
Theoretical Computer Science 409 (2008) 438–449

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Generalized LCS
Amihood Amir a,b,∗, Tzvika Hartman a,c, Oren Kapah a, B. Riva Shalom a, Dekel Tsur d
a Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
b Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, United States
c The Caesaria Rothschild Foundation, Institute for Interdisciplinary Applications of Computer Science, Haifa University, Mount Carmel, Haifa 31905, Israel
d Department of Computer Science, Ben-Gurion University, Be’er Sheva 84105, Israel

a r t i c l e i n f o

Article history:
Received 11 September 2007
Received in revised form 16 May 2008
Accepted 25 August 2008
Communicated by M. Crochemore

Keywords:
Longest common subsequence
Matrices
Trees
Non crossing matching

a b s t r a c t

The Longest Common Subsequence (LCS) is a well studied problem, having a wide range
of implementations. Its motivation is in comparing strings. It has long been of interest to
devise a similar measure for comparing higher dimensional objects, and more complex
structures. In this paper we study the Longest Common Substructure of two matrices and
show that this problem isN P -hard.Wealso study the Longest CommonSubforest problem
for multiple trees including a constrained version, as well. We show N P -hardness for
k > 2 unordered trees in the constrained LCS. We also give polynomial time algorithms
for ordered trees and prove a lower bound for any decomposition strategy for k trees.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Longest Common Subsequence problem, whose first famous dynamic programming solution appeared in 1974 [24], is
one of the classical problems in Computer Science. The widely known string version is defined below.

Definition 1. The String Longest Common Subsequence (LCS) Problem:
Input: Strings A and B over alphabetΣ .
Output: The maximum length of a subsequence that is common to both strings.

For example, for A = abcddabef and B = efbadeaab, LCS(A, B) is 4, where a possible such subsequence is adab.
The LCS problem, has been well studied. For a survey, see [4]. The main motivation for the problem is comparison of

different strings. An immediate example from computational biology is finding the commonality of two DNA molecules.
Most previous work deals with the one dimensional (string) version of the problem. However, there has been increasing
motivation to consider generalizations of the LCS to higher dimensions (e.g. matrices) and different data structures (e.g.
trees). For example, the secondary and tertiary structure of proteins and RNAplay an important role in their functionality [7],
thus it is an interesting challenge to devise an inherentlymulti-dimensionalmethod of comparingmultidimensional objects,
as the LCS compares strings.
The first task we tackle in this paper is to give a natural definition for generalizing the LCS. All generalizations until now

are, essentially, linearizations [3]. Edit distance, a closely related problem, has also been generalized, and again the errors are
within a single dimension [15,2]. To our knowledge, our definition is the first inherently multi-dimensional generalization
in the literature. It elegantly and naturally generalizes the string definition. Unfortunately, it turns out that the LCS problem

∗ Corresponding author at: Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel.: +972 3 531 8770; fax: +972 3 5353325.
E-mail addresses: amir@cs.biu.ac.il (A. Amir), hartmat@cs.biu.ac.il (T. Hartman), kapaho@cs.biu.ac.il (O. Kapah), gonenr1@cs.biu.ac.il (B.R. Shalom),

dekelts@cs.bgu.ac.il (D. Tsur).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.037

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:amir@cs.biu.ac.il
mailto:hartmat@cs.biu.ac.il
mailto:kapaho@cs.biu.ac.il
mailto:gonenr1@cs.biu.ac.il
mailto:dekelts@cs.bgu.ac.il
http://dx.doi.org/10.1016/j.tcs.2008.08.037

A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449 439

Fig. 1. Tractability results.

between twomatrices isN P -hard. LCS applied to trees has been previously defined for two trees, via the tree edit distance.
We consider the problem formultiple trees, in the case of ordered and unordered trees.We also define a constrained version
of the trees LCS (Con-LCS). In addition to creating a generalized framework for the LCS problem we study the tractability
of these problems. The tractability results of all the above problems are summarized in the table of Fig. 1, where LCSforest
refers to Largest Common Subforest and Con-LCSforest stands for Constrained LCSforest. Previously known results appear
in the table with the appropriate citation.
This paper is organized as follows: In Section 2 we pinpoint the essence of the string LCS problem, enabling us to

generalize it to more complex structures and higher dimensions. The definition of two dimensional LCS and edit distance as
well as theN P -hardness results are shown in Section 3. The generalization to trees is defined in Section 4. In Section 5 we
proveN P -hardness for two unordered trees and for k > 2 trees of the constrained LCS. Section 6 deals with ordered trees,
inwhichwe present an algorithm for computing the LCS of k ordered trees that is based on the algorithmof Demaine et al. [8]
for tree edit distance. The time complexity of the algorithm is O(kn2k−1), where n is the number of vertices in the largest
input tree, which is polynomial for a constant number of trees. We give a lower bound for any decomposition algorithm for
k trees. We also present an O(knk)-time algorithm for the constrained problem that is based on the algorithm of Zhang [25]
for constrained tree edit distance and a K non-crossing matching algorithm. Section 7 concludes the paper.

2. Preliminaries

The known solutions for string LCS use dynamic programming algorithms, where the value LCS(A[1, i], B[1, j]) is
computed at each step until LCS(A[1, n], B[1, n]) is reached. The following observations are trivial, yet important to
understand the main characteristic of the problems, which will assist in defining generalized LCS problems consistently
with the original LCS ‘spirit’.

Observation 1. A string is a collection of objects (characters) with total precedence order between them, for every two distinct
objects, one precedes another.

Observation 2. The LCS problem is ordered on a line. An LCS solution, matching A[i] to B[j] can match A[i′], where i′ > i, only to
a B[j′] where j′ > j, and vice versa.

Lemma 1. The above characteristics of the LCS problem allows its optimal solution to consider at every step increasing prefixes
of the input strings.

Proof. The dynamic programming solution has a single possible direction of enlarging the substrings to which it computes
their LCS, since all characters are ordered in precedence order. Therefore, computing LCS(A[1, i], B[1, j]) depends merely on
the LCS of prefixes of A and B shorter in one or zero symbols.

Observation 3. The LCS of strings A, B is the reverse of the LCS of Ar , Br , where Sr is the reversed string of S.

The above observations suggest a more combinatorial definition of the LCS problem, one that naturally generalizes to
higher dimensions. Below is a combinatorial definition of the string LCS problem that supports all the above observations.

Definition 2. The String Longest Common Subsequence (LCS) Problem:
Input: Strings A and B.
Output: The maximum domain size of a one-to-one function f : {1, . . . , |A|} → {1, . . . , |B|} such that A[i] = B[f (i)] for

every i in the domain of f , and for i, j ∈ Dom(f), i < j iff f (i) < f (j).

The advantage of this definition is that it abstracts the LCS into an order preserving matching. A similar order preserving
matching that supports the above observations is the natural generalization. However, when dealing with partially ordered
structures, the dynamic programming method of computing the necessary calculations on prefixes of increasing size is
meaningless, since a prefix can not be defined. A more general approach is used in our dynamic programming solutions of
the tree LCS problems.

440 A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449

Fig. 2. An example of the 2D-LCS of two matrices.

3. Two dimensional LCS

It has been a longstanding open challenge to define an inherently multi-dimensional model for comparing
multidimensional objects, as the LCS compares strings.
In the natural extension of the Longest Common Subsequence problem to a twodimensional problem, the input should be

twomatrices of symbols in whichwe seek identical symbols, preserving their order in thematrices. This will not necessarily
result in a sub-matrix, but rather a structure containing the symbols common to both matrices which preserves the order
relation between them in bothmatrices. For this reasonwename the problem TwoDimensional Longest Common Substructure
(2D-LCS). As far aswe know, no inherently twodimensional version of LCS has previously beendefined. Therefore, it provides
a novel tool for rating the similarity between a pair of two dimensional objects.
We define the problem in a manner where Observations 2 and 3 are applicable in the two dimensional problem.
Intuitively, the LCS of two matrices A and B is the largest identical substructure that can be obtained from A and B by

deleting entries, where identical means that the orientation in the plane is preserved. The formal definition is given below.

Definition 3. The Two Dimensional Longest Common Substructure (2D-LCS):
Input: An n× nmatrix A and anm×mmatrix B.
Output: The maximum domain size of a one-to-one function f : {1, . . . , n}2 → {1, . . . ,m}2 such that A[i, j] = B[f (i, j)] for

every (i, j) ∈ Dom(f), and for every (i, j), (i′, j′) ∈ Dom(f), the following hold:

1. i < i′ iff f (i) < f (i′).
2. i = i′ iff f (i) = f (i′).
3. j < j′ iff f (j) < f (j′).
4. j = j′ iff f (j) = f (j′).

An example for the definition above can be seen in Fig. 2. The 2D-LCS of the two matrices in the figure is 4 and can be
obtained by the boldface letters.
The definition of 2D-LCS can be easily extended to higher dimensions, in which the matching symbols, required to be

identical, preserve the order relation in space, meaning that for a d-dimensional structure other 2d constraints should be
added, two for every axis.

3.1. 2D-LCS isN P -hard

Theorem 1. The 2D-LCS problem isN P -hard.

Proof. We prove the hardness of the problem by a reduction from the Clique problem.

Definition 4. The Clique problem:
Input: A graph G, and a constant K .
Output: Does there exist a complete subgraph of size≥K , in G.

Lemma 2. Clique≤pm 2D-LCS.

Proof. Given a graph G = (V , E) with vertices v1, . . . , vn and an integer K , we construct two matrices. Matrix A, of size
K × K , contains 1 in all entries except those on the main diagonal, where 2 is placed. Matrix B is the adjacency matrix of G
with a slight change. B is of size n× n, where B[i, j] ∈ {0, 1, 2} is defined as:

A[i, j] =
{
2 i = j
1 otherwise B[i, j] =


1 (vi, vj) ∈ E
2 i = j
0 otherwise.

Obviously the construction is done in polynomial time in the size of G. For an example of the construction see Fig. 3.
We now show that G contains a clique of size K iff there is a two dimensional common substructure between A and B

with size K 2.
(⇒) Suppose that G contains a clique of size K . Let vc1 , . . . , vcK be the vertices participating in the clique, listed in

increasing order of indices. Hence, B[ci, cj] = 1 for all 1 ≤ i, j ≤ K , i 6= j. We get that all K 2 entries of A can be matched

A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449 441

Fig. 3. Matrices A, B constructed for graph G and K = 3.

to entries of B in the following way: Define f (i, j) = (ci, cj) for all i and j. We have that A[i, j] = B[f (i, j)] for all i and j as
A[i, j] = B[ci, cj] = 1 if i 6= j, and A[i, j] = B[ci, cj] = 2 if i = j.
We now show that every pair of symbols from A and their corresponding pair from B preserve the order relation in the

plane. Let A[i, j] and A[i′, j′] be two symbols matched to B[ci, cj] and B[ci′ , cj′], respectively. Clearly, i < i′ iff ci < ci′ and i = i′
iff ci = ci′ . The same holds for j and j′.
(⇐) Suppose there is a common substructure between A and B of size K 2. This means that all entries of A are matched to

entries in B. Since the matching must preserve the order in the plane, the matched entries from Bmust appear in K distinct
rows and K distinct columns. More precisely, the entries from the first row of A are matched to entries in one row, say c1, in
B. Moreover, A[1, 1] = 2 must be matched to B[c1, c1] = 2, which is the only entry in the row c1 that contains the symbol
2. The entries A[1, j] for 1 < j ≤ K will be matched to entries of B in row c1 at K − 1 columns, say c2, . . . , cK , respectively.
We have c1 < c2 · · · < cK due to requirement 4 in the 2D-LCS restrictions.
Similarly, the entries in the hth rowofAmust bematched to someK entries in a certain row c ′h ofB. The entryA[h, h] = 2 is

bound to bematched to B[c ′h, c
′

h] = 2. The other K−1 entries of row h in A should bematched to ones in row c
′

h of B. However,
the selection of those entries to be matched in B is not freely done. Due to requirement 4 in the 2D-LCS definition, equality
in columns must also be preserved between the matched pairs. Therefore, A[h, j] should be matched to a cell in column cj of
B, because A[1, j] was matched to B[c1, cj]. We get that c ′h = ch and A[h, j] is matched to B[ch, cj] for all j. All in all we have
that B contains K rows c1, . . . , cK and their corresponding columns, such that B[ci, cj] = 1 for all i, j ∈ {c1, . . . , cK }, i 6= j.
Hence, we have that (vci , vcj) ∈ E for all i, j ∈ {c1, . . . , cK }, i 6= j, implying G contains a clique of size K (the vertices of the
clique are vc1 , . . . , vcK).

It can be easily observed, that the corresponding decision problem, is also in N P , therefore the problem is N P -
complete.
It is a well known fact that the LCS problem can be considered as a special case of the edit distance, transforming one

string to another by operations of substitution, deletion and insertion. Suppose the substitution operation is assigned a high
cost, such that it will never be profitable to use it, the edit distance problem is then equivalent to finding the LCS of the
strings. It can be easily seen that this notion can be applied to generalized LCS and Edit Distance problems, in the case they
are consistently defined. Therefore, the edit distance of twomatrices is theminimal number of edit operations applied to the
matrices, concluding in identical sub matrices, where identity implies consistency of orientation in the plane. We formally
define the Two Dimensional Edit Distance Problem.

Definition 5. The Two Dimensional Edit Distance (2D-ED) Problem:
Input: Matrices A and B.
Output: The minimum number of editing operations required to transform A into B under the restriction that if in the

resulting substructure the distinct, undeleted entries A[i, j] and A[i′, j′] correspond to B[i2, j2] and B[i′2, j
′

2], then the
following holds:

1. i < i′ iff i2 < i′2.
2. i = i′ iff i2 = i′2.
3. j < j′ iff j2 < j′2.
4. j = j′ iff j2 = j′2.

It can be seen, that the 2D-LCS problem is a special case of the 2D-ED problem, using the same arguments as in the linear
version of the problem, appearing above. Consequentially, having proved the hardness of the 2D-LCS implies the hardness
of the 2D-ED as well.

4. Largest common subforest (LCSforest)

The problem of comparing trees occurs in many areas such as computer vision, compiler optimization, natural language
processing and computational biology. In the latter field, for example, it is possible to represent the RNA secondary structure
as a rooted ordered tree [18].
A comparison between two given trees T1, T2, can be defined in diverse ways. The Tree Isomorphism Problem [22] seeks

the largest isomorphic subtree of T1, T2. It can be solved in linear time in the size of the trees. Homeomorphism between
trees can be obtained by removing entire subtrees as well as repeatedly removing a degree two vertex and connecting its
neighbors [16]. When T1, T2 are leaf labeled, the homeomorphic subtree search is converted to the maximum agreement

442 A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449

subtree problem [20] polynomially solved in O(n4.5). A possible comparison between objects is, of course, the edit distance.
In a recent paper [8], Demaine et al. improve Klein [14] and Shasha and Zhang [19] and give an O(n3) time algorithm for tree
edit distance, for two rooted ordered trees, where n is the number of vertices in the larger tree.
We define the LCSforest problem in a way consistent with the String Longest Common Subsequence. All parts of the

main structure are labeled and each of them can be deleted to give a common substructure. As a consequence, the Largest
Common Subforest Problem should require the matching of inner vertices as well as the leaves, and should enable pruning
vertices of the trees. Where pruning a vertex v implies all children of v become the children of the parent of v. Intuitively,
LCSforest of T1 and T2 can be viewed as the largest forest that is included in both T1 and T2. Our general definition easily
adapts to trees.

Definition 6. The Largest Common Subforest Problem (LCSforest):
Input: Rooted vertex-labeled trees T1 = (V1, E1) and T2 = (V2, E2).
Output: The maximum domain size of a one-to-one function f : V1 → V2 that satisfies the following requirements:

1. The label of a vertex v is equal to the label of f (v), for every v ∈ Dom(f).
2. For every v,w ∈ Dom(f), v is an ancestor ofw iff f (v) is an ancestor of f (w).

Observe that in the case T1, T2 are degenerated trees, in the form of chains, the definition is reduced to the traditional strings
LCS (Definition 2). This definition applies to unordered trees. For ordered trees, where order among siblings is significant, a
third requirement should be added to the LCSforest definition:

3. For v,w ∈ Dom(f), v is to the right ofw iff f (v) is to the right of f (w).

A vertex v is to the right of vertexw if v is a right sibling ofw, or that an ancestor of v is a right sibling of an ancestor ofw.
It is important to note that the LCSforest is not necessarily a tree, but could be a forest, implied by the name of the

problem. The above definition can be viewed as an extension of the Tree Inclusion problem [6,13,17,23] where one is given
a pattern tree P and a text tree T , both with labels on the vertices, and the goal is to decide whether T includes P . A tree is
included in another tree if it can be obtained from the larger one by deleting vertices and, in case of unordered trees, by also
permuting siblings. The tree inclusion problem on unordered trees is N P -hard [13]. For ordered trees it is polynomially
solved in O(|P| · |T |/ log |T |) time [6].
The LCSforest definition differs from the subtree isomorphism problem,where a complete subtree is sought, not allowing

pruning. Though there is a previous definition of LCS between trees more related to isomorphism [21], we define it
differently, in a consistent way to the general definition.
Regarding known homeomorphism questions between trees, in [20], themaximum agreement homeomorphism subtree

of a number of trees was sought. In those trees, the only labels were on leaves, there was no repetition of labels in a tree,
and all labels appeared in all the trees. In [16], all vertices were labeled and labels could occur multiple times in a tree, but
the problem was of finding whether a homeomorphic image of a given pattern tree P occurs in the text tree T . In addition,
in the homeomorphism problem, entire subtrees or degree 2 vertices are removed, while in our LCSforest any vertex can be
removed.
Due to the tight relation between the edit distance problem and the LCS problem, and since the edit distance between

two trees is a well studied problem [5], in the following sections wewill use some edit distance algorithms for trees to solve
equivalent LCSforest questions.

4.1. Constrained-LCSforest

An interesting version of the edit distance problem posed by Zhang [25,26] is the constrained edit distance, in which
a natural constraint is added to the known tree edit distance, namely that disjoint subtrees must be mapped to disjoint
subtrees. The constrained edit distance ismotivated from classification tree comparison.We similarly define the constrained
LCSforest:

Definition 7. The Constrained Largest Common Subforest Problem (Con-LCSforest):
Input: Rooted vertex-labeled trees T1 = (V1, E1) and T2 = (V2, E2).
Output: The maximum domain size of a one-to-one function f : V1 → V2 such that the following hold:

1. The label of a vertex v is equal to the label of f (v), for every v ∈ Dom(f).
2. For every v,w ∈ Dom(f), v is an ancestor ofw iff f (v) is an ancestor of f (w).
3. For every v1, v2, v3 ∈ Dom(f), lca(v1, v2) = lca(v1, v3) iff lca(f (v1), f (v2)) = lca(f (v1), f (v3)), where lca(u, v)
denotes the lowest common ancestor of u and v.

Fig. 4 demonstrates the constrained LCSforest between two trees. Note, that for the non-constrained version of the problem
we get that the largest common subforest of T1 and T2 is equal to T2.

A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449 443

Fig. 4. An example of constrained LCSforest.

4.2. LCSforest of k ≥ 3 Trees (LCSkforest)

Having defined the LCSforest problem for two trees, it is only natural to consider the LCSforest problem of three and
more trees. The definition is a generalization of the definition of the problem between two trees. We formally define here
the most general problem, though for ordered trees or for constrained LCSforest the modifications are obvious:

Definition 8. The Largest Common k Subforest Problem (LCSkforest):
Input: Rooted vertex-labeled trees T1 = (V1, E1), . . . , Tk = (Vk, Ek).
Output: The maximum size of the intersection of the domains of k− 1 one-to-one functions fi : V1 → Vi+1, 1 ≤ i ≤ k− 1

such that the following requirements hold for every i:

1. The label of a vertex v is equal to the label of fi(v), for every v ∈ Dom(fi).
2. For every v,w ∈ Dom(fi), v is an ancestor ofw iff fi(v) is an ancestor of fi(w).

To our knowledge, this problem has not been considered hitherto even for ordered trees, where order among siblings is
fixed. In the following subsections we proveN P -hardness even for the Constrained LCSforest of k unordered trees.
In the following sections we separately deal with LCSforest of ordered trees and LCSforest between unordered trees. For

each we will explore the tractability of the problem for two trees, for k trees k ≥ 3 and for a constrained LCSforest.

5. Unordered trees

Our LCSforest definition can be viewed as an extension of the Tree Inclusion problem [23,13,17] where we are given a
pattern tree P and a text tree T both with labels on the vertices and the goal is to decide whether T includes P . The Tree
Inclusion problem on unordered trees isN P -hard [13]. We thus obtain that the LCSforest problem isN P -hard.

5.1. Constrained LCSforest

The constrained LCSforest between two unordered trees can be computed in polynomial time. The problem can be solved
using Zhang’s algorithm for the equivalent problem for edit distance [26]. In this subsection we briefly describe the concept
of the algorithm as it will prove useful later on. Zhang’s algorithm uses dynamic programming and computes the LCSforest
for every pair of trees T1[t1] and T2[t2] (for vertices t1 ∈ T1 and t2 ∈ T2), where T [v] is the subtree of T induced by v and all
its descendants. Consider two subtrees T1[t1] and T2[t2]. Suppose that t1 has n1 children in T1 denoted by t11 , . . . , t

n1
1 , and t2

has n2 children denoted by t12 , . . . , t
n2
2 . Zhang showed that when looking for the common subtree of two trees, their roots t1

and t2 can be either matched to each other or not. If we choose to match them (recall that their labels must be equal), they
contribute 1 to the score of Con-LCSforest of the trees. Moreover, every subtree rooted by a child of t1 can now be compared
to every subtree rooted by a child of t2 resulting in a Con-LCSforest value. Finally, we consider the possiblematching between
children of t1 and t2 and select the maximummatching with regard to the Con-LCSforest values.
If, however, the roots of the trees are notmatchedwith each other, we compute all possible Con-LCSforest values of T1[t1]

with all the subtrees rooted by the n2 children of t2 and vice versa. From all computed values, we select the maximal and
save it in the Con-LCSforest[t1, t2] entry of the table. We therefore get the following lemma, which is very similar to [26]:

Lemma 3. For every internal vertex t1 ∈ T1 and t2 ∈ T2,

Con-LCSforest[t1, t2] = max



max
1≤i≤n2

{
Con-LCSforest[t1, t i2]

}
,

max
1≤i≤n1

{
Con-LCSforest[t i1, t2]

}
,{

1+Match({t11 , . . . , t
n1
1 }, {t

1
2 , . . . , t

n2
2 }) if equal(t1, t2)

0 otherwise


.

444 A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449

Fig. 5. The construction of T1, T2, T3 according toM .

In the formula above, equal(t1, t2) is a predicate whose value is true if t1 and t2 have equal labels, and Match({t11 , . . . , t
n1
1 },

{t12 , . . . , t
n2
2 }) stands for the maximum weight of a matching between the children of t1 and the children of t2, where the weight

of matching t i1 with t
j
2 is Con-LCSforest[t

i
1, t

j
2].

Theorem 2 ([26]). The Constrained LCSforest problem for two rooted unordered trees can be solved in O(n2.5 log n) time, where
n is the number of vertices in the larger tree.

Proof. The recursion appearing at Lemma 3 can be computed using the algorithm of Gabow and Tarjan [10] for
maximum weighted matching. The running time of the Gabow–Tarjan algorithm for a bipartite graph G = (V , E) is
O(|E|
√
|V | log(|V |C)), where C is the maximum weight on an edge. When computing Con-LCSforest[t1, t2], we solve a

matching problem on a graph with c(t1) + c(t2) vertices and c(t1)c(t2) edges, where c(v) is the number of children of v.
The weight of each edge is at most n. Therefore, the Gabow–Tarjan algorithm takes O(c(t1)c(t2)

√
c(t1)+ c(t2) log((c(t1)+

c(t2))n)) time.

Observation 4. For a tree T with n vertices,
∑

v∈T c(v) = n− 1.

We therefore get that the time complexity of the algorithm is

O

(∑
t1∈T1

∑
t2∈T2

c(t1)c(t2)
√
c(t1)+ c(t2) log((c(t1)+ c(t2))n)

)
= O(n2.5 log n).

5.2. Constrained LCSforest for k unordered trees (Con-LCSkforest)

The Constrained LCSforest bears more resemblance to trees homeomorphism than the general LCSforest and the former
solution is also related to that of the latter. Amir and Keselman [1] had proved the maximum agreement subtree for three
trees to be N P -hard. We show that Con-LCSkforest is also N P -hard. Observe, that the corresponding decision version of
the Con-LCSkforest problem is also inN P , thus, the problem isN P -Complete.

Theorem 3. The Con-LCSkforest problem isN P -hard.

Proof. We reduce the 3-Dimensional Matching problem [11] to Con-LCSkforest.

Definition 9. The 3-Dimensional Matching problem: (3DM)
Input: Three sets X, Y ,W of q elements each, and a setM ⊆ X × Y ×W .
Output: Is there a setM ′ ⊆ M of size qwhere no two elements inM ′ agree in any coordinate. Such a set is called amatching.

Lemma 4. 3DM≤pm Con-LCS3tree.

Proof. Given a setM , we construct three trees T1, T2, and T3 as follows. Each tree Ti has a root ri labeled by a new symbol a.
Without loss of generality, we assume an order relation on the triples of M . Partition the set of elements M to q sets,

according to the X value. (If there are no q sets then there is no chance for a qmatching.) In each of these sets define that e
is an ancestor of e′ if e < e′. Each set thus becomes a chain. The root r1 points to the roots of all q chains. Consequently, r1
has q children.
We do a similar partition of theM elements by the Y value, and attach the chains to r2. Finally, the chains created by the

partition ofM by theW values are attached to r3.
For example, consider the following sets: X = {a, b, c, d}, Y = {1, 2, 3, 4}, Z = {A, B, C,D}. Suppose M = {[a, 4, B],

[b, 3,D], [c, 2, A], [d, 1, C], [d, 2, C], [a, 1,D], [a, 3,D], [b, 1, A], [b, 2, B], [c, 3,D]}. The constructed trees are depicted
in Fig. 5.
We claim that there is a matchingM ′ of size q inM iff there is a Common Subforest of T1, T2, T3 of size q+ 1. The claim

immediately follows from the following observation.

A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449 445

Observation 5. It can not be the case that two elements of M that appear in the same chain in one of the trees Ti, i ∈ {1, 2, 3}
are both in the common subforest.

The reason for Observation 5 is that if elements e, e′ both appear in the CS, then the ancestor relation between them is
the same in all three trees, i.e. in each of the three trees they appear in a common chain. However, by the construction, that
means that e and e′ have the same first, second and third coordinates, meaning they are equal. But that contradicts the fact
thatM is a set and not a multiset.
Note, however, that for two elements to be in the same chain means that they have a common value on one of the

coordinates. Thus, no two elements from the same chain can appear in a matching.
We conclude that elements can occur in a CS iff they can occur in a matching. Add this to the fact that the root occurs in

every Common Subforest and the lemma is proved.

6. Ordered trees

The edit distance problem for ordered trees relates to our ordered case definition as the string edit distance relates to the
string LCS. From the tree edit distance algorithm of Demaine et al. [8] we obtain an O(n3)-time algorithm for the LCSforest
problem. We now show how to extend the algorithm of Demaine et al. to k trees.

6.1. LCSkforest for ordered trees

We first give some definitions. Let LF denote the leftmost tree in a forest F , and let RF denote the rightmost tree. Let lF
and rF be the roots of LF and RF , respectively. The vertices lF and rF are called the leftmost root and rightmost root of F . For
a vertex v in a forest F , F(v) is the subforest of F induced by all the proper descendants of v.
A heavy path decomposition of a forest F was introduced by Harel and Tarjan [12] and is built as follows. We classify each

vertex of F as either heavy or light: For each vertex v we pick the child of v with the maximum number of descendants and
classify it as heavy (ties are resolved arbitrarily). Also, pick the largest tree in F and classify its root as heavy. The remaining
vertices are classified as light. Themain path of the heavy path decomposition starts at the heavy root of F , and at each step
moves from the current vertex to its heavy child. We next remove the vertices of the main path from F , and recursively
compute a heavy path decomposition for each of the remaining trees. For a path p in a forest F , Topp is the set of all vertices
in F that are not in p but their parent is in p.
Let F1, . . . , Fk be a non-empty forest. We can compute LCSkforest(F1, . . . , Fk) using the following recurrence.

Lemma 5. For every nonempty forest F1, . . . , Fk,

LCSkforest(F1, . . . , Fk) = min


max
1≤l≤k

{
LCSkforest(F1, . . . , Fl − rFl , . . . , Fk)

}
,

1+ LCSkforest(F1 − RF1 , . . . , Fk − RFk)
+LCSkforest(RF1 − rF1 , . . . , RFk − rFk)

if equal(rF1 , . . . , rFk)

0 otherwise

 ,
where equal(rF1 , . . . , rFk) is true if the labels of rF1 , . . . , rFk are equal.

We can also compute LCSkforest(F1, . . . , Fk) using the following recurrence:

Lemma 6. For every nonempty forest F1, . . . , Fk,

LCSkforest(F1, . . . , Fk) = min


max
1≤l≤k

{
LCSkforest(F1, . . . , Fl − lFl , . . . , Fk)

}
,

1+ LCSkforest(F1 − LF1 , . . . , Fk − LFk)
+LCSkforest(LF1 − lF1 , . . . , LFk − lFk)

if equal(rF1 , . . . , rFk)

0 otherwise

 .

A decomposition algorithm is an algorithm that computes the LCS of input trees T1, . . . , Tk by recursively applying either
Lemma 5 or 6 at each step. Given a decomposition algorithm A and input T1, . . . , Tk, a k-tuple (F1, . . . , Fk) is called a relevant
subproblem if algorithm A computes the value of LCSkforest(F1, . . . , Fk) during the computation of LCSkforest(T1, . . . , Tk).
For a decomposition algorithm A and a relevant subproblem t , A(t) denotes the rule used by the algorithmwhen computing
the LCS value of t , namely, A(t) = right if the algorithm uses Lemma 5, and A(t) = left if the algorithm uses Lemma 6. For a
relevant subproblem t , t[i] denotes the ith forest of t .
The following lemma generalizes a result from [8].

Lemma 7. Let A be a decomposition algorithm A and T1, . . . , Tk be rooted trees. For every k vertices v1 ∈ T1, . . . , vk ∈ Tk that
have equal labels, the k-tuple (T1(v1), . . . , Tk(vk)) is a relevant subproblem.

446 A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449

Proof. Start with t = (T1, . . . , Tk). Repeatedly delete the leftmost or rightmost root in t[1] according to the rule used by A
on the current tuple t , until v1 becomes either the leftmost or rightmost root of t[1]. Next, delete vertices from t[2] until v2
becomes either the leftmost or rightmost root of t[2], and do the same for t[3], . . . , t[k]. At each step, the current tuple t is
a relevant subproblem.
Now, let F1 be the set of all the rooted forests in t which are trees. Let F2 (respectively, F3) be the set of all forests t[i]

which are not trees and vi is the leftmost (respectively, rightmost) root of t[i]. While both F2 and F3 are not empty, delete
vertices from the forests in F2 or from the forests in F3: If algorithm A uses Lemma 5 on t then delete the rightmost root from
some forest in F2 and move this forest to F1 if it becomes a tree after the deletion. Otherwise, delete the leftmost root from
some forest in F3, and move this forest to F1 if it becomes a tree after the deletion.
The process above ends when either F2 or F3 becomes empty. Suppose w.l.o.g. that F3 became empty. Now, while F2 is

not empty and A(t) = right, delete the rightmost root from some forest in F2 and move it to F1 if necessary.
After finishing the process above, if A(t) = left then the tuple (Lt[1] − lt[1], . . . , Lt[k] − lt[k]) = (T1(v1), . . . , Tk(vk)) is a

relevant subproblem. Otherwise, we have that the tuple (Rt[1] − rt[1], . . . , Rt[k] − rt[k]) = (T1(v1), . . . , Tk(vk)) is a relevant
subproblem (note that t[1], . . . , t[k] are trees).

We now present the algorithm. We assume that the vertices of the input trees T1, . . . , Tk are classified as heavy and
light as described above. We define a procedure Compute for computing the LCS of a relevant subproblem. The algorithm
computes the LCS of T1, . . . , Tk by making a call to Compute(T1, . . . , Tk). Procedure Compute(F1, . . . , Fk) is as follows.

1. Let Fi be the largest forest from F1, . . . , Fk, and let p be the main path of Fi.
2. Call Compute(F1, . . . , Fi(v), . . . , Fk) for every k ∈ Topp.
3. Start with t = (F1, . . . , Fk) and recursively compute LCSkforest(t) for the current relevant subproblem t using Lemmas 5
and 6 as follows: If the rightmost root of t[i] is not in p then use Lemma 6. Otherwise, use Lemma 5.

Note that in step 3 we do not use Lemma 5 or 6 if the value of LCSkforest(t)was already computed in step 2.

Theorem 4. The algorithm above computes the LCS of k trees in time O(kn2k−1).

Proof. Let r(F1, . . . , Fk) denote the number of relevant subproblems for the input F1, . . . , Fk. We show that r(F1, . . . , Tk) ≤
4(|F1| · |F2| · · · |Fk|)2−1/k. We prove this by induction on |F1| + · · · + |Fk|. The base of the induction is trivial. Suppose w.l.o.g.
that F1 is the largest forest, and let p be the main path of F1. From Lemma 7 we have that (see [8] for more details)

r(F1, . . . , Fk) ≤ |F1||F2|2 · · · |Fk|2 +
∑
v∈Topp

r(F1(v), F2, . . . , Fk)

≤ |F1||F2|2 · · · |Fk|2 +
∑
v∈Topp

4(|F1(v)| · |F2| · · · |Fk|)2−1/k

≤ |F1||F2|2 · · · |Fk|2 + 4(|F2| · · · |Fk|)2−1/k max
v∈Topp

|F1(v)|1−1/k
∑
v∈Topp

|F1(v)|

≤ (|F1| · · · |Fk|)2−1/k +
4

21−1/k
(|F1| · · · |Fk|)2−1/k

≤ 4(|F1| · |F2| · · · |Fk|)2−1/k

(we use here the inequalities maxv∈Topp |F1(v)| ≤ |F1|/2 and
∑

v∈Topp
|F1(v)| ≤ |F1|).

Demaine et al. [8] showed that every decomposition algorithm for tree edit distance requiresΩ(n3) time. We generalize
their result for the LCSkforest problem. The following theorem shows that the algorithm above is asymptotically optimal
among all decomposition algorithms when k is constant.

Theorem 5. For every decomposition algorithm A and every n and k ≥ 2 there are trees T1, . . . , Tk of size n each such that the
number of relevant subproblems for T1, . . . , Tk isΩ(n2k−1/(12k)k−1).

Proof. For simplicity we assume that n is divisible by 3. Define a tree T with vertices v1, . . . , vn/3, l1, . . . , ln/3, r1, . . . , rn/3.
The children of the vertex vi for i < n/3 are li, vi+1, and ri (from left to right), and the children of vn/3 are ln/3 and rn/3. The
trees T1, . . . , Tk are k copies of the tree T . We now build sets S0, . . . , Sk−1, where each set Si contains relevant subproblems.
Every k-tuple t in a set Sr is assigned a set of inactive indices I(t) ⊆ {1, . . . , k}, a left index l(t) ∈ {1, . . . , k+ 1} \ I(t), and a
right index r(t) ∈ {1, . . . , k+ 1} \ (I(t) ∪ {l(t)}).
The set S0 consists of tuples (T1(vi1), . . . , Tk(vik)) for every index i1, . . . , ik ≤ n/6. The inactive indices set of every

tuple in S0 is empty, the left index is 1, and the right index is 2. From Lemma 7 we have that the tuples in S0 are relevant
subproblems.
We now describe how to build the set Sr from Sr−1 for some r > 1. For every tuple t ∈ Sr−1 define a sequence of

relevant subproblems t1 = t, t2, t3, . . . , ts as follows. Let j = l(t) and j′ = r(t). Suppose we have built t1, . . . , ti−1.
Now, if A(ti−1) = left then ti is obtained from ti−1 by deleting the leftmost root of ti−1[j], and otherwise ti is obtained
from ti by deleting the rightmost root of ti−1[j′]. We stop this process when either |ts[j]| = |t[j]| −

⌊
n

2(k−1)

⌋
or |ts[j′]| =

A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449 447

|t[j′]| −
⌊

n
2(k−1)

⌋
. If the former case occur, then define indices i1, . . . , in/2(k−1), where il is the minimum index such that

|til [j]| = |t[j]| − l. We add the tuples ti1 , . . . , tin/2(k−1) to Sr . For each of these tuples, the inactive set is I(t) ∪ {j}, the left
index is min({1, . . . , k + 1} \ (I(t) ∪ {j, j′})), and the right index is j′. In the latter case we define indices i1, . . . , in/2(k−1)
in an analogous way: We define indices i1, . . . , in/2(k−1), where il is the minimum index such that |til [j

′
] = |t[j′]| − l. We

then add the tuples ti1 , . . . , tin/2(k−1) to Sr . The inactive set of each tuple is I(t) ∪ {j
′
}, the left index is j, and the right index is

min({1, . . . , k+ 1} \ (I(t) ∪ {j, j′})). In both cases we say that the tuples ti1 , . . . , tin/2(k−1) were generated from t .
We now claim that for every r , all the tuples in Sr are distinct. To prove the claim, let t and t ′ be two tuples in Sr . Let

t0, t1, . . . , tr = t be tuples such that ti ∈ Si and ti was generated from ti−1 for all i. Similarly, let t ′0, t
′

1, . . . , t
′
r = t

′ be tuples
such that t ′i ∈ Si and t

′

i was generated from t
′

i−1 for all i.
We consider two cases. In the first case suppose that t0 = t ′0. Let i be the maximum index such that ti = t

′

i . By the
construction, the set I(ti+1) \ I(ti) contains exactly one element, and let j be that element. We have that |t[j]| = |ti+1[j]| 6=
|t ′i+1[j] = |t

′
[j]|, and therefore t and t ′ are distinct.

In the second t0 6= t ′0. Let i1, . . . , ik be the indices such that t0 = (T1(vi1), . . . , Tk(vik)) and let i
′

1, . . . , i
′

k be the indices such
that t ′0 = (T1(vi′1), . . . , Tk(vi′k)). Let j be an index such that ij 6= i

′

j . W.l.o.g. suppose that ij < i
′

j . We have that |t0[j]| ≥
n
2 + 2.

Therefore, |t[j]| ≥ |t0[j]|−
⌊

n
2(k−1)

⌋
r ≥ 2. Since t[j]was obtained from t0[j] by either deleting the leftmost root |t0[j]|−|t[j]|

times, or by deleting the rightmost root |t0[j]| − |t[j]| times, it follows that either lij or rij is present in t[j]. However, these
two vertices are not vertices in t ′[j], so t[j] 6= t ′[j]. Therefore t and t ′ are distinct.

Clearly, |S0| =
(n
6

)k and |Sr | = |Sr−1| · ⌊ n
2(k−1)

⌋
. Thus, |Sk−1| =

(n
6

)k ⌊ n
2(k−1)

⌋k−1
.

6.2. Constrained LCSforest for ordered trees (Con-LCSforest)

Applying the Constrained Edit Distance to ordered trees was done by Zhang [25] in a similar way to the unordered case.
All rooted subtrees were considered as relevant subproblems. Comparing the LCSforest of two subtrees T1[t1] with T2[t2],
t1 and t2 can be matched and then their children should be matched, in a way that the order among the children would be
adhered to. To this aim Zhang suggested reducing the problem to string edit distance. In addition, t1 can bematched to every
child of t2 and vice versa.
For constrained LCSforest for ordered trees, we can use the algorithm of Zhang which has time complexity O(|T1||T2|).

Theorem 6 ([25]). The Constrained-LCSforest for Ordered Trees can be solved in O(n2) time.

6.3. Constrained LCSkforest for ordered trees (Con-LCSkforest)

In contrast to general unordered trees, where we proved the Con-LCSkforest to beN P -hard, the problem for k ordered
trees is polynomial for a constant number of trees.
We give a solution for Con-LCSforest for k ordered trees whose running time is O(knk). For the case of k = 2 we get

an O(n2) solution for the LCSforest problem, just as was attained by Zhang [25] for constrained edit distance between two
ordered trees. Here again the relevant subproblems are all rooted subtrees of the k trees, therefore the dynamic programming
table we fill is of size O(nk).
Solving the Constrained LCSforest problem for multiple trees can be done similarly to the case of two trees, where we

have two cases: First, if all roots of the current trees match, we need to match between their children. On the other hand
if we choose to discard a root we need to match one of its children with the other roots. Note, that not only we consider a
matching of k dimensions, but in order to preserve the order between siblings, it must be a non-crossing matching.

Definition 10. TheMaximum k Dimensional Weighted Non-crossing Matching Problem (kMWNM):
Input: A complete weighted k-partite graph G = (V1, . . . , Vk, E), with a linear order on each set Vi.
Output: Themaximumweight of a k-matching of G that satisfies the following property: If (x1, . . . , xk) and (y1, . . . , yk) are

tuples in the matching then for every i, x1 < y1 iff xi < yi.

In the next subsection we present an algorithm for the kMWNM problem whose running time is O(knk). For the second
case of the problem,we need to consider 0 < k′ < k out of k trees, whose roots arematchedwith themselves. The LCSkforest
can be obtained by comparing a subtree from each of the k− k′ ‘unselected’ trees with the k′ complete trees. As each of the
k− k′ trees is represented by a single subtree, we have to consider the Cartesian product of these subtrees.
Observe that, since we keep a dynamic programming table, it suffices to calculate the Con-LCSkforest for k − 1 current

trees and a single child representative of the kth tree, considering all possible representatives. This is true since the case of
two trees Tf , Tg , not having their root in the Con-LCSkforest, is handled when considering all roots but that of Tf as well as
when considering all roots but that of Tg .
To solve Con-LCSkforest, we keep a dynamic table of size nk, where entry Con-LCSkforest [t1, . . . , tk] stores the

constrained LCSkforest value of T1[t1], . . . , Tk[tk]. We get following lemma:

448 A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449

Lemma 8. For i = 1, . . . , k, let ti be a vertex in Ti with children t1i , . . . , t
ni
i . Then,

Con-LCSkforest[t1, . . . , tk] = max


max
1≤j≤k

{
max
1≤i≤nj

{
Con-LCSkforest[t1, . . . , t ij , . . . , tk]

}}
,{

1+ kMWNM({t11 , . . . , t
n1
1 }, . . . , {t

k
2, . . . , t

nk
k }) if equal(t1, . . . , tk)

0 otherwise

 .
Theorem 7. The Con-LCSkforest for ordered trees is solvable in O(knk) time.

Proof. The algorithm finding the maximum weight non-crossing matching of G runs in O(kn1n2 · · · nk) time, due to
Theorem 8. Summing up all computations of Lemma 8 together, the Con-LCSkforest problem can be solved in time of
O(
∑
t1∈T1
· · ·
∑
tk∈Tk

k · c(t1)c(t2) · · · c(tk)) time. By Observation 4 we get that the time complexity is O(knk).

6.4. The maximum weighted non-crossing k-matching

The problem of Weighted Non-crossing Matching for bipartite graphs was solved by Farach et al. [9] in O(n2) using
a dynamic programming algorithm. The k Dimensional Maximum Weighted Non-crossing Matching Problem (kMWNM)
defined in Section 6.3 extends the bipartite non-crossing matching, to match k lists instead of two. Though the multiple
alignment problem is closely related to the kMWNMproblem, there are some differences between the problems. In contrast
to the kMWNM problem, in the alignment problem the cost of a matching between symbols is detached from the position
of the actual occurrences of those symbols, moreover, the original location of a symbol in the sequence is changed due to
space insertions. The gap penalty in the alignment problem and the cost of deleted/unmatched symbols, does not exist in
the kMWNM problem. We therefore present a dynamic programming algorithm for the kMWNM problem.
An instance of the kMWNMproblem is Gn1,...,nk = (V1, . . . , Vk, E)where V1 = {v

1
1, . . . , v

n1
1 }, . . . , Vk = {v

1
k , . . . , v

nk
k }. Let

n be the largest size of a vertices list. The graph is complete and every hyper-edge (vi11 , . . . , v
ik
k) is associated with a weight

w(i1, . . . , ik).
The relevant subproblems are the kMWNM of subgraphs of G induced by the vertices V i11 , . . . , V

ik
k , where V

l
j =

{v1j , v
2
j , . . . , v

l
j}. Hence, the tablewe fill contains

∏k
j=1 nj= O(n

k) entries. The entry kMWNM[i1, . . . , ik] stores themaximum

weight of a non-crossing matching in the subgraph of G induced by V i11 , . . . , V
ik
k , where V

l
j = {v

1
j , v

2
j , . . . , v

l
j}.

Computing kMWNM[i1, . . . , ik], can be done by maximizing all k entries of the form kMWNM[i1, . . . , ij − 1, . . . , ik],
1 ≤ j ≤ k and w(i1, . . . , ij, . . . , ik)+ kMWNM[i1 − 1, . . . , ij − 1, . . . , ik − 1]. This is true since when computing
kMWNM[i1, . . . , ik], each of the ijs may appear or not in the last edge of the maximal matching that can be achieved
so far. If they all appear, we get the value w(i1, . . . , ij, . . . , ik)+ kMWNM[i1 − 1, . . . , ij − 1, . . . , ik − 1]. For the cases
that a single ij is not included in that last edge, kMWNM[i1, . . . , ij − 1, ik] contains the best matching value. In the
case some ijs are not included in the last matching, for example if , ih the value of the best matching should consider
w(i1, . . . , if − 1, . . . , ih − 1, . . . , ik)+ kMWNM[i1 − 1, . . . , if − 2, . . . , ih − 2, . . . , ik − 1] but, this value appears in both
kMWNM[i1, . . . , if−1, . . . , ik] andkMWNM[i1, . . . , ih−1, . . . , ik] already taken into account for a single vertex not included
in the last edge. We have that:

Lemma 9.

kMWNM[i1, . . . , ik] = max

w((v
i1
1 , . . . , v

ik
k))+ kMWNM[i1 − 1, . . . , ik − 1]

max
1≤j≤k

{
kMWNM[i1, . . . , ij − 1, . . . , ik]

}  .
Theorem 8. The kMWNM algorithm solves the MaximumWeighted Non-crossing Matching problem in O(knk) time.

Proof. The algorithm calculatesO(n1n2...·nk) values. Each computation involves a single additive operation andmaximizing
k previously computed values. Consequentially the algorithm runs in O(knk) time.

7. Conclusions and open problems

The main contribution of the paper is generalizing the concept of the traditional Longest Common Subsequence. In
this paper we introduced two problems derived from the traditional Longest Common Subsequence. We have proved the
problem applied to matrices or to k ≥ 3 unordered labeled trees in constrained version, isN P -hard, whereas the problem
for k ordered trees can be solved in polynomial time for constant k.We also give a lower bound for a decomposition algorithm
for LCSforest applied to k trees. Following these new definitions, LCS questions regarding other non trivial structures may
be considered and their tractability explored. In addition, it will be interesting to develop approximation algorithms for the
N P -hard problems or prove their hardness of approximation.

A. Amir et al. / Theoretical Computer Science 409 (2008) 438–449 449

Acknowledgments

The authors wish to thank the anonymous referees for their helpful comments. The first author was partly supported by
ISF grant 35/05.

References

[1] A. Amir, D. Keselman, Maximum agreement subtree in a set of evolutionary trees — metrics and efficient algorithms, SIAM J. Comput. 26 (6) (1997)
1656–1669.

[2] A. Amir, G.M. Landau, Fast parallel and serial multidimensional approximate array matching, Theoret. Comput. Sci. 81 (1) (1991) 97–115.
[3] R. Baeza-Yates, Similarity in two-dimensional strings, in: Proc. COOCON, 1998, pp. 319–328.
[4] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence algorithms, in: Proc. 7th Symposium on String Processing and Information
Retrieval, SPIRE, 2000, pp. 39–48.

[5] P. Bille, A Survey on Tree Edit Distance and Related Problems, Theoret. Comput. Sci. 337 (1–3) (2005) 217–239.
[6] P. Bille, I.L. Gørtz, The tree inclusion problem: In optimal space and faster, in: Proc. 32nd International Colloquium on Automata, Languages and
Programming, 2005, pp. 66–77.

[7] C. Branden, J. Tooze, Introduction to Protein Structure, Garland Publishing, New York, NY, 1999.
[8] E. Demaine, S. Mozes, B. Rossman, O. Weimann, An optimal decomposition algorithm for tree edit distance, ACM Trans. Algorithms (2008).
[9] M. Farach, T.M. Przytycka, M. Thorup, The maximum agreement subtree problem for binary trees, in: Proc. 3rd Annual European Symposium on
Algorithms, ESA, 1995, pp. 381–393.

[10] H.N. Gabow, R.E. Tarjan, Faster scaling algorithms for network problems, SIAM J. Comput. 18 (5) (1989) 1013–1036.
[11] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Co., New York, 1979.
[12] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.
[13] P. Kilpelinen, H. Mannila, Ordered and unordered tree inclusion, SIAM J. Comput. 24 (2) (1995) 340–356.
[14] P.N. Klein, Computing the edit distance between unrooted ordered trees, in: Proc. 6th European Symposium on Algorithms, ESA, 1998, pp. 91–102.
[15] K. Krithivasan, R. Sitalakshmi, Efficient two-dimensional pattern matching in the presence of errors, Inform. Sci. 43 (3) (1987) 169–184.
[16] R.Y. Pinter, O. Rokhlenko, D. Tsur, M. Ziv-Ukelson, Approximate labeled subtree homeomorphism, in: Proc. 15th Symposium on Combinatorial Pattern

Matching, CPM, 2004, pp. 59–73.
[17] T. Richter, A new algorithm for the ordered tree inclusion problem, in: Proc. 8th Symposium on Combinatorial Pattern Matching, CPM, 1997, pp.

150–166.
[18] B.A. Shapiro, K.Z. Zhang, Comparing multiple RNA secondary structures using tree comparisons, Comput. Appl. Biosci. 6 (4) (1990) 309–318.
[19] D. Shasha, K. Zhang, Simple fast algorithms for the editing distance between trees and related problems, SIAM J. Comput. 18 (6) (1989) 1245–1262.
[20] M. Steel, T. Warnow, Kaikoura tree theorems: The maximum agreement subtree problem, Inform. Process. Lett. 48 (1993) 77–82.
[21] Y. Takahashi, Y. Satoh, H. Suzuki, S. Sasaki, Recognition of largest common structural fragment among a variety of chemical structures, Anal. Sci. 3

(1987) 23–28.
[22] G. Valiente, Simple and efficient tree comparison, Technical Report LSI-01-1-R, Technical University of Catalonia, Department of Software, 2001.
[23] G. Valiente, Constrained tree inclusion, J. Discrete Algorithms 3 (2–4) (2005) 431–447.
[24] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1974) 168–173.
[25] K. Zhang, Algorithm for the constrained editing problem between ordered labeled trees and related problems, Pattern Recognit. 28 (1995) 463–478.
[26] K. Zhang, A constrained edit distance between unordered labeled trees, Algorithmica 15 (3) (1996) 205–222.

	Generalized LCS
	Introduction
	Preliminaries
	Two dimensional LCS
	2D-LCS is NP-hard

	Largest common subforest (LCSforest)
	Constrained-LCSforest
	LCSforest of kgeq 3 Trees (LCSkforest)

	Unordered trees
	Constrained LCSforest
	Constrained LCSforest for k unordered trees (Con-LCSkforest)

	Ordered trees
	LCSkforest for ordered trees
	Constrained LCSforest for ordered trees (Con-LCSforest)
	Constrained LCSkforest for ordered trees (Con-LCSkforest)
	The maximum weighted non-crossing k-matching

	Conclusions and open problems
	Acknowledgments
	References

