Generating all permutations by context-free grammars in Greibach normal form

Peter R.J. Asveld
Department of Computer Science, Twente University of Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands

ARTICLE INFO

Article history:

Received 30 November 2007
Received in revised form 19 June 2008
Accepted 12 September 2008
Communicated by Z. Esik

Keywords:

Context-free grammar
Greibach normal form
Permutation
Descriptional complexity
Unambiguous grammar

Abstract

We consider context-free grammars G_{n} in Greibach normal form and, particularly, in Greibach m-form ($m=1,2$) which generates the finite language L_{n} of all n ! strings that are permutations of n different symbols ($n \geq 1$). These grammars are investigated with respect to their descriptional complexity, i.e., we determine the number of nonterminal symbols and the number of production rules of G_{n} as functions of n. As in the case of Chomsky normal form, these descriptional complexity measures grow faster than any polynomial function. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

A finite set, coded in some way as a finite language, can be generated in a trivial way by a context-free grammar with a single nonterminal symbol, and as many rules as there are elements present in that finite language. This straightforward approach is no longer possible when we require that the context-free grammar possesses a special form, such as Chomsky normal form (CNF) or Greibach normal form (GNF). If that finite language X_{n} belongs to an indexed family $\left\{X_{n}\right\}_{n \geq 1}$ of similar languages, then for each number $n \geq 1$ we have to construct a grammar G_{n} such that $L\left(G_{n}\right)=X_{n}$. The descriptional complexity of the resulting family of grammars $\left\{G_{n}\right\}_{n \geq 1}$ is usually expressed by a few descriptive complexity measures, such as the number $\nu(n)$ of nonterminal symbols of G_{n}, and the number $\pi(n)$ of productions of G_{n}; cf. e.g. [15,17,18, $8,6,1,7]$. An additional complexity measure has been introduced in [2,3], viz. the number $\delta(n)$ of all possible leftmost derivations according to G_{n}, which makes sense, particularly when dealing with finite languages. Clearly, the grammar G_{n} is unambiguous if and only if, $\delta(n)$ equals the number of words in X_{n}.

In order to provide some concrete examples of the rather abstract setting sketched above, a few historical remarks are in order. So, consider an alphabet of n symbols $\Sigma_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the language L_{n} consisting of all n ! permutations of these n symbols. In 2002 G . Satta [22] conjectured that "any context-free grammar G_{n} in CNF that generates L_{n} must have a number of nonterminal symbols that is not bounded by any polynomial function in n ". This statement has been proved in [10], but without showing how to generate the languages $\left\{L_{n}\right\}_{n \geq 1}$ by context-free grammars $\left\{G_{n}\right\}_{n \geq 1}$ in CNF. In [2], we provided some approaches to obtain such grammar families for $\left\{L_{n}\right\}_{n \geq 1}$, together with the corresponding measures $v(n)$ and $\pi(n)$. The relative descriptional complexity of these grammar families is anything but straightforward, and the quest for a family of minimal grammars (with respect to any of these complexity measures) remains a challenging problem.

Then in [3] we restricted our attention to some specific permutations over Σ_{n}, viz. to the so-called circular or cyclic shifts. When we provide Σ_{n} with a linear order, e.g., $a_{1}<a_{2}<\cdots<a_{n}$, then the set C_{n} of circular or cyclic shifts over Σ_{n} is defined

[^0]by
$$
C_{n}=\left\{a_{1} a_{2} \cdots a_{n-1} a_{n}, a_{2} a_{3} \cdots a_{n} a_{1}, a_{3} a_{4} \cdots a_{1} a_{2}, \ldots, a_{n} a_{1} \cdots a_{n-2} a_{n-1}\right\} .
$$

Since C_{n} can be obtained from the word $a_{1} a_{2} \cdots a_{n}$ by moving the symbol from one end to the other end of the string iteratively, the number of elements in C_{n} equals n. This also follows from an alternative definition of C_{n} in terms of the socalled circular closure operator c on languages which is defined by $c(L)=\{v u \mid u v \in L\}$ for each language L [9]. Then the language C_{n} can be defined by $C_{n}=c\left(\left\{a_{1} a_{2} \cdots a_{n}\right\}\right)$.

In [3] we defined some families $\left\{G_{n}\right\}_{n \geq 1}$ in CNF that generate $\left\{C_{n}\right\}_{n \geq 1}$ such that both $\nu(n)$ and $\pi(n)$ are bounded by polynomial functions of low degree, culminating in a "minimal" family of which v and π are linear functions with very small coefficients. In case of GNF [4], there is still an open problem. Although ν and π can be bounded by polynomial functions of low degree, the quest for a minimal family remains open in this case. We conjectured in [4] that "any context-free grammar G_{n} in GNF that generates C_{n} must have a number of nonterminals that is not bounded by any linear function in n " and that for such a minimal family $v(n)$ and $\pi(n)$ are in $\Theta\left(n \cdot \log _{2} n\right)$ rather than in $\Theta(n)$.

In the present paper, we investigate several families of context-free grammars $\left\{G_{n}\right\}_{n \geq 1}$ in Greibach normal form that generate the family of languages $\left\{L_{n}\right\}_{n \geq 1}$ where L_{n} is the set of all permutations of the word $a_{1} a_{2} \cdots a_{n}$. And for each of these families, we determine the descriptive complexity measures $v(n)$ and $\pi(n)$. As in [2], we start with some preliminaries (Section 2) and elementary properties of context-free grammars G_{n} in GNF that generate L_{n} (Section 3). In Section 4, we establish a lower bound on the number of nonterminal symbols for each context-free grammar in Greibach m-form ($m=1,2$) generating L_{n}; the argument is similar to the one in [10]. This lower bound implies that any context-free grammar G_{n} in Greibach m-form $(m=1,2)$ that generates L_{n} must have a number of nonterminals that is not bounded by any polynomial function in n; cf. Satta's conjecture [22] on the CNF. We introduce families of grammars based on the power set of Σ_{n} in Section 5 . Then in Section 6, we study grammatical transformations to define grammar families for $\left\{L_{n}\right\}_{n \geq 1}$ inductively. Section 7 is devoted to a divide-and-conquer approach, and Section 8 consists of concluding remarks.

With respect to Sections 5-8, we note that in comparison with the general problem of generating permutations [19] our approach is limited: we are unable to apply transpositions ("swapping of symbols"), because a transposition is -even in the basic case of swapping adjacent symbols- an inherently context-dependent feature that cannot be modeled by context-free rules.

2. Preliminaries

For each finite set $X, \# X$ denotes the cardinality (i.e., the number of elements) of X and $\mathcal{P}(X)$ the power set of X, and $\mathcal{P}_{+}(X)$ the set of nonempty subsets of X, i.e., $\mathcal{P}_{+}(X)=\mathcal{P}(X)-\{\varnothing\}$.

For rudiments of discrete mathematics, particularly of combinatorics (counting, recurrence relations and difference equations), we refer to standard texts such as $[14,20,21]$. Often we use $C(n, k)$ to denote the binomial coefficient $C(n, k)=$ $n!/(k!(n-k)!)$; in displayed formulas we apply the usual notation.

The reader is assumed to be familiar with basic terminology and notation from formal language theory; cf. e.g. [16]. We denote the empty word by λ and the length of a word w by $|w|$. For each word w over an alphabet $\Sigma, \mathcal{A}(w)$ is the set of all symbols from Σ that do occur in w, i.e., $\mathcal{A}(\lambda)=\varnothing$, and $\mathcal{A}(a x)=\{a\} \cup \mathcal{A}(x)$ for each $a \in \Sigma$ and $x \in \Sigma^{\star}$. This mapping is extended to languages L over Σ by $\mathcal{A}(L)=\bigcup_{w \in L} \mathcal{A}(w)$.

Recall that a λ-free context-free grammar $G=(V, \Sigma, P, S)$ is in Chomsky normal form (CNF) if $P \subseteq N \times(N-\{S\})^{2} \cup N \times \Sigma$ where $N=V-\Sigma$. And such a G is in Greibach normal form (GNF) if $P \subseteq N \times \Sigma(N-\{S\})^{\star}$. Particularly, G is in Greibach m-form or in m-standard form [16] if $P \subseteq N \times \Sigma\left(\bigcup_{i=0}^{m}(N-\{S\})^{i}\right)$.

For each context-free grammar $G=(V, \Sigma, P, S)$ and each $A \in V$, let $L(G, A)$ be the language over Σ defined by $L(G, A)=\left\{w \in \Sigma^{\star} \mid A \Rightarrow^{\star} w\right\}$. Then the language $L(G)$ generated by G equals $L(G, S)$. Note that, if G is in CNF or in GNF, then G has no useless symbols, $L(G, \alpha)$ is a nonempty language for each α in V, and $L(G, a)=\{a\}$ for each a in Σ.

In the sequel $\Sigma_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ denotes an alphabet of n symbols $(n \geq 1)$ and L_{n} is the finite language over Σ_{n} that consists of the n ! permutations of $a_{1} a_{2} \cdots a_{n}$. The finiteness of L_{n} implies that each context-free grammar G_{n} in CNF or in GNF for L_{n} does not possess any recursive nonterminal.

For each family of grammars $\left\{G_{n}\right\}_{n \geq 1}$ generating $\left\{L_{n}\right\}_{n \geq 1}$ to be considered in this paper, we always assume that the first two elements G_{1} and G_{2} are

- $G_{1}=\left(V_{1}, \Sigma_{1}, P_{1}, S_{1}\right), N_{1}=\left\{S_{1}\right\}, P_{1}=\left\{S_{1} \rightarrow a_{1}\right\}$, and
- $G_{2}=\left(V_{2}, \Sigma_{2}, P_{2}, S_{2}\right), N_{2}=\left\{S_{2}, A_{1}, A_{2}\right\}, P_{2}=\left\{S_{2} \rightarrow a_{1} A_{2} \mid a_{2} A_{1}, A_{1} \rightarrow a_{1}, A_{2} \rightarrow a_{2}\right\}$,
respectively. This implies that specifying a family $\left\{G_{n}\right\}_{n \geq 1}$ for $\left\{L_{n}\right\}_{n \geq 1}$ reduces to defining the family $\left\{G_{n}\right\}_{n \geq 3}$.

3. Elementary properties

This section is devoted to some straightforward properties of context-free grammars in GNF form that generate L_{n}. Following the convention made at the end of the previous section, we restrict our attention to the case $n \geq 3$.

Proposition 3.1. For $n \geq 3$, let $G_{n}=\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)$ be a context-free grammar in Greibach normal form that generates L_{n}, and let N_{n} be defined by $N_{n}=V_{n}-\Sigma_{n}$.
(1) For each A in N_{n}, the language $L\left(G_{n}, A\right)$ is a nonempty subset of an isomorphic copy M_{k} of the language L_{k} for some k $(1 \leq k \leq n)$. Consequently, each string z in $L\left(G_{n}, A\right)$ has length k, z consists of k different symbols, and $\mathcal{A}(z)=\mathcal{A}\left(L\left(G_{n}, A\right)\right)$.
(2) Let \bar{A} and B be nonterminal symbols in N_{n}. If $L\left(G_{n}, A\right) \cap L\left(G_{n}, B\right) \neq \varnothing$, then $\mathcal{A}\left(L\left(G_{n}, A\right)\right)=\mathcal{A}\left(L\left(G_{n}, B\right)\right)$.
(3) If $A \rightarrow a A_{1} A_{2} \cdots A_{m}$ is a rule in G_{n}, then for each pair (i, j) with $1 \leq i<j \leq m, \mathcal{A}\left(L\left(G_{n}, A_{i}\right)\right) \cap \mathcal{A}\left(L\left(G_{n}, A_{j}\right)\right)=\varnothing$, $a \notin \mathcal{A}\left(L\left(G_{n}, A_{k}\right)\right)$ with $1 \leq k \leq m$, and

$$
\mathcal{A}\left(L\left(G_{n}, A\right)\right)=\{a\} \cup \mathcal{A}\left(L\left(G_{n}, A_{1}\right)\right) \cup \mathcal{A}\left(L\left(G_{n}, A_{2}\right)\right) \cup \cdots \cup \mathcal{A}\left(L\left(G_{n}, A_{m}\right)\right) .
$$

Proof. The proofs of (1) and (2) are as the ones for Proposition 3.1 in [2]; they rely on the facts that for each A in $N_{n}, L(G, A)$ is a nonempty subset of Σ_{n}^{+}, and that each word in $L(G, A)$ is a nonempty substring of a permutation, i.e., of a word in L_{n}.
(3) Suppose that for some pair (i, j) the intersection is nonempty: if it contains a symbol b, then we have a subderivation $A \Rightarrow a A_{1} A_{2} \cdots A_{m} \Rightarrow^{\star} a x_{1} b x_{2} b x_{3}$ which cannot be a subderivation of a derivation that yields a permutation.

Now, the inclusion $\{a\} \cup \bigcup_{i=1}^{m} \mathcal{A}\left(L\left(G_{n}, A_{i}\right)\right) \subseteq \mathcal{A}\left(L\left(G_{n}, A\right)\right)$ is trivial. Suppose that it is proper: there exists a symbol b with $b \neq a$ and $b \in \mathcal{A}\left(L\left(G_{n}, A\right)\right)-\bigcup_{i=1}^{m} \mathcal{A}\left(L\left(G_{n}, A_{i}\right)\right)$. Then there is a rule $A \rightarrow d B_{1} B_{2} \cdots B_{k}$, with $b \in\{d\} \cup \bigcup_{i=1}^{k} \mathcal{A}\left(L\left(G_{n}, B_{i}\right)\right)$. Consider the derivation $S_{n} \Rightarrow^{\star} u A v \Rightarrow u a A_{1} A_{2} \cdots A_{m} v \Rightarrow^{\star} u x v$ with $b \in \mathcal{A}(u v)$ and $b \notin \mathcal{A}(x)$, yielding the permutation $u x v$. Using this alternative rule $A \rightarrow d B_{1} B_{2} \cdots B_{k}$ for A, we obtain the derivation $S_{n} \Rightarrow^{\star} u A v \Rightarrow u d B_{1} B_{2} \cdots B_{k} v \Rightarrow^{\star} u y v$ with $b \in \mathcal{A}(y)$; consequently, uyv contains at least two b 's and therefore it is not a permutation. Hence, the inclusion cannot be proper, and so we have equality.

Proposition 3.1(2) gives rise to the following equivalence relation on N_{n}.
Definition 3.2. Two nonterminal symbols A and B from N_{n} are called equivalent if $|x|=|y|$ for some $x \in L\left(G_{n}, A\right)$ and some $y \in L\left(G_{n}, B\right)$. The corresponding equivalence classes are denoted by $\left\{E_{n, k}\right\}_{k=1}^{n}$. The number of elements $\# E_{n, k}$ of the equivalence class $E_{n, k}$ will be denoted by $D(n, k)(1 \leq k \leq n)$.

From this definition and Proposition 3.1(3), we obtain the following property: if $A \rightarrow a A_{1} A_{2} \cdots A_{m}$ is a rule in G_{n} and for each $i(1 \leq i \leq m) A_{i}$ belongs to $E_{n, k(i)}$, then we have that A is in $E_{n, p}$ with $p=1+\sum_{i=1}^{m} k(i)$.

Proposition 3.1 suggests a partial order relation on N_{n} which is induced by the inclusion relation on $\mathcal{P}\left(\Sigma_{n}\right)$ and which is a more general notion than the linear order present in the concept of sequential grammar; cf. [11,5].
Definition 3.3. Let A and B be nonterminal symbols from N_{n}. Then the partial order \sqsubseteq on N_{n} and the corresponding strict order \sqsubset are given by:
$A \sqsubseteq B$ if and only if, $\mathcal{A}\left(L\left(G_{n}, A\right)\right) \subseteq \mathcal{A}\left(L\left(G_{n}, B\right)\right)$,
$A \sqsubset B$ if and only if, $\mathcal{A}\left(L\left(G_{n}, A\right)\right) \subset \mathcal{A}\left(L\left(G_{n}, B\right)\right)$.
For the descriptional complexity of a context-free grammar G_{n} from a family $\left\{G_{n}\right\}_{n \geq 1}$, we use well-known measures, such as the number $v(n)$ of nonterminal symbols and the number $\pi(n)$ of production rules of G_{n}; so $v(n)=\# N_{n}$ and $\pi(n)=\# P_{n}$. As in [2-4] we will consider v and π as functions of n. These measures are anything but original, since they have been studied frequently in the literature concerning context-free grammars [15,17,18,8,6,1,7]. A somewhat less-known descriptional complexity measure has been introduced recently in [2-4]; viz. the number of left-most derivations $\delta(n)$ according to a context-free grammar, i.e., $\delta(n)=\#\left\{S_{n} \Rightarrow_{L}^{\star} x \mid x \in L\left(G_{n}\right)\right\}$, where \Rightarrow_{L} denotes the leftmost derivation relation. In particular, this measure makes sense, when we generate a finite language by means of a λ-free grammar with bounded ambiguity.
Example 3.4. (1) For the grammars G_{1} and G_{2} of Section 2 we have $\nu(1)=\pi(1)=\delta(1)=1$ and $\nu(2)=3, \pi(2)=4$ and $\delta(2)=2$. Both G_{1} and G_{2} are unambiguous.
(2) Consider $G_{3}=\left(V_{3}, \Sigma_{3}, P_{3}, S_{3}\right)$ with $S_{3}=A_{123}, N_{3}=\left\{A_{123}, A_{12}, A_{13}, A_{23}, A_{1}, A_{2}, A_{3}\right\}$ and $P_{3}=\left\{A_{123} \rightarrow a_{1} A_{23}\left|a_{2} A_{13}\right|\right.$ $\left.a_{3} A_{12}, A_{12} \rightarrow a_{1} A_{2}\left|a_{2} A_{1}, A_{13} \rightarrow a_{1} A_{3}\right| a_{3} A_{1}, A_{23} \rightarrow a_{2} A_{3} \mid a_{3} A_{2}, A_{1} \rightarrow a_{1}, A_{2} \rightarrow a_{2}, A_{3} \rightarrow a_{3}\right\}$. Note that G_{3} is regular, unambiguous and in Greibach 1-form.

Now $E_{3,3}=\left\{A_{123}\right\}, E_{3,2}=\left\{A_{12}, A_{13}, A_{23}\right\}, E_{3,1}=\left\{A_{1}, A_{2}, A_{3}\right\}, A_{i} \sqsubset A_{i j} \sqsubset S_{3}(1 \leq i<j \leq 3), D(3,3)=1$, $D(3,2)=D(3,1)=3, v(3)=7, \pi(3)=12$ and $\delta(3)=6$.

We conclude this section with a very simple family of grammars in GNF that generates $\left\{L_{n}\right\}_{n \geq 1}$. The starting point is the family of trivial grammars with a single nonterminal symbol S_{n} and the set of rules $\left\{S_{n} \rightarrow w \mid w \in L_{n}\right\}$. In order to obtain grammars in GNF, we need a family of isomorphisms.

Let for each $n \geq 3, \varphi_{n}: \Sigma_{n} \rightarrow\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be the isomorphism defined by $\varphi_{n}\left(a_{i}\right)=A_{i}(1 \leq i \leq n)$. As usual, φ_{n} is extended to words over Σ_{n} by

$$
\varphi_{n}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k}\right)=\varphi_{n}\left(\sigma_{1}\right) \varphi_{n}\left(\sigma_{2}\right) \cdots \varphi_{n}\left(\sigma_{k}\right) \quad\left(\sigma_{i} \in \Sigma_{n}, 1 \leq i \leq k\right)
$$

and to languages L over Σ_{n} by

$$
\varphi_{n}(L)=\left\{\varphi_{n}(w) \mid w \in L\right\} .
$$

Definition 3.5. The family $\left\{G_{n}^{T}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with for $n \geq 3$,

- $N_{n}=V_{n}-\Sigma_{n}=\left\{S_{n}\right\} \cup\left\{A_{i} \mid 1 \leq i \leq n\right\}$,
- $P_{n}=\left\{S_{n} \rightarrow \sigma_{1} \varphi\left(\sigma_{2} \cdots \sigma_{n}\right) \mid \sigma_{1} \sigma_{2} \cdots \sigma_{n} \in L_{n}\right\} \cup\left\{A_{i} \rightarrow a_{i} \mid 1 \leq i \leq n\right\}$.

We emphasize that the descriptional complexity measures ν, π and δ depend on n as well as on the family under consideration; so we use $v_{\alpha}(n), \pi_{\alpha}(n)$ and $\delta_{\alpha}(n)$ in the context of a family $\left\{G_{n}^{\alpha}\right\}_{n \geq 1}$ of which the individual members are labeled by α.

Example 3.6. For $n=3$, Definition 3.5 yields the grammars $G_{3}^{T}=\left(V_{3}, \Sigma_{3}, P_{3}, S_{3}\right)$ with $N_{3}=\left\{S_{3}, A_{1}, A_{2}, A_{3}\right\}$ and $P_{3}=\left\{S_{3} \rightarrow a_{1} A_{2} A_{3}\left|a_{1} A_{3} A_{2}\right| a_{2} A_{1} A_{3}\left|a_{2} A_{3} A_{1}\right| a_{3} A_{1} A_{2} \mid a_{3} A_{2} A_{1}, A_{1} \rightarrow a_{1}, A_{2} \rightarrow a_{2}, A_{3} \rightarrow a_{3}\right\}$. Clearly, G_{3}^{T} is an unambiguous grammar, it is in GNF and, as it happens, in Greibach 2-form (since in general G_{n}^{T} is in Greibach ($n-1$)-form).

Then $E_{3,3}=\left\{S_{3}\right\}, E_{3,2}=\varnothing, E_{3,1}=\left\{A_{1}, A_{2}, A_{3}\right\}, A_{i} \sqsubset S_{3}(1 \leq i \leq 3), D(3,3)=1, D(3,2)=0$, and $D(3,1)=3$. Thus $\nu_{T}(3)=4, \pi_{T}(3)=9$ and $\delta_{T}(3)=6$.

The following result easily follows from Definition 3.5.
Proposition 3.7. For the family $\left\{G_{n}^{T}\right\}_{n \geq 1}$ of Definition 3.5 we have for $n \geq 3$,
(1) $D(n, n)=1, D(n, k)=0(1<k<n)$, and $D(n, 1)=n$.
(2) $\nu_{T}(n)=n+1$,
(3) $\pi_{T}(n)=n!+n$,
(4) $\delta_{T}(n)=n$!, i.e., G_{n}^{T} is unambiguous.

4. A lower bound

From Definition 3.5 and Proposition 3.7, it is clear that the use of grammars in arbitrary GNF does not lead to very interesting results. Therefore we restrict ourselves in the remaining part of this paper to context-free grammars in Greibach m-form with $m=1,2$. Similar to [10] we establish for these grammars a lower bound on the number of nonterminal symbols. The proofs in this section are straightforward modifications of arguments from [10]; for completeness' sake they are included here as well.

Lemma 4.1. Let $G=(V, \Sigma, P, S)$ be a context-free grammar in Greibach m-form $(m=1,2)$ and let $w \in L(G)$ with $|w| \geq 1$. Then for each derivation $S \Rightarrow^{+} w$, there exists a nonterminal symbol A with
(1) $S \Rightarrow^{\star} \alpha A \beta \Rightarrow^{+} w$, for some $\alpha, \beta \in V^{\star}$, and
(2) if u is the yield of A in this derivation of w, then $|w| / 3 \leq|u|<2|w| / 3+1$.

Proof. The case $|w|=1$ is trivial: we take $A=S$ and, consequently, we have $u=w$ which satisfies (2).
So, we may assume that $|w|>1$. In the derivation tree of (1) according to G we follow a path from the root S down to a leaf, at each point choosing the nonterminal with the larger yield (whenever there is a choice). In the end we arrive at a nonterminal Z with a yield of length 1 . As $|w| \geq 1$, we have for the yield u of this nonterminal Z that $|u|<2|w| / 3+1$.

Returning upwards in the direction of the root S we sooner or later meet a nonterminal A with yield u satisfying $|u|<2|w| / 3+1$, but for which its parent nonterminal B has yield z with $|z| \geq 2|w| / 3+1$. At this point in the derivation tree a rule of the form (i) $B \rightarrow a A C$, (ii) $B \rightarrow a C A$ or (iii) $B \rightarrow a A$ (for some $a \in \Sigma$ and some $C \in V-\Sigma$) has been applied. In moving downwards along this path in the tree from S to Z we always chose the nonterminal with the larger yield. Therefore in cases (i), (ii) and (iii) A is the desired nonterminal, and for its yield u we have $|u| \geq|w| / 3$.

Notice that Lemma 4.1 holds for any context-free grammar in Greibach m-form ($m=1,2$), whereas the following result (Theorem 4.2) only holds for such context-free grammars that generate L_{n}; cf. Lemma 25 and Theorem 24 in [10], respectively.

Theorem 4.2. Let $G_{n}=\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)$ be a context-free grammar in Greibach m-form $(m=1,2)$ generating L_{n}. Then $\nu(n) \in \Omega\left(n^{-3 / 2} r^{n}\right)$ where $r=\frac{3}{2} \sqrt[3]{2}=1.88988157 \cdots$.

Proof. With each word w in L_{n} we associate a pair (A, k) where A is a nonterminal symbol from $V_{n}-\Sigma_{n}$ and k is a natural number ($1 \leq k \leq n$) that represents a position in the string w. By Lemma 4.1, there exists such a nonterminal A that generates a subword u of w with $|w| / 3 \leq|u|<2|w| / 3+1$. Since w is a permutation, this subword u occurs (or starts) at a uniquely determined position k in w; the resulting pair (A, k) will be associated with the word w.

Next, we consider all such pairs (A, k) and determine the number of words that can be associated with a fixed pair (A, k). Following Proposition 3.1(1), A generates strings of a fixed length l, and by Lemma 4.1 we have $|w| / 3 \leq l<2|w| / 3+1$. There are l ! different possibilities for the strings generated by A, and the $n-l$ remaining symbols (once the word generated by A is disregarded from w) give rise to at most $l!(n-l)$! possible words to be associated with (A, k). Since there are n ! words in total, we have at least $n!/ l!(n-l)!=C(n, l)$ distinct pairs (A, k). Because there are only n different positions in w (i.e., possible values for k), G_{n} must possess at least $n^{-1} \cdot C(n, l)$ different nonterminals.

In the interval $1 \leq l \leq\lfloor n / 2\rfloor, C(n, l)$ increases monotonically and under the restriction $\lceil n / 3\rceil \leq l<\lceil 2 n / 3\rceil+1$ it reaches its minimum value at $l=\lceil 2 n / 3\rceil$. Therefore we have $v(n) \geq n^{-1} \cdot C(n,\lceil 2 n / 3\rceil)=n^{-1} \cdot C(n,\lfloor n / 3\rfloor)$. Using Stirling’s formula, we obtain for large values of n,

$$
\begin{aligned}
v(n) & \geq n^{-1} \cdot\binom{n}{\lfloor n / 3\rfloor}=\frac{n^{-1} n!}{\lfloor n / 3\rfloor!\lceil 2 n / 3\rceil!} \\
& \approx \frac{n^{-1} \sqrt{2 \pi n}(n / e)^{n}\left(1+c_{1} n^{-1}\right)}{\sqrt{2 \pi\lfloor n / 3\rfloor}(\lfloor n / 3\rfloor / e)^{\lfloor n / 3\rfloor}\left(1+c_{2} n^{-1}\right) \sqrt{2 \pi\lceil 2 n / 3\rceil(\lceil 2 n / 3\rceil / e)^{\lceil 2 n / 3\rceil}\left(1+c_{3} n^{-1}\right)}} \\
& =\frac{3 n^{-3 / 2}}{2 \sqrt{\pi}} \cdot \frac{3^{n}}{2^{2 n / 3}} \cdot \frac{1+c_{1} n^{-1}}{\left(1+c_{2} n^{-1}\right)\left(1+c_{3} n^{-1}\right)}
\end{aligned}
$$

for some constants $c_{1}, c_{2}, c_{3}>0$; cf. Exercise 5.60 in [14]. Since this last factor tends to 1 as $n \rightarrow \infty$, we have asymptotically that $v(n) \in \Omega\left(n^{-3 / 2} r^{n}\right)$ with $r=\frac{3}{2} \sqrt[3]{2}$.

It is likely that variations of Lemma 4.1 and Theorem 4.2 can be established for context-free grammars in Greibach m form with $m>2$, although the combinatorial arguments become more complicated. Certainly, they cannot be extended to context-free grammars in arbitrary GNF as the family of Definition 3.5 may serve as a counterexample to the conclusion of Theorem 4.2; cf. Proposition 3.7(2).

Of course, Theorem 4.2 does not indicate how to generate L_{n} by context-free grammars in Greibach m-form $(m=1,2)$. The following sections are devoted to this problem.

5. Greibach m-form ($m=1,2$) - Subsets

In this section, we consider a few ways of generating $\left\{L_{n}\right\}_{n \geq 1}$ by a family of grammars in Greibach m-form ($m=1,2$). These grammars have the property that each nonterminal symbol corresponds to a nonempty subset of Σ_{n} in a unique fashion. First, we consider the case $m=2$ (Definitions 5.1 and 5.4) and then we turn to a family with $m=1$ (Definition 5.7).
Definition 5.1. The family $\left\{G_{n}^{1}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with for $n \geq 3$,

- $N_{n}=V_{n}-\Sigma_{n}=\left\{A_{X} \mid X \in \mathcal{P}_{+}\left(\Sigma_{n}\right)\right\}$,
- $P_{n}=\left\{A_{\{a\} \cup X \cup Y} \rightarrow a A_{X} A_{Y} \mid a \in \Sigma_{n} ; X, Y \in \mathcal{P}\left(\Sigma_{n}\right), X \cap Y=\varnothing\right\}$, and
- $S_{n}=A_{\Sigma_{n}}$.

We will identify A_{\varnothing} with λ in this definition of P_{n}; in particular, this implies that $A_{\{a\}} \rightarrow a$ is in P_{n} for each a in Σ_{n} (viz. when $X=Y=\varnothing)$. Note that $A_{\varnothing} \notin V_{n}$.

Clearly, $A_{X} \sqsubset A_{Y}\left[A_{X} \sqsubseteq A_{Y}\right.$, respectively] holds if and only if $X \subset Y[X \subseteq Y]$ for all X and Y in $\mathscr{P}_{+}\left(\Sigma_{n}\right)$.
In the sequel, we use the notation $A \rightarrow a B C$ as an abbreviation for $A \rightarrow a B C \mid a C B$. The reader should always keep in mind that $A \rightarrow a B C$ counts for two productions.
Example 5.2. We consider the case $n=3$ in detail; instead of subsets of Σ_{3}, we use subsets of $\{1,2,3\}$ as indices of nonterminals. Then we have $G_{3}^{1}=\left(V_{3}, \Sigma_{3}, P_{3}, S_{3}\right)$ with $S_{3}=A_{123}, N_{3}=\left\{A_{123}, A_{12}, A_{13}, A_{23}, A_{1}, A_{2}, A_{3}\right\}$ and $P_{3}=$ $\left\{A_{123} \rightarrow a_{1} A_{2} A_{3}\left|a_{2} A_{1} A_{3}\right| a_{3} A_{1} A_{2}, A_{123} \rightarrow a_{1} A_{23}\left|a_{2} A_{13}\right| a_{3} A_{12}, A_{12} \rightarrow a_{1} A_{2}\left|a_{2} A_{1}, A_{13} \rightarrow a_{1} A_{3}\right| a_{3} A_{1}, A_{23} \rightarrow\right.$ $\left.a_{2} A_{3} \mid a_{3} A_{2}, A_{1} \rightarrow a_{1}, A_{2} \rightarrow a_{2}, A_{3} \rightarrow a_{3}\right\}$.

Now $E_{3,3}=\left\{A_{123}\right\}, E_{3,2}=\left\{A_{12}, A_{13}, A_{23}\right\}, E_{3,1}=\left\{A_{1}, A_{2}, A_{3}\right\}, D(3,3)=1, D(3,2)=D(3,1)=3, v_{1}(3)=7$ and $\pi_{1}(3)=18$.
Proposition 5.3. For the family $\left\{G_{n}^{1}\right\}_{n \geq 1}$ of Definition 5.1 we have for $n \geq 3$,
(1) $D(n, k)=C(n, k)$ with $1 \leq k \leq n$,
(2) $\nu_{1}(n)=2^{n}-1$,
(3) $\pi_{1}(n)=n \cdot 3^{n-1}-n \cdot 2^{n-1}+n$.

Proof. Definition 5.1 and $v_{1}(n)=\sum_{k=1}^{n} D(n, k)=\sum_{k=1}^{n} C(n, k)=2^{n}-1$ [14] imply immediately (1) and (2). For (3) we determine $\# P_{n}$: if the set $\{a\} \cup X \cup Y$ possesses k elements $(k \geq 3)$, then the set $\left\{A_{\{a\} \cup X \cup Y} \rightarrow a A_{X} A_{Y} \mid X, Y \in \mathcal{P}\left(\Sigma_{n}\right), X \cap Y=\right.$ $\varnothing\}$ contains $k\left(2^{k-1}-1\right)$ elements, because both cases $X=\varnothing$ and $Y=\varnothing$ result in the same production. For $k=2$, we have k elements, which equals $k\left(2^{k-1}-1\right)$ as well, but for $k=1$ there is just one element. Then

$$
\begin{aligned}
\# P_{n} & =\binom{n}{1} 1+\sum_{k=2}^{n}\binom{n}{k} k\left(2^{k-1}-1\right)=n+\sum_{k=1}^{n}\binom{n}{k} k\left(2^{k-1}-1\right) \\
& =n+\sum_{k=1}^{n} \frac{n!\cdot k}{k!(n-k)!}\left(2^{k-1}-1\right)=n+n \cdot \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!}\left(2^{k-1}-1\right) \\
& =n+n \cdot \sum_{j=0}^{n-1}\binom{n-1}{j}\left(2^{j}-1\right)=n+n \cdot \sum_{j=0}^{n-1}\binom{n-1}{j} 2^{j} 1^{n-j-1}-n \cdot \sum_{j=0}^{n-1}\binom{n-1}{j} \\
& =n(2+1)^{n-1}-n \cdot 2^{n-1}+n=n \cdot 3^{n-1}-n \cdot 2^{n-1}+n .
\end{aligned}
$$

Consequently, we have $\pi_{1}(n)=\# P_{n}=n \cdot 3^{n-1}-n \cdot 2^{n-1}+n$.

In order to reduce the number of productions, we will demand in the next family that in rules of the form $A \rightarrow a B C$ we have either $B=A_{\varnothing}=\lambda$ or $B=A_{\{b\}}$ for some $b \in \Sigma_{n}$.
Definition 5.4. The family $\left\{G_{n}^{2}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with for $n \geq 3$,

- $N_{n}=V_{n}-\Sigma_{n}=\left\{A_{X} \mid X \in \mathcal{P}_{+}\left(\Sigma_{n}\right)\right\}$,
- $P_{n}=\left\{A_{\{a\} \cup X \cup Y} \rightarrow a A_{X} A_{Y} \mid a \in \Sigma_{n} ; X, Y \in \mathcal{P}\left(\Sigma_{n}\right), X \cap Y=\varnothing\right.$, $\left.\# X \leq 1\right\}$, and
- $S_{n}=A_{\Sigma_{n}}$.

Example 5.5. As it happens, $G_{3}^{2}=G_{3}^{1}$ holds; however, for $n \geq 4$, we have $G_{n}^{2} \neq G_{n}^{1}$. E.g., $A_{1234} \rightarrow a_{1} A_{34} A_{2}$ is a production of G_{4}^{1}, but not of G_{4}^{2}, while the corresponding rules $A_{1234} \rightarrow a_{1} A_{2} A_{34}, A_{1234} \rightarrow a_{1} A_{3} A_{24}$ and $A_{1234} \rightarrow a_{1} A_{4} A_{23}$ belong to both these grammars. In general, we have for $n \geq 4, \pi_{2}(n)<\pi_{1}(n)$; cf. Proposition 5.3(3) and 5.6(3).
Proposition 5.6. For the family $\left\{G_{n}^{2}\right\}_{n \geq 1}$ of Definition 5.4 we have for $n \geq 3$,
(1) $D(n, k)=C(n, k)$ with $1 \leq k \leq n$,
(2) $\nu_{2}(n)=2^{n}-1$,
(3) $\pi_{2}(n)=n^{2} \cdot 2^{n-2}+n \cdot 2^{n-2}-n^{2}+n$.

Proof. With respect to the previous proof, the only difference is (3): if the set $\{a\} \cup X \cup Y$ has k elements ($k \geq 3$), then now the set $\left\{A_{\{a\} \cup X \cup Y} \rightarrow a A_{X} A_{Y} \mid X, Y \in \mathscr{P}\left(\Sigma_{n}\right), X \cap Y=\varnothing, \# X \leq 1\right\}$ contains $k(k-1)+k$ elements: the first term corresponds to $\# X=1$, the second one to $\# X=0$. For $k=2$ and $k=1$, there are k elements and just a single element, respectively. Now we have

$$
\begin{aligned}
\# P_{n} & =\binom{n}{1}+\sum_{k=2}^{n}\binom{n}{k} k+\sum_{k=3}^{n}\binom{n}{k} k(k-1)=n+\sum_{k=2}^{n} \frac{n!\cdot k}{k!(n-k)!}+\sum_{k=3}^{n} \frac{n!\cdot k(k-1)}{k!(n-k)!} \\
& =n+n \cdot \sum_{k=2}^{n} \frac{(n-1)!}{(k-1)!(n-k)!}+n(n-1) \cdot \sum_{k=3}^{n} \frac{(n-2)!}{(k-2)!(n-k)!} \\
& =n+n \cdot \sum_{j=0}^{n-1}\binom{n-1}{j}-n\binom{n-1}{0}+n(n-1) \cdot \sum_{j=0}^{n-2}\binom{n-2}{j}-n(n-1)\binom{n-2}{0} \\
& =n+n \cdot 2^{n-1}-n+n(n-1) \cdot 2^{n-2}-n(n-1)=n^{2} \cdot 2^{n-2}+n \cdot 2^{n-2}-n^{2}+n,
\end{aligned}
$$

i.e., $\pi_{2}(n)=\# P_{n}=n^{2} \cdot 2^{n-2}+n \cdot 2^{n-2}-n^{2}+n$.

Finally, we replace the restriction " $\# X \leq 1$ " in Definition 5.4 by " $\# X=0$ ", i.e., we now consider grammars in Greibach 1-form or, equivalently, regular grammars for $\left\{L_{n}\right\}_{n \geq 1}$. From [2] we quote the following definition and results.
Definition 5.7. The family $\left\{G_{n}^{3}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with for $n \geq 3$,

- $N_{n}=V_{n}-\Sigma_{n}=\left\{A_{X} \mid X \in \mathcal{P}_{+}\left(\Sigma_{n}\right)\right\}$,
- $P_{n}=\left\{A_{\{a\}} \rightarrow a \mid a \in \Sigma_{n}\right\} \cup\left\{A_{X} \rightarrow a A_{X-\{a\}} \mid X \subseteq \Sigma_{n}, a \in X, \# X \geq 2\right\}$,
- $S_{n}=A_{\Sigma_{n}}$.

For an example with $n=3$ we refer to Example 3.4(2).
Proposition 5.8 ([2]). For the family $\left\{G_{n}^{3}\right\}_{n \geq 1}$ of Definition 5.7 we have for $n \geq 3$,
(1) $D(n, k)=C(n, k)$ with $1 \leq k \leq n$,
(2) $\nu_{3}(n)=2^{n}-1$,
(3) $\pi_{3}(n)=n \cdot 2^{n-1}$,
(4) $\delta_{3}(n)=n!$, i.e., G_{n}^{3} is unambiguous.

Although $\nu_{1}(n)=\nu_{2}(n)=\nu_{3}(n)$ for $n \geq 1$, we obtain $\pi_{1}(n)>\pi_{2}(n)>\pi_{3}(n)$ for $n \geq 4$. We can apply the idea of subsets of Σ_{n} to construct a grammar family with fewer nonterminals as well. It is rather straightforward to define a family with $D(n, 1)=n$, and for $k \geq 2, D(n, k)=$ if $k \equiv n(\bmod 2)$ then $C(n, k)$ else 0 . Then $v(n)=2^{n-1}$ if n is odd, and $v(n)=2^{n-1}+n-1$ if n is even, but a closed form for $\pi(n)$ is less easy to derive.

6. Greibach 2-form - Grammatical transformations

In this section, we start with the grammars $G_{1}^{4}=G_{1}$ and $G_{2}^{4}=G_{2}$, defined in Section 2, together with an explicitly given grammar G_{3}^{4}, and then we proceed inductively to define $G_{4}^{4}, G_{5}^{4}, G_{6}^{4}, \cdots$ by means of a grammatical transformation T_{1} that produces G_{n+1}^{4} from $G_{n}^{4}(n \geq 3)$. This transformation is based on the following observation: L_{n} with $L_{n}=L\left(G_{n}^{4}\right)$ is a language over Σ_{n}, whereas L_{n+1} is a language over Σ_{n+1}; so we may obtain the elements of L_{n+1} by inserting the new terminal symbol a_{n+1} at each available spot in the strings of L_{n}. In essence this is realized by our grammatical transformation T_{1}.

Definition 6.1. The family $\left\{G_{n}^{4}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with for $n \geq 3$

- G_{3}^{4} is defined by $G_{3}^{4}=\left(V_{3}, \Sigma_{3}, P_{3}, S_{3}\right)$ with $N_{3}=\left\{S_{3}, A_{1}, A_{2}, A_{3}\right\}$ and $P_{3}=\left\{S_{3} \rightarrow a_{1} A_{2} A_{3}\left|a_{2} A_{1} A_{3}\right| a_{3} A_{1} A_{2}, A_{1} \rightarrow\right.$ $\left.a_{1} A_{2} \rightarrow a_{2} A_{3} \rightarrow a_{3}\right\}$.
- G_{n+1}^{4} is obtained from $G_{n}^{4}(n \geq 3)$ by the grammatical transformation T_{1} described in steps (a), (b), (c), (d) and (e); T_{1} properly extends P_{n} to P_{n+1} by adding new productions.
(a) If $A \rightarrow a B C$ is in P_{n}, then $A \rightarrow a B C$ and $A^{\prime} \rightarrow a B^{\prime} C \mid a B C^{\prime}$ are in P_{n+1}.
(b) If $A \rightarrow a B$ is in P_{n}, then $A \rightarrow a B$ and $A^{\prime} \rightarrow a B^{\prime}$ are in P_{n+1}.
(c) If $A \rightarrow a$ is in P_{n}, then $A \rightarrow a$ and $A^{\prime} \rightarrow a A_{n+1}$ are in P_{n+1}.
(d) We add $v_{4}(n)+1$ new productions $A^{\prime} \rightarrow a_{n+1} A\left(A \in N_{n}\right)$ and $A_{n+1} \rightarrow a_{n+1}$ to P_{n+1}.
(e) Finally, each occurrence of S_{n}^{\prime} in G_{n+1}^{4} will be replaced by S_{n+1}, i.e., by the initial nonterminal symbol of G_{n+1}^{4}.

In step (c), there is no need to add productions of the form $A^{\prime} \rightarrow a_{n+1} A$, as they will be introduced in step (d).
A primed symbol in a derivation according to G_{n}^{4} indicates that in the subtree rooted by that symbol an occurrence of the terminal symbol a_{n+1} should be inserted. A similar remark applies to the initial symbol S_{n+1}; cf. step (e) in Definition 6.1(3).
Example 6.2. (1) Note that $\nu_{4}(3)=4<\nu_{i}(3)$ and $\pi_{4}(3)=9<\pi_{i}(3)$ for $i=1,2,3$.
(2) We will construct G_{4}^{4} from G_{3}^{4} by means of T_{1} as defined in Definition 6.1: $G_{4}^{4}=\left(V_{4}, \Sigma_{4}, P_{4}, S_{4}\right)$ with $N_{4}=\left\{S_{4}, S_{3}, A_{4}\right\} \cup$ $\left\{A_{i}, A_{i}^{\prime} \mid 1 \leq i \leq 3\right\}$ and P_{4} consists of the rules

$$
\begin{align*}
& S_{3} \rightarrow a_{1} A_{2} A_{3}\left|a_{2} A_{1} A_{3}\right| a_{3} A_{1} A_{2}, A_{1} \rightarrow a_{1} A_{2} \rightarrow a_{2} A_{3} \rightarrow a_{3}, \tag{3}\\
& S_{4} \rightarrow a_{1} A_{2}^{\prime} A_{3}\left|a_{1} A_{2} A_{3}^{\prime}\right| a_{2} A_{1}^{\prime} A_{3}\left|a_{2} A_{1} A_{3}^{\prime}\right| a_{3} A_{1}^{\prime} A_{2} \mid a_{3} A_{1} A_{2}^{\prime}, \tag{a}\\
& -- \tag{b}\\
& A_{1}^{\prime} \rightarrow a_{1} A_{4}, A_{2}^{\prime} \rightarrow a_{2} A_{4}, A_{3}^{\prime} \rightarrow a_{3} A_{4}, \tag{c}\\
& S_{4} \rightarrow a_{4} S_{3}, A_{1}^{\prime} \rightarrow a_{4} A_{1}, A_{2}^{\prime} \rightarrow a_{4} A_{2}, A_{3}^{\prime} \rightarrow a_{4} A_{3}, A_{4} \rightarrow a_{4} .
\end{align*}
$$

Then we have $E_{4,4}=\left\{S_{4}\right\}, E_{4,3}=\left\{S_{3}\right\}, E_{4,2}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}\right\}, E_{4,1}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}, A_{i} \sqsubset S_{3} \sqsubset S_{4}, A_{i} \sqsubset A_{i}^{\prime} \sqsubset S_{4}, A_{4} \sqsubset A_{i}^{\prime}$ $(1 \leq i \leq 3), v_{4}(4)=9$ and $\pi_{4}(4)=29$.
(3) It is an illustrative exercise to construct G_{5}^{4} from G_{4}^{4} in a similar way. However, before starting to do so the reader should rename some nonterminals -for instance A_{i}^{\prime} by B_{i} - in order to avoid confusion caused by double primes.

Proposition 6.3. For the family $\left\{G_{n}^{4}\right\}_{n \geq 1}$ of Definition 6.1 we have

$$
\begin{array}{ll}
D(n, n)=1, \quad D(n, 1)=n & (n \geq 1), \\
D(3,2)=0, & (n \geq 4 ; 2 \leq k \leq n-1), \\
D(n, k)=D(n-1, k)+D(n-1, k-1) & (n \geq 3), \\
\nu_{4}(n)=5 \cdot 2^{n-3}-1 & (n \geq 3) .
\end{array}
$$

Proof. (1) Obviously, $D(n, n)=1$ and $D(n, 1)=n$ since $E_{n, n}=\left\{S_{n}\right\}$ and $E_{n, 1}=\left\{A_{1}, \ldots, A_{n}\right\}$ because $A_{i} \rightarrow a_{i}$ are the only rules in P_{n} with terminal right-hand sides. The fact that $D(3,2)=0$ and the recurrence relation easily follow from Definition 6.1(3) and the grammatical transformation T_{1}, respectively.
(2) From Definition 6.1(4) it follows that for the new set of nonterminal symbols N_{n+1} of G_{n+1}^{4} we have

$$
N_{n+1}=N_{n} \cup\left\{A^{\prime} \mid A \in N_{n}\right\} \cup\left\{A_{n+1}\right\}
$$

with $S_{n+1}=S_{n}^{\prime}$. Then we have $v_{4}(n+1)=2 \cdot v_{4}(n)+1$ for $n \geq 3$. Solving the corresponding homogeneous difference equation yields $v_{4, H}(n)=c \cdot 2^{n}$, whereas $v_{4, P}(n)=-1$ is a particular solution. Now $v_{4}(n)=v_{4, H}(n)+v_{4, P}(n)=c \cdot 2^{n}-1$ which with initial condition $v_{4}(3)=4$ results in $c=5 / 8$ and $v_{4}(n)=5 \cdot 2^{n-3}-1$.
(3) Let $p_{i}(n)(i=1,2,3)$ be the number of productions in P_{n} of the form $A \rightarrow a, A \rightarrow a B$ and $A \rightarrow a B C$, respectively. Then we have by the definition of T_{1} :
(3.1) $p_{1}(n)=n$, since $E_{n, 1}=\left\{A_{1}, \ldots, A_{n}\right\}$,
(3.2) $p_{2}(n+1)=2 \cdot p_{2}(n)+v_{4}(n)+n=2 \cdot p_{2}(n)+5 \cdot 2^{n-3}+n-1, p_{2}(3)=0$,
(3.3) $p_{3}(n+1)=3 \cdot p_{3}(n), p_{3}(3)=6$.

From (3.3), we obtain $p_{3}(n)=2 \cdot 3^{n-2}$ for $n \geq 3$. The solution of the homogeneous version of (3.2) is $p_{2, H}(n)=c \cdot 2^{n}$. A candidate particular solution $p_{2, P}(n)$ of the form $p_{2, P}(n)=A n \cdot 2^{n}+B n+C-c f$. Section 4.5 in [21] for the details of this approach- results in $A=5 / 16, B=-1$ and $C=0$; consequently, $p_{2, P}(n)=5 \cdot 2^{n-4}-n$ and $p_{2}(n)=p_{2, H}(n)+p_{2, P}(n)=$ $c \cdot 2^{n}+5 \cdot 2^{n-4}-n$. From $p_{2}(3)=0$, we infer that $c=-9 / 16$, and hence $p_{2}(n)=5 n \cdot 2^{n-4}-9 \cdot 2^{n-4}-n$.

Finally, we obtain $\pi_{4}(n)=p_{1}(n)+p_{2}(n)+p_{3}(n)=2 \cdot 3^{n-2}+5 n \cdot 2^{n-4}-9 \cdot 2^{n-4}$.
The recurrence relation in Proposition 6.3(1) is identical to the one for the binomial coefficients $C(n, k)$, although the fact that $D(3,2)=0$ results in a different Pascal-like triangle; cf. Table 1.

Although the family $\left\{G_{n}^{4}\right\}_{n \geq 1}$ is rather efficient with respect to the number of nonterminals as compared to the families $\left\{G_{n}^{1}\right\}_{n \geq 1},\left\{G_{n}^{2}\right\}_{n \geq 1}$ and $\left\{G_{n}^{3}\right\}_{n \geq 1}$-asymptotically, it is a constant factor of $5 / 8$ that makes the difference- the number of rules is a different story; cf. Section 8. In addition, this family's degree of ambiguity is rather high. To illustrate this point, consider

Table 1
$D(n, k)$ for $G_{n}^{4}(1 \leq n \leq 10)$

	$D(n, k)$									
	$k=1$	2	3	4	5	6	7	8	9	10
1	1									
2	2	1								
3	3	0	1							
4	4	3	1	1						
5	5	7	4	2	1					
6	6	12	11	6	3	1				
7	7	18	23	17	9	4	1			
8	8	25	41	40	26	13	5	1		
9	9	33	66	81	66	39	18	6	1	
10	10	42	99	147	147	105	57	24	6	1

a subderivation according to G_{n}^{4} of the form $A \Rightarrow a B C \Rightarrow^{\star} a w_{B} w_{C}$ with $B \Rightarrow^{\star} w_{B}$ and $C \Rightarrow^{\star} w_{C}$. Applying T_{1} to G_{n}^{4} yields a grammar G_{n+1}^{4} according to which the substring $a w_{B} a_{n+1} w_{C}$ can be obtained by $A^{\prime} \Rightarrow a B^{\prime} C \Rightarrow^{\star} a w_{B} a_{n+1} w_{C}$ or by $A^{\prime} \Rightarrow a B C^{\prime} \Rightarrow{ }^{\star} a w_{B} a_{n+1} w_{c}$.

Next, we will modify T_{1} of Definition 6.1 into a grammatical transformation T_{2} in such a way that the first subderivation is not possible, because the occurrence of a_{n+1} will always be introduced to the left of the terminal symbols $a_{1}, a_{2}, \ldots, a_{n}$.
Definition 6.4. The family $\left\{G_{n}^{5}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with for $n \geq 3$

- G_{3}^{5} equals G_{3}^{4} from Definition 6.1.
- G_{n+1}^{5} is obtained from $G_{n}^{5}\left(n \geq 3\right.$) by the grammatical transformation T_{2} described in steps (a), (b), (c), (d) and (e); T_{2} properly extends P_{n} to P_{n+1} by adding new productions.
(a) If $A \rightarrow a B C$ is in P_{n}, then $A \rightarrow a B C, A^{\prime} \rightarrow a B^{\prime} C \mid a B C^{\prime}$ and $A^{\circ} \rightarrow a B C^{\circ}$ are in P_{n+1}.
(b) If $A \rightarrow a B$ is in P_{n}, then $A \rightarrow a B, A^{\prime} \rightarrow a B^{\prime}$ and $A^{\circ} \rightarrow a B^{\circ}$ are in P_{n+1}.
(c) If $A \rightarrow a$ is in P_{n}, then $A \rightarrow a$ and $A^{\circ} \rightarrow a A_{n+1}$ are in P_{n+1}.
(d) We add $\nu_{5}(n)+1$ new productions $A^{\prime} \rightarrow a_{n+1} A\left(A \in N_{n}\right)$ and $A_{n+1} \rightarrow a_{n+1}$ to P_{n+1}.
(e) Finally, each occurrence of S_{n}^{\prime} and of S° in G_{n+1}^{5} will be replaced by S_{n+1}, i.e., by the initial nonterminal symbol of G_{n+1}^{5}.
Example 6.5. We apply T_{2} to G_{3}^{5} in order to obtain $G_{4}^{5}=\left(V_{4}, \Sigma_{4}, P_{4}, S_{4}\right)$ with $N_{4}=\left\{S_{4}, S_{3}, A_{4}\right\} \cup\left\{A_{i}, A_{i}^{\prime}, A_{i}^{\circ} \mid 1 \leq i \leq 3\right\}$ and P_{4} consists of the rules

$$
\begin{array}{ll}
S_{3} \rightarrow a_{1} A_{2} A_{3}\left|a_{2} A_{1} A_{3}\right| a_{3} A_{1} A_{2}, A_{1} \rightarrow a_{1} A_{2} \rightarrow a_{2} A_{3} \rightarrow a_{3}, & P_{3} \\
S_{4} \rightarrow a_{1} A_{2}^{\prime} A_{3}\left|a_{1} A_{2} A_{3}^{\prime}\right| a_{2} A_{1}^{\prime} A_{3}\left|a_{2} A_{1} A_{3}\right| a_{3} A_{1}^{\prime} A_{2} \mid a_{3} A_{1}^{\prime} A_{2}, & \text { (a) } \\
S_{4} \rightarrow a_{1} A_{2} A_{3}^{\circ}\left|a_{1} A_{3} A_{2}^{\circ}\right| a_{2} A_{1} A_{3}^{\circ}\left|a_{2} A_{1} A_{3}^{\circ}\right| a_{3} A_{1} A_{2}^{\circ} \mid a_{3} A_{2} A_{1}^{\circ} & \text { (a) } \\
-- & \text { (b) } \\
A_{1}^{\circ} \rightarrow a_{1} A_{4}, A_{2}^{\circ} \rightarrow a_{2} A_{4}, A_{3}^{\circ} \rightarrow a_{3} A_{4}, & \text { (c) } \tag{d}\\
S_{4} \rightarrow a_{4} S_{3}, A_{1}^{\prime} \rightarrow a_{4} A_{1}, A_{2}^{\prime} \rightarrow a_{4} A_{2}, A_{3}^{\prime} \rightarrow a_{4} A_{3}, A_{4} \rightarrow a_{4} . & \text { (d) }
\end{array}
$$

For G_{4}^{5} we obtain $E_{4,4}=\left\{S_{4}\right\}, E_{4,3}=\left\{S_{3}\right\}, E_{4,2}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, A_{1}^{\circ}, A_{2}^{\circ}, A_{3}^{\circ}\right\}, E_{4,1}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}, A_{i} \sqsubset S_{3} \sqsubset S_{4}, A_{i} \sqsubset A_{i}^{\prime} \sqsubset S_{4}$, $A_{i} \sqsubset A_{i}^{\circ} \sqsubset S_{4}, A_{4} \sqsubset A_{i}^{\prime}, A_{4} \sqsubset A_{i}^{\circ}(1 \leq i \leq 3), \nu_{4}(4)=12$ and $\pi_{4}(4)=35$.

Proposition 6.6. For the family $\left\{G_{n}^{5}\right\}_{n \geq 1}$ of Definition 6.4 we have
(1)

$$
\begin{array}{lll}
\text { (1) } & D(n, n)=1, D(n, 1)=n & (n \geq 1), \\
& D(3,2)=0, & (n \geq 4 ; 2 \leq k \leq n-1), \\
& D(n, k)=D(n-1, k)+2 \cdot D(n-1, k-1) & (n \geq 3), \\
\text { (2) } & \nu_{5}(n)=4 \cdot 3^{n-3} & \\
\text { (3) } & \pi_{5}(n)=6 \cdot 4^{n-3}+4 n \cdot 3^{n-4}-\frac{1}{4} \cdot 3^{n-1}+\frac{1}{2} n-\frac{1}{4} & (n \geq 3), \\
\text { (4) } & \delta_{5}(n)=n!, \text { i.e., } G_{n}^{5} \text { is unambiguous. } &
\end{array}
$$

Proof. The proof is similar to the one of Proposition 6.3; so (1) follows from the definitions of G_{3}^{5} and T_{2}; see also Table 2.
(2) Definition 6.4(4) implies that the new set of nonterminals N_{n+1} of G_{n+1}^{5} satisfies

$$
N_{n+1}=N_{n} \cup\left\{A^{\prime}, A^{\circ} \mid A \in N_{n}\right\} \cup\left\{A_{n+1}\right\}
$$

with $S_{n+1}=S_{n}^{\prime}=S_{n}^{\circ}$. Then $v_{5}(n+1)=3 \cdot v_{5}(n)-1+1=3 \cdot v_{5}(n)$ for $n \geq 3$ with $v_{5}(3)=4$. Solving this homogeneous difference equation yields $v_{5}(n)=4 \cdot 3^{n-3}$.

Table 2
$\underline{D(n, k) \text { for } G_{n}^{5}(1 \leq n \leq 10)}$

	$D(n, k)$									
	$\bar{k}=1$	2	3	4	5	6	7	8	9	10
1	1									
2	2	1								
3	3	0	1							
4	4	6	1	1						
5	5	14	13	3	1					
6	6	24	41	29	7	1				
7	7	36	89	111	65	15	1			
8	8	50	161	289	287	145	31	1		
9	9	66	261	611	865	719	321	63	1	
10	10	84	399	1133	2087	2449	1759	705	127	1

(3) From the definition of T_{2}, we obtain for $p_{i}(n)(i=1,2,3)$, i.e., the number of productions in P_{n} of the form $A \rightarrow a$, $A \rightarrow a B$ and $A \rightarrow a B C$, respectively:
(3.1) $p_{1}(n)=n$, since $E_{n, 1}=\left\{A_{1}, \ldots, A_{n}\right\}$,
(3.2) $p_{2}(n+1)=3 \cdot p_{2}(n)+n+v_{5}(n)=3 \cdot p_{2}(n)+4 \cdot 3^{n-3}+n, p_{2}(3)=0$,
(3.3) $p_{3}(n+1)=4 \cdot p_{3}(n), p_{3}(3)=6$.

From (3.3), we infer that $p_{3}(n)=6 \cdot 4^{n-3}$ for $n \geq 3$. The solution of the homogeneous equation corresponding to (3.2) is $p_{2, H}(n)=c \cdot 3^{n}$. A particular solution of the form $p_{2, P}(n)=A n \cdot 3^{n}+B n+C$ yields $A=4 / 81, B=-1 / 2$ and $C=-1 / 4$, i.e., $p_{2, P}(n)=4 n \cdot 3^{n-4}-\frac{1}{2} n-\frac{1}{4}$. So $p_{2}(n)=p_{2, H}(n)+p_{2, P}(n)=c \cdot 3^{n}+4 n \cdot 3^{n-4}-\frac{1}{2} n-\frac{1}{4}$ and $p_{2}(3)=0$ results in $c=-1 / 12$, i.e., $p_{2}(n)=4 n \cdot 3^{n-4}-\frac{1}{4} \cdot 3^{n-1}-\frac{1}{2} n-\frac{1}{4}$. Consequently, we have $\pi_{5}(n)=p_{1}(n)+p_{2}(n)+p_{3}(n)=$ $6 \cdot 4^{n-3}+4 n \cdot 3^{n-4}-\frac{1}{4} \cdot 3^{n-1}+\frac{1}{2} n-\frac{1}{4}$ for $n \geq 3$.
(4) The argument is by induction on n and analogous to the proof of Proposition 7.3 in [2]; viz. we distinguish two cases: (i) the string to be derived ends in a_{n+1} (and each nonterminal sentential form in that derivation contains a single "circled nonterminal symbol" and no "primed nonterminal symbol"), and (ii) the string to be derived does not end in a_{n+1} (and each nonterminal sentential form possesses a single "primed nonterminal symbol" and no "circled nonterminal symbol"). The detailed proof is left as an exercise to the interested reader.

The price we have to pay for unambiguous grammars in Greibach 2-form is rather high. Comparing Propositions 6.3 and 6.6 yields: $v_{5}(n)>v_{4}(n)$ and $\pi_{5}(n)>\pi_{4}(n)$ for $n \geq 4$; cf. also Tables 1 and 2 .

Notice that the grammatical transformations $\left.T_{i} \overline{(i}=1,2\right)$ of Definitions 6.1 and 6.4 are of general interest in the following way: given any context-free grammar G_{n} in Greibach 2-form that generates L_{n}, then T_{i} yields a context-free grammar G_{n+1} in Greibach 2-form for L_{n+1}. We will apply this observation in Section 8 .

7. Greibach 2-form - Divide and conquer

In the previous sections, we studied families of grammars with the property that $E_{n, k} \neq \varnothing$ for all $k(1 \leq k \leq n)$ with an exception of $E_{3,2}=\varnothing$. The family $\left\{G_{n}^{6}\right\}_{n \geq 1}$ to be introduced in this section is a divide-and-conquer variant of the family $\left\{G_{n}^{1}\right\}_{n \geq 1}$ of Section 5: rather than dividing the set $X \cup Y$ in all possible disjoint nonempty subsets X and Y, we only split $X \cup Y$ into almost equally sized X and Y; cf. Definitions 5.1 and 7.1 This results in grammars G_{n}^{6} with $E_{n, k}=\varnothing$ for some values of k, provided we have $n \geq 4$. Among others these values of k always include the ones that satisfy $\lceil(n+1) / 2\rceil \leq k<n$.
Definition 7.1. The family $\left\{G_{n}^{6}\right\}_{n \geq 1}$ is given by $\left\{\left(V_{n}, \Sigma_{n}, P_{n}, S_{n}\right)\right\}_{n \geq 1}$ with

- $S_{n}=A_{\Sigma_{n}}$, and
- the sets $N_{n}=V_{n}-\Sigma_{n}$ and P_{n} are determined by the algorithm in Fig. 1.

Example 7.2. (1) For $n=4$, Definition 7.1 yields the grammar G_{4}^{6} with $S_{4}=A_{1234}, N_{4}=E_{4,1} \cup E_{4,2} \cup E_{4,3} \cup E_{4,4}$, $E_{4,1}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}, E_{4,2}=\left\{A_{12}, A_{13}, A_{14}, A_{23}, A_{24}, A_{34}\right\}, E_{4,3}=\varnothing, E_{4,4}=\left\{A_{1234}\right\}, P_{4}=\left\{A_{1234} \rightarrow a_{1} A_{23} A_{4}\left|a_{1} A_{24} A_{3}\right|\right.$ $\left.a_{1} A_{34} A_{2}\left|a_{2} A_{13} A_{4}\right| a_{2} A_{14} A_{3}\left|a_{2} A_{34} A_{1}\right| a_{3} A_{12} A_{4}\left|a_{3} A_{14} A_{2}\right| a_{3} A_{24} A_{1}\left|a_{4} A_{12} A_{3}\right| a_{4} A_{13} A_{2} \mid a_{4} A_{23} A_{1}\right\} \cup\left\{A_{i j} \rightarrow a_{i} A_{j}, A_{i j} \rightarrow\right.$ $\left.a_{j} A_{i} \mid 1 \leq i<j \leq 4\right\} \cup\left\{A_{i} \rightarrow a_{i} \mid 1 \leq i \leq 4\right\}, v_{6}(4)=11$ and $\pi_{6}(4)=28$.
(2) Similarly, for $n=7$ we obtain G_{7}^{6} with $S_{7}=A_{1234567}, E_{7,6}=E_{7,5}=E_{7,4}=E_{7,2}=\varnothing, N_{7}=E_{7,7} \cup E_{7,3} \cup E_{7,1}$, $E_{7,7}=\left\{A_{1234567}\right\}, E_{7,3}=\left\{A_{i j k} \mid 1 \leq i<j<k \leq 7\right\}$ and $E_{7,1}=\left\{A_{i} \mid 1 \leq i \leq 7\right\}$. We leave it to reader to write down all elements of P_{7} and to verify that $\nu_{6}(7)=43$ and $\pi_{6}(7)=357$.
(3) For $n=15$ the algorithm of Definition 7.1 produces a grammar G_{15}^{6} with $N_{15}=E_{15,15} \cup E_{15,7} \cup E_{15,3} \cup E_{15,1}$ whereas the other $E_{15, k}$'s are empty; see Example 7.3 below. Now we have $\nu_{6}(15)=6906$ and $\pi_{6}(15)=955125$.

In order to formulate the next result concisely (cf. Proposition 7.4), we need an indicator function $I: \mathbb{N} \rightarrow \mathcal{P}$ (\mathbb{N}) defined recursively by

- $I(1)=\{1\}$,
- $I(2)=\{1,2\}$,

```
\(E_{n, 1}:=\left\{A_{\{a\}} \mid a \in \Sigma_{n}\right\} ;\)
\(N_{n}:=E_{n, 1} ;\)
\(M:=\left\{A_{\Sigma_{n}}\right\} ;\)
\(P_{n}:=\left\{A_{\{a\}} \rightarrow a \mid a \in \Sigma_{n}\right\} ;\)
while \(M-E_{n, 1} \neq \varnothing\) [i.e., \(\exists A_{X} \in M: X \subseteq \Sigma_{n}\) and \(\# X \geq 2\) ] do
    begin
    if \(\# X \geq 3\) then
        begin
        \(S(X):=\left\{(a, Y, Z) \mid a \in X, Y \subset X-\{a\}, \# Y=\left\lceil\frac{1}{2} \#(X-\{a\})\right\rceil\right.\),
        \(Z=X-\{a\}-Y\} ;\)
    \(P_{n}:=P_{n} \cup\left\{A_{X} \rightarrow a A_{Y} A_{Z} \mid(a, Y, Z) \in S(X)\right\} ;\)
    \(M:=\left(M-\left\{A_{X}\right\}\right) \cup\left\{A_{Y}, A_{Z} \mid(a, Y, Z) \in S(X)\right\}\)
    end
    else [i.e., \(\# X=2\) ]
        begin
        \(S(X):=\{(a, Y) \mid a \in X, Y=X-\{a\}\} ;\)
        \(P_{n}:=P_{n} \cup\left\{A_{X} \rightarrow a A_{Y} \mid(a, Y) \in S(X)\right\} ;\)
        \(M:=\left(M-\left\{A_{X}\right\}\right) \cup\left\{A_{Y} \mid(a, Y) \in S(X)\right\}\)
        end;
    \(N_{n}:=N_{n} \cup\left\{A_{X}\right\}\)
    end
```

Fig. 1. Algorithm to determine N_{n} and P_{n} of G_{n}^{6}.
Table 3
$D(n, k)$ for $G_{n}^{6}(1 \leq n \leq 10)$

n	$D(n, k)$									
	$k=1$	2	3	4	5	6	7	8	9	10
1	1									
2	2	1								
3	3	0	1							
4	4	6	0	1						
5	5	10	0	0	1					
6	6	15	20	0	0	1				
7	7	0	35	0	0	0	1			
8	8	28	56	70	0	0	0	1		
9	9	36	0	126	0	0	0	0	1	
10	10	45	0	210	252	0	0	0	0	1

- $I(2 n+1)=\{2 n+1\} \cup I(n)$, and
- $I(2 n+2)=\{2 n+2\} \cup I(n+1) \cup I(n)$.

Example 7.3. $I(3)=\{1,3\}, I(4)=\{1,2,4\}, I(5)=\{1,2,5\}, I(6)=\{1,2,3,6\}, I(7)=\{1,3,7\}, I(8)=\{1,2,3,4,8\}$, $I(14)=\{1,2,3,6,7,14\}, I(15)=\{1,3,7,15\}, I(16)=\{1,2,3,4,7,8,16\}$ and for $j \geq 1$, we have $I\left(2^{j}-1\right)=\left\{2^{i}-1 \mid\right.$ $1 \leq i \leq j\}$.

The next equalities easily follow from the structure of the algorithm in Definition 7.1; cf. Fig. 1.
Proposition 7.4. For the family $\left\{G_{n}^{6}\right\}_{n \geq 1}$ of Definition 7.1 we have
(1) $D(n, k)=$ if $k \in I(n)$ then $C(n, k)$ else 0 ,
(2) $\nu_{6}(n)=\sum_{k=1}^{n} D(n, k)$,
(3) $\pi_{6}(n)=\sum_{k=1}^{n} D(n, k) \cdot k \cdot C(k-1,\lceil(k-1) / 2\rceil)$.

The values of $D(n, k)$ for $1 \leq n \leq 10$ are in Table 3. As usual, a closed form for $D(n, k), v_{6}(n)$ and $\pi_{6}(n)$ is very hard or even impossible to obtain; a situation met frequently in analyzing such divide-and-conquer approaches; cf. e.g. pp. 62-78 in [23], [24] or [2]. For a numerical evaluation of the complexity measures $\nu_{6}(n)$ and $\pi_{6}(n)$ together with a comparison to earlier measures we refer to Section 8.

Table 4

$\nu_{i}(n)$						$(1 \leq i \leq 6 ; \quad 1 \leq n \leq 16)$
n	$\nu_{1}(n)=\nu_{2}(n)=\nu_{3}(n)$	$v_{4}(n)$	$v_{5}(n)$	$\nu_{6}(n)$		
1	1	1	1	1		
2	3	3	3	3		
3	7	4	4	4		
4	15	9	12	11		
5	31	19	36	16		
6	63	39	108	42		
7	127	79	324	43		
8	255	159	972	163		
9	511	319	2916	172		
10	1023	639	8748	518		
11	2047	1279	26244	529		
12	4095	2559	78732	2015		
13	8191	5119	236196	2094		
14	16383	10239	708588	6905		
15	32767	20479	2125764	6906		
16	65535	40959	6377292	26827		

Table 5

n	$\pi_{1}(n)$	$\pi_{2}(n)$	$\pi_{3}(n)$	$\pi_{4}(n)$	$\pi_{5}(n)$	$\pi_{6}(n)$
1	1	1	1	1	1	1
2	4	4	4	4	4	4
3	18	18	12	9	9	9
4	80	68	32	29	35	28
5	330	220	80	86	138	55
6	1272	642	192	246	542	216
7	4662	1750	448	694	2113	357
8	16480	4552	1024	1954	8193	1520
9	56754	11448	2304	5526	31688	2223
10	191720	28080	5120	15746	122548	11440
11	638286	67474	11264	45254	474687	16753
12	2101200	159612	24576	131154	1843511	86208
13	6855498	372580	53248	382966	7182118	116857
14	22205848	859978	114688	1125346	28073994	687064
15	71498790	1965870	245760	3323814	110096381	955125
16	229058240	4456208	524288	9856754	433078189	5333616

8. Concluding remarks

In this paper, we investigated some ways to generate the set of all permutations of an alphabet of n symbols by contextfree grammars in Greibach normal form. Since the arbitrary Greibach normal form does not yield very interesting results (cf. Proposition 3.7), we mainly restricted our attention to the Greibach m-form with $m=1$, 2 . This resulted in grammar families $\left\{G_{n}^{i}\right\}_{n \geq 1}(1 \leq i \leq 6)$ of which we studied the descriptional complexity measures $v_{i}(n)$ (i.e., the number of nonterminal symbols) and $\pi_{i}(n)$ (i.e., the number of productions). An overview of the actual values for $1 \leq n \leq 16$ of these complexity measures is shown in Tables 4 and 5. Of course, these numerical values confirm that all functions v_{i} and π_{i} show the exponential growth that has been predicted by Theorem 4.2.

With respect to the measures v we observe that for $n \geq 9, \nu_{6}(n)<\nu_{i}(n)$ with $1 \leq i \leq 5$. As far as the measure π is concerned, we ignore the family $\left\{G_{n}^{3}\right\}_{n \geq 1}$ whose members are in Greibach 1-form. So restricting our attention to the Greibach 2-form we have that for $n \geq 4, \pi_{6}(n)<\pi_{i}(n)$ with $1 \leq i \leq 5$ and $i \neq 3$. But this does not mean that $\left\{G_{n}^{6}\right\}_{n \geq 1}$ is minimal with respect to both these measures, since the following tiny local improvement to that family is possible.

Looking more closely at Tables 4 and 5 , we see that in case $n=2^{k}-1$ for some $k \geq 2$, both $\nu_{6}(n)$ and $\pi_{6}(n)$ are rather small compared with the values of v_{6} and π_{6} respectively, for the next two arguments 2^{k} and $2^{k}+1$. This allows us to define a slightly improved family $\left\{G_{n}^{7}\right\}_{n \geq 1}$ as follows:

- $G_{n}^{7}=G_{n}^{6}$ for all $n \geq 3$ with $n \neq 2^{k}$ for some $k \geq 2$,
- $G_{n}^{7}=T_{1}\left(G_{n-1}^{6}\right)$, if $n=2^{k}$ for some $k \geq 2$,
where T_{1} is the grammatical transformation introduced in Definition 6.1. Remember that T_{1} is applicable to any grammar G_{n} in Greibach 2-form that generates L_{n}, and that the resulting grammar $T_{1}\left(G_{n}\right)$-which generates L_{n+1} - is in Greibach 2-form as well; a similar remark applies to the transformation T_{2} of Definition 6.4. Then for $n=2^{k}$ with $k \geq 2$,

Table 6

n	$r\left(v_{i}, n\right)$	$v_{i}(n)$		
		$i=6$	$i=7$	$i=8$
3	1.000	4	4	4
4	2.750	11	9	9
5	4.000	16	16	19
7	1.000	43	43	43
8	3.791	163	87	87
9	4.000	172	172	175
15	1.000	6906	6906	6906
16	3.885	26827	13813	13813
17	3.986	27524	27524	27627
31	1.000	303174297	303174297	303174297
32	3.895	1180728715	606348595	606348595
33	3.909	1185006252	1185006252	1212697191

Table 7
$\pi_{i}(n)\left(6 \leq i \leq 8 ; 2^{k}-1 \leq n \leq 2^{k}+1,2 \leq k \leq 5\right)$

n	$r\left(\pi_{i}, n\right)$	$\pi_{i}(n)$		
		$i=6$	$i=7$	$i=8$
3	1.000	9	9	9
4	3.111	28	29	29
5	6.111	55	55	86
7	1.000	357	357	357
8	4.258	1520	1617	1617
9	6.227	2223	2223	5189
15	1.000	955125	955125	955125
16	5.584	5333616	7488065	7488065
17	7.390	7058519	7058519	26951717
31	1.000	15476986049221	15476986049221	15476986049221
32	5.881	91023676672384	290019433474321	290019433474321
33	7.764	120158370033735	120158370033735	1113627179961333

we obtain

$$
\begin{aligned}
& v_{7}(n)=2 \cdot v_{6}(n-1)+1 \\
& \pi_{7}(n)=\pi_{6}(n-1)+4 \cdot 3^{n-3}+(5 n-4) \cdot 2^{n-5}
\end{aligned}
$$

cf. Tables 6 and 7, where the $r\left(X_{6}, n\right)$ with $X_{6}=\nu_{6}, \pi_{6}$ are the ratios defined by $r\left(X_{6}, n\right)=X_{6}(n) / X_{6}\left(2^{k}-1\right)$ and k is determined by $2^{k}-1 \leq k<2^{k+1}-1$. We observe that $v_{7}\left(2^{k}\right)<v_{6}\left(2^{k}\right)$ for $k \geq 2$, but the price we have to pay for this improvement is an increase in the number of productions: $\pi_{7}\left(2^{k}\right)>\pi_{6}\left(2^{k}\right)$; cf. Tables 6 and 7 .

One is tempted to apply T_{1} twice, i.e., defining a family $\left\{G_{n}^{7}\right\}_{n \geq 1}$ by

- $G_{n}^{8}=G_{n}^{7}$ for all $n \geq 3$ with $n \neq 2^{k}+1$ for some $k \geq 2$,
- $G_{n}^{8}=T_{1}\left(G_{n-1}^{7}\right)$, if $n=2^{k}+1$ for some $k \geq 2$,
but this turns out not to be an improvement upon $\left\{G_{n}^{7}\right\}_{n \geq 1}: v_{8}\left(2^{k}+1\right)>v_{7}\left(2^{k}+1\right)$ and $\pi_{8}\left(2^{k}+1\right)>\pi_{7}\left(2^{k}+1\right)$; cf. Tables 6 and 7.

Applying the transformation T_{2} from Definition 6.4 instead of T_{1} in the very similar way -resulting into two other families of grammars $\left\{G_{n}^{9}\right\}_{n \geq 1}$ and $\left\{G_{n}^{10}\right\}_{n \geq 1}$, respectively- is not of much use either: we lose rather than gain some descriptional efficiency. The recurrence relations corresponding to T_{2} are

$$
\begin{aligned}
& v_{9}(n)=v_{6}(n-1)+8 \cdot 3^{n-4} \\
& \pi_{9}(n)=\pi_{6}(n-1)+18 \cdot 4^{n-4}+\left(8 n-\frac{19}{2}\right) \cdot 3^{n-5}+\frac{1}{2}
\end{aligned}
$$

which should enable the interested reader to construct the analogues of Tables 6 and 7 for the families $\left\{G_{n}^{9}\right\}_{n \geq 1}$ and $\left\{G_{n}^{10}\right\}_{n \geq 1}$.
In describing the complexity of a pushdown automaton (or PDA) frequently used measures are the number σ of states and the number γ of stack symbols [12,13]. Applying the standard construction for transforming a context-free grammar G
into an equivalent PDA $A(G)$-e.g., Theorem 5.4.1 and its proof in [16]- results in a single-state PDA: $\sigma_{A(G)}=1$. Therefore, we will use the number τ of possible transitions of $A(G)$ rather than σ.

When we apply that standard construction to our grammars in CNF [2] or in GNF (Sections 5-8) for $\left\{L_{n}\right\}_{n \geq 1}$ we end up with families of single-state PDA's of which the transition relation δ is defined by
(a) $\delta(q, \lambda, A)=\left\{\left(q, \alpha^{R}\right) \mid A \rightarrow \alpha \in P_{n}\right\}$ for each $A \in N_{n}$, and
(b) $\delta(q, a, a)=\{(q, \lambda)\}$ for each $a \in \Sigma_{n}$,
where R is the reversal or mirror operation on strings; cf. Theorem 5.4.1 in [16]. This implies immediately that $\gamma(n)=$ $v(n)+n$ and $\tau(n)=\pi(n)+n$. However, in case of Greibach normal form we may replace (a) and (b) by

$$
\delta(q, a, A)=\left\{\left(q, \alpha^{R}\right) \mid A \rightarrow a \alpha \in P_{n}\right\} \quad \text { for each } A \in N_{n} \text { and each } a \in \Sigma_{n},
$$

and then we obtain $\gamma(n)=\nu(n)$ and $\tau(n)=\pi(n)$. Consequently, the quest of a family of minimal single-state PDA's for $\left\{L_{n}\right\}_{n \geq 1}$ is as tightly connected as possible to the search of a family of minimal context-free grammars in GNF generating $\left\{L_{n}\right\}_{n \geq 1}$, provided we use γ and τ as descriptional complexity measures for PDA's. This latter condition sounds reasonable in the context of single-state PDA's.

References

[1] B. Alspach, P. Eades, G. Rose, A lower-bound for the number of productions for a certain class of languages, Discrete Appl. Math. 6 (1983) $109-115$.
[2] P.R.J. Asveld, Generating all permutations by context-free grammars in Chomsky normal form, Theoret. Comput. Sci. 354 (2006) 118-130.
[3] P.R.J. Asveld, Generating all circular shifts by context-free grammars in Chomsky normal form, J. Autom. Lang. Comb. 11 (2006) 147-159.
[4] P.R.J. Asveld, Generating all circular shifts by context-free grammars in Greibach normal form, Internat. J. Found. Comput. Sci. 18 (2007) $1139-1149$.
[5] P.R.J. Asveld, A. Nijholt, The inclusion problem for some subclasses of context-free languages, Theoret. Comput. Sci. 230 (2000) $247-256$.
[6] W. Bucher, A note on a problem in the theory of grammatical complexity, Theoret. Comput. Sci. 14 (1981) 337-344.
[7] W. Bucher, H.A. Maurer, K. Culik II, Context-free complexity of finite languages, Theoret. Comput. Sci. 28 (1984) 277-285.
[8] W. Bucher, H.A. Maurer, K. Culik II, D. Wotschke, Concise description of finite languages, Theoret. Comput. Sci. 14 (1981) 227 -246.
[9] J. Dassow, On the circular closure of languages, EIK 15 (1979) 87-94.
[10] K. Ellul, B. Krawetz, J. Shallit, M.-w. Wang, Regular expressions: New results and open problems, J. Autom. Lang. Comb. 9 (2004) $233-256$.
[11] S. Ginsburg, H.G. Rice, Two families of languages related to ALGOL, J. Assoc. Comp. Mach. 9 (1962) 350-371.
[12] J. Goldstine, J.K. Price, D. Wotschke, A pushdown automaton or a context-free grammar - which is more economical? Theoret. Comput. Sci. 18 (1982) 33-40.
[13] J. Goldstine, J.K. Price, D. Wotschke, On reducing the number of states in a PDA, Math. Systems Theory 15 (1982) 315-321.
[14] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1989.
[15] J. Gruska, Some classifications of context-free languages, Inform. Contr. 14 (1969) 152-179.
[16] M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[17] V.A. Iljuškin, The complexity of the grammatical description of context-free languages, Dokl. Akad. Nauk SSSR 203 (1972) 1244-1245; Soviet Math. Dokl. 13 (1972) 533-535.
[18] A. Kelemenová, Complexity of normal form grammars, Theoret. Comput. Sci. 28 (1984) 299-314.
[19] D.E. Knuth, The Art of Computer Programming - Volume 1: Fundamental Algorithms, third edition, Addison-Wesley, Reading, MA, 1997, Section 1.2.5, and Volume 4: Combinatorial Algorithms, Fascicle 2, Generating all tuples and permutations, Addison-Wesley, Upper Saddle River, NJ, 2005.
[20] C.L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, etc, 1968.
[21] R.E. Mickens, Difference Equations - Theory and Applications, Chapman \& Hall, New York, London, 1987, Second Edition (1990).
[22] G. Satta, Personal communication, 2002.
[23] R. Sedgewick, Ph. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Reading, MA, 1996.
[24] X. Wang, Q. Fu, A frame for general divide-and-conquer recurrences, Inform. Process. Lett. 59 (1996) 45-51.

[^0]: E-mail address: infprja@cs.utwente.nl.

