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a b s t r a c t

We consider context-free grammars Gn in Greibach normal form and, particularly, in
Greibachm-form (m = 1, 2) which generates the finite language Ln of all n! strings that are
permutations of n different symbols (n ≥ 1). These grammars are investigatedwith respect
to their descriptional complexity, i.e., we determine the number of nonterminal symbols
and the number of production rules ofGn as functions ofn. As in the case of Chomskynormal
form, these descriptional complexity measures grow faster than any polynomial function.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A finite set, coded in some way as a finite language, can be generated in a trivial way by a context-free grammar with
a single nonterminal symbol, and as many rules as there are elements present in that finite language. This straightforward
approach is no longer possible when we require that the context-free grammar possesses a special form, such as Chomsky
normal form (CNF) or Greibach normal form (GNF). If that finite language Xn belongs to an indexed family {Xn}n≥1 of similar
languages, then for each number n ≥ 1 we have to construct a grammar Gn such that L(Gn) = Xn. The descriptional
complexity of the resulting family of grammars {Gn}n≥1 is usually expressed by a few descriptive complexity measures,
such as the number ν(n) of nonterminal symbols of Gn, and the number π(n) of productions of Gn; cf. e.g. [15,17,18,
8,6,1,7]. An additional complexity measure has been introduced in [2,3], viz. the number δ(n) of all possible leftmost
derivations according to Gn, which makes sense, particularly when dealing with finite languages. Clearly, the grammar Gn is
unambiguous if and only if, δ(n) equals the number of words in Xn.
In order to provide some concrete examples of the rather abstract setting sketched above, a few historical remarks are

in order. So, consider an alphabet of n symbolsΣn = {a1, a2, . . . , an} and the language Ln consisting of all n! permutations
of these n symbols. In 2002 G. Satta [22] conjectured that ‘‘any context-free grammar Gn in CNF that generates Ln must have
a number of nonterminal symbols that is not bounded by any polynomial function in n’’. This statement has been proved
in [10], but without showing how to generate the languages {Ln}n≥1 by context-free grammars {Gn}n≥1 in CNF. In [2], we
provided some approaches to obtain such grammar families for {Ln}n≥1, together with the correspondingmeasures ν(n) and
π(n). The relative descriptional complexity of these grammar families is anything but straightforward, and the quest for a
family of minimal grammars (with respect to any of these complexity measures) remains a challenging problem.
Then in [3] we restricted our attention to some specific permutations overΣn, viz. to the so-called circular or cyclic shifts.

Whenwe provideΣn with a linear order, e.g., a1 < a2 < · · · < an, then the set Cn of circular or cyclic shifts overΣn is defined
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by

Cn = {a1a2 · · · an−1an, a2a3 · · · ana1, a3a4 · · · a1a2, . . . , ana1 · · · an−2an−1}.

Since Cn can be obtained from the word a1a2 · · · an by moving the symbol from one end to the other end of the string
iteratively, the number of elements in Cn equals n. This also follows from an alternative definition of Cn in terms of the so-
called circular closure operator c on languages which is defined by c(L) = {vu | uv ∈ L} for each language L [9]. Then the
language Cn can be defined by Cn = c({a1a2 · · · an}).
In [3] we defined some families {Gn}n≥1 in CNF that generate {Cn}n≥1 such that both ν(n) and π(n) are bounded by

polynomial functions of low degree, culminating in a ‘‘minimal’’ family of which ν andπ are linear functions with very small
coefficients. In case of GNF [4], there is still an open problem. Although ν and π can be bounded by polynomial functions of
low degree, the quest for a minimal family remains open in this case. We conjectured in [4] that ‘‘any context-free grammar
Gn in GNF that generates Cn must have a number of nonterminals that is not bounded by any linear function in n’’ and that
for such a minimal family ν(n) and π(n) are inΘ(n · log2 n) rather than inΘ(n).
In the present paper, we investigate several families of context-free grammars {Gn}n≥1 in Greibach normal form that

generate the family of languages {Ln}n≥1 where Ln is the set of all permutations of the word a1a2 · · · an. And for each of these
families, we determine the descriptive complexity measures ν(n) and π(n). As in [2], we start with some preliminaries
(Section 2) and elementary properties of context-free grammars Gn in GNF that generate Ln (Section 3). In Section 4,
we establish a lower bound on the number of nonterminal symbols for each context-free grammar in Greibach m-form
(m = 1, 2) generating Ln; the argument is similar to the one in [10]. This lower bound implies that any context-free
grammar Gn in Greibach m-form (m = 1, 2) that generates Ln must have a number of nonterminals that is not bounded
by any polynomial function in n; cf. Satta’s conjecture [22] on the CNF. We introduce families of grammars based on
the power set of Σn in Section 5. Then in Section 6, we study grammatical transformations to define grammar families
for {Ln}n≥1 inductively. Section 7 is devoted to a divide-and-conquer approach, and Section 8 consists of concluding
remarks.
With respect to Sections 5–8, we note that in comparison with the general problem of generating permutations [19] our

approach is limited: we are unable to apply transpositions (‘‘swapping of symbols’’), because a transposition is —even in the
basic case of swapping adjacent symbols— an inherently context-dependent feature that cannot bemodeled by context-free
rules.

2. Preliminaries

For each finite set X , #X denotes the cardinality (i.e., the number of elements) of X and P (X) the power set of X , and
P+(X) the set of nonempty subsets of X , i.e., P+(X) = P (X)− {∅}.
For rudiments of discrete mathematics, particularly of combinatorics (counting, recurrence relations and difference

equations), we refer to standard texts such as [14,20,21]. Often we use C(n, k) to denote the binomial coefficient C(n, k) =
n!/(k!(n− k)!); in displayed formulas we apply the usual notation.
The reader is assumed to be familiar with basic terminology and notation from formal language theory; cf. e.g. [16]. We

denote the empty word by λ and the length of a wordw by |w|. For each wordw over an alphabetΣ ,A(w) is the set of all
symbols from Σ that do occur in w, i.e., A(λ) = ∅, and A(ax) = {a} ∪ A(x) for each a ∈ Σ and x ∈ Σ?. This mapping is
extended to languages L overΣ byA(L) =

⋃
w∈LA(w).

Recall that a λ-free context-free grammarG = (V ,Σ, P, S) is in Chomsky normal form (CNF) if P ⊆ N×(N−{S})2∪N×Σ
where N = V − Σ . And such a G is in Greibach normal form (GNF) if P ⊆ N × Σ(N − {S})?. Particularly, G is in Greibach
m-form or inm-standard form [16] if P ⊆ N ×Σ(

⋃m
i=0(N − {S})

i).
For each context-free grammar G = (V ,Σ, P, S) and each A ∈ V , let L(G, A) be the language over Σ defined by

L(G, A) = {w ∈ Σ?
| A ⇒? w}. Then the language L(G) generated by G equals L(G, S). Note that, if G is in CNF or in

GNF, then G has no useless symbols, L(G, α) is a nonempty language for each α in V , and L(G, a) = {a} for each a inΣ .
In the sequelΣn = {a1, a2, . . . , an} denotes an alphabet of n symbols (n ≥ 1) and Ln is the finite language overΣn that

consists of the n! permutations of a1a2 · · · an. The finiteness of Ln implies that each context-free grammar Gn in CNF or in
GNF for Ln does not possess any recursive nonterminal.
For each family of grammars {Gn}n≥1 generating {Ln}n≥1 to be considered in this paper, we always assume that the first

two elements G1 and G2 are

• G1 = (V1,Σ1, P1, S1), N1 = {S1}, P1 = {S1 → a1}, and
• G2 = (V2,Σ2, P2, S2), N2 = {S2, A1, A2}, P2 = {S2 → a1A2 | a2A1, A1 → a1, A2 → a2},

respectively. This implies that specifying a family {Gn}n≥1 for {Ln}n≥1 reduces to defining the family {Gn}n≥3.

3. Elementary properties

This section is devoted to some straightforward properties of context-free grammars in GNF form that generate Ln.
Following the convention made at the end of the previous section, we restrict our attention to the case n ≥ 3.
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Proposition 3.1. For n ≥ 3, let Gn = (Vn,Σn, Pn, Sn) be a context-free grammar in Greibach normal form that generates Ln, and
let Nn be defined by Nn = Vn −Σn.

(1) For each A in Nn, the language L(Gn, A) is a nonempty subset of an isomorphic copy Mk of the language Lk for some k
(1 ≤ k ≤ n). Consequently, each string z in L(Gn, A) has length k, z consists of k different symbols, andA(z) = A(L(Gn, A)).

(2) Let A and B be nonterminal symbols in Nn. If L(Gn, A) ∩ L(Gn, B) 6= ∅, thenA(L(Gn, A)) = A(L(Gn, B)).
(3) If A → aA1A2 · · · Am is a rule in Gn, then for each pair (i, j) with 1 ≤ i < j ≤ m, A(L(Gn, Ai)) ∩ A(L(Gn, Aj)) = ∅,
a /∈ A(L(Gn, Ak)) with 1 ≤ k ≤ m, and

A(L(Gn, A)) = {a} ∪A(L(Gn, A1)) ∪A(L(Gn, A2)) ∪ · · · ∪A(L(Gn, Am)).

Proof. The proofs of (1) and (2) are as the ones for Proposition 3.1 in [2]; they rely on the facts that for each A in Nn, L(G, A)
is a nonempty subset ofΣ+n , and that each word in L(G, A) is a nonempty substring of a permutation, i.e., of a word in Ln.
(3) Suppose that for some pair (i, j) the intersection is nonempty: if it contains a symbol b, then we have a subderivation

A⇒ aA1A2 · · · Am ⇒? ax1bx2bx3 which cannot be a subderivation of a derivation that yields a permutation.
Now, the inclusion {a}∪

⋃m
i=1A(L(Gn, Ai)) ⊆ A(L(Gn, A)) is trivial. Suppose that it is proper: there exists a symbol bwith

b 6= a and b ∈ A(L(Gn, A)) −
⋃m
i=1A(L(Gn, Ai)). Then there is a rule A → dB1B2 · · · Bk, with b ∈ {d} ∪

⋃k
i=1A(L(Gn, Bi)).

Consider the derivation Sn ⇒? uAv ⇒ uaA1A2 · · · Amv ⇒? uxv with b ∈ A(uv) and b /∈ A(x), yielding the permutation
uxv. Using this alternative rule A→ dB1B2 · · · Bk for A, we obtain the derivation Sn ⇒? uAv ⇒ udB1B2 · · · Bkv ⇒? uyv with
b ∈ A(y); consequently, uyv contains at least two b’s and therefore it is not a permutation. Hence, the inclusion cannot be
proper, and so we have equality. �

Proposition 3.1(2) gives rise to the following equivalence relation on Nn.
Definition 3.2. Two nonterminal symbols A and B from Nn are called equivalent if |x| = |y| for some x ∈ L(Gn, A) and
some y ∈ L(Gn, B). The corresponding equivalence classes are denoted by {En,k}nk=1. The number of elements #En,k of the
equivalence class En,k will be denoted by D(n, k) (1 ≤ k ≤ n). �
From this definition and Proposition 3.1(3), we obtain the following property: if A→ aA1A2 · · · Am is a rule in Gn and for

each i (1 ≤ i ≤ m) Ai belongs to En,k(i), then we have that A is in En,p with p = 1+
∑m
i=1 k(i).

Proposition 3.1 suggests a partial order relation on Nn which is induced by the inclusion relation on P (Σn) and which is
a more general notion than the linear order present in the concept of sequential grammar; cf. [11,5].
Definition 3.3. Let A and B be nonterminal symbols from Nn. Then the partial order v on Nn and the corresponding strict
order @ are given by:
A v B if and only if,A(L(Gn, A)) ⊆ A(L(Gn, B)),
A @ B if and only if,A(L(Gn, A)) ⊂ A(L(Gn, B)). �
For the descriptional complexity of a context-free grammar Gn from a family {Gn}n≥1, we usewell-knownmeasures, such

as the number ν(n) of nonterminal symbols and the number π(n) of production rules of Gn; so ν(n) = #Nn and π(n) = #Pn.
As in [2–4]wewill consider ν andπ as functions of n. Thesemeasures are anything but original, since they have been studied
frequently in the literature concerning context-free grammars [15,17,18,8,6,1,7]. A somewhat less-known descriptional
complexity measure has been introduced recently in [2–4]; viz. the number of left-most derivations δ(n) according to a
context-free grammar, i.e., δ(n) = #{Sn ⇒?

L x | x ∈ L(Gn)}, where⇒L denotes the leftmost derivation relation. In particular,
this measure makes sense, when we generate a finite language by means of a λ-free grammar with bounded ambiguity.
Example 3.4. (1) For the grammars G1 and G2 of Section 2 we have ν(1) = π(1) = δ(1) = 1 and ν(2) = 3, π(2) = 4 and
δ(2) = 2. Both G1 and G2 are unambiguous.
(2) Consider G3 = (V3,Σ3, P3, S3)with S3 = A123,N3 = {A123, A12, A13, A23, A1, A2, A3} and P3 = {A123 → a1A23 | a2A13 |

a3A12, A12 → a1A2 | a2A1, A13 → a1A3 | a3A1, A23 → a2A3 | a3A2, A1 → a1, A2 → a2, A3 → a3}. Note that G3 is regular,
unambiguous and in Greibach 1-form.
Now E3,3 = {A123}, E3,2 = {A12, A13, A23}, E3,1 = {A1, A2, A3}, Ai @ Aij @ S3 (1 ≤ i < j ≤ 3), D(3, 3) = 1,

D(3, 2) = D(3, 1) = 3, ν(3) = 7, π(3) = 12 and δ(3) = 6. �
We conclude this section with a very simple family of grammars in GNF that generates {Ln}n≥1. The starting point is the

family of trivial grammars with a single nonterminal symbol Sn and the set of rules {Sn → w | w ∈ Ln}. In order to obtain
grammars in GNF, we need a family of isomorphisms.
Let for each n ≥ 3, ϕn : Σn → {A1, A2, . . . , An} be the isomorphism defined by ϕn(ai) = Ai (1 ≤ i ≤ n). As usual, ϕn is

extended to words overΣn by
ϕn(σ1σ2 · · · σk) = ϕn(σ1)ϕn(σ2) · · ·ϕn(σk) (σi ∈ Σn, 1 ≤ i ≤ k)

and to languages L overΣn by
ϕn(L) = {ϕn(w) | w ∈ L}.

Definition 3.5. The family {GTn}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with for n ≥ 3,

• Nn = Vn −Σn = {Sn} ∪ {Ai | 1 ≤ i ≤ n},
• Pn = {Sn → σ1ϕ(σ2 · · · σn) | σ1σ2 · · · σn ∈ Ln} ∪ {Ai → ai | 1 ≤ i ≤ n}. �
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We emphasize that the descriptional complexity measures ν, π and δ depend on n as well as on the family under
consideration; so we use να(n), πα(n) and δα(n) in the context of a family {Gαn }n≥1 of which the individual members are
labeled by α.

Example 3.6. For n = 3, Definition 3.5 yields the grammars GT3 = (V3,Σ3, P3, S3) with N3 = {S3, A1, A2, A3} and
P3 = {S3 → a1A2A3 | a1A3A2 | a2A1A3 | a2A3A1 | a3A1A2 | a3A2A1, A1 → a1, A2 → a2, A3 → a3}. Clearly, GT3 is an
unambiguous grammar, it is in GNF and, as it happens, in Greibach 2-form (since in general GTn is in Greibach (n− 1)-form).
Then E3,3 = {S3}, E3,2 = ∅, E3,1 = {A1, A2, A3}, Ai @ S3 (1 ≤ i ≤ 3), D(3, 3) = 1, D(3, 2) = 0, and D(3, 1) = 3. Thus

νT (3) = 4, πT (3) = 9 and δT (3) = 6. �

The following result easily follows from Definition 3.5.

Proposition 3.7. For the family {GTn}n≥1 of Definition 3.5 we have for n ≥ 3,

(1) D(n, n) = 1, D(n, k) = 0 (1 < k < n), and D(n, 1) = n.
(2) νT (n) = n+ 1,
(3) πT (n) = n! + n,
(4) δT (n) = n!, i.e., GTn is unambiguous. �

4. A lower bound

From Definition 3.5 and Proposition 3.7, it is clear that the use of grammars in arbitrary GNF does not lead to very
interesting results. Therefore we restrict ourselves in the remaining part of this paper to context-free grammars in Greibach
m-form with m = 1, 2. Similar to [10] we establish for these grammars a lower bound on the number of nonterminal
symbols. The proofs in this section are straightforward modifications of arguments from [10]; for completeness’ sake they
are included here as well.

Lemma 4.1. Let G = (V ,Σ, P, S) be a context-free grammar in Greibach m-form (m = 1, 2) and let w ∈ L(G) with |w| ≥ 1.
Then for each derivation S ⇒+ w, there exists a nonterminal symbol A with

(1) S ⇒? αAβ ⇒+ w, for some α, β ∈ V ?, and
(2) if u is the yield of A in this derivation ofw, then |w|/3 ≤ |u| < 2|w|/3+ 1.

Proof. The case |w| = 1 is trivial: we take A = S and, consequently, we have u = w which satisfies (2).
So, we may assume that |w| > 1. In the derivation tree of (1) according to G we follow a path from the root S down to

a leaf, at each point choosing the nonterminal with the larger yield (whenever there is a choice). In the end we arrive at a
nonterminal Z with a yield of length 1. As |w| ≥ 1, we have for the yield u of this nonterminal Z that |u| < 2|w|/3+ 1.
Returning upwards in the direction of the root S we sooner or later meet a nonterminal A with yield u satisfying

|u| < 2|w|/3+ 1, but for which its parent nonterminal B has yield z with |z| ≥ 2|w|/3+ 1. At this point in the derivation
tree a rule of the form (i) B→ aAC , (ii) B→ aCA or (iii) B→ aA (for some a ∈ Σ and some C ∈ V −Σ) has been applied. In
moving downwards along this path in the tree from S to Z we always chose the nonterminal with the larger yield. Therefore
in cases (i), (ii) and (iii) A is the desired nonterminal, and for its yield uwe have |u| ≥ |w|/3. �

Notice that Lemma 4.1 holds for any context-free grammar in Greibach m-form (m = 1, 2), whereas the following
result (Theorem 4.2) only holds for such context-free grammars that generate Ln; cf. Lemma 25 and Theorem 24 in [10],
respectively.

Theorem 4.2. Let Gn = (Vn,Σn, Pn, Sn) be a context-free grammar in Greibach m-form (m = 1, 2) generating Ln. Then
ν(n) ∈ Ω(n−3/2rn) where r = 3

2
3√2 = 1.88988157 · · ·.

Proof. With each word w in Ln we associate a pair (A, k) where A is a nonterminal symbol from Vn −Σn and k is a natural
number (1 ≤ k ≤ n) that represents a position in the string w. By Lemma 4.1, there exists such a nonterminal A that
generates a subword u ofw with |w|/3 ≤ |u| < 2|w|/3+ 1. Sincew is a permutation, this subword u occurs (or starts) at a
uniquely determined position k inw; the resulting pair (A, k)will be associated with the wordw.
Next, we consider all such pairs (A, k) and determine the number of words that can be associated with a fixed pair (A, k).

Following Proposition 3.1(1), A generates strings of a fixed length l, and by Lemma 4.1 we have |w|/3 ≤ l < 2|w|/3 + 1.
There are l! different possibilities for the strings generated by A, and the n− l remaining symbols (once the word generated
by A is disregarded fromw) give rise to at most l!(n− l)! possible words to be associated with (A, k). Since there are n!words
in total, we have at least n!/l!(n − l)! = C(n, l) distinct pairs (A, k). Because there are only n different positions in w (i.e.,
possible values for k), Gn must possess at least n−1 · C(n, l) different nonterminals.
In the interval 1 ≤ l ≤ bn/2c, C(n, l) increases monotonically and under the restriction dn/3e ≤ l < d2n/3e + 1 it

reaches its minimum value at l = d2n/3e. Therefore we have ν(n) ≥ n−1 ·C(n, d2n/3e) = n−1 ·C(n, bn/3c). Using Stirling’s
formula, we obtain for large values of n,
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ν(n) ≥ n−1 ·
(
n
bn/3c

)
=

n−1n!
bn/3c!d2n/3e!

≈
n−1
√
2πn(n/e)n(1+ c1n−1)

√
2πbn/3c(bn/3c/e)bn/3c(1+ c2n−1)

√
2πd2n/3e(d2n/3e/e)d2n/3e(1+ c3n−1)

=
3n−3/2

2
√
π
·
3n

22n/3
·

1+ c1n−1

(1+ c2n−1)(1+ c3n−1)

for some constants c1, c2, c3 > 0; cf. Exercise 5.60 in [14]. Since this last factor tends to 1 as n→∞, we have asymptotically
that ν(n) ∈ Ω(n−3/2rn)with r = 3

2
3√2. �

It is likely that variations of Lemma 4.1 and Theorem 4.2 can be established for context-free grammars in Greibach m-
form withm > 2, although the combinatorial arguments become more complicated. Certainly, they cannot be extended to
context-free grammars in arbitrary GNF as the family of Definition 3.5 may serve as a counterexample to the conclusion of
Theorem 4.2; cf. Proposition 3.7(2).
Of course, Theorem 4.2 does not indicate how to generate Ln by context-free grammars in Greibach m-form (m = 1, 2).

The following sections are devoted to this problem.

5. Greibachm-form (m = 1, 2)— Subsets

In this section, we consider a few ways of generating {Ln}n≥1 by a family of grammars in Greibach m-form (m = 1, 2).
These grammars have the property that each nonterminal symbol corresponds to a nonempty subset of Σn in a unique
fashion. First, we consider the casem = 2 (Definitions 5.1 and 5.4) and then we turn to a family withm = 1 (Definition 5.7).
Definition 5.1. The family {G1n}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with for n ≥ 3,

• Nn = Vn −Σn = {AX | X ∈ P+(Σn)},
• Pn = {A{a}∪X∪Y → aAXAY | a ∈ Σn; X, Y ∈ P (Σn), X ∩ Y = ∅}, and
• Sn = AΣn . �

We will identify A∅ with λ in this definition of Pn; in particular, this implies that A{a} → a is in Pn for each a in Σn (viz.
when X = Y = ∅). Note that A∅ /∈ Vn.
Clearly, AX @ AY [AX v AY , respectively] holds if and only if X ⊂ Y [X ⊆ Y ] for all X and Y in P+(Σn).
In the sequel, we use the notation A−IaBC as an abbreviation for A → aBC | aCB. The reader should always keep in

mind that A−IaBC counts for two productions.
Example 5.2. We consider the case n = 3 in detail; instead of subsets of Σ3, we use subsets of {1, 2, 3} as indices of
nonterminals. Then we have G13 = (V3,Σ3, P3, S3) with S3 = A123, N3 = {A123, A12, A13, A23, A1, A2, A3} and P3 =
{A123−Ia1A2A3 | a2A1A3 | a3A1A2, A123 → a1A23 | a2A13 | a3A12, A12 → a1A2 | a2A1, A13 → a1A3 | a3A1, A23 →
a2A3 | a3A2, A1 → a1, A2 → a2, A3 → a3}.
Now E3,3 = {A123}, E3,2 = {A12, A13, A23}, E3,1 = {A1, A2, A3}, D(3, 3) = 1, D(3, 2) = D(3, 1) = 3, ν1(3) = 7 and

π1(3) = 18. �

Proposition 5.3. For the family {G1n}n≥1 of Definition 5.1 we have for n ≥ 3,

(1) D(n, k) = C(n, k) with 1 ≤ k ≤ n,
(2) ν1(n) = 2n − 1,
(3) π1(n) = n · 3n−1 − n · 2n−1 + n.

Proof. Definition 5.1 and ν1(n) =
∑n
k=1 D(n, k) =

∑n
k=1 C(n, k) = 2

n
− 1 [14] imply immediately (1) and (2). For (3) we

determine #Pn: if the set {a}∪X∪Y possesses k elements (k ≥ 3), then the set {A{a}∪X∪Y → aAXAY | X, Y ∈ P (Σn), X∩Y =
∅} contains k(2k−1 − 1) elements, because both cases X = ∅ and Y = ∅ result in the same production. For k = 2, we have
k elements, which equals k(2k−1 − 1) as well, but for k = 1 there is just one element. Then

#Pn =
(
n
1

)
1+

n∑
k=2

(
n
k

)
k(2k−1 − 1) = n+

n∑
k=1

(
n
k

)
k(2k−1 − 1)

= n+
n∑
k=1

n! · k
k!(n− k)!

(2k−1 − 1) = n+ n ·
n∑
k=1

(n− 1)!
(k− 1)!(n− k)!

(2k−1 − 1)

= n+ n ·
n−1∑
j=0

(
n− 1
j

)
(2j − 1) = n+ n ·

n−1∑
j=0

(
n− 1
j

)
2j1n−j−1 − n ·

n−1∑
j=0

(
n− 1
j

)
= n(2+ 1)n−1 − n · 2n−1 + n = n · 3n−1 − n · 2n−1 + n.

Consequently, we have π1(n) = #Pn = n · 3n−1 − n · 2n−1 + n. �
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In order to reduce the number of productions, we will demand in the next family that in rules of the form A→ aBC we
have either B = A∅ = λ or B = A{b} for some b ∈ Σn.

Definition 5.4. The family {G2n}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with for n ≥ 3,

• Nn = Vn −Σn = {AX | X ∈ P+(Σn)},
• Pn = {A{a}∪X∪Y → aAXAY | a ∈ Σn; X, Y ∈ P (Σn), X ∩ Y = ∅, #X ≤ 1}, and
• Sn = AΣn . �

Example 5.5. As it happens, G23 = G
1
3 holds; however, for n ≥ 4, we have G

2
n 6= G

1
n. E.g., A1234 → a1A34A2 is a production

of G14, but not of G
2
4, while the corresponding rules A1234 → a1A2A34, A1234 → a1A3A24 and A1234 → a1A4A23 belong to both

these grammars. In general, we have for n ≥ 4, π2(n) < π1(n); cf. Proposition 5.3(3) and 5.6(3). �

Proposition 5.6. For the family {G2n}n≥1 of Definition 5.4 we have for n ≥ 3,

(1) D(n, k) = C(n, k) with 1 ≤ k ≤ n,
(2) ν2(n) = 2n − 1,
(3) π2(n) = n2 · 2n−2 + n · 2n−2 − n2 + n.

Proof. With respect to the previous proof, the only difference is (3): if the set {a} ∪ X ∪ Y has k elements (k ≥ 3), then
now the set {A{a}∪X∪Y → aAXAY | X, Y ∈ P (Σn), X ∩ Y = ∅, #X ≤ 1} contains k(k − 1) + k elements: the first term
corresponds to #X = 1, the second one to #X = 0. For k = 2 and k = 1, there are k elements and just a single element,
respectively. Now we have

#Pn =
(
n
1

)
+

n∑
k=2

(
n
k

)
k+

n∑
k=3

(
n
k

)
k(k− 1) = n+

n∑
k=2

n! · k
k!(n− k)!

+

n∑
k=3

n! · k(k− 1)
k!(n− k)!

= n+ n ·
n∑
k=2

(n− 1)!
(k− 1)!(n− k)!

+ n(n− 1) ·
n∑
k=3

(n− 2)!
(k− 2)!(n− k)!

= n+ n ·
n−1∑
j=0

(
n− 1
j

)
− n

(
n− 1
0

)
+ n(n− 1) ·

n−2∑
j=0

(
n− 2
j

)
− n(n− 1)

(
n− 2
0

)
= n+ n · 2n−1 − n+ n(n− 1) · 2n−2 − n(n− 1) = n2 · 2n−2 + n · 2n−2 − n2 + n,

i.e., π2(n) = #Pn = n2 · 2n−2 + n · 2n−2 − n2 + n. �

Finally, we replace the restriction ‘‘#X ≤ 1’’ in Definition 5.4 by ‘‘#X = 0’’, i.e., we now consider grammars in Greibach
1-form or, equivalently, regular grammars for {Ln}n≥1. From [2] we quote the following definition and results.

Definition 5.7. The family {G3n}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with for n ≥ 3,

• Nn = Vn −Σn = {AX | X ∈ P+(Σn)},
• Pn = {A{a} → a | a ∈ Σn} ∪ {AX → aAX−{a} | X ⊆ Σn, a ∈ X, #X ≥ 2},
• Sn = AΣn . �

For an example with n = 3 we refer to Example 3.4(2).

Proposition 5.8 ([2]). For the family {G3n}n≥1 of Definition 5.7 we have for n ≥ 3,

(1) D(n, k) = C(n, k) with 1 ≤ k ≤ n,
(2) ν3(n) = 2n − 1,
(3) π3(n) = n · 2n−1,
(4) δ3(n) = n!, i.e., G3n is unambiguous. �

Although ν1(n) = ν2(n) = ν3(n) for n ≥ 1, we obtain π1(n) > π2(n) > π3(n) for n ≥ 4. We can apply the idea of
subsets ofΣn to construct a grammar family with fewer nonterminals as well. It is rather straightforward to define a family
with D(n, 1) = n, and for k ≥ 2, D(n, k) = if k ≡ n (mod 2) then C(n, k) else 0. Then ν(n) = 2n−1 if n is odd, and
ν(n) = 2n−1 + n− 1 if n is even, but a closed form for π(n) is less easy to derive.

6. Greibach 2-form — Grammatical transformations

In this section, we start with the grammars G41 = G1 and G
4
2 = G2, defined in Section 2, together with an explicitly given

grammar G43, and then we proceed inductively to define G
4
4,G

4
5,G

4
6, · · · by means of a grammatical transformation T1 that

produces G4n+1 from G
4
n (n ≥ 3). This transformation is based on the following observation: Ln with Ln = L(G

4
n) is a language

overΣn, whereas Ln+1 is a language overΣn+1; so wemay obtain the elements of Ln+1 by inserting the new terminal symbol
an+1 at each available spot in the strings of Ln. In essence this is realized by our grammatical transformation T1.
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Definition 6.1. The family {G4n}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with for n ≥ 3

• G43 is defined by G
4
3 = (V3,Σ3, P3, S3) with N3 = {S3, A1, A2, A3} and P3 = {S3−Ia1A2A3 | a2A1A3 | a3A1A2, A1 →

a1 A2 → a2 A3 → a3}.
• G4n+1 is obtained from G

4
n (n ≥ 3) by the grammatical transformation T1 described in steps (a), (b), (c), (d) and (e); T1

properly extends Pn to Pn+1 by adding new productions.
(a) If A→ aBC is in Pn, then A→ aBC and A′ → aB′C | aBC ′ are in Pn+1.
(b) If A→ aB is in Pn, then A→ aB and A′ → aB′ are in Pn+1.
(c) If A→ a is in Pn, then A→ a and A′ → aAn+1 are in Pn+1.
(d) We add ν4(n)+ 1 new productions A′ → an+1A (A ∈ Nn) and An+1 → an+1 to Pn+1.
(e) Finally, each occurrence of S ′n in G

4
n+1 will be replaced by Sn+1, i.e., by the initial nonterminal symbol of G

4
n+1. �

In step (c), there is no need to add productions of the form A′ → an+1A, as they will be introduced in step (d).
A primed symbol in a derivation according to G4n indicates that in the subtree rooted by that symbol an occurrence of the

terminal symbol an+1 should be inserted. A similar remark applies to the initial symbol Sn+1; cf. step (e) in Definition 6.1(3).

Example 6.2. (1) Note that ν4(3) = 4 < νi(3) and π4(3) = 9 < πi(3) for i = 1, 2, 3.
(2) We will construct G44 from G

4
3 by means of T1 as defined in Definition 6.1: G

4
4 = (V4,Σ4, P4, S4)with N4 = {S4, S3, A4} ∪

{Ai, A′i | 1 ≤ i ≤ 3} and P4 consists of the rules

S3−Ia1A2A3 | a2A1A3 | a3A1A2, A1 → a1 A2 → a2 A3 → a3, P3
S4−Ia1A′2A3 | a1A2A

′

3 | a2A
′

1A3 | a2A1A
′

3 | a3A
′

1A2 | a3A1A
′

2, (a)
—— (b)
A′1 → a1A4, A′2 → a2A4, A′3 → a3A4, (c)
S4 → a4S3, A′1 → a4A1, A′2 → a4A2, A′3 → a4A3, A4 → a4. (d)

Then we have E4,4 = {S4}, E4,3 = {S3}, E4,2 = {A′1, A
′

2, A
′

3}, E4,1 = {A1, A2, A3, A4}, Ai @ S3 @ S4, Ai @ A
′

i @ S4, A4 @ A
′

i
(1 ≤ i ≤ 3), ν4(4) = 9 and π4(4) = 29.

(3) It is an illustrative exercise to construct G45 from G
4
4 in a similar way. However, before starting to do so the reader should

rename some nonterminals —for instance A′i by Bi— in order to avoid confusion caused by double primes. �

Proposition 6.3. For the family {G4n}n≥1 of Definition 6.1 we have
(1) D(n, n) = 1, D(n, 1) = n (n ≥ 1),

D(3, 2) = 0,
D(n, k) = D(n− 1, k)+ D(n− 1, k− 1) (n ≥ 4; 2 ≤ k ≤ n− 1),

(2) ν4(n) = 5 · 2n−3 − 1 (n ≥ 3),
(3) π4(n) = 2 · 3n−2 + 5n · 2n−4 − 9 · 2n−4 (n ≥ 3).

Proof. (1) Obviously, D(n, n) = 1 and D(n, 1) = n since En,n = {Sn} and En,1 = {A1, . . . , An} because Ai → ai are the
only rules in Pn with terminal right-hand sides. The fact that D(3, 2) = 0 and the recurrence relation easily follow from
Definition 6.1(3) and the grammatical transformation T1, respectively.
(2) From Definition 6.1(4) it follows that for the new set of nonterminal symbols Nn+1 of G4n+1 we have

Nn+1 = Nn ∪ {A′ | A ∈ Nn} ∪ {An+1}

with Sn+1 = S ′n. Then we have ν4(n + 1) = 2 · ν4(n) + 1 for n ≥ 3. Solving the corresponding homogeneous difference
equation yields ν4,H(n) = c · 2n, whereas ν4,P(n) = −1 is a particular solution. Now ν4(n) = ν4,H(n)+ ν4,P(n) = c · 2n − 1
which with initial condition ν4(3) = 4 results in c = 5/8 and ν4(n) = 5 · 2n−3 − 1.
(3) Let pi(n) (i = 1, 2, 3) be the number of productions in Pn of the form A → a, A → aB and A → aBC , respectively.

Then we have by the definition of T1:
(3.1) p1(n) = n, since En,1 = {A1, . . . , An},
(3.2) p2(n+ 1) = 2 · p2(n)+ ν4(n)+ n = 2 · p2(n)+ 5 · 2n−3 + n− 1, p2(3) = 0,
(3.3) p3(n+ 1) = 3 · p3(n), p3(3) = 6.
From (3.3), we obtain p3(n) = 2 · 3n−2 for n ≥ 3. The solution of the homogeneous version of (3.2) is p2,H(n) = c · 2n.

A candidate particular solution p2,P(n) of the form p2,P(n) = An · 2n + Bn+ C —cf. Section 4.5 in [21] for the details of this
approach— results in A = 5/16, B = −1 and C = 0; consequently, p2,P(n) = 5 · 2n−4 − n and p2(n) = p2,H(n)+ p2,P(n) =
c · 2n + 5 · 2n−4 − n. From p2(3) = 0, we infer that c = −9/16, and hence p2(n) = 5n · 2n−4 − 9 · 2n−4 − n.
Finally, we obtain π4(n) = p1(n)+ p2(n)+ p3(n) = 2 · 3n−2 + 5n · 2n−4 − 9 · 2n−4. �

The recurrence relation in Proposition 6.3(1) is identical to the one for the binomial coefficients C(n, k), although the fact
that D(3, 2) = 0 results in a different Pascal-like triangle; cf. Table 1.
Although the family {G4n}n≥1 is rather efficient with respect to the number of nonterminals as compared to the families

{G1n}n≥1, {G
2
n}n≥1 and {G

3
n}n≥1 —asymptotically, it is a constant factor of 5/8 that makes the difference— the number of rules

is a different story; cf. Section 8. In addition, this family’s degree of ambiguity is rather high. To illustrate this point, consider
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Table 1
D(n, k) for G4n (1 ≤ n ≤ 10)

n D(n, k)
k = 1 2 3 4 5 6 7 8 9 10

1 1
2 2 1
3 3 0 1
4 4 3 1 1
5 5 7 4 2 1
6 6 12 11 6 3 1
7 7 18 23 17 9 4 1
8 8 25 41 40 26 13 5 1
9 9 33 66 81 66 39 18 6 1
10 10 42 99 147 147 105 57 24 6 1

a subderivation according to G4n of the form A ⇒ aBC ⇒? awBwC with B ⇒? wB and C ⇒? wC . Applying T1 to G4n
yields a grammar G4n+1 according to which the substring awBan+1wC can be obtained by A

′
⇒ aB′C ⇒? awBan+1wC or

by A′ ⇒ aBC ′ ⇒? awBan+1wC .
Next, we will modify T1 of Definition 6.1 into a grammatical transformation T2 in such a way that the first subderivation

is not possible, because the occurrence of an+1 will always be introduced to the left of the terminal symbols a1, a2, . . . , an.

Definition 6.4. The family {G5n}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with for n ≥ 3

• G53 equals G
4
3 from Definition 6.1.

• G5n+1 is obtained from G
5
n (n ≥ 3) by the grammatical transformation T2 described in steps (a), (b), (c), (d) and (e); T2

properly extends Pn to Pn+1 by adding new productions.
(a) If A→ aBC is in Pn, then A→ aBC , A′ → aB′C | aBC ′ and A◦ → aBC◦ are in Pn+1.
(b) If A→ aB is in Pn, then A→ aB, A′ → aB′ and A◦ → aB◦ are in Pn+1.
(c) If A→ a is in Pn, then A→ a and A◦ → aAn+1 are in Pn+1.
(d) We add ν5(n)+ 1 new productions A′ → an+1A (A ∈ Nn) and An+1 → an+1 to Pn+1.
(e) Finally, each occurrence of S ′n and of S

◦ in G5n+1 will be replaced by Sn+1, i.e., by the initial nonterminal symbol of
G5n+1. �

Example 6.5. We apply T2 to G53 in order to obtain G
5
4 = (V4,Σ4, P4, S4) with N4 = {S4, S3, A4} ∪ {Ai, A

′

i, A
◦

i | 1 ≤ i ≤ 3}
and P4 consists of the rules

S3−Ia1A2A3 | a2A1A3 | a3A1A2, A1 → a1 A2 → a2 A3 → a3, P3
S4−Ia1A′2A3 | a1A2A

′

3 | a2A
′

1A3 | a2A1A
′

3 | a3A
′

1A2 | a3A1A
′

2, (a)
S4 → a1A2A◦3 | a1A3A

◦

2 | a2A1A
◦

3 | a2A1A
◦

3 | a3A1A
◦

2 | a3A2A
◦

1 (a)
—— (b)
A◦1 → a1A4, A◦2 → a2A4, A◦3 → a3A4, (c)
S4 → a4S3, A′1 → a4A1, A′2 → a4A2, A′3 → a4A3, A4 → a4. (d)

For G54 we obtain E4,4 = {S4}, E4,3 = {S3}, E4,2 = {A
′

1, A
′

2, A
′

3, A
◦

1, A
◦

2, A
◦

3}, E4,1 = {A1, A2, A3, A4}, Ai @ S3 @ S4, Ai @ A
′

i @ S4,
Ai @ A◦i @ S4, A4 @ A

′

i , A4 @ A
◦

i (1 ≤ i ≤ 3), ν4(4) = 12 and π4(4) = 35. �

Proposition 6.6. For the family {G5n}n≥1 of Definition 6.4 we have
(1) D(n, n) = 1, D(n, 1) = n (n ≥ 1),

D(3, 2) = 0,
D(n, k) = D(n− 1, k)+ 2 · D(n− 1, k− 1) (n ≥ 4; 2 ≤ k ≤ n− 1),

(2) ν5(n) = 4 · 3n−3 (n ≥ 3),
(3) π5(n) = 6 · 4n−3 + 4n · 3n−4 − 1

4 · 3
n−1
+
1
2n−

1
4 (n ≥ 3),

(4) δ5(n) = n!, i.e., G5n is unambiguous.

Proof. The proof is similar to the one of Proposition 6.3; so (1) follows from the definitions of G53 and T2; see also Table 2.
(2) Definition 6.4(4) implies that the new set of nonterminals Nn+1 of G5n+1 satisfies

Nn+1 = Nn ∪ {A′, A◦ | A ∈ Nn} ∪ {An+1}

with Sn+1 = S ′n = S
◦
n . Then ν5(n+ 1) = 3 · ν5(n)− 1+ 1 = 3 · ν5(n) for n ≥ 3 with ν5(3) = 4. Solving this homogeneous

difference equation yields ν5(n) = 4 · 3n−3.
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Table 2
D(n, k) for G5n (1 ≤ n ≤ 10)

n D(n, k)
k = 1 2 3 4 5 6 7 8 9 10

1 1
2 2 1
3 3 0 1
4 4 6 1 1
5 5 14 13 3 1
6 6 24 41 29 7 1
7 7 36 89 111 65 15 1
8 8 50 161 289 287 145 31 1
9 9 66 261 611 865 719 321 63 1
10 10 84 399 1133 2087 2449 1759 705 127 1

(3) From the definition of T2, we obtain for pi(n) (i = 1, 2, 3), i.e., the number of productions in Pn of the form A → a,
A→ aB and A→ aBC , respectively:
(3.1) p1(n) = n, since En,1 = {A1, . . . , An},
(3.2) p2(n+ 1) = 3 · p2(n)+ n+ ν5(n) = 3 · p2(n)+ 4 · 3n−3 + n, p2(3) = 0,
(3.3) p3(n+ 1) = 4 · p3(n), p3(3) = 6.
From (3.3), we infer that p3(n) = 6 · 4n−3 for n ≥ 3. The solution of the homogeneous equation corresponding to (3.2) is

p2,H(n) = c · 3n. A particular solution of the form p2,P(n) = An · 3n + Bn + C yields A = 4/81, B = −1/2 and C = −1/4,
i.e., p2,P(n) = 4n · 3n−4 − 1

2n −
1
4 . So p2(n) = p2,H(n) + p2,P(n) = c · 3

n
+ 4n · 3n−4 − 1

2n −
1
4 and p2(3) = 0 results

in c = −1/12, i.e., p2(n) = 4n · 3n−4 − 1
4 · 3

n−1
−
1
2n −

1
4 . Consequently, we have π5(n) = p1(n) + p2(n) + p3(n) =

6 · 4n−3 + 4n · 3n−4 − 1
4 · 3

n−1
+
1
2n−

1
4 for n ≥ 3.

(4) The argument is by induction on n and analogous to the proof of Proposition 7.3 in [2]; viz. we distinguish two cases:
(i) the string to be derived ends in an+1 (and each nonterminal sentential form in that derivation contains a single ‘‘circled
nonterminal symbol’’ and no ‘‘primed nonterminal symbol’’), and (ii) the string to be derived does not end in an+1 (and each
nonterminal sentential form possesses a single ‘‘primed nonterminal symbol’’ and no ‘‘circled nonterminal symbol’’). The
detailed proof is left as an exercise to the interested reader. �
The price we have to pay for unambiguous grammars in Greibach 2-form is rather high. Comparing Propositions 6.3 and

6.6 yields: ν5(n) > ν4(n) and π5(n) > π4(n) for n ≥ 4; cf. also Tables 1 and 2.
Notice that the grammatical transformations Ti (i = 1, 2) of Definitions 6.1 and 6.4 are of general interest in the following

way: given any context-free grammar Gn in Greibach 2-form that generates Ln, then Ti yields a context-free grammar Gn+1
in Greibach 2-form for Ln+1. We will apply this observation in Section 8.

7. Greibach 2-form — Divide and conquer

In the previous sections, we studied families of grammars with the property that En,k 6= ∅ for all k (1 ≤ k ≤ n) with
an exception of E3,2 = ∅. The family {G6n}n≥1 to be introduced in this section is a divide-and-conquer variant of the family
{G1n}n≥1 of Section 5: rather than dividing the set X ∪Y in all possible disjoint nonempty subsets X and Y , we only split X ∪Y
into almost equally sized X and Y ; cf. Definitions 5.1 and 7.1 This results in grammars G6n with En,k = ∅ for some values of
k, provided we have n ≥ 4. Among others these values of k always include the ones that satisfy d(n+ 1)/2e ≤ k < n.
Definition 7.1. The family {G6n}n≥1 is given by {(Vn,Σn, Pn, Sn)}n≥1 with

• Sn = AΣn , and
• the sets Nn = Vn −Σn and Pn are determined by the algorithm in Fig. 1. �

Example 7.2. (1) For n = 4, Definition 7.1 yields the grammar G64 with S4 = A1234, N4 = E4,1 ∪ E4,2 ∪ E4,3 ∪ E4,4,
E4,1 = {A1, A2, A3, A4}, E4,2 = {A12, A13, A14, A23, A24, A34}, E4,3 = ∅, E4,4 = {A1234}, P4 = {A1234 → a1A23A4 | a1A24A3 |
a1A34A2 | a2A13A4 | a2A14A3 | a2A34A1 | a3A12A4 | a3A14A2 | a3A24A1 | a4A12A3 | a4A13A2 | a4A23A1} ∪ {Aij → aiAj, Aij →
ajAi | 1 ≤ i < j ≤ 4} ∪ {Ai → ai | 1 ≤ i ≤ 4}, ν6(4) = 11 and π6(4) = 28.
(2) Similarly, for n = 7 we obtain G67 with S7 = A1234567, E7,6 = E7,5 = E7,4 = E7,2 = ∅, N7 = E7,7 ∪ E7,3 ∪ E7,1,

E7,7 = {A1234567}, E7,3 = {Aijk | 1 ≤ i < j < k ≤ 7} and E7,1 = {Ai | 1 ≤ i ≤ 7}. We leave it to reader to write down all
elements of P7 and to verify that ν6(7) = 43 and π6(7) = 357.
(3) For n = 15 the algorithm of Definition 7.1 produces a grammar G615 with N15 = E15,15 ∪ E15,7 ∪ E15,3 ∪ E15,1 whereas

the other E15,k’s are empty; see Example 7.3 below. Now we have ν6(15) = 6906 and π6(15) = 955125. �
In order to formulate the next result concisely (cf. Proposition 7.4), we need an indicator function I : N→ P (N) defined

recursively by

• I(1) = {1},
• I(2) = {1, 2},
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Fig. 1. Algorithm to determine Nn and Pn of G6n .

Table 3
D(n, k) for G6n (1 ≤ n ≤ 10)

n D(n, k)
k = 1 2 3 4 5 6 7 8 9 10

1 1
2 2 1
3 3 0 1
4 4 6 0 1
5 5 10 0 0 1
6 6 15 20 0 0 1
7 7 0 35 0 0 0 1
8 8 28 56 70 0 0 0 1
9 9 36 0 126 0 0 0 0 1
10 10 45 0 210 252 0 0 0 0 1

• I(2n+ 1) = {2n+ 1} ∪ I(n), and
• I(2n+ 2) = {2n+ 2} ∪ I(n+ 1) ∪ I(n).

Example 7.3. I(3) = {1, 3}, I(4) = {1, 2, 4}, I(5) = {1, 2, 5}, I(6) = {1, 2, 3, 6}, I(7) = {1, 3, 7}, I(8) = {1, 2, 3, 4, 8},
I(14) = {1, 2, 3, 6, 7, 14}, I(15) = {1, 3, 7, 15}, I(16) = {1, 2, 3, 4, 7, 8, 16} and for j ≥ 1, we have I(2j − 1) = {2i − 1 |
1 ≤ i ≤ j}. �

The next equalities easily follow from the structure of the algorithm in Definition 7.1; cf. Fig. 1.

Proposition 7.4. For the family {G6n}n≥1 of Definition 7.1 we have

(1) D(n, k) = if k ∈ I(n) then C(n, k) else 0,
(2) ν6(n) =

∑n
k=1 D(n, k),

(3) π6(n) =
∑n
k=1 D(n, k) · k · C(k− 1, d(k− 1)/2e). �

The values of D(n, k) for 1 ≤ n ≤ 10 are in Table 3. As usual, a closed form for D(n, k), ν6(n) and π6(n) is very hard or
even impossible to obtain; a situation met frequently in analyzing such divide-and-conquer approaches; cf. e.g. pp. 62–78
in [23], [24] or [2]. For a numerical evaluation of the complexity measures ν6(n) and π6(n) together with a comparison to
earlier measures we refer to Section 8.
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Table 4
νi(n) (1 ≤ i ≤ 6; 1 ≤ n ≤ 16)

n ν1(n) = ν2(n) = ν3(n) ν4(n) ν5(n) ν6(n)

1 1 1 1 1
2 3 3 3 3
3 7 4 4 4
4 15 9 12 11
5 31 19 36 16
6 63 39 108 42
7 127 79 324 43
8 255 159 972 163
9 511 319 2916 172
10 1023 639 8748 518
11 2047 1279 26244 529
12 4095 2559 78732 2015
13 8191 5119 236196 2094
14 16383 10239 708588 6905
15 32767 20479 2125764 6906
16 65535 40959 6377292 26827

Table 5
πi(n) (1 ≤ i ≤ 6; 1 ≤ n ≤ 16)

n π1(n) π2(n) π3(n) π4(n) π5(n) π6(n)

1 1 1 1 1 1 1
2 4 4 4 4 4 4
3 18 18 12 9 9 9
4 80 68 32 29 35 28
5 330 220 80 86 138 55
6 1272 642 192 246 542 216
7 4662 1750 448 694 2113 357
8 16480 4552 1024 1954 8193 1520
9 56754 11448 2304 5526 31688 2223
10 191720 28080 5120 15746 122548 11440
11 638286 67474 11264 45254 474687 16753
12 2101200 159612 24576 131154 1843511 86208
13 6855498 372580 53248 382966 7182118 116857
14 22205848 859978 114688 1125346 28073994 687064
15 71498790 1965870 245760 3323814 110096381 955125
16 229058240 4456208 524288 9856754 433078189 5333616

8. Concluding remarks

In this paper, we investigated some ways to generate the set of all permutations of an alphabet of n symbols by context-
free grammars in Greibach normal form. Since the arbitrary Greibach normal form does not yield very interesting results (cf.
Proposition 3.7),wemainly restricted our attention to theGreibachm-formwithm = 1, 2. This resulted in grammar families
{Gin}n≥1 (1 ≤ i ≤ 6) of which we studied the descriptional complexity measures νi(n) (i.e., the number of nonterminal
symbols) and πi(n) (i.e., the number of productions). An overview of the actual values for 1 ≤ n ≤ 16 of these complexity
measures is shown in Tables 4 and 5. Of course, these numerical values confirm that all functions νi and πi show the
exponential growth that has been predicted by Theorem 4.2.
With respect to the measures ν we observe that for n ≥ 9, ν6(n) < νi(n) with 1 ≤ i ≤ 5. As far as the measure π is

concerned, we ignore the family {G3n}n≥1whosemembers are in Greibach 1-form. So restricting our attention to the Greibach
2-form we have that for n ≥ 4, π6(n) < πi(n) with 1 ≤ i ≤ 5 and i 6= 3. But this does not mean that {G6n}n≥1 is minimal
with respect to both these measures, since the following tiny local improvement to that family is possible.
Looking more closely at Tables 4 and 5, we see that in case n = 2k − 1 for some k ≥ 2, both ν6(n) and π6(n) are rather

small compared with the values of ν6 and π6 respectively, for the next two arguments 2k and 2k+1. This allows us to define
a slightly improved family {G7n}n≥1 as follows:

• G7n = G
6
n for all n ≥ 3 with n 6= 2

k for some k ≥ 2,
• G7n = T1(G

6
n−1), if n = 2

k for some k ≥ 2,

where T1 is the grammatical transformation introduced in Definition 6.1. Remember that T1 is applicable to any grammar
Gn in Greibach 2-form that generates Ln, and that the resulting grammar T1(Gn) —which generates Ln+1— is in Greibach
2-form as well; a similar remark applies to the transformation T2 of Definition 6.4. Then for n = 2k with k ≥ 2,



576 P.R.J. Asveld / Theoretical Computer Science 409 (2008) 565–577

Table 6
νi(n) (6 ≤ i ≤ 8; 2k − 1 ≤ n ≤ 2k + 1, 2 ≤ k ≤ 5)
n r(νi, n) νi(n)

i = 6 i = 7 i = 8

3 1.000 4 4 4
4 2.750 11 9 9
5 4.000 16 16 19

7 1.000 43 43 43
8 3.791 163 87 87
9 4.000 172 172 175

15 1.000 6906 6906 6906
16 3.885 26827 13813 13813
17 3.986 27524 27524 27627

31 1.000 303174297 303174297 303174297
32 3.895 1180728715 606348595 606348595
33 3.909 1185006252 1185006252 1212697191

Table 7
πi(n) (6 ≤ i ≤ 8; 2k − 1 ≤ n ≤ 2k + 1, 2 ≤ k ≤ 5)
n r(πi, n) πi(n)

i = 6 i = 7 i = 8

3 1.000 9 9 9
4 3.111 28 29 29
5 6.111 55 55 86

7 1.000 357 357 357
8 4.258 1520 1617 1617
9 6.227 2223 2223 5189

15 1.000 955125 955125 955125
16 5.584 5333616 7488065 7488065
17 7.390 7058519 7058519 26951717

31 1.000 15476986049221 15476986049221 15476986049221
32 5.881 91023676672384 290019433474321 290019433474321
33 7.764 120158370033735 120158370033735 1113627179961333

we obtain

ν7(n) = 2 · ν6(n− 1)+ 1,
π7(n) = π6(n− 1)+ 4 · 3n−3 + (5n− 4) · 2n−5;

cf. Tables 6 and 7, where the r(X6, n) with X6 = ν6, π6 are the ratios defined by r(X6, n) = X6(n)/X6(2k − 1) and k is
determined by 2k − 1 ≤ k < 2k+1 − 1. We observe that ν7(2k) < ν6(2k) for k ≥ 2, but the price we have to pay for this
improvement is an increase in the number of productions: π7(2k) > π6(2k); cf. Tables 6 and 7.
One is tempted to apply T1 twice, i.e., defining a family {G7n}n≥1 by

• G8n = G
7
n for all n ≥ 3 with n 6= 2

k
+ 1 for some k ≥ 2,

• G8n = T1(G
7
n−1), if n = 2

k
+ 1 for some k ≥ 2,

but this turns out not to be an improvement upon {G7n}n≥1: ν8(2
k
+1) > ν7(2k+1) and π8(2k+1) > π7(2k+1); cf. Tables 6

and 7.
Applying the transformation T2 fromDefinition 6.4 instead of T1 in the very similarway—resulting into two other families

of grammars {G9n}n≥1 and {G
10
n }n≥1, respectively— is not of much use either: we lose rather than gain some descriptional

efficiency. The recurrence relations corresponding to T2 are

ν9(n) = ν6(n− 1)+ 8 · 3n−4,

π9(n) = π6(n− 1)+ 18 · 4n−4 +
(
8n−

19
2

)
· 3n−5 +

1
2
;

which should enable the interested reader to construct the analogues of Tables 6 and 7 for the families {G9n}n≥1 and {G
10
n }n≥1.

In describing the complexity of a pushdown automaton (or PDA) frequently used measures are the number σ of states
and the number γ of stack symbols [12,13]. Applying the standard construction for transforming a context-free grammar G
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into an equivalent PDA A(G) —e.g., Theorem 5.4.1 and its proof in [16]— results in a single-state PDA: σA(G) = 1. Therefore,
we will use the number τ of possible transitions of A(G) rather than σ .
When we apply that standard construction to our grammars in CNF [2] or in GNF (Sections 5–8) for {Ln}n≥1 we end up

with families of single-state PDA’s of which the transition relation δ is defined by

(a) δ(q, λ, A) = {(q, αR) | A→ α ∈ Pn} for each A ∈ Nn, and
(b) δ(q, a, a) = {(q, λ)} for each a ∈ Σn,

where R is the reversal or mirror operation on strings; cf. Theorem 5.4.1 in [16]. This implies immediately that γ (n) =
ν(n)+ n and τ(n) = π(n)+ n. However, in case of Greibach normal form we may replace (a) and (b) by

δ(q, a, A) = {(q, αR) | A→ aα ∈ Pn} for each A ∈ Nn and each a ∈ Σn,

and then we obtain γ (n) = ν(n) and τ(n) = π(n). Consequently, the quest of a family of minimal single-state PDA’s for
{Ln}n≥1 is as tightly connected as possible to the search of a family of minimal context-free grammars in GNF generating
{Ln}n≥1, provided we use γ and τ as descriptional complexity measures for PDA’s. This latter condition sounds reasonable
in the context of single-state PDA’s.
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