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a b s t r a c t

Media access protocols in wireless networks require each contending node to wait for a
backoff time, chosen randomly froma fixed range, before attempting to transmit on a shared
channel. However, nodes acting in their own selfish interest may not follow the protocol.
In this paper, a static version of the problem is modeled as a strategic game played by non-
cooperating, rational players (the nodes). The objective is to design a game which exhibits
a unique, a priori mixed-strategy Nash equilibrium. In the context of the media access
problem, the equilibrium of the game would correspond to nodes choosing backoff times
randomly from a given range of values, according to the given distribution. We consider
natural variations of the problems concerning the number of actions available to the players
and show that it is possible to design such a game when there are at least two players that
each have the largest number of possible actions among all players. In contrast, we show
that if there are exactly twoplayerswith different number of actions available to them, then
it becomes impossible to design a strategic game with a unique such Nash equilibrium.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A number of recent papers have tried to address the problem of selfishness of autonomous agents using the tools of
game theory and algorithmic mechanism design. In this paper we are interested in the media access problem in a wireless
network. In the IEEE 802.11 protocol, for instance, all nodes wishing to access a common link must follow an algorithm
whereby each one chooses a random backoff value in a specified range. After waiting for the amount of time indicated by the
backoff value, the node attempts to transmit. The node with the smallest backoff value, if it is unique, gains access to the
medium. However, if two or more nodes attempt to transmit at the same time, a collision results. In the event of a collision,
all colliding nodes double the range from which the backoff value was chosen, and retry. Nodes that did not collide keep
the originally chosen backoff value, appropriately decremented, for the next round. Since nodes in a wireless network are
autonomous agents, we cannot be sure that they will follow the protocol as specified. In particular, some nodes may try to
cheat by always choosing a small backoff value, and getting an unfair share of access to the medium. If two or more nodes
cheat simultaneously in this manner, then repeated collisions among cheating nodes may reduce the network throughput
to zero, effectively making the network inoperative.
Our problem is just one instance of a general class of problems that are concerned with eliciting compliance to network

layer protocols among nodes in the network [6]. Punishment-based approaches work by trying to isolate the misbehaving
node [3,10,11]. In contrast, incentive-based or pricing-based approaches attempt to give some incentive to participating
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nodes to cooperate with the protocol [2,15]. For the media access problem, Kyasanur and Vaidya propose a modification to
the 802.11 protocol, which supposes the presence of some trusted nodes [9]. In the modified protocol, instead of the sender
choosing the backoff value, the receiver selects a random backoff value and sends it to the sender.
One approach is to use game theoretic tools [14] including various notions of equilibria to study the behavior of selfish

agents in networks. The problemofmedia access in awireless network has beenmodeled as a game by Cagalj et al. [5], where
the authors show that non-cooperative behavior by more than one cheater can lead to network collapse. The equilibria of a
gamemodeling an Aloha network with selfish users are analyzed by MacKenzie andWicker [12]. In recent work, Chen et al.
[4] describe the modeling of a media access protocol using random access games and initiate the study of their equilibria.
We are primarily concerned with an abstraction of the media-access problem: is it possible to design a strategic game

with actions and utility functions that automatically induces protocol-compliant behavior among utility-maximizing selfish
players? Since each player may have its own valuation of any given outcome, the utility function will include not only the
agent’s intrinsic valuation of the outcome, but also an incentive or payment that the mechanism will pay to the player
to elicit honest play. Nisan and Ronen [13] introduced the term algorithmic mechanism design for their framework of
studying algorithms that assume that the participants all act according to their own self-interest. Their model is specific
to optimization problems, andmuch of the work that followed (for example, [7]) has focused on the same class of problems,
and the mechanisms designed are the so-called VCGmechanisms, in which truth-telling is shown to be a dominant strategy
for every player. In the wireless network setting, Anderegg and Eidenbenz propose a routing protocol for ad hoc networks,
called Ad hoc VCG, which implements a VCGmechanism that is guaranteed to find theminimum energy path in the network
[1]. As far aswe know, there has been nowork that uses amechanismdesign approach to thewirelessmedia access problem.
In this paper, we demonstrate theoretical results that may have a bearing on designing such a mechanism for protocol
compliance.
We first note that themedia access problem, in its full generality, corresponds naturally to realizing a dynamic game; the

nodes can (and do) modify their actions in response to the outcome of previous rounds. In this paper, we study a simpler
abstraction: games that try to model a single round of the media access problem. To wit, the k nodes (the players) may be
competing for access to the shared wireless medium using a backoff protocol where the jth node should choose a backoff
value uniformly at random from a range given [1, nj] (the contentionwindow). Our goal is to design the corresponding game,
i.e. to specify utility functions for theplayers thatwould induce auniquemixed-strategyNash equilibriumwhich corresponds
exactly to each player faithfully following the protocol, viz. choosing a backoff value uniformly at random.We stress here that
it is not difficult to construct a game with a mixed-strategy Nash equilibrium that corresponds to the uniform distribution
(or indeed, any other distribution); the challenge lies in ensuring that this equilibrium is unique and not just one among
many possible equilibria, so that rational play automatically leads to protocol compliance.
Hence,we startwith the presumption thatwe are given an a prioridistribution profileα∗ that is desired.Wewish to design

a strategic game that realizes exactly this distribution as its unique mixed-strategy Nash equilibrium. We show that this is
possible when there exist at least two players with the largest number of actions; we arrive at this result by generalizing the
construction of a game achieving a desired equilibrium distribution among players with exactly the same number of actions.
On the negative side, we prove that if we only have two players with different numbers of actions, then it is impossible to
construct a game that realizes a given, full-support profile as its unique Nash equilibrium.

2. Preliminaries

For any fixed positive integerm, let [1,m] denote the set of integers {1, 2, . . . ,m}. We shall be concerned with two such
sets that arise in our strategic games:

• A finite ordered set of k ≥ 2 players, P = [1, k].
• A finite set of nj ≥ 1 possible actions (or strategies), Aj = [1, nj], for each player j ∈ P .

We use the terminology profile for an ordered tuple that is typically indexed by an index set such as P . Following standard
game-theoretic notation, an outcome of the game is represented by an action profile, s = (ij)j∈P , with the interpretation that
every player j ∈ P performs the corresponding action ij ∈ Aj in the outcome. The space of all possible outcomes is denoted
by S.
A utility function is a function u : A1 × A2 × · · · × Ak → IR that associates the real value u(s) with the action profile

s. Every player has its own utility function. Collectively, the utility function profile, (uj)j∈P , is interpreted as follows: for any
action profile s, the corresponding utility profile for the players is simply (uj(s))j∈P . We assume rational players that play
independently (without any collusion) but seek to maximize their respective utilities, i.e. a player will always prefer an
action a ∈ Aj over some other action b ∈ Aj if the corresponding utility is strictly higher.
We briefly review the notion of Nash equilibria for our games; for details, the reader is referred to Osborne and Rubinstein

[14]. Given an action profile s, we denote by s−j the partial profile containing the actions in s for all players except player j.
For any player j and any partial profile s−j, the set

Bj(s−j) = {a ∈ Aj : uj(s−j, a) ≥ uj(s−j, b) for all b ∈ Aj}
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is the set-valued best-response function for player j. A pure-strategy Nash equilibrium is a specific action profile
s∗ = (i∗j )j∈P such that all the individual actions in s

∗ are simultaneously best responses for the players with respect to the
corresponding partial action profiles. More formally, it is the case that

i∗j ∈ Bj(s
∗
−j).

Thus, in a pure-strategy Nash equilibrium, players cannot gain any utility by unilaterally changing their actions.
Not all finite games necessarily have pure-strategy Nash equilibria. However, they must have mixed-strategy Nash

equilibria which generalize pure-strategy Nash equilibria. For a player j ∈ P , amixed strategy, αj, is a discrete probability
distribution over its action set Aj. One interpretation of a mixed strategy is that the player j chooses any action a ∈ Aj
independently with the corresponding probability αj(a). In particular, note that every outcome (i.e. action profile) of the
game corresponds to a degenerate mixed strategy in which every player assigns probability 1 to its action in the outcome.
Collectively, the mixed strategies of all the players constitute a distribution profile, α = (αj)j∈P , with the following

interpretation of utilities:

• Player j’s utility for any particular pure strategy a ∈ Aj is the expected value of the utility function uj conditioned on the
event that player j chooses strategy a. Let Uj(α, a) denote this expected value.
• Player j’s overall utility for distribution profile α is given by

uj(α) =
∑
a∈Aj

αj(a)Uj(α, a). (1)

We say an action a ∈ Aj is in the support of a mixed strategy αj for player j if αj(a) > 0. Furthermore, we say that
α = (αj)j∈P is a full-support distribution profile if for every player j ∈ P , the support of the distribution αj is the entire action
set Aj, i.e. αj(a) > 0 for all j ∈ P, a ∈ Aj. In this paper, we will be primarily interested in full-support distribution profiles.
A mixed-strategy Nash equilibrium is a special distribution profile, α∗ = (α∗j )j∈P , with the property that a player cannot

increase its (expected) utility by unilaterally changing its owndistribution in the profile. In otherwords, every player’smixed
strategy at equilibrium is a best response to themixed strategies of the other players.We have assumed a finite set of actions
for each player. This allows us to use a very useful alternative characterization of a mixed-strategy Nash equilibrium α∗:

For every player j, every action in the support of the distribution α∗j has the same expected utility:

Uj(α∗, a) = Uj(α∗, b)

for any two actions a, b ∈ Aj.

This characterization follows from the linearity of uj(α∗) in α∗j in Eq. (1) above: if Uj(α
∗, a) = Uj(α∗, b), it would be unilat-

erally profitable for player j to shift all the (positive) probability from action b to action a thus contradicting the status of α∗
as being a Nash equilibrium. We do not provide a complete proof of this characterization; the interested reader is referred
to Lemma 33.2 in [14] for details.

3. Designing games with identical player strategies

We first consider the situationwhere players have the same set of actions, A = [1, n]. Wewill use the index set P = [1, k]
for the players.1 Suppose that we have an a priori known full-support distribution profile α∗ = (α∗j )j∈P . We are interested
in the following general question: is it possible to design a strategic game with a unique Nash equilibrium that is given by
the profile α∗? In what follows, we will construct such a game.
For ease of description, we will treat both the index sets P and A as being circularly ordered, i.e. with player k + 1 being

interpreted as player 1, with action n+ 1 being interpreted as action 1, and so on. We design our game with the following
property:

The utility function for player j ∈ P depends only on its own actions and those of its predecessor, player j− 1.

This property allows us to present the game using an abbreviated version of the usual strategic form of presentation. Kearns
et al. study a graphical representation of games where each player is represented by a node and a utility matrix, and the
utility to a player i is affected only by the actions of player i and its neighbors in the underlying undirected graph [8]. The
game presented in this section is a graphical game but for a directed simple cycle on k nodes/players numbered from 1
through k: for every node/player i, there is a directed edge from i to node/player (i+ 1)with k+ 1 interpreted as 1.
The utility function uj, for each player j ∈ P , can be represented concisely by a two-dimensional matrix Mj with n rows

and n columns. The interpretation of this matrix is as follows: Mj(a, b) is the value of the utility function uj when applied
to every action profile s in which player j− 1 performs action b and player j performs action a. Thus, one thinks of the rows

1 In principle, players need not have exactly the same set of actions; what matters is that they have the same number of possible actions.
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Fig. 1. Implications for r values in Lemma 1.

of Mj as being indexed by the pure strategies of player j and the columns of Mj as being indexed by the pure strategies of
player j− 1.
For ease of description, the entries in matrixMj can be specified over two steps. Let In be the identity matrix with n rows

and columns. Consider the following matrix, Vn, obtained from In by shifting down (circularly) the rows of In:

Vn :=

0 . . . 0 1
1 . . . 0 0

. . .
0 . . . 1 0

 . (2)

For every player j ∈ P , an intermediate matrix M̂j is defined as follows:

M̂j =
{
Vn if j = 1
In otherwise. (3)

Now, let α∗ = (α∗j )j∈P be the desired unique mixed-strategy equilibrium profile. Then, the utility matrix Mj for player
j ∈ P is defined as follows. Recall that the columns of Mj correspond to actions of the previous player j − 1 in the circular
ordering of P . For any pair of actions a, b ∈ A, we have

Mj(a, b) = M̂j(a, b)/α∗j−1(b). (4)

In other words, we obtainMj from M̂j by scaling each entry by the reciprocal of player (j− 1)’s column probability for that
column. Note that the matrices are well defined since we have assumed that α∗ is a full-support distribution profile and
therefore, the probability in the denominator of (4)’s right-hand side is always non-zero.Wewill nowestablish that the game
defined above has a unique Nash equilibrium where player j chooses exactly the corresponding desired mixed strategy α∗j .
Consider anymixed strategy,α = (αj)j∈P , for the game. Under thismixed strategy, player j’s expected payoff for an action

a is easily shown via (4) to be

U jα(a) =
{
αk(a− 1)/α∗k (a− 1) if j = 1
αj−1(a)/α∗j−1(a) otherwise. (5)

Specifically, for the case when α = α∗, the right-hand side is identically equal to 1 for all actions of all the players, thus
establishing that every player has equal payoffs for all its pure actions under distribution profile α∗. Thus, α∗ is indeed a
mixed-strategy Nash equilibrium for the game. It remains to show that this equilibrium is unique. We start with a useful
definition specific to our game.

Definition 1. Let α = (αj)j∈P be a mixed-strategy profile that differs from α∗. For a given action a and player j, let
rj(a) = αj(a)/α∗j (a). We say that action a is α-deficient for player j if rj(a) < 1.

Lemma 1. Suppose that the profile α = (αj)j∈P is a mixed-strategy Nash equilibrium for the game. Then, the following
implications hold:

(A) If action a is α-deficient for player k, then α1(a+ 1) = r1(1) = 0.
(B) For 1 ≤ j < k, if action a is α-deficient for player j, then αj+1(a) = rj+1(a) = 0.

Proof. Let α be a Nash equilibrium for the game. To prove the first implication (Lemma 1(A) above), assume that the
hypothesis holds. Both αk and α∗k being probability distributions,

∑
b∈A αk(b) = 1 =

∑
b∈A α

∗

k (b), and from this it follows
that, since rk(a) < 1, there must be another action b 6= a for which rk(b) > 1.
Applying (5) above with j = 1, we conclude that under themixed strategy α, player 1 will have a strictly larger payoff for

playing the pure strategy b+ 1 as compared to playing the pure strategy a+ 1. Consequently, action a+ 1 cannot be in the
support of the equilibrium strategy α1 for player 1, and hence, α1(a + 1) = 0 (which, in turn, implies that r1(a + 1) = 0).
An almost identical argument works for the second part of the lemma except that we use (5) for the case when 1 < j ≤ k.
Fig. 1 is a schematic illustration of these implied dependencies among relevant r values for the players. �

Theorem 1. The game outlined above is a k-player, n-strategy game that has the unique mixed-strategy Nash equilibrium given
by the full-support distribution profile (α∗j )j∈P .
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Proof. We have already shown that α∗ is a Nash equilibrium for the game. To establish uniqueness, we will show that
assuming a different equilibrium profile, α 6= α∗, yields a contradiction. Fig. 1 (based on Lemma 1) provides the intuition
for this: it shows that if an action a is α-deficient for a player j then so is action a for player j + 1, except in the case when
j = k, and then it is action a+ 1 that is α-deficient for player 1.
More formally, let α 6= α∗. Then there must be some player j for whom there is an action a that is α-deficient. If player

j is someone other than player k (i.e. where 1 ≤ j < k), then Lemma 1(B) implies that αj+1(a) = 0. In fact, we can apply
Lemma 1(B) to obtain that rj(a) < 1 implies aj+1(a) = 0 and therefore rj+1(a) = 0 < 1. By the same reasoning, and by
repeatedly applying Lemma 1(B), we obtain that αi(a) = 0,∀i ∈ {j + 2, k}. Thus we deduce that player k must have an
α-deficient action if α differs from α∗.
Without loss of generality, let a be an α-deficient action for player k such that action a+ 1 is not α-deficient for player k,

i.e.with rk(a+ 1) ≥ 1. Now, Lemma 1(A) applies, and we get α1(a+ 1) = 0. Thus, action (a+ 1) is α-deficient for player 1,
and by applying Lemma 1(B) in succession (k− 1) times, we conclude that αk(a+ 1) = 0 (see Fig. 1). This contradicts our
earlier assertion that action a+ 1 is not α-deficient for player k. Thus, contrary to assumption, α cannot differ from α∗; the
game exhibits the unique Nash equilibrium profile α∗. �

We note that Theorem 1 can be easily specialized to the case that is relevant for the single round version of the medium
access control problem, with all backoff values in the range [1, n] and the desired distribution being the discrete uniform
distribution for all players.

4. Designing games with non-identical player strategies

In this section, we consider gameswhere the players do not have the same number of strategies available to them, butwe
stillwish to achieve a target distribution profile that is a uniqueNash equilibriumwith full-support component distributions.
A brief synopsis of the results in this section follows.
Using standard ideas from linear programming, we show in Section 4.1 that it is impossible to design such a game when

there are only twoplayers.With three ormoreplayers, however, it is indeedpossible –under fairly non-restrictive conditions
– to realize a game that has an a priori given distribution as its unique Nash equilibrium with full-support component
distributions. In Section 4.2, we first show how such a game can be designed if the players can be partitioned into groups
where each group contains at least two players having the same number of actions. More generally, we show that it suffices
to have at least two players that have the maximum number of actions among all players; under this condition, a given
profile is realizable as the unique Nash equilibrium of an appropriately designed game.

4.1. Games with two players

We assume, without loss of generality, that player 1 has the set of strategies A1 = [1,m] and player 2 has the set of
strategies A2 = [1, n], withm > n. As before, we are given an a priori full-support distribution profile (α∗1 , α

∗

2).

Theorem 2. Given players 1, 2, and the full-support distribution profile (α∗1 , α
∗

2) as described above, there is no two-player
strategic game which can realize the given profile as its unique mixed-strategy Nash equilibrium.

Proof. Suppose, to the contrary, that such a game can be realized with utility functions represented by the matrices M1
andM2 for players 1 and 2 respectively. We will assume, as before, that the rows are indexed by the corresponding player’s
actions, i.e. thatM1(a, b) (respectively,M2(b, a)) is the utility for player 1 (respectively, for player 2) when player 1’s action
is a ∈ [1,m] and player 2’s action is b ∈ [1, n]. Recall thatm > n.
Since (α∗1 , α

∗

2) is a mixed-strategy Nash equilibrium for the game, and since both the component distributions have full
support, it follows that the expected utility of any distinct pair of pure strategies for player 1 (usingmatrixM1) and for player
2 (using matrixM2) are equal. More to the point, the distribution α∗1 satisfies the system of equations

m∑
j=1

qj[M2(1, j)−M2(i, j)] = 0 for 2 ≤ i ≤ n

m∑
j=1

qj = 1 (6)

and the distribution α∗2 satisfies the system of equations
n∑
i=1

pi[M1(1, i)−M1(j, i)] = 0 for 2 ≤ j ≤ m

n∑
i=1

pi = 1. (7)



346 A. Ganchev et al. / Theoretical Computer Science 409 (2008) 341–350

Since the system of equations (6) has more variables than equations, it must either have no solutions or an infinite
number of solutions. We know that it has at least one solution, viz. α∗1 . Hence, it must have infinitely many solutions and
by convexity, at least one of these solutions must be a distribution with full support that differs from α∗1 . Let β be such
a distribution. Then, it follows that any strategy by player 2 would be a best response to player 1 adopting the strategy β .
Hence,α∗2 is a best response toβ . Similarly, sinceα

∗

2 is a full-support distribution that satisfies the systemof equations (7),we
also conclude that any strategy, including strategy β , would be a best response by player 1 to player 2 adopting strategy α∗2 .
Hence, the game has at least two mixed-strategy Nash equilibria given by the profiles (α∗1 , α

∗

2) and (β, α
∗

2), a
contradiction. �

4.2. Games with three or more players

We note that Theorem 2 implies that in order to be able to apply Theorem 1 to the case of two players, the target
distribution profile must have full support for both players. From now on, we will assume that when a given distribution
profile is to be realized, we limit the set of actions for any player to be exactly those actions that are in the support of the
component that corresponds to the player’s distribution. A simple corollary of Theorem 1 gives us the following result.
Theorem 3. Consider a set of players P that can be partitioned into subsets P1, P2, . . . , Pm, where |Pj| > 1 for all 1 ≤ j ≤ m. If
the set of strategies for all players in subset Pj is [1, nj], then for any given full-support distribution profile α∗, there exists a game
whose unique Nash equilibrium is the profile α∗.

Proof. We note that the case when the number of groups m equals 1 is the case handled by Theorem 1. More generally,
let |P1| = k1 > 1. Then we create utility matrices for the players in set P1 according to the k1-player, n1-strategy game in
Theorem 1. Similarly we create utility matrices for the players in each subset Pj. Thus the utility for any player in Pj depends
only on a single other player within the same subset Pj; the game is essentially partitioned into disjoint games, one for
each subset of players, Pj. The topology of the graph corresponding to this game is a set of m disjoint cycles, each cycle
corresponding to a set of players Pj. It is straightforward to see that the game represented by these utility matrices realizes
the target profile as its unique Nash equilibrium. �

The conditions in the above theorem can be relaxed.We show that so long as there are at least two playerswith the (same)
largest number of strategies, we can create a game corresponding to any a priori given, full-support distribution profile α∗.
Our basic idea is to create utilitymatrices so that player j’s utilities depend on the actions chosen by player j−1 and player k.
Consider the players arranged in non-decreasing order of the number of actions available to them. Let nj be the number of

actions available to player j. Then nk−1 = nk; the last twoplayers have the samenumber of actions. For the remaining players,
we will make the simplifying assumption that for all j ∈ [1, k− 2], nj < nj+1. It will be obvious from the construction how
this assumption can be relaxed.2 The game itself is specified over two stages starting with unscaled utility matrices which
will subsequently be scaled appropriately in a second stage. For convenience, we will assume that n0 = 0 henceforth.
In the first stage, we will represent the utilities for j as simple unscaled matrices with player j’s actions represented by

the rows. Recall that for any n ≥ 1, In is the identity matrix with n rows and n columns. The utility matrices are described
below:

• Player 1’s utilities only depend on player k’s actions; the utility matrix (unscaled) is

M̂1 =
[
Vn1 | 0

]
where Vn1 is the identity matrix with its rows shifted down once (circularly). The 0 sub-matrix corresponds to actions
n1 + 1, . . . , nk of player k.
• Player k’s utilities only depend on player (k− 1)’s actions; the utility matrix (unscaled) is

M̂k = Ink−1 .

Note that nk−1 = nk.
• For every other player j (hence, 2 ≤ j ≤ (k − 1)), the utilities depend both on player k as well as the previous player
(j−1). We represent the utilities as separate (nj×nj−1)matrices for each of the actions 1, . . . , nk of player k. Thematrices
are divided into three groups; eachmatrix has an upper sub-matrix consisting of the first nj−1 rows and a lower sub-matrix
consisting of the remaining (nj − nj−1) rows:
– For player k’s action a ∈ [1, nj−2] ∪ [nj + 1, nk], the matrix is

M̂aj =


Inj−1

0 0 . . . 1
. . .

0 0 . . . 1

 .
Every row in the lower sub-matrix is identical, and equals [0, 0, . . . , 1], the last row of the identity sub-matrix.

2 Alternatively, if there are two ormore players that have the same number of strategies, we can dealwith this set of players in isolation using Theorem3.
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– For player k’s action a ∈ [nj−2 + 1, nj−1], the matrix is

M̂aj =


Inj−1

xj xj . . . 1+ xj
. . .

xj xj . . . 1+ xj

 .
Every row in the lower sub-matrix is identical, and equals [xj, xj, . . . , 1+ xj] for a value xj > 0 to be determined later.

– Let yj > 0 be a value to be determined. For action (nj−1 + i) of player k, with i ∈ [1, nj − nj−1], the corresponding
matrix is

M̂
nj−1+i
j =

[
Inj−1

Ci,j

]
where Ci,j, the lower sub-matrix, has, as its ith row, the row vector

[−(1+ yj),−(1+ yj), . . . ,−(1+ yj),−yj],
and whose remaining rows are all identically equal to the row vector

[−yj,−yj, . . . ,−yj, 1− yj].

As before, we obtain the actual utility matrices by scaling the above matrix entries by the reciprocals of the α∗-
probabilities of the actions of the relevant players that influence any given entry. Thus, for instance, the scaled matrix Maj
for any player j ∈ [2, k− 1] is obtained from the corresponding unscaled matrix M̂aj by multiplying each entry in column b
by

1
α∗j−1(b)α

∗

k (a)
,

and so on. The scaled utility matrices define our game. The topology of the graph corresponding to this game is a directed
cycle on k nodes, with additional edges from node k to every node in [2, k− 2].
Suppose that the players use a distribution profile α for their mixed strategies. As usual, let rj(a) = αj(a)/α∗j (a) be the

ratio of the actual probability to the desired one for action a by player j. Somemore notation comes in handywhen describing
various expected payoffs. Let Bj = [nj−1 + 1, nj] denote the jth block of actions (recall that n0 = 0). For any player m ≥ j,
we let

Rjm =
∑
a∈Bj

rm(a)

denote the sum of the rm values over the Bj-actions. Also, for any player j, the sum of its ratios over all its actions is given by

Rj =
∑
a∈[1,nj]

rj(a).

Let us calculate the expected payoffs for player jwhen the players use mixed-strategy profile α. Then, the payoffs are as
follows.

1. For player 1, the expected payoff for action a ∈ [1, n1] is

U1α(a) =
{
rk(a− 1) when 1 < a ≤ n1
rk(n1) when a = 1. (8)

2. For player k, the expected payoff for action a ∈ [1, nk] is

Ukα(a) = rk−1(a). (9)

3. For every other player j ∈ [2, k− 1], it follows from the construction above that for an action a ∈ [1, nj−1], the identity
sub-matrix (the upper sub-matrix) determines the expected payoff, which is simply

U jα(a) = rj−1(a)Rk (10)

since the sub-matrix is repeated for all actions of player k. Next, consider the payoff for action nj−1 + i of player j; this
action corresponds to the ith row of each of the lower sub-matrices in the three groups. The respective contributions
from the three groups of matrices appear below on separate lines in the expression for the expected payoff:

U jα(nj−1 + i) = rj−1(nj−1)[Rk − R
j−1
k − R

j
k] + R

j−1
k [xjRj−1 + rj−1(nj−1)]

− yjRj−1R
j
k − Rj−1rk(nj−1 + i)+ R

j
krj−1(nj−1). (11)
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We now proceed to show that for appropriate values of xj and yj in the matrices above, the profile α∗ is the unique Nash
equilibrium for this game. Note that if the players use the mixed-strategy profile α∗, then every ratio rj(a) equals 1 and
hence, by construction, the expected payoffs (under strategy α∗) for players 1 and k also equal 1 regardless of the action
played.
For player j ∈ [2, k−1], the payoff for any action in the upper sub-matrices is equal to Rk = nk fromEq. (10) since all ratios

are 1. Observing Eq. (11), we can see that the contributions from all three groups of lower sub-matrices are independent of
the action nj−1 + iwhen the ratios are equal to 1; the net payoff, on simplification, can be seen to be

U jα∗(nj−1 + i) = nk + xjnj−1(nj−1 − nj−2)− yjnj−1(nj − nj−1)− nj−1.
Hence, equating the payoff for the upper sub-matrix actions to the right-hand side of the above equation gives us the
following necessary and sufficient relationship between xj and yj for α∗ to be a Nash equilibrium:

xj(nj−1 − nj−2) = yj(nj − nj−1)+ 1. (12)
We can always choose xj, yj > 0 to ensure that Eq. (12) holds, e.g.when xj = 1 and yj = (nj−1 − nj−2 − 1)/(nj − nj−1).
Having established that α∗ is a Nash equilibrium profile for our game for appropriate choices of xj and yj values as above,

we now turn our attention to showing that the equilibrium is unique.We approach this in a spirit similar to that in Section 3,
i.e. we first show that it suffices to consider distributions that differ in probability from the given distribution α∗ for some
actions of player k, and then show that this will lead to a contradiction.
Assume that our game has a Nash equilibrium α that differs from α∗. Recall that, by definition, the action a for any player

j is α-deficient if and only if the ratio rj(a) = αj(a)/α∗j (a) is less than 1.

Lemma 2. Suppose that the profile α = (αj)j∈P is a mixed-strategy Nash equilibrium for the game. For 1 ≤ j < k, if action a is
α-deficient for player j, then αj+1(a) = 0.
Proof. The proof is very similar to that of Lemma 1(B). If action a is α-deficient, then there must be another action b that is
not α-deficient for player j. Hence, the expected utility to player j + 1 for action b will dominate the utility for action a via
Eq. (10) above. Hence, if α is an equilibrium profile, it will assign zero probability to action a for player j+ 1. �

Now, repeated applications of Lemma 2 allow us to conclude that a purported Nash equilibrium α that differs from α∗
must witness some α-deficient action a for player k. In turn, this implies that player k has at least one action b for which
rk(b) > 1. Let Ad be the proper subset of [1, nk] that contains all the α-deficient actions for player k. We denote by Ād the
complement of Ad in the set [1, nk]. Recall that Bj = [nj−1 + 1, nj] is the jth block of actions (with n0 = 0 tacitly). We have
two exclusive (and exhaustive) cases to consider:

1. Within some block Bj of player k’s actions, there is at least one action from each of the sets Ad and Ād. Without loss of
generality, let a and a + 1 be a pair of consecutive actions (circularly within block Bj) such that a ∈ Ad and a + 1 ∈ Ād.
Then

rk(a) < 1 ≤ rk(a+ 1)

by definition. Let us examine the difference in payoffs between actions a+1 and a for player j. From Eq. (11), we observe
for all actions within block Bj, only the contributions from the third group of utility matrices for player j differ. In fact, for
consecutive actions like a and a + 1, it is only the matrices corresponding to actions a and a + 1 for player k that differ
in their contribution. Upon simplification, we see that

U jα(a)− U
j
α(a+ 1) = Rj−1[rk(a+ 1)− rk(a)]

> 0

since Rj−1 is positive and rk(a+ 1) > rk(a) by assumption. Consequently, if α is a Nash equilibrium profile as claimed, it
will yield αj(a+ 1) = 0. By repeatedly applying Lemma 2, we obtain the fact that αk(a+ 1) = 0, which contradicts the
assumed non-deficiency of action a+ 1 for player k.

2. Every block of actions for player k either contains only actions from Ad or only actions from Ād. Then there must be
consecutive blocks Bj−1 and Bj (in circular order of the blocks) such that block Bj−1 contains only Ad-actions and block
Bj contains only Ād-actions or vice versa. Without loss of generality, consider the first possibility. Then by assumption,
action nj−1, the last action in block Bj−1, is deficient while action nj−1 + 1, the first action in block Bj, is not deficient. We
now compare the expected payoffs for player j for these two actions. Observing Eq. (11), we see that while the first group
of matrices does not contribute to any difference in payoffs, the latter two groups do provide non-zero contributions.
Since block Bj−1 is entirely deficient for player k, it must be the case that

Rj−1k =

∑
b∈Bj−1

rk(b)

< | Bj−1 |
= (nj−1 − nj−2).

Similarly, Rjk ≥ (nj − nj−1) and rk(nj−1 + 1) ≥ 1 since block Bj is assumed to be wholly non-deficient.
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Fig. 2. Dependencies for r values in various blocks.

Putting these inequalities together, we can simplify and show that for action a = nj−1

U jα(a)− U
j
α(a+ 1) = Rj−1[yjR

j
k + rk(nj−1 + 1)− xjR

j−1
k ]

> Rj−1[yj(nj − nj−1)+ 1− xj(nj−1 − nj−2)]
= 0

where the last step above follows directly from Eq. (12) that holds for the chosen values of xj and yj. Again, we conclude
first that αj(a+ 1) = αj(nj−1 + 1) = 0 and hence, that repeated applications of Lemma 2 imply αk(nj−1 + 1) = 0. This
violates our assumption that action nj−1 + 1 is non-deficient for player k.
A similar argument works as well for the symmetric case where every Bj-action is deficient and every Bj−1-action is

not; we will not repeat the details. An illustration of ripple-effect of an α-deficient action causing further deficiencies is
given in Fig. 2; the two parts of the figure respectively show the dependencies for the action block Bj (with 1 ≤ j ≤ k−2)
and action block Bk.

We have thus established the following result:

Theorem 4. Suppose we are given k players with action sets [1, nj] for every player j such that n1 < n2 < · · · < nk−1 = nk.
Then given any full-support distribution profile α∗ for this collection of players and actions, there is a game whose unique Nash
equilibrium is α∗.

It is easy to see that the construction described in this section can be easily extended to the case when n1 ≤ n2 ≤ · · · ≤
nk−1 = nk. For instance, a game can be constructed such that, for all players j with nj = nj−1, the utilities depend only on
the actions of players j and j− 1 as in the proof of Theorem 1, and for other players, the utilities are defined as in the proof
of Theorem 4. Alternatively, as mentioned earlier, if there are two or more players that have the same number of strategies,
we can deal with this set of players in isolation using the techniques of Theorem 3. Using either method, we can derive a
game for the case where possibly multiple players have action set [1, nj] for any j; the gamewill have an a priori distribution
as the only possible Nash equilibrium.

5. Concluding remarks

In this paper, we have shown that, under certain conditions, it is possible to reverse-engineer a game that has as its
unique Nash equilibrium a certain given distribution profile of the players’ actions. Our motivation was the static media-
access problem in wireless networks, where the given profile corresponds to the random choices expected from the nodes
(the players) participating in a single round of a typical backoff protocol. In other words, protocol compliance in that round
can be achieved if the players play the designed game.
Of course, what is more desirable is a specific mechanism for enforcing protocol compliance. Any such mechanism will

need to take into account domain-specific details such as private types/valuations of the players, incentive payments, and
cost recovery by the network authority. Also, in practice, wireless media access more closely resembles a dynamic game; in
the event of a collision, all colliding nodes double their values of contention window, and retry. Nodes that did not collide
keep the originally chosen backoff value, appropriately decremented, for the next round. As a result of this, in any given
round, nodes not only have different contention window values, but the backoff value is related to the history of previous
rounds. In future work, we expect to address these issues in a mechanism design framework.
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