P + X
but all the proper pre3xes of which have a suOx in P, that is

M (X) = P∗A− A∗(P + X):

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 341

It is clear that, if non-empty, M is a pre3x code and every word having no suOx in
P has a suOx in M . It is not diOcult to see that no word in M overlaps a word in X
or has a factor in X since by de3nition, its longest proper pre3x is in P∗ and none of
its suOxes is in P. Moreover, if X is a maximal solid code each word in M should
be a proper factor of a word in X : M (X)⊆F(X).
When X ⊆A the proper pre3xes are absent, P= ∅, therefore M =A−A∗X =A−X ,

which is empty only if X =A. When X*A the set J (X)
= ∅ and it is obvious that
J (X)⊆M (X). Thus M (X)= ∅ if and only if X =A.
Now provided that M (X) is non-empty, that is X
=A, we de3ne the transformation

p of X for an arbitrary word x∈X as

p(X; x) = X − {x}+ xM (X):

An essential property of p is that it preserves solidity.

Proposition 4.1. If X is a solid code; p(X; x) is also a solid code for every x∈X .

Proof. As noted, M has no overlaps with X ; therefore xM has no overlaps with
X −{x}. As M has no factor in X , xM has no factor in X −{x}. These two facts also
imply that xM is overlap-free. Moreover, no word of xM is a factor of the others, as
M is a pre3x code and no word of xM is a factor of X − {x} as X is a solid code.
Thus p(X; x) is a solid code.

We show further that p preserves maximality and 3niteness.

Proposition 4.2. If X is a maximal (1nite maximal) solid code then p(X; x) is also
a maximal (1nite maximal resp.) solid code.

Proof. By the maximality of X , for every word u∈A∗, if u has no factor in X −{x}
or u is not a factor of X − {x}, or u has no overlaps with X − {x} then there remain
the following possibilities:

(i) u is a factor of x, which is a factor of xM , hence a factor of p(X; x);
(ii) u overlaps x on suOx. Then obviously u overlaps every word in xM on suOx;
(iii) u overlaps x on pre3x, that is, we have the equalities u=wy; x= zw. Then u

is a suOx of xy= zwy= zu. If xy∈A∗P then either u is a factor of P, hence of X
which implies that u is a factor of x (u is not a factor of X − {x} by assumption)
and we return to (i), or u has a suOx in P which implies that u overlaps X , hence
u overlaps x on suOx (u does not overlap X − {x} by assumption) and we return
to (ii). If, otherwise, xy =∈A∗P then xy must have a pre3x, say p, in M . We write
xy= zu=ps, s∈A∗. Since M ∩A∗(P+X)= ∅ we have |p|¿|x| and then |s|¡|y|¡|u|
meaning that u= ts for t ∈A+ and then p= zt. Consequently, xp= xzt showing that u
overlaps xp∈ xM on pre3x.
(iv) Finally x is a factor of u. We write u=yxz for some y; z ∈A∗. If z=1 then u

has the overlap x with xM . If z ∈A∗P then u has (on suOx) an overlap p∈P with

342 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

X , hence with x (by the assumption about u again!) and thus with xM . If z
=1 and
z =∈A∗P then z has a pre3x in M , it follows that u has a factor in xM .
Together, points (i)–(iv) show that p(X; x) is a maximal solid code. The claim about

3niteness is evident. As we have noticed M (X)⊆F(X) when X is a maximal solid
code and it is 3nite if in addition X is 3nite, hence p(X; x) 3nite. The theorem is
proved.

Remark 4.3. The transformation p is de3ned relative to pre3xes; we might de3ne, in
a symmetric way, the transformation relative to suOxes as well. Namely, let

M ′(X) = AS∗ − (S + X)A∗

and if M ′(X)
= ∅, for x∈X
s(X; x) = X − {x}+M ′(X)x:

By symmetry M ′
= ∅ if and only if X *A, or equivalently, M
= ∅. Thus, both trans-
formations p and s are applicable for all solid codes except subsets of A:
We can formulate the symmetric version of Propositions 4.1 and 4.2 on maximal

solidity and 3niteness for the transformation s. We have no need to simulate their
proofs since the mirror image X∼ of a solid (maximal solid) code is a solid (maximal
solid) code and s(X; x)∼ is nothing else but p(X∼; x∼).

Example 4.4. Let X = IJ with A= I + J a bipartite partition of the alphabet, which is
a 3nite maximal code (Proposition 2.5). We have P= I and M = I∗A−A∗(IJ + I)= J .
Thus for a∈ I; b∈ J we have

p(X; ab) = (I − {a}) J + I(J − {b}) + abJ:
In particular, let A= {a; b} be a binary alphabet and X = {ab}. Then M = {b} and
p(X; ab)= {ab2}. Put Y = {ab2}, we can compute further M (Y)= {b} and p(Y; ab2)=
{ab3}; : : : : But if we compute

M ′(Y) = AS(Y)∗ − (S(Y) + Y)A∗

= A{b; b2}∗ − {b; b2; ab2}A∗
= {a; b}b∗ − (bA∗ + ab2A∗)

= {a; ab}:
We have then

s(Y; ab2) =M ′(Y){b2}
= {a; ab}{ab2}
= {a2b2; abab2}:

This is the code in Example 3.4, up to mirror images and interchanging a and b!

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 343

A natural way to obtain new maximal solid codes is to apply, when possible, suc-
cessively the transformations p or s to the given ones, in particular to the simplest
ones of the form IJ +K . We will show that, restricted to the 3nite maximal case, this
procedure generates all 3nite maximal solid codes. The rest of this section is devoted
to this task.

4.2. Adequacy

To prove that the transformations p ans s are adequade to generate all 3nite solid
codes, we de3ne certain transformations inverse to p and s. For every 3nite max-
imal solid code, not the underlying alphabet, at least one of these inverses will be
applicable and successive applications will lead 3nally to a code of the form IJ +
K . By restoring in the reverse order the respective inverses p or s we get the se-
quence of application of p or s that will turn IJ + K into the given maximal solid
code.
Let X be a solid code. A pre3x (resp. suOx) of X is primary if it is proper and

it has no proper suOx (resp. pre3x) in P(X) (resp. in S(X)). Primary pre3xes and
primary suOxes are called primary factors.
We say that a primary factor is maximal provided it is not a proper factor of other

primary factors. Not every solid code has maximal primary factors but when it is 3nite
and the set of primary factors (being 3nite) is not empty then it de3nitely possesses a
maximal primary factor and every primary factor is completed to a maximal primary
factor! This fact we show to hold for 3nite maximal solid codes.

Lemma 4.5. For a 1nite maximal solid code X containing ambn with the letters a; b
and the positive integers m; n; one and only one of the two following conditions is
ful1lled: (i) ajbn−1 is a pre1x of X for some 0¡j¡m; (ii) am−1bi is a su3x in X
for some 0¡i¡n.

Proof. First, the two properties cannot hold simultaneously; otherwise, every word with
suOx am−1bi overlaps one with pre3x ajbn−1.
To show the existence, consider, for arbitrary a∈ I(X) and b∈ J (X), a word

w = am−1bn−1am−1bn−1 · · · am−1bn−1

long enough not to be a factor of X . The following situations need to be considered:
There is x∈X so that

(i) w overlaps x on pre3x: w= ur; x= su, r; s; u∈A+. Since a =∈ J , u must terminate
on a letter b, so u, and therefore x, has a suOx am−1bj for some 0¡j¡n.

(ii) w overlaps x on suOx. A similar argument shows that x has a pre3x aibn−1

for some 0¡i¡m.
(iii) The remaining possibility that x is a factor of w is ruled out. In fact, x has then

the form ajbn−1vam−1bi for 0¡j¡n; 0¡i¡m and v∈A∗, which is a contradiction
since x overlaps itself. The lemma is proved.

344 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

Proposition 4.6. For every 1nite maximal solid code the set of primary factors is
non-empty; therefore; maximal primary factors always exist.

Proof. Let X be a 3nite maximal solid code containing the word ambn for a∈ I; b∈ J ,
m; n¿0. If m=1 then X = {abn} is a maximal solid code (Example 2.2(ii)) for which
a; ab; : : : ; abn−1 are all primary pre3xes. Similarly for the case of n=1. If m; n¿1 it
is easy to see that either ambn−1 is a primary pre3x or am−1bn is a primary suOx
depending on which of (i) or (ii) in Lemma 4.1 holds. The proof is complete.

The primary factors have the following basic property.

Proposition 4.7. Let X be a solid code and p be a maximal primary factor which
is a primary pre1x of X . Then; if p is a factor of a word x in X; it is none but
a pre1x of x. Exactly; for every maximal primary pre1x p : A∗pA∗ ∩X =pA+ ∩X
and A+pA∗ ∩X = ∅.

Proof. We write x= upw for u; w∈A∗ and we show that u=1. Suppose that u
=1
then pw∈ S. Obviously w is a non-empty word to avoid overlapping in X . Therefore
pA+ ∩ S
= ∅. Let v be a shortest word satisfying pv∈ S. Then pv must be a primary
suOx since, for every proper pre3x f of pv, the inequality |p|¡|f| implies f =∈ S by
the minimality of |v|, and |f|6|p| implies f =∈ S by the solidity of X . But this fact
contradicts the assumption that p is a maximal primary factor. So we have u=1 as
required.

Let X ′ be an arbitrary solid code possessing a maximal primary factor, say a pre3x p.
We de3ne the transformation p∗ as

p∗(X ′; p) = X ′ − (pA+ ∩ X ′) + {p}:

We expect p∗(X ′; p) to be a solid code, 3nite solid code and maximal solid code
whenever X ′ is such a code. This is indeed the case.

Theorem 4.8. Let X ′ be a (1nite; 1nite maximal) solid code with a maximal primary
pre1x p. If p is not a letter then p∗(X ′; p) is also a (1nite; 1nite maximal) solid
code.

Proof. Put X =p∗(X ′; p)=X ′−(pA+ ∩X ′)+{p}. Indeed p is in X and is not a factor
of X ′−(pA+ ∩X ′) by the preceding proposition. Moreover, p overlaps X ′−(pA+ ∩X ′)
neither on suOx since p is a primary pre3x nor on pre3x since X ′ is solid. Thus X
is a solid code. The fact that X is 3nite when X ′ is 3nite is evident.
Suppose now that X ′ is a 3nite maximal solid code. The existence of a primary

factor ensures that X ′
=A, hence I(X ′)
= ∅ and J (X ′)
= ∅. For an arbitrary word
w∈A∗ consider the word anwbn with n arbitrarily large and a∈ I(X ′); b∈ J (X ′). By
Proposition 2.9, anwbn admits a factor x∈X ′. We distinguish three cases.

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 345

(i) x= aiu, where u is a pre3x of w and i¿0. If x =∈pA+ then x∈X that means
w overlaps x∈X on pre3x. If x∈pA+, as p is a primary pre3x which is not a letter,
it follows that p =∈ a∗, hence p overlaps u and w, on suOx.

(ii) x= vbi for some i¿0 and suOx v of w. In this case w overlaps X ′ − pA+ on
suOx (if x =∈pA+) or overlaps p on suOx or admits p as factor (if x∈pA+).
(iii) x is a factor of w. Then w has a factor in X ′ − pA+⊆X or in pA+, hence x

has p as a factor.
Summarizing, these possibilities show that X is a maximal solid code. The theorem

is proved.

The transformation p∗ is inverse to p in the following sense.

Theorem 4.9. Let X ′ be a 1nite maximal solid code with a maximal primary pre1x
p. If p is not a letter then p(p∗(X ′; p); p)=X ′.

Proof. Denote X =p∗(X ′; p)=X ′ − (pA+ ∩X ′) + {p}. Then indeed p∈X and X is
a 3nite maximal solid code.
We show that pM (X)=pA+ ∩X ′ which implies p(X; p)=X+pM (X)−{p} =X ′−

(pA+ ∩X ′) + {p} + (pA+ ∩X ′) − {p}=X ′, which is what we have to prove. Put
D= {u :pu∈X ′}. We 3rst show that D⊆M (X). Since X ′ is solid, every u∈D has
no suOx in P(X ′), in particular, in P(X)+X = {p}+P({p})+P(X ′−pA+)⊆P(X ′)
that is u∈A∗ − A∗(P(X) + X). On the other hand, let u= va for a∈A; v∈A∗. Then
pv∈P(X ′). If v=1 we have u= a∈A⊆P(X)∗A. If v
=1, pv is not a primary pre3x
by the maximal primarity of p, hence pv∈A+P(X ′); this yields v∈A∗P(X ′) by the
primarity of p. The same argument shows that v∈P(X ′)+ and u∈P(X ′)+A. Now v,
as a factor which is not a pre3x of pu∈X ′, has no occurrence of p as factor. By
Proposition 4.7, we get v∈ (P(X ′)−A∗pA∗)+ =P(X ′−pA+)+P({p})+ =P(X)+. We
conclude that u∈P(X)∗A− A∗(P(X) + X)=M (X), that is D⊆M . Thus X ′ ∩pA+ =
pD⊆pM (X).
Conversely, we prove pM (X)⊆X ′. The fact that every word u of M has no factor

in X = {p} + (X ′ − {pA+}) and no suOxes in P(X)=P({p}) + P(X ′ − pA+) and
that p, being a word of X and a primary pre3x of X ′, has no proper suOx in P(X ′)+
X ′, imply that pu has no proper suOx in P(X ′), or which amounts to the same,
pu does not overlap X ′ on suOx and does not have a factor in X ′. On the other
hand, as P(X)⊆P(X ′), the word pu, being in pP(X)∗A⊆P(X ′)+A evidently does
not overlap X ′ on pre3x. Therefore by the maximal solidity of X ′ it is a factor of X ′:
wpuv= x∈X ′, w; v∈A∗. By virtue of Proposition 4.7 w=1. If v
=1 then pu∈P(X ′);
but the fact that pu has no proper suOx in P(X ′) shows that pu is a primary pre3x,
which indeed is a contradiction with p being a maximal primary pre3x of X ′. Thus
we have v=1 and pu∈X ′ yielding pM ⊆X ′ ∩pA+. This concludes the proof.

Remark 4.10. If the choosen primary factor of X ′ happens to be a suOx, say s, then
we can prove, of course, the symmetric version of the Proposition 4:3 saying that

346 N.H. Lam /Theoretical Computer Science 262 (2001) 333–347

A∗sA∗ ∩X ′=A+s∩X ′, as well as de3ne the transformation

s∗(X ′; s) = X ′ − (A+s ∩ X ′) + {s}

for which the symmetric versions of Theorems 4.8 and 4.9 holds.

Now, consider an arbitrary 3nite maximal solid code X ′, to which we apply the
transformation p∗ or s∗ if it possesses non-literal primary factors to get a new 3nite
maximal solid code. We repeat the procedure as long as there has been non-literal
primary factors for each step. As those words aNected by the transformation result in
a shorter word, after a 3nite number of steps the resulting 3nite maximal solid code
inevitably has all its maximal primary factors literal and the procedure halts. What are
such codes? The answer is very much in sight.

Proposition 4.11. A 1nite maximal solid code has all primary factors literal if and
only if it is of the form IJ + K for a partition (I; J; K) of the alphabet.

Proof. The “if ” direction is straightforward: every maximal solid code IJ + K has
P= I and S = J comprising all of its primary factors. Indeed they are all letters.
For the converse, let the 3nite maximal solid code X have all primary factors

in A. For every a∈ I and b∈ J there exist the integers m; n¿0 such that ambn ∈X
(Proposition 2.7). If m¿1; n¿1 there exists x∈X with a pre3x ajbn−1, 0¡j¡m
(Lemma 4.5). Therefore the proper suOx ajbn is evidently primary, since all words of
X do not overlap ajbn, to avoid overlapping x. But ajbn is not literal, a contradiction.
So we have at least one of m; n equal to 1, let m=1. If still n
=1, it is easy to see
that the proper pre3xes ab; : : : ; abn−1 are all primary which are not literal, again a
contradition. Thus we have m= n=1 and ab∈X which shows that IJ + K ⊆X . As
both of them are maximal solid codes, X = IJ + K , the theorem is proved.

Finally, we are in a position to state the concluding result.

Theorem 4.12. The transfomations p and s are su3cient to generate all 1nite maxi-
mal solid codes by successive application starting from the codes IJ +K for arbitrary
partitions (I; J; K) of the underlying alphabet and neither of them alone is su3cient.

Proof. Let X ′ be a 3nite maximal solid code and t∗n ; t∗n−1; : : : ; t
∗
1 , where ti=p or s, be

a sequence of the transformations the successive application of which leads from X ′

to a code X of the form IJ + K :

X = t∗1 (t
∗
2 (: : : t

∗
n (X

′) : : :)):

Now the application of the transformations ti in the reverse order t1; t2; : : : ; tn, by
Theorem 4:5, will bring X to X ′:

X ′ = tn(tn−1(: : : t1(X) : : :)):

N.H. Lam /Theoretical Computer Science 262 (2001) 333–347 347

For the latter claim, consider concrete examples. Let A= {a; b} and X ′= {abn}; n¿2.
The codes {ab} and {ba} are the only 3nite maximal solid codes of the form IJ +K .
The one-element {abn} with n¿1 is in no way to be reached from {ab} or {ba} by
the application of s alone, since s produces the result by juxtaposing the set M ′ to
the left of the given solid code. Symmetrically, the code X∼= {anb}; n¿2 shows the
insuOciency of p alone. The theorem is proved.

Acknowledgements

I am grateful to an anonymous referee for very careful reading and positive com-
ments, and to H. JAurgensen for remarks that improved the presentation. I appreciate
very much the help of M. Ito, S. Konstantinidis and S.S. Yu who provided valuable
information. I thank N.X. My for bringing solid codes to my attention.

References

[1] J. Berstel, D. Perrin, Theory of Codes, Academic Press, Orlando, 1985.
[2] V. BruyGere, L. Wang, L. Zhang, On Completion of Codes with Finite Deciphering Delay, European J.

Combin. 11 (1990) 513–521.
[3] Y. CKesari, Sur un algorithme donnant les codes biprKe3xes 3nis, Math. Systems Theory 6 (1982) 221–

225.
[4] A. Ehrenfeucht, G. Rozenberg, Each Regular Code Is Included in a Regular Maximal Code, RAIRO

Informatique ThKeorique 20 (1986) 89–96.
[5] H. JAurgensen, M. Katsura, S. Konstantinidis, Maximal solid codes, J. Automata Combin. Languages, to

appear.
[6] H. JAurgensen, S. Konstantinidis, Codes, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal

Languages, Vol. 1, Springer, Berlin, 1997, pp. 511–607.
[7] H. JAurgensen, S.S. Yu, Solid codes, J. Inform. Process. Cybernet. EIK 26 (1990) 563–574.
[8] V.I. Levenshtein, Maximum number of words in codes without overlaps, Problemy Peredachi Informatsii

6 (4) (1970) 88–90 (in Russian) (English translation: Problems Inform. Transmission 6 (4) (1973)
355–357).

[9] D. Perrin, Completing bipre3x codes, Theoret. Comput. Sci. 28 (1984) 329–336.
[10] O.T. Romanov, Invariant decoding automata without look-ahead, Problemy Kibernetiki 17 (1966)

233–236 (in Russian).
[11] H.J. Shyr, Free Monoids and Languages, Lecture Notes, Hon Min Book Company, Taichung, 1991.
[12] H.J. Shyr, S.S. Yu, Solid codes and disjunctive domains, Semigroup Forum 41 (1990) 23–37.
[13] L. Zhang, Z. Shen, Completion of recognizable bi3x codes, Theoret. Comput. Sci. 145 (1995) 345–355.

