
Theoretical Computer Science 262 (2001) 117–131
www.elsevier.com/locate/tcs

Formal properties of PA-matching�

Satoshi Kobayashia, Victor Mitranab, Gheorghe P,aunc, Grzegorz Rozenbergd

aDepartment of Information Sciences, Tokyo Denki University, Ishizaka, Hatoyama-machi, Hiki-gun,
Saitama 350-0394, Japan

bFaculty of Mathematics, Bucharest University, Str. Academiei 14, 70109 Bucure+sti, Romania
cInstitute of Mathematics of the Romanian Academy, P.O. Box 1 – 764, 70700 Bucure+sti, Romania

dDepartment of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden,
The Netherlands

Received February 2000; accepted March 2000

Abstract

We consider the PA-matching operation, used in DNA computing, as a formal operation
on strings and languages. We investigate the closure of various families of languages under
this operation, representations of recursively enumerable languages and decision problems. We
also consider the dual operation of overlapping strings. All closure properties of families in the
Chomksy hierarchy under both non-iterated and iterated PA-matching and overlapping operations
are settled. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: DNA computing; PA-matching operation; Overlapping operation; Chomsky hierarchy

1. Introduction

In the fast emerging area of DNA computing, many new computability models are
considered, where many of the operations used are inspired by the DNA behavior in
vivo or in vitro. Examples of such operations are the splicing operation (used in H
systems), the annealing (used in sticker systems), and the insertion–deletion operations.
These and other operations are discussed in [7].

� This work was supported by the Leiden Center for Natural Computing and the Lorentz Centre of Leiden
University. The ?rst author was supported in part by “Research for the Future” Program No. JSPS-RFTF
96I00101 from the Japan Society for the Promotion of Science and Grants-in-Aid for Scienti?c Research
No. 09878059 from the Ministry of Education, Science and Culture, Japan.

E-mail addresses: satoshi@j.dendai.ac.jp (S. Kobayashi), mitrana@funinf.math.unibuc.ro (V. Mitrana),
gpaun@imar.ro (G. P,aun), rozenber@wi.leidenuniv.nl (G. Rozenberg).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00185 -7

118 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

Here, we investigate yet another operation suggested by operations on DNA mole-
cules, the so-called PA-matching operation, used in [10]. It is related to both the
splicing and the annealing operations: starting from two single-stranded molecules x; y,
such that a suKx w of x is complementary to a pre?x Lw of y, by annealing we can
form the molecule with the double-stranded part

(w
Lw

)
and the remaining sticky ends

speci?ed by x and y. The matching part is then ignored (removed), so that the resulting
string consists of the pre?x of x and the suKx of y which were not matched.

This operation is considered here as an abstract operation on formal languages.
We relate it to other operations in formal language theory and we settle the closure
properties of families in the Chomsky hierarchy under it. A dual operation is that of
overlapping, where we keep a matching part of two strings. Also in this case we settle
all closure properties of Chomsky families.

Once again, it turns out that manipulation of DNA molecules leads to operations
interesting from formal language theory point of view.

2. Formal language theory prerequisites

In this section we recall=introduce some basic notions and notations necessary for
the rest of the paper. For details we refer to [11].

For an alphabet V , we denote by V∗ the set of all strings of symbols in V , including
the empty string �. The length of a string x∈V∗ is denoted by |x|, while V∗ − {�}
is denoted by V+.

The mirror image of a string x= a1a2 : : : ak ; ai ∈V; 16i6k, is xR = ak : : : a2a1. The
shu>e of two strings x; y ∈ V∗ is de?ned by

x�⊥y= {x1y1x2y2 : : : xnyn | x = x1x2 : : : xn; y = y1y2 : : : yn;

for some n¿1; xi; yi ∈ V ∗; 16i6n}:

Both these operations are extended from strings to languages in the usual way.
The sets of pre?xes, suKxes, proper pre?xes, and proper suKxes of a language

L⊆V∗ are denoted by Pref(L), Suf(L), PPref(L), PSuf(L), respectively.
For L1; L2 ⊆V∗ we de?ne the left quotient of L1 with respect to L2 by L2\L1 = {w∈

V∗ | xw∈L1 for some x∈L2}. The right quotient is de?ned in the symmetric way.
When L2 is a singleton, L2 = {x}, then we write @‘x(L) instead of {x}\L1 and this
operation is called the left derivative of L1 with respect to x. The right derivative is
denoted by @r

x(L1).
A @nite transducer is a 6-tuple M = (Q; Vi; Vo; q0; F; �) where Q; Vi; Vo are ?nite and

non-empty alphabets (the set of states, the input alphabet, and the output alphabet,
respectively), q0 ∈Q (the initial state), F ⊆Q (the set of ?nal states), and � is the
(transition-and-output) function from Q× (Vi ∪{�}) to ?nite subsets of Q×V∗o . This
function is extended in a natural way to Q × V∗i . Each ?nite transducer M as above

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 119

de?nes a @nite transduction

M (�) = {� ∈ V ∗
o | (q; �) ∈ �(q0; �); q ∈ F}:

The ?nite transduction M is extended to languages L⊆V∗i in the usual way.
If we ignore Vo and the output, then we obtain a @nite automaton (with � moves).

A language is regular iO it is accepted by a ?nite automaton. If L is a regular language
and M is a ?nite transducer, then M (L) is also regular.

A context-free grammar is a construct G= (N; T; S; P), where N is the non-terminal
alphabet, T is the terminal alphabet, S ∈N is the axiom, and P is the set of production
rules. The rules are written in the form A→ z, where A∈N and z ∈ (N ∪T)∗. If for
all rules A→ z ∈P the string z contains at most one nonterminal, then the grammar is
said to be linear. If all rules are of the form A→ aB, A→ a, for A; B∈N; a∈T , then
the grammar is said to be regular. For x; y∈ (N ∪T)∗, we write x⇒y if and only
if x= x1Ax2; y= x1zx2, for some x1; x2 ∈ (N ∪T)∗ and A→ z ∈P. The rePexive and
transitive closure of the relation ⇒ is denoted by ⇒∗. The language generated by G
is L(G) = {x∈T∗ | S⇒∗ x}.

By REG, LIN, CF, CS, RE we denote the families of regular, linear, context-free,
context-sensitive, and recursively enumerable languages, respectively.

Let V be an alphabet; an instance of the Post Correspondence Problem, denoted
PCP(x; y), is an ordered pair (x; y); x= (x1; : : : ; xk); y= (y1; : : : ; yk), of nonempty
strings over V . PCP(x; y) has a solution if there are i1; i2; : : : ; in, for n¿1; 16ij6k,
16j6n, such that xi1xi2 : : : xin =yi1yi2 : : : yin . It is known that the Post Correspondence
Problem is undecidable, i.e., there is no algorithm which can decide whether or not an
arbitrary instance has a solution.

3. The PA-matching operation

3.1. The non-iterated case

We introduce a new operation on strings, inspired by the operation used in [10].
This operation, called the PA-matching, belongs to “cut-and-paste” operations much
investigated as basic operations for theoretical models of DNA computing (see details in
[7]). Informally speaking, our operation consists of cutting two strings in two segments
such that the pre?x of one of them matches the suKx of another, removing these two
matching pieces, and pasting the remaining parts.

Formally, given an alphabet V; a subset X of V+, and two strings u; v∈V+, one
de?nes

PAmX (u; v) = {wz | u = wx; v = xz; for x ∈ X; and w; z ∈ V ∗}:
The operation is naturally extended to languages over V by

PAmX (L1; L2) =
⋃

u∈L1 ;v∈L2

PAmX (u; v):

120 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

When L1 =L2 =L we write PAmX (L) instead of PAmX (L1; L2). Since we shall only
deal either with ?nite sets X or with X =V+, we use the notation fPAm for ?nite
PA-matching and the notation PAm for arbitrary PA-matching PAmV+ .

The reader familiar with the splicing operation ([4, 5, 7]) may easily recognize a
special variant of splicing in the ?nite PA-matching case.

A splicing rule over V is a quadruple r= (u1; u2; u3; u4), with ui ∈V∗, 16i64.
Given a ?nite set R of splicing rules and the strings x; y ∈ V∗, we write

(R(x; y) = {x1u1u4y2 | x = x1u1u2x2; y = y1u3u4y2;

(u1; u2; u3; u4) ∈ R; x1; x2; y1; y2 ∈ V ∗}:

For L1; L2; L⊆V∗, we de?ne

(R(L1; L2) =
⋃

x∈L1 ;y∈L2

(R(x; y)

(R(L) = (R(L; L);

(0
R(L) = L;

(i+1
R (L) = (iR(L) ∪ (R((iR(L)); i¿0;

(∗R(L) =
⋃
i¿0

(iR(L):

Note that in the splicing case we cannot check the suKx–pre?x matching; this is the
main diOerence between the two operations. However, with the use of other operations,
the two operations can simulate each other.

Lemma 1. If a family F of languages is closed under concatenation with symbols
and non-iterated splicing; then F is closed under the operation fPAm.

Proof. For L1; L2 ⊆V∗, consider two symbols c1; c2 not in V . For a ?nite set X ⊆V+,
consider the set of splicing rules R= {(�; xc2; c1x; �) | x∈X }. Then we obviously have

PAmX (L1; L2) = (R(L1{c2}; {c1}L2);

which implies the lemma.

Lemma 2. If a family F of languages is closed under @nite transductions and the
operation fPAm; then it is closed under non-iterated splicing.

Proof. Let L1; L2 ⊆V∗ be two languages and R be a ?nite set of splicing rules over V .
For each rule r= (u1; u2; u3; u4) consider a new symbol ar and let X = {ar | r ∈R} be
the set of these symbols.

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 121

We de?ne two ?nite transducers, M1; M2, such that, for each x∈V∗,

M1(x) = {x1u1ar | x = x1u1u2x2; for r = (u1; u2; u3; u4) ∈ R and x1; x2 ∈ V ∗};
M2(x) = {aru4x2 | x = x1u3u4x2; for r = (u1; u2; u3; u4) ∈ R and x1; x2 ∈ V ∗}:

Clearly, the equality

(R(L1; L2) = PAmX (M1(L1); M2(L2))

holds (the PA-matching just puts together the strings marked by the two tranducers)
which proves the lemma.

Of course, the concatenation with symbols can also be performed by ?nite trans-
ducers, therefore, by combining the above two lemmas we get:

Theorem 1. If F is a family of languages closed under @nite transductions; then F
is closed under the operation fPAm if and only if it is closed under non-iterated
splicing.

Then by Theorem 7:1 from [7], we get the following corollary:

Corollary 1. The families REG; CF; RE are closed under the fPAm operation; but
LIN is not closed.

Also the family CS is closed under the operation fPAm (although it is not closed
under splicing), as a consequence of the following result.

Lemma 3. If a family F of languages is closed under concatenation; union; and right
and left derivatives; then F is closed under the operation fPAm.

Proof. The following equality is obvious:

PAmX (L1; L2) =
⋃
x∈X

@r
x(L1)@‘x(L2):

The required closure properties of F imply then the lemma.

Corollary 2. The family CS is closed under the fPAm operation.

We move now to investigate the properties of arbitrary PA-match operation.

Lemma 4. If a family F of languages is closed under the shu>e and @nite transduc-
tions; then F is closed under PAm.

Proof. Let L1; L2 ∈F; L1; L2 ⊆V∗. Consider the alphabet V ′ = {a′ | a∈V} and the mor-
phism h de?ned by h(a) = a′, for a∈V . Since each morphism can be realized by a
?nite transducer, h(L1)∈F .

122 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

We construct now a ?nite transducer M which, informally speaking, works as follows
on the strings from the language L1�⊥h(L2):

– M reads a pre?x of the input string formed exclusively by non-primed letters and
leaves it unchanged;

– then, starting from a new state, M checks for a while if the input contains only pairs
of letters of the form aa′, and writes nothing to the output;

– then, starting from another state, M reads only primed symbols and writes as output
the non-primed versions of them.

It is easy to see that M de?nes a transduction that satis?es the equation

M (L1�⊥h(L2)) = PAm(L1; L2):

Thus the lemma holds.

Lemma 5. If a family F of languages such that REG⊆F is closed under concatena-
tion with symbols; left derivatives; and PAm; then F is closed under Pref.

Proof. Let L⊆V∗ and let c1; c2 be two new symbols. Then obviously

Pref(L) = @‘c1PAm({c1}L{c2}; V ∗{c2});

and so the lemma holds.

Theorem 2. 1: The families REG and RE are closed under PAm
2: The families LIN; CF; and CS are not closed under PAm.

Proof. Let us consider the languages

L1 = {c1wd1wRd2 |w ∈ {a; b}+};
L2 = {d1wd2wRc2 |w ∈ {a; b}+}:

Clearly, both of them are linear languages. It is easy to see that

@‘c1 (@
r
c2 (PAm(L1; L2))) = {ww |w ∈ {a; b}+};

which is not a context-free language. Consequently, the families LIN and CF are not
closed under PAm.

The family CS is not closed under Pref; the families REG; RE are closed under
shuRe and ?nite transductions. Thus, the theorem follows from the previous
lemmas.

A language L is said to be a @xed point of the PA-match operation iO PAm(L) =L.
If L is a regular language, then by Theorem 2 we have that PAm(L) is regular.

The equivalence problem for regular languages is decidable. Therefore, we can decide

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 123

whether or not a given regular language is a ?xed point of the PA-match operation.
As expected, this is not true for the family of context-free languages.

Theorem 3. The problem whether or not a given context-free language is a @xed
point of the PA-match operation is undecidable.

Proof. Take two arbitrary n-tuples of nonempty strings over the alphabet {a; b}; x= (x1;
x2; : : : ; xn); y= (y1; y2; : : : ; yn); n¿1, and consider the languages

Lz = {bat1bat2 : : : batk cztk : : : zt2zt1 | k¿1; 16ti6n; 16i6k}; for z ∈ {x; y};
Ls = {w1cw2cwR2 cw

R
1 |w1; w2 ∈ {a; b}∗};

L(x; y) = {a; b; c}∗ − (Lx{c}LRy ∩ Ls):

It is known, see, e.g., [12], that L(x; y) is a context-free language. If PCP(x; y) has
no solution, then L(x; y) = {a; b; c}∗ and PAm(L(x; y)) = {a; b; c}∗. If PCP(x; y) has
solutions, then L(x; y) �= {a; b; c}∗ but still PAm(L(x; y)) = {a; b; c}∗. (For each w∈
{a; b; c}∗, the strings c4 and c4w are in {a; b; c}∗ but not in Ls; hence, these strings are
in L(x; y). This means that w∈PAm(c4; c4w), that is, {a; b; c}∗ ⊆PAm(L(x; y)). The
converse inclusion is trivial.)

Consequently, PAm(L(x; y)) =L(x; y) if and only if PCP(x; y) has no solution. Since
PCP is undecidable, the theorem holds.

3.2. The iterated case

We will investigate now the iterated version of the PA-match operation.
It is de?ned as follows. For a language L⊆V∗ and a ?nite set X ⊆V+, we de?ne:

PAm0
X (L) = L;

PAmk+1
X (L) = PAmkX (L) ∪ PAmX (PAmkX (L)); k¿0;

PAm∗
X (L) =

⋃
k¿0

PAmkX (L):

When X is ?nite, the iterated PA-matching operation is denoted by fPAm∗; in the
case X =V∗, the corresponding operation is denoted by PAm∗.

Lemma 6. If a family F of languages is closed under concatenation with symbols;
iterated splicing; and left and right derivatives; then F is closed under iterated @nite
PA-matching.

Proof. Let L⊆V∗ be a language in F and X be a ?nite subset of V+. Let c1; c2 be two
new symbols. We associate with X the set of splicing rules R= {(�; xc2; c1x; �) | x∈X }.

124 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

Clearly,

PAm∗
X (L) = @‘c1 (@

r
c2 ((

∗
R({c1}L{c2}))):

Hence the lemma holds.

Lemma 7. Let F be a family of languages closed under concatenation with symbols;
union; left and right derivatives.
1: If F is closed under fPAm∗; then F is closed under fPAm.
2: If F is closed under PAm∗; then F is closed under PAm.

Proof. For L1; L2 ⊆V∗, let c1; c2 be two new symbols. It is easy to see that the fol-
lowing equation holds:

PAmX (L1; L2) = @‘c1 (@
r
c2 (PAm

∗
X ({c1}L1 ∪ L2{c2})):

(The derivatives require that at least one PAm operation is performed, while the markers
c1; c2 prevent performing more than one such operation.) Note that this relation holds
also for PAm.

Theorem 4.
1: The families REG and RE are closed under both fPAm∗ and PAm∗.
2: The family LIN is not closed under fPAm∗ and PAm∗.
3: The family CF is closed under fPAm∗ but it is not closed under PAm∗.
4: The family CS is closed neither under fPAm∗ nor under PAm∗.

Proof.
1. The closure under fPAm∗ follows from Lemma 6 and the fact that the family of
regular languages is closed under iterated splicing (see [1, 8, 7]).

A more involved argument is required for proving the closure under PAm∗ (remem-
ber that the regularity is not preserved by an iterated splicing with respect to a regular
set of splicing rules – see [6]).

Let R ⊆ V∗ be a regular language recognized by a ?nite automaton M = (Q; V; q0;
F; �), which satis?es the following conditions:

F = {qf}; q0 �= qf;

�(qf; a) = ∅ for all a ∈ V;
q0 =∈ �(q0; x) for each x ∈ V+:

Clearly, each regular language is accepted by a ?nite automaton satisfying the above
conditions.

We construct now iteratively a sequence of ?nite automata with �-moves, M0; M1; : : : ;
Mi; : : : with Mi = (Q; V; q0; {qf}; �i) as follows:
– M0 = (Q; V; q0; {qf}; �0) =M .
– Mi+1 = (Q; V; q0; {qf}; �i+1) is obtained from Mi as follows.
• �i+1(s; a) = �i(s; a), for all s∈Q; a∈V ∪{�}:

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 125

• For all pairs of diOerent states q; q′ ∈Q − {q0; qf} such that:
(i) q =∈ �i(q′; �);
(ii) L(Mq) ∩ L(Mq′) �= ∅;
where

Mq = (Q; V; q0; {q}; �i); and Mq′ = (Q; V; q′; {qf}; �i);
we set

�i+1(q′; �) = �i+1(q′; �) ∪ {q}:
Obviously, the above sequence is ?nite, because there exists k such that Mk+1 =Mk

(the set of states is not changed, only new transitions are added); hence Mk+p =Mk ,
for all p¿0. Note also that the construction is eOective due to the decidability of the
emptiness problem for the intersection of two regular languages. Furthermore,

R = L(M0)⊆L(M1)⊆L(M2)⊆ · · ·⊆L(Mk) =L(Mk+1) = · · · ⊆PAm∗(R)

holds. On the other hand, one may easily prove by induction that PAmj(R)⊆L(Mj),
for all j¿0; therefore PAm∗(R) =L(Mk).

2. Because the family LIN is closed neither under fPAm (Corollary 1) nor under PAm
(Theorem 2), by Lemma 7 it follows that it is not closed under the iterated versions
of these operations.

3. It is known that the family CF is closed under iterated splicing [9]; thus, the closure
of CF under fPAm∗ follows from Lemma 6. By Lemma 7 and Theorem 2, we get
the non-closure of CF under PAm∗.

4. Consider now a language L∈RE−CS; L⊆V∗. There are a1; a2 =∈ V and a context-
sensitive language L′ ⊆L{a1}{a2}∗ such that for each w∈L there is i¿0 with wa1ai2
∈L′. We have then

@r
a1

(PAm∗
{a2 ;a2c}(L

′{a2; a2
2} ∪ {a2c}) =L:

Indeed, the ?rst PAm operation transforms strings wa1an2 ∈L′ into wa1an−1
2 c. The next

step leads to wa1an−2
2 and the process can be iterated. The right derivative with respect

to a1 selects from PAm∗{a2 ;a2c}(L
′{a2; a2c}∪ {a2c}) the strings of the form wa1. Since

we nondeterministically concatenate L′ with both a2 and a2
2, in this way we can get

wa1 for all w∈L. Thus, the equality follows.
If the family CS was closed under the operation PAm∗{a2 ;a2c}, then L∈CS, which is

a contradiction.

As a matter of fact, the non-closure of the families CF and CS under iterated
arbitrary PA-matching may be obtained from a more general result.

Theorem 5. Each recursively enumerable language L⊆V∗ can be written as L= @‘c1
(@r
c2 (PAm

∗(L′)∩{c1}V∗{c2})); where L′ is a context-free language and c1; c2 are two
new symbols.

126 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

Proof. Assume that L is generated by a type-0 grammar G= (N; V; S; P) in the GeOert
normal form, [3], that is, with N = {S; A; B; C} and P having only context-free rules of
the form S→ x; x∈ (N ∪V)+, and a single extra rule ABC→ �. Consider the context-
free grammar G′ = ({S}; V ∪{A; B; C; X }; S; {S→ h(x) | S→ x∈P}), where X is a new
symbol, and h is a morphism that replaces A by XA leaving all the other symbols
unchanged. Consider the language

L′ = {c1}L(G′){c2} ∪ {XABCwc2YwRZ |w ∈ (V ∪ {B; C})∗}

∪{YwZwRc2 |w ∈ (V ∪ {B; C})∗};

where Y; Z are two new symbols. Clearly, L′ is a context-free language.
Let c1w1XABCw2c2 be a string in {c1}L(G′){c2}, with w2 ∈ (V ∪{B; C})∗ (that is,

this is the rightmost occurrence of XABC in our string). The only possible PA-matching
operation is

PAm(c1w1XABCw2c2; XABCw2c2YwR2Z) = c1w1YwR2Z:

The obtained string can again “enter” only one operation:

PAm(c1w1YwR2Z; Yw
R
2Z(wR2)Rc2) = c1w1w2c2:

In this way, one occurrence of XABC has been removed. By iterating the PAm opera-
tion, all such substrings can be removed – therefore {c1}L{c2}=PAm∗(L′) ∩ {c1}V∗
{c2} holds. The left and the right derivatives lead now to L.

As a direct consequence of the above result, we ?nd that every family of languages
that contains all context-free languages but not all recursively enumerable languages,
and is closed under intersection with regular sets and right and left derivatives, is not
closed under PAm∗. This is the case for most of the language families in the regulated
rewriting area [2]. Moreover, the above result implies some undecidability results.

Corollary 3. The following problems are undecidable:
1: For an arbitrary L∈CF; is PAm∗(L) regular/context-free?
2: For an arbitrary L⊆V∗; L∈CF; does w∈V∗ belong to PAm∗(L)?

4. The overlapping operation

In this section we consider another operation on languages that may be viewed as
the dual of PA-matching. While the PA-matching operation removes the matched part,
the overlapping operation preserves the matched part and removes the rest.

More precisely, for strings x; y we de?ne

Ov(x; y) = PSuf(x) ∩ PPref(y):

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 127

Then,

Ov(L1; L2) =
⋃

x∈L1 ;y∈L2

Ov(x; y) = PSuf(L1) ∩ PPref(L2):

We write Ov(L) instead of Ov(L; L). The closure properties of the language families
in the Chomsky hierarchy under the overlapping operation are the same as for the
PA-matching operation.

Theorem 6. 1: The families REG and RE are closed under Ov.
2: The families LIN; CF; and CS are not closed under Ov.

Proof. The ?rst assertion follows from the closure of both families under intersection,
PPref and PSuf.

It is easy to see that the closure under overlapping, together with other “easy”
closure properties (concatenation with symbols, left and right derivatives), implies the
closure under intersection (L1 ∩L2 = @‘c1 (@

r
c2 (Ov({c21}L1{c2}; {c1}L2{c22}))) and the pre-

?x operation (Pref(L) = @‘c({c2}V∗; {c}L{c})). These observations imply the second
claim.

From the previous proof it follows that the ?xed point problem for Ov is decidable
for regular languages. The problem remains undecidable for context-free languages
(with the same proof as for PAm).

Now, let us consider the iterated version of the overlapping operation. The usual
way of de?ning an iterated operation (see the case of the splicing and the case of
PA-matching) does not work for the iterated overlapping, because Ov(Ov(L))⊆Ov(L),
which makes the usual de?nition (Ovk+1(L) =Ovk(L)∪Ov(Ovk(L))) uninteresting.
Therefore, we shall de?ne Ovk+1(L) =Ov(Ovk(L)), for all k¿1. Moreover, Ov∗(L) =L′

iO the following two conditions are ful?lled:
(i) L′ ⊆Ovk(L); for all k¿1,
(ii) for each L′′ with L′ ⊂L′′ there exists k¿1 such that L′′ � ⊆Ovk(L).

This means that, Ov∗(L) is the largest language (with respect to inclusion) which is
included in all the sets Ov(L); Ov2(L); : : :

Theorem 7. 1: For each k¿ 1 there is a language Lk such that Ov∗(Lk) =Ovk(Lk).
2: There are languages L such that Ovk+1(L)⊂Ovk(L), for all k¿ 1:

Proof. Consider the language Lk = {aibj | 16i; j6k}. It is easy to see that Ov(Lm) =
Lm−1, 26m6k, and Ov(L1) = ∅. Therefore, Ov∗(Lk) =Ovk(Lk).

Consider also the language

L∞ =
⋃
n¿1

{(banb)i(canc)j | 16i; j6n}:

For each n, we can overlap only strings containing blocks banb; canc. For given n,
we can perform a bounded number of overlappings, because at each step we have to

128 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

remove either the pre?x banb or the suKx canc. Therefore Ovk+1(L∞) �=Ovk(L∞) for
k6n. Because n can be arbitrarily large, the operation can be iterated for an arbitrarily
large number of steps.

Note that Ovk(L∞) �= ∅, but Ov∗(L∞) = ∅.

Theorem 8. The families LIN and CF are not closed under Ov∗.

Proof. For L1; L2 ⊆V∗, let us consider two new symbols, c1; c2. We obtain the equality:

Ov∗({c1}∗L1{c2}∗ ∪ {c1}∗L2{c2}∗) ∩ {c1}V ∗{c2} = {c1}(L1 ∩ L2){c2}:

Indeed, {c1}∗(L1 ∩L2){c2}∗ ⊆Ov({c1}∗L1{c2}∗∪{c1}∗L2{c2}∗). Starting from strings
in {c1}∗(L1 ∩ L2){c2}∗, we can iterate the overlapping operation an arbitrarily large
number of times.

By this equation, the closure under Ov∗ implies the closure under intersection. Since
the families LIN and CF are not closed under intersection (but they are closed under
concatenation with regular languages, intersection with regular languages, union, and
left and right derivatives), the theorem holds.

Theorem 9. The family CS is not closed under Ov∗.

Proof. Let L⊆V∗ and let c1; c2 be new symbols (not in V). Consider the language

L′ = {c1}∗V ∗{c2}∗ ∪ {c1}∗((L�⊥{c2}∗) ∩ V ∗{c2}∗V ∗):

This is a context-sensitive language. It is easy to see that

Ov∗(L′) ∩ {c1}V ∗{c2} = {c1}Pref(L){c}:

(We have {c1}∗Pref(L){c2}∗ ⊆Ov(L′), hence we can iterate the operation Ov an
arbitrarily large number of times.)

Because the family CS is closed under right and left derivatives, but not under the
operation Pref, we obtain the non-closure under Ov∗.

Clearly, RE is closed under the iterated overlapping operation. The case of the family
REG will be settled below (also in aKrmative), after establishing two auxiliary results.

Let A= (Q; V; q0; F; �) be a minimal complete deterministic ?nite automaton; because
the automaton is complete, the mapping � is total and a dead state exists from which
there is no path to a ?nal state. Let A be the set of all ?nite automata of the form
Ap;q = (Q; V; p; {q}; �), for p; q∈Q. Clearly, this also is a ?nite set. We denote by
L(A) the family of all languages recognized by automata in A and by CL(A) the
closure of the family L(A) under ?nite union and ?nite intersection operations. Because
L(A) is a ?nite family, CL(A) also is a ?nite family of languages.

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 129

Lemma 8. The family CL(A) is closed under complementation.

Proof. Let L be a language in CL(A). It can be written in the form L= (L1;1 ∩ · · · ∩
L1; n1)∪ · · · ∪ (Lm;1 ∩ · · · ∩Lm;nm), where each language Li; j; 16i6m; 16j6ni, is an
element of L(A). The complement of each language Li; j (we denote the complement
of a language K by K) is also in L(A), since A was a complete deterministic automa-
ton. Because L= (L1;1 ∪ · · · ∪L1; n1)∩ · · · ∩ (Lm;1 ∪ · · · ∪Lm;nm), it follows that also the
complement of L is in CL(A).

Lemma 9. The family CL(A) is closed under the non-iterated overlapping operation.

Proof. Let L be a language in CL(A). We write it in the form L=T1 ∪ · · · ∪Tn,
where each Ti; 16; i6n is a ?nite intersection of languages in CL(A). For every
integer i= 1; : : : ; n, denote:

Ki = {x ∈ V ∗ | @‘x(Ti) = {�}};
Mi = {x ∈ V ∗ | @‘x(Ti) = ∅};
Pi = {x ∈ V ∗ | @r

x(Ti) = {�}};
Ri = {x ∈ V ∗ | @r

x(Ti) = ∅}:

Note that the following assertions hold for each string x ∈ V∗:

x ∈ L− Ov(L)⇔ @‘x(L) = {�} or @r
x(L) = {�}

⇔ (@‘x(Ti)⊆{�} for all i and there is somej

such that @‘x(Tj) �= ∅); or

(@r
x(Ti)⊆{�} for all i and there is some j

such that @r
x(Tj) �= ∅):

Consequently, we have

L− Ov(L) =

(⋂
16i6n

(Ki ∪Mi) −
⋂

16i6n

Mi

)

∪
(⋂

16i6n

(Pi ∪ Ri) −
⋂

16i6n

Ri

)
:

By Lemma 8, it suKces to prove that for every i= 1; : : : ; n the languages Ki;Mi; Pi; Ri
are contained in CL(A).

Consider any Ti =L1 ∩ · · · ∩Lm, where Lj ∈L(A); 16j6m. For every j there is an
automaton Aj = (Q; V; pj; {fj}; �) in A such that Lj =L(Aj).

(a) In the standard manner, construct the product automaton AK = (Qm; V;
→
p; {

→
f};→�)

which accepts Ti, where
→
p = (p1; : : : ; pm) and

→
f = (f1; : : : ; fm). If AK has a cycle

130 S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131

which contains the ?nal state
→
f, then Ki = ∅ and this is a language in CL(A). Other-

wise, Ki =Ti, which is again in CL(A).
(b) For the previous automaton AK , let FM be the set of states which appear on a

path from
→
p to

→
f. Consider the automaton AM = (Qm; V;

→
p; FM ;

→
�). Then,

Mi = L(AM) =
⋃

→
q ∈FM

L((Qm; V;
→
p; {→q };→�)):

For every state
→
q = (q1; : : : ; qm)∈FM , the language accepted by the automaton (Qm;

V;
→
p; {→q };→�) is an intersection of the languages L((Q; V; pj; {qj}; �)), which are in

L(A) for all j= 1; : : : ; m: Consequently, Mi ∈CL(A).
(c) The proof of the relation Ri ∈CL(A) can be obtained in the same manner as in

the case of Mi.
(d) For each automaton Aj = (Q; V; pj; {fj}; �) as above, we construct its reversal,

ARj = (Q; V; fj; {pj}; �R) and we make ARj deterministic by the usual subset construction
technique. Let ARj∗ = (2Q; V; {fj}; Fj; �R∗) be the automaton obtained in this way. Then,
by de?nition, L(ARj∗) =LRj holds.

We construct the product ((2Q)m; V;
→
s ; F;

→
�R∗) of automata AR1∗; : : : ; ARm∗, which accepts

TRi =LR1 ∩ · · · ∩LRm, where
→
s = ({f1}; : : : ; {fm}). Let FP be the set of all states

→
q in

F such that
→
q does not have a path to any state of F . Let AP = ((2Q)m; V;

→
s ; FP;

→
�R∗).

Then, we have PRi =L(AP). Thus,

Pi = L(ARP)

= L(((2Q)m; V; FP; {→s }; (
→
�R∗)

R))

=
⋃

→
q ∈FP

L(((2Q)m; V;
→
q ; {→s }; (

→
�R∗)

R)):

It suKces now to show that for every
→
q ∈FP , the language Z→

q
=L(((2Q)m; V;

→
q ; {→s };

(
→
�R∗)R)) is in CL(A). Let

→
q = (E1; : : : ; Em)∈FP , where Ej ⊆Q; 16j6m. Note that for

any (X1; : : : ; Xm) and (Y1; : : : ; Ym) in (2Q)m and for any a∈V , the following assertions
hold:

(Y1; : : : ; Ym) ∈ (
→
�R∗)

R((X1; : : : ; Xm); a)

⇔
→
�R∗ ((Y1; : : : ; Ym); a) = (X1; : : : ; Xm)

⇔ �R∗(Yj; a) = Xj for all j = 1; : : : ; m;

⇔ Xj = {q | q ∈ �R(p; a) for some p ∈ Yj}; for all 16j6m;

⇔ Xj = {q |p = �(q; a); for some p ∈ Yj}; for all16j6m:

S. Kobayashi et al. / Theoretical Computer Science 262 (2001) 117–131 131

Therefore, we have

Z→
q

=
⋂

16j6m


⋂
r∈Ej

L((Q; V; r; {fj}; �)) −
⋃
r =∈Ej

L((Q; V; r; {fj}; �))

 ;

hence this language is in CL(A) and this completes the proof of the lemma.

Theorem 10. The family REG is closed under the operation Ov∗.

Proof. Starting from a minimal deterministic ?nite automaton A for a regular lan-
guage L, we construct the family CL(A) as above. Because this family is closed
under non-iterated overlapping, all languages Ovk(L); k¿1; are in CL(A). Because the
family CL(A) is ?nite, it follows that only ?nitely many languages Ovk(L) are dif-
ferent to each other. The smallest of them is equal to Ov∗(L) and it is an element of
CL(A). It follows that Ov∗(L) is a regular language.

References

[1] K. Culik II, T. Harju, Splicing semigroups of dominoes and DNA, Discrete Appl. Math. 31 (1991)
261–277.

[2] J. Dassow, Gh. P,aun, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.
[3] V. GeOert, Normal forms for phrase-structure grammars, RAIRO=Theoret. Inform. Appl. 25 (5) (1991)

473–496.
[4] T. Head, Formal language theory and DNA: an analysis of the generative capacity of speci?c

recombinant behaviors, Bull. Math. Biol. 49 (1987) 737–759.
[5] T. Head, Gh. P,aun, D. Pixton, Language theory and molecular genetics. Generative mechanisms

suggested by DNA recombination, in: Regulated Rewriting in Formal Language Theory, vol. 2, Springer,
Berlin, 1989, pp. 295–360 (Chapter 7).

[6] Gh. P,aun, Regular extended H systems are computationally universal, J. Automat. Languages Combin.
1 (1) (1996) 27–36.

[7] Gh. P,aun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms, Springer,
Heidelberg, 1998.

[8] D. Pixton, Regularity of splicing languages, Discrete Appl. Math. 69 (1996) 101–124.
[9] D. Pixton, Splicing in abstract families of languages, Tech. Rep., SUNY University, Binghamton, New

York, 1997.
[10] J.H. Reif, Parallel molecular computation: models and simulations, Proc. 7th Annual ACM Symp. on

Parallel Algorithms and Architectures, Santa Barbara, 1995, pp. 213–223.
[11] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, 3 vols., Springer, Heidelberg, 1997.
[12] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

