
Theoretical Computer Science 262 (2001) 241–256
www.elsevier.com/locate/tcs

Hyper-polynomial hierarchies and the polynomial jump

Stephen Fennera; 1, Steven Homerb ;∗ ;2, Randall Pruimc, Marcus Schaeferd ; 3

aComputer Science Department, University of South Carolina, Columbia, SC 29208, USA
bComputer Science Department, Boston University, 111 Cummington Street, Boston, MA 02215, USA

cDepartment of Mathematics and Statistics, Calvin College, Grand Rapids, MI 49546, USA
dComputer Science Department, DePaul University, Chicago, IL 60604, USA

Received 25 December 1997; revised 17 December 1999; accepted 27 April 2000
Communicated by O. Watanabe

Abstract

Assuming that the polynomial hierarchy (PH) does not collapse, we show the existence of
ascending sequences of ptime Turing degrees of length !CK

1 in PSPACE such that successors
are polynomial jumps of their predecessors. Moreover these ptime degrees are all uniformly
hard for PH. This is analogous to the hyperarithmetic hierarchy, which is de8ned similarly but
with the (computable) Turing degrees. The lack of uniform least upper bounds for ascending
sequences of ptime degrees causes the limit levels of our hyper-polynomial hierarchy to be
inherently non-canonical. This problem is investigated in depth, and various possible structures
for hyper-polynomial hierarchies are explicated, as are properties of the polynomial jump operator
on the languages which are in PSPACE but not in PH. c© 2001 Elsevier Science B.V. All rights
reserved.

Keywords: Polynomial hierarchy; Polynomial jump; Hyper-polynomial hierarchy; Sequences of
degrees

1. Introduction

Since its de8nition in 1976 [13], the polynomial hierarchy has been used to classify
and measure the complexity of infeasible combinatorial problems. It has been hugely

∗ Corresponding author.
E-mail addresses: fenner@cs.sc.edu (S. Fenner), homer@cs.bu.edu (S. Homer), rpruim@calvin.edu

(R. Pruim), mschaefer@cs.depaul.edu (M. Schaefer).
1 Supported in part by the NSF under grants CCR 92-09833 and CCR 95-01794.
2 Supported in part by the NSF under grant NSF-CCR-9400229 and by the Mathematical Institute, Oxford

University.
3 Supported in part by the NSF under grant CCR 95-01794. This work was done while visiting Steve

Fenner at the University of Southern Maine.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00193 -6

242 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

successful in this capacity, providing the main framework for complexity classes above
polynomial time within which most subsequent complexity theory has taken place. The
classes in this hierarchy, particularly in the 8rst few levels of the hierarchy, have
been studied extensively and their structure carefully examined. In this paper we con-
sider extensions of the polynomial hierarchy into extended hierarchies, all lying within
PSPACE. Our aim is to provide tools for a further understanding of many complex
and interesting PSPACE problems which lie just outside PH as well as to gain further
understanding of the intricacies of ptime reductions, degrees and the polynomial jump
operator.
The polynomial jump has proven to be a fundamental and useful tool in complexity

theory. It is a complexity–theoretic version of the Turing jump in recursion theory. For
a set A, K(A), the polynomial jump of A is de8ned to be the canonical NPA complete
set. This jump operator was 8rst considered by Uwe SchEoning [9, 10] where he used
the polynomial jump operator to de8ne and study (high and low) hierarchies of sets
within NP. The properties of the polynomial jump were extensively studied by Mike
Townsend [15, 16] who also examined the iterated polynomial jump operator Kn(A),
for integer n. More recently, Fenner [4], motivated by jump inversion results from
recursion theory (see [11, Chapter VI]), considered the problem of determining the
range of the polynomial jump operator.
The polynomial hierarchy was de8ned and motivated in analogy with the arithmetic

hierarchy 8rst studied by Stephen Kleene. The structure and many key properties of
the classes in the polynomial hierarchy are similar to those in the arithmetic hierarchy.
Furthermore, various concepts and de8nitions originating in the arithmetic hierarchy
have been important in illuminating interesting aspects of the complexity theory of
problems in the resource-bounded setting. For example, the alternating quanti8er char-
acterizations of the levels of both the arithmetic and polynomial hierarchies provides a
simple and useful method for placing problems within levels of these hierarchies. One
of the deepest and most elegant developments in this area of mathematical logic was
the extension of the arithmetic hierarchy to the hyperarithmetic hierarchy by trans8-
nite iteration of the Turing jump operator and the subsequent development by Kleene,
Spector and others of the properties of this hierarchy. (See, for example, [7, 8].) Our
work here intends to develop an analogous resource-bounded framework for problems
lying within PSPACE and above PH. In this work we de8ne and (under reasonable
assumptions) prove the existence of hyper-polynomial hierarchies formed by trans8nite
iteration of the polynomial jump operator and study their properties and the properties
of the polynomial jump operator in the realm between PH and PSPACE.
Assuming the polynomial hierarchy is in8nite, Ambos-Spies [1] has shown the ex-

istence of a rich, in8nite partial order of degrees in PSPACE above PH. In this paper
we extend his techniques to de8ne in8nite, polynomial-jump-respecting hierarchies of
length !CK

1 (the 8rst non-constructive ordinal) in PSPACE above PH, which naturally
extend the polynomial hierarchy. This shows that if PH does not collapse then not only
is there a rich and complex structure to the degrees in PSPACE–PH, but that PSPACE
is in some sense “very far” from PH, since not even !CK

1 many polynomial jumps

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 243

suIce to get from PH to PSPACE. We are hopeful that the classes of problems hard
for levels of these hierarchies will also provide a new classi8cation scheme for inter-
esting hard combinatorial problems, such as the PP-complete languages, which lie in
PSPACE but above PH.
The major technical obstacle encountered in proving the existence of an extended

polynomial hierarchy is the lack of uniform least upper bounds for ascending sequences
of ptime degrees. This fact was noted by Ambos-Spies [1], and makes the de8nition of
our hierarchies non-canonical at limit levels, giving rise to several possibilities for the
properties of the extended hierarchy. This situation is explored in depth here and various
possible structures for the hyper-polynomial hierarchy are explicated. For example,
under reasonable assumptions about the structure of uniformly hard sets for PH, we
prove that there is a problem which is a uniform upper bound for PH but is not such
a bound for any ptime non-constant alternation class. Such a problem would lie “just
above” PH, and a careful examination of the proof of Toda’s Theorem [14] indicates
that the PP-complete languages may 8t this description.
Outline. After providing the necessary background on constructive ordinals and uni-

form upper bounds in Section 2, we construct in Section 3 an in8nite hierarchy of
languages of length !CK

1 in PSPACE above PH. This hierarchy is proper provided that
PH doesn’t collapse. In Section 4 we investigate the extent to which such a hierarchy
is or is not canonical by asking where within PSPACE–PH such a hierarchy can be
placed. This investigation leads to the diKerentiation between two types of uniform up-
per bounds, slow and fast. Finally, in Section 5 we present some directions for further
investigation.

2. Preliminaries

We identify !, the natural numbers, with �∗, the set of all binary strings, via the
usual dyadic representation. We let � be the empty string and denote by 〈·; ·〉 :�∗×
�∗→�∗ a standard ptime-computable, ptime-invertible bijection such that 〈�; �〉= �,
and 〈x; y〉¿y for all x �= �.

We 8x a standard, acceptable enumeration N0; N1; N2; : : : of non-deterministic oracle
TMs, and a standard enumeration D0; D1; D2; : : : of deterministic ptime oracle TMs,
where for each i, {D〈i; j〉}j∈! enumerates the set of all oracle computations running in
time ni + i for all oracles and inputs of length n. Often we will abuse notation and
associate with a set (language) its characteristic function. Thus x∈L if and only if
L(x) := �L(x)= 1. We write De: A6r B if DB

e (x)=A(x) for all x and De accesses the
oracle B only in a manner allowed by the reduction type 6r . For the most part we are
interested in 6p

T- and 6
p
m-reductions. As usual, ’0; ’1; ’2; : : : is a standard acceptable

enumeration of the computable partial functions (as in [11]).

De�nition 2.1. For any set A⊆�∗, we de8ne, in the spirit of BalcNazar et al. [2],

K(A) = {〈e; x; 0t〉|NA
e (x) has an accepting path of length6t}:

244 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

We call K(A) the polynomial jump of A. It is complete for NPA under (unrelativized)
6p

m-reductions.

Many fundamental properties of the polynomial jump can be found in the work of
Mike Townsend [15, 16]. It is easy to check that K(·) lifts to a well-de8ned operator
on the 6p

T degrees. We denote by Kk(·) the k-fold iteration of K(·). Let Q be an
alternating oracle Turing machine such that for all A and k, �x :QA(0 k ; x)=Kk(A), the
canonical (�p

k)
A-complete set, and write QA

k (x) for QA(0 k ; x). We assume without loss
of generality that Q has been chosen so that for any k; QR runs in polynominal time
for all oracles, and for any oracle A, QA(0 k ; x) only makes oracle queries of length
6|x|.

2.1. Kleene’s O
Here we give a brief de8nition of Kleene’s partial order, 〈O;¡O〉, of all notations for

constructive ordinals. Here O⊆�∗ and ¡O is a binary relation on O. The information
in this section comes chiePy from Sacks [8], but see also [7]. Our development is
slightly diKerent from, but entirely isomorphic to, Kleene’s original de8nition. De8ne
succ(x)= 0x and lim(x)= 1x. We de8ne 〈O;¡O〉 by trans8nite induction. It is the
least partial order such that the following hold for all a; e∈�∗:
1. �∈O.
2. If a∈O, then succ(a)∈O and a¡O succ(a).
3. If ’e is total, range(’e)⊆O, and ’e(0)¡O ’e(1)¡O ’e(2)¡O · · ·, then lim(e)∈O

and ’e(n)¡O lim(e) for all n∈�∗.
4. ¡O is transitive.

It can be shown that 〈O;¡O〉 is well-founded, and hence functions with domain O
can be de8ned by trans8nite recursion. For all a∈O we de8ne ‖a‖, the unique ordinal
for which a is a notation, in this way:
1. ‖�‖=0.
2. If a∈O, then ‖succ(a)‖= ‖a‖+ 1.
3. If lim(e)∈O, then ‖lim(e)‖= supn ‖’e(n)‖.
Each element of O is the notation for a constructive ordinal, and each constructive
ordinal has at least one (but usually more than one) notation. Also, if a¡O b, then
‖a‖¡‖b‖, but not conversely. The set of all constructive ordinals is !CK

1 , which is the
least non-constructive ordinal, and is countable.
The structure of 〈O;¡O〉 is a tree, where (in8nite) branching occurs at every limit

level. Some branches (maximal linearly ordered subsets) peter out well before reach-
ing height !CK

1 (in fact, there are branches of height only !2), but some branches do
reach height !CK

1 . The most important fact about O is that one can construct objects
via “eKective trans8nite recursion” up to !CK

1 by using notations from O. We will
do just that in Section 3, where we de8ne sets Ha in PSPACE for all a∈O such
that a¡O b implies Ha6

p
THb, and Hsucc(a) =K(Ha)�p

THa. (This last inequality as-
sumes that PH is in8nite.) This mirrors the classical construction of the hyperarithmetic
hierarchy.

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 245

2.2. Uniform upper bounds and padding arrays

In computability theory, it is a simple matter to de8ne a canonical join of a uniformly
enumerable sequence of sets which is the least uniform 6T-upper bound (in fact, the
least uniform 6m-upper bound) for the sequence. In complexity theory this is not
possible, since there is no least uniform 6p

T-upper bound [1, 5]. Furthermore, the most
natural join operator has the unfortunate (for our purposes) property that the join of a
collection consisting of a complete language for each level of PH is PSPACE-complete.
In our case we are interested in understanding the problems which lie between PH and
PSPACE and we would like the join to be as close to PH as possible. Therefore, we
must work instead with uniform upper bounds, de8ned below, which correspond to
possible choices for a nicely behaved join operator.

De�nition 2.2. Given a countable collection C= {Li | i ∈ !} of languages, a uniform
6r -upper bound for C is a language H such that there is a computable function
f : !→! with the property that for all i, Df(i): Li6r H .

We are primarily interested in uniform upper bounds for PH and similar classes. A
uniform upper bound for PH is a uniform upper bound for {Ki(∅) | i∈!}. Since for
any a∈O, {b∈O | b¡O a} is computably enumerable in a, it also makes sense to
talk about uniform upper bounds for collections indexed by {b∈O | b¡O a}.

De�nition 2.3. For any computable function f : ! × !→! and any countable col-
lection of languages C= {Li | i ∈ !}, the padding array for C via f is the language
de8ned by

A = {〈k; 0n1x〉 | x ∈ Lk & n = f(k; |x|)}:
Two types of padding arrays are of special interest.
1. If for every k, f(k; ∗) is monotone non-decreasing and 0n �→ 0f(k; n) is ptime com-

putable, and for every n f(∗; n) is monotone non-decreasing, then we say that A is
a ptime padding array via f.

2. If in addition, there are constants d and C such that for all k, f(k; x)¡C|x|d then
we say that A is a ptime padding array of degree d via f.

A ptime padding array for PH is a ptime padding array for {Ki(∅) | i∈!}.

As the following lemma shows, padding arrays are particularly nice uniform upper
bounds.

Lemma 2.4. If A is a ptime padding array for C= {Li | i ∈ !} via f then A is a
uniform 6p

m-upper bound for C.

Proof. The map ri : x �→ 〈i; 0f(i;|x|)1x〉 is a many-one reduction from Li to A.

As a partial converse to the result above we have the following lemma.

246 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

De�nition 2.5. A function f is nice if f is monotone non-decreasing, unbounded, and
can be computed in O(n+ f(n)) steps.

Lemma 2.6. Let A be a uniform 6r -upper bound for C= {Lk | k ∈ !} via f. If B
is the ptime padding array for C via g; and g is a nice function such that for all x,
both f(j) and DA

f(j)(x) halt in fewer than g(j; |x|) steps; then B6r A.

Proof. We describe a reduction from B to A. On input x= 〈k; 0l1y〉:
1. If l �= g(k; |y|), then x =∈A. This can be determined in polynomial time because g is

nice.
2. If l= g(k; |y|), then compute DA

f(k)(y). Since l= g(k; |y|) is greater than the num-
ber of steps required to compute DA

f(k)(y), this can also be done in polynomial
time.

Thus, in particular, every ptime padding array is a uniform 6p
m-upper bound for

PH, and every set which is a uniform 6r -upper bound for PH is above some ptime
padding array for PH with respect to 6r .

3. A hyper-polynomial hierarchy

We now come to the construction of an extended polynomial hierarchy. We show
how to “embed” 4 〈O;¡O〉 into 〈PSPACE;6p

T〉 in such a way that successors corre-
spond to polynomial jumps and limits to uniform upper bounds. We will call such an
embedding a hyper-polynomial hierarchy, or p-HYP. More formally, we construct a set
H such that if Ha denotes {x | 〈a; x〉 ∈H}= �x :H (a; x), then H satis8es the following
properties.

(P1) H ∈PSPACE.
(P2) H� = ∅.
(P3) Hsucc(a) =K(Ha) for all a.
(P4) For any e with lim(e)∈O, Hlim(e) is a uniform upper bound for {Ha | a ¡Olim(e)}.
(P5) If PH is in8nite, then for any a∈O, Hsucc(a) =K(Ha)�p

THa.
Although Ha is de8ned here for all a∈�∗, we are really only interested in Ha when
a∈O. H will be constructed by trans8nite induction over O. We will say that H is
universal for this hyper-polynomial hierarchy.
To ensure the last two properties, we build Hlim(e) so that PHHlim(e) is in8nite. At

the same time, we must code into Hlim(e) all Ha for a ¡Olim(e). We do the latter by
making Hlim(e) a uniform upper bound of {H’e(y): y∈!}, which we do by making
Hlim(e) a ptime padding array for {H’e(y): y∈!}. Now to get PH to separate over
Hlim(e) we delay coding each H’e(y) into Hlim(e) until we notice that some designated

4 Strictly speaking, this may not be an embedding, since we will preserve comparability but not necessarily
incomparability.

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 247

6p
T-reduction Di fails to reduce some �-level of the hierarchy over Hlim(e) to the

previous level (say, the (k +1)st to the kth). If we can do this for all i and k, we are
done.
Assuming by trans8nite induction that PHH’e (y) separates for all y, this can be accom-

plished by delayed diagonalization. We are guaranteed to kill oK our reduction Di just
by waiting long enough before coding each level: Hlim(e) will “look like” H’e(y) and
since Kk+1(H’e(y))�

p
T H’e(y), Di will eventually make a mistake. The particular “de-

layed diagonalization” strategy employed here is similar to those used by Ambos-Spies
[1], which in turn are based on well-known techniques of Ladner [5].
We now de8ne H formally by simultaneous trans8nite induction over O and length-

decreasing recursion. In what follows, a; e; x∈�∗ are arbitrary and Q is an alternating
oracle Turing machine such that for all A and k, �x :QA(0 k ; x)=Kk(A), the canonical
(�p

k)
A-complete set, and write QA

k (x) for QA(0 k ; x). We assume without loss of gen-
erality that Q has been chosen so that for any k; QR runs in polynominal time for all
oracles, and for any oracle A, QA(0 k ; x) only makes oracle queries of length 6|x|. The
limit case is as explained above. We need to perform the diagonalization via a look-
back technique in order to keep H in PSPACE – this explains the stringent bounds on
i; k, and w in 3(b).

1. H�(x)= 0 (thus H� = ∅).
2. Hsucc(a)(x)=QHa

1 (x) (thus Hsucc(a) =K(Ha)).
3. Hlim(e)(〈y; z〉)= 0, unless z is of the form 0 s1v, where s is least (if it exists) such

that
(a) ’e(0); ’e(1); : : : ; ’e(y) all halt in a combined total of 6s steps, and
(b) there is “suIcient evidence” that

(∀k) QHlim(e)

k+1 �p
T QHlim(e)

k :

We will say there is suIcient evidence if (∀i¡ log∗ y)(∀k ¡ |y|)(∃w¡ log∗ s) such
that

QHlim(e)

k+1 (w) �= D
Q

Hlim(e)
k

i (w):

If such a least s exists and z=0 s1v for some v∈�∗, then we let

Hlim(e)(〈y; z〉) = H’e(y)(v):

In this way, �z : Hlim(e)(〈y; z〉) will be a padded version of H’e(y).
It is important to observe that the value of s is 3(b) above only depends on y and not
on z.

Theorem 3.1. The set H satis9es properties (P1)–(P5) listed above.

Proof. It is not too diIcult to see that H ∈PSPACE: the recursive aspects of the
de8nition are all length-decreasing – due to the stringent bounds on i, k, and w in

248 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

3(b) – and the rest of the algorithm clearly needs no more than a polynomial amount
of space. Properties (P2) and (P3) are also clearly satis8ed.
We prove properties (P4) and (P5) simultaneously by induction over 〈O; ¡O〉.

Actually, we need to prove a stronger property than (P5), namely:

(P5a) If PH is in8nite and a ∈ ., then PHHa is in8nite.

Choose an arbitrary a∈O and assume that properties (P4) and (P5a) hold for all
Hb with b ¡Oa. There are three cases:
Case 1: a= �. Property (P4) holds vacuously. Since H� = ∅, property (P5a) holds.
Case 2: a=succ(b). Again, property (P4) holds vacuously for a. Since PHHb is

in8nite and Ha =K(Hb), clearly PHHa is in8nite as well.
Case 3: a= lim(e). Note that ’e is total. For property (P4), we will only show

that Hlim(e) is a uniform upper bound for {H’e(y)}y∈�∗ . This suIces, because for any
b ¡Olim(e), there is a y such that b ¡O’e(y) and hence

Hb6
p
TH’e(y)6

p
THlim(e);

and one could furthermore 8nd such a reduction eKectively in b and lim(e), using
certain basic facts about 〈O; ¡O〉.
We 8rst show that for every y, the s mentioned in case (3) of the de8nition of H

must always exist. Assuming otherwise, let y be least such that no such corresponding
s exists. Then Hlim(e)(〈y′; z〉)= 0 for all y′¿y and all z, so we never code H’e(y′)

into Hlim(e). This makes Hlim(e) ≡p
T H’e(y−1), or if y = 0 then Hlim(e) = ∅. Now by our

inductive hypothesis, PHHlim(e) is in8nite, so in particular, for all i; k, there is a w such
that

QHlim(e)

k+1 (w) �= D
Q

Hlim(e)
k

i (w);

and hence s must exist by case 3(b) in the de8nition of H .
The fact that s exists for all y immediately implies that

• PHHlim(e) is in8nite, via an argument similar to the one just given, and
• for all y, a padded version of H’e(y) is coded into Hlim(e), and thus H’e(y)6

p
m Hlim(e)

via the mapping v �→ 〈y; 0s(y)1v〉, where s(y) is the s corresponding to y.
This concludes the proof.

4. Uniform upper bounds for PH

In this section and the next we investigate the extent to which the construction of
extended hierarchies in Section 3 is canonical. Since uniform upper bounds can be
thought of as non-canonical joins, it is inevitable that, at least level by level, such a
hierarchy cannot be canonically de8ned. As we shall see, the fact that we were able to
use ptime padding arrays of bounded degree (in fact, degree 0) for all of the uniform
upper bounds in our construction allows for considerable manipulation of the structure
of our extended hierarchies.

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 249

4.1. Quick uniform upper bounds

The observation that all of the uniform upper bounds in our construction in the
previous section were actually ptime padding arrays of degree 0 prompts the following
de8nition. We will call a uniform 6r -upper bound A for C= {Li | i ∈ !} quick if there
is a polynomial p(n) such that for each Li there is a 6r -reduction Dj : Li6r A that
runs in time p(n), where n is the length of the input to the reductions Dj. A uniform
6r -upper bound that is not quick is slow. All ptime padding arrays of bounded degree
are quick uniform upper bounds.
Quick uniform upper bounds for PH can also be characterized in terms of alternating

time, as de8ned in [3]. For this we de8ne the class �p
f(n) to consist of all languages

accepted by an alternating Turing machine in polynomial time and at most f(n) − 1
alternations (f(n) blocks), beginning in an existential state. (Note that this really is
f(n)− 1 alternations and not O(f(n)).)

Lemma 4.1. A set A is a quick uniform 6r -upper bound for PH if and only if it is
6r -hard for �

p
f(n) for some nice f.

Proof. If A is a quick uniform 6r -upper bound for PH, then there is a computable
function g and a polynomial p such that Dg(j): Kj(∅)6r A in time p(n). Let f(n)
be the largest j such that all of g(0); g(1); : : : ; g(j) can be computed in less than p(n)
steps. Then f ful8lls the conditions.
For the other direction let A be 6r -hard for �p

f(n) for some f as above. Consider
the set B= {〈j; 0l; y〉: y∈Kj(∅) for some j¡f(l)}. B∈�p

f(n), so B6r A. On the other
hand, Kj(∅)6p

m B. We just have to make sure that there is a 8xed time bound on the
running time of the reductions independent of j. Let the function g on input j 8rst
compute the smallest l such that j¡f(l). It then computes the index of a reduction
Rg(j) that for inputs x with |x|¡l in one step returns the right answer (we hardwire the
answer into the reduction). If |x|¿l the reduction writes 〈j; 0l; x〉 on the query-tape and
queries B. The reduction Rg(j) runs in time c(|x|+1) for some constant c not depending
on j. Composing the reduction with the Turing-reduction from B to A we get a family
(Rg(j))j∈! of reductions all of which run in time p(n) for some polynomial p(n).

The following theorem says that quick uniform upper bounds for PH cannot be “just
above” PH.

Theorem 4.2. If A is a quick uniform upper bound for PH; then there is a ptime
padding array (hence also a uniform upper bound for PH) B such that K(B)6p

T A.

The proof of Theorem 4.2 makes use of the following lemma.

Lemma 4.3. If A and B are ptime padding arrays for PH via nice functions f and g
respectively and there is some polynomial p such that either
1: f(k + 1; m)6p(g(k; 2) + g(0; m)); or

250 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

2: f(k + 1; m)6p(g(k; m)) and g(k; m)¡O(md) for some constant d;
then K(B)6p

m A.

Note that for any k; g(k; 2) + g(0; m) is a polynomial in m of the same degree as
g(0; ∗). So to satisfy the requirements of the lemma, A must be a ptime padding array
of bounded degree. Thus, we have the theorem only for quick uniform upper bounds
for PH. It remains open if there are slow uniform upper bounds for PH that cannot
compute the jump of any other (necessarily slow) uniform upper bound for PH.
Before proceeding to the proofs of Theorem 4.2 and Lemma 4.3, we give some

other examples of applications of Lemma 4.3.

Example 4.4.
1. If A is a padding array for PH via f(k; m)=me +2k or f(k; m)=me +22

k
, where

e is a constant, then K(A)≡p
m A, so A is a 9xed point of the polynomial jump.

2. If A is a bounded degree ptime padding array for PHvia f, and B is the ptime
padding array for PHvia g(k; m)=f(k + 1; m), then K(B)6p

T A.

Proof of Example 4.4.
1. We must 8nd polynomials p1 and p2 such that

me + 2k+16p1(2e + 2k + me + 20))

and

me + 22
k+1
6p2(2e + 22

k
+ me + 22

0
)):

Choosing p1(n)= 2n and p2(n)= n2 is suIcient. (This could also be demonstrated
using case 2 of the lemma, since each of these examples has bounded degree.)

2. If f yields a bounded degree padding array then so does g, so this is immediate
from case 2.

Proof of Theorem 4.2. If A is a quick uniform upper bound for PH then there is a
bounded degree ptime padding array C for PH such that C6p

T A. By Lemma 4.3 there
is another ptime padding array B for PH such that K(B)6p

T C6p
T A.

Proof of Lemma 4.3. We describe an algorithm for a reduction r: K(B)6p
m A. Remem-

ber that K(B)= {〈e; x; 0t〉: NB
e (x) accepts x in 6t steps}. For this proof we will use

the fact that k-QBF= { U’ |’ is a true �p
k formula}≡p

m Kk(∅). WLOG we can assume
that U’, the encoding of the formula ’ as a binary string, satis8es |’|¿2.
Algorithm for r(y):

1. On input y, 8rst determine e; x, and t such that y= 〈e; x; 0t〉. If none such exist,
then y =∈K(B), so r(x) can be chosen to be some 8xed element of VB=�∗ − B.

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 251

2. We need to 8nd a QBF , such that NB
e (x) accepts if and only if is true.

Furthermore, we must in time polynomial in n= |y| be able to produce a string z
where is coded into B. For this we need the following observations about the
queries made during the computation NB

e (x) (along any path).
• n= |y|= |〈e; x; 0t〉|¿t; |x|.
• Since the length of a query is bounded by running time, if NB

e (x) makes queries
to any strings q, then |q|¡t6|y|= n.

• If q does not have the form 0g(k;m)1 U’, where ’ is a �p
k formula and | U’|=m,

then we know that q =∈B, so we could modify Ne so that it answers such queries
“internally” (via a syntax check) without actually querying the oracle.

• If q=0g(k;m)1 U’, then we will say that q is a query of type (k; m) about ’. Note
that g(k; m)¡n, since g(k; m)¡|q|6|y|= n.

• Let k be maximal such that there is a query q of type (k; m). Then all of the
queries in the simulation of NB

e (x) not handled by the syntax check above are
about �p

k formulas with codes of length 6n.
3. Using the observations above, we see that determining whether NB

e (x) accepts is
equivalent to a formula of the form

 ≡∃ p̃∃q̃ ∃ ã

∀i[<qi ∈ B== ai &3(e; x; t; p; q; a)]

where p̃ codes a path in the non-deterministic computation tree, q̃ codes a sequence
of queries to B, ã codes answer bits to those queries, and 3 is a polynomial time
predicate that checks that along path p̃, NB

e (x) makes queries to q̃ if the answers
(to previous queries) are ã and halts in an accepting con8guration after at most t
steps.
By the comments above, each predicate <qi ∈B== ai is �p

k ∪4p
k , so that U ∈ (k +1)

-QBF⇔NB
e (x) accepts.

4. Let r(y)= 0f(k+1; | U |)1 U .
Notice that m= | U |6O(n3) and that g(k; 2)6g(k; m)6n, since there was a query
of type (k; m). Also f(k + 1; m)6f(k + 1;O(n3))6O(f(k + 1; n)3). So in case 1
we have f(k + 1; m)6O((p(g(k; 2) + g(0; n)))3)6 O(p(n+ nd)3), where d is the
degree of g(0; ∗), and in case 2 we have f(k+1; m)6O((p(g(k; n)))3)6O(p(nd)3),
where d is an upper bound on the degree of g(k; ∗) for every k. Therefore, r(y)
can be computed in time polynomial in n.

4.2. Slow uniform upper bounds

We will now construct a set A that is a slow uniform upper bound for PH, i.e., it
is an upper bound for PH, but there is no uniform time bound on the reductions from
each level of the hierarchy to A. For this proof we need to assume more than that PH
separates. We present one hypothesis which is suIcient; modi8cations are possible.

252 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

Hypothesis H. The polynomial hierarchy does not collapse even with access to a set
computable in subexponential space in the following sense:

(∃� ¿ 0) (∀S ∈ DSPACE(n�)) (∀m)(∃j)Kj(∅)�p
T Km(∅)⊕ S:

The hypothesis says that for some �¿0 sets in DSPACE(n�) will not collapse the
hierarchy, namely for any given level of the hierarchy and a set S computable in space
n� there will be a higher level that will not reduce to the lower level even with access
to S.

Theorem 4.5. If f is nice; then �p
f(n) contains a slow uniform 6p

T-upper bound for
PH; unless H fails.

Lemma 4.1 allows us to give a more striking version of the theorem which does not
refer to slowness at all.

Corollary 4.6. If f is nice; then �p
f(n) contains a uniform 6p

T-upper bound for PH
that is not hard for any �p

g(n) (with g nice); unless H fails.

Proof of Theorem 4.5. Let f be a nice function. De8ne h(k) as the smallest j for
which f(j)¿k. We de8ne A and verify the properties we claimed.

A = {0(|y|+2)2
k
+h(k)1y : y ∈ Kk(∅)}:

From the de8nition of A it is clear that A is a uniform 6p
T-upper bound for PH. If

x=0(|y|+2)2
k
+h(k)1y is a string of length n in A, we know that h(k)¡n, and hence

f(n)¿f(h(k))¿k. Therefore, A lies in �p
f(n).

If A were quick, then we would have

(∃i) (∀j)Kj(∅) ∈ DTIMEA(ni):

We show that this contradicts Hypothesis H.
So suppose A is quick, and 8x �¿0. Let j¿m= log (2i=�). Since A is quick, there

is an oracle Turing machine De such that De : Kj(∅)6p
TA in time ni. We will show

that De can be used to get Kj(∅) 6p
T Km(∅) ⊕ S for some S ∈ DSPACE(nc�) where

c is a constant independent of j, m and �.
Consider an input x to De. On input x the reduction De can only make queries q of

length less than ni where n= |x|. So if q=0(|y|+2)2
k
+h(k)1y (and only queries of this

form are interesting) we know:

k6 log log n− log log(|y|+ 2) + log i: (1)

De8ne a set S as follows:

S = {〈0n; y; k〉 : |y| ¡ n�=2 &y ∈ Kk(∅)}:

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 253

Then S ∈ DSPACE(nc�) for some constant c only depending on what complete problem
we use to de8ne the polynomial-jump.
Run D(·)

e (x) and assume access to S and to Km(∅): whenever the computation tries
to make a query q to the oracle, do the following:

1. If q does not have the form 0(|y|+2)2
k
+h(k)1y for some y and k, answer the query

negatively, else 8x y and k such that q=0(|y|+2)2
k
+h(k)1y.

2. If |y|¡n�=2 use S to decide whether y ∈ Kk(∅) and answer the query to q accord-
ingly.

3. If |y|¿n�=2, then using inequality (1),

k6 log log n− log log(|y|+ 2) + log i

6 log
2i
�
= m:

So we can use Km(∅) to decide whether y ∈ Kk(∅).
Thus, De can be simulated making use only of S and Km(∅). So from our assumption
that A is quick it follows that

(∀� ¿ 0)(∃S ∈ DSPACE(nc�)) (∃m) (∀j ¿ m)Kj(∅)6p
T K

m(∅)⊕ S;

which implies the failure of H .

4.3. Fixed points of the polynomial-jump

In constructing a p-HYP we must avoid 8xed points of the polynomial jump. We
show that every 8xed point of the polynomial jump is a uniform upper bound for PH
and that 8xed points exist that are very unlikely (even more unlikely than the examples
after Lemma 4.3) to be PSPACE-complete. Thus it really is necessary to actively avoid
them in our construction.

Lemma 4.7. If K(A)6p
T A then A is a uniform 6p

T-upper bound for PH (in fact for
PHA):

Proof. We assume that our enumeration of nondeterministic OTMs has the property
that there are two computable functions jump and comp such that
• if B6p

T A via Di, then K(B)6p
T K(A) via Djump(i), and

• if B6p
T C via Di and C6p

T D via Dj, then B6p
T D via Dcomp(i; j).

By the hypothesis of the lemma, K1(A)6p
T A. Fix a reduction De witnessing this

fact, i.e., such that K(A)(x)=DA
e (x). By induction Kk+1(A)6p

T K
k(A) via Djump(k)(e).

Using comp we can de8ne a computable function f such that Kk(A)6p
T A via Df(k),

which proves that A is a uniform upper bound of PHA. Starting with K1(∅) instead of
K1(A) will yield the same result for PH (without making any additional assumptions).

254 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

Remark.
1. If we start with the stronger assumption that K(A)6p

m A, then A will be a uniform
upper bound for PH with regard to m-reductions. The necessary adjustments in the
proof are straightforward.

2. If K(A)6p
T A is witnessed by a reduction that runs in linear time, then the uniformity

in the above proof, together with the fact that jump and comp are also computable
in linear time, yields that A is hard for �p

(log n)1=2 . This means (Lemma 4.1) that A
is quick, and not slow.

Lemma 4.8. �p
log log n+O(1) is closed under Turing reductions and the polynomial jump

and has a complete set in �p
log log n.

Proof. For every i there is a constant c such that log log ni6 log log n + c. Hence
�p
log log n+O(1) is closed under Turing reductions, and the set

B= {〈e; x; 0t〉: the eth alternating Turing
machine halts in t steps on input x with
at most log log t alternations}

is hard for this class and lies in �p
log log n. Since �p

log log n+O(1) is closed under adding a
constant number of alternations it is certainly closed under the polynomial jump.

In particular, we note:

Corollary 4.9. There is a 9xed point of the polynomial jump in �p
log log n; which is

not PSPACE-complete; unless PSPACE=�p
log log n+O(1).

5. Open questions

In continuing to investigate the world between PH and PSPACE, there remain many
unanswered questions, especially about those languages which are “just above” PH
or “just below” PSPACE, and the location of well-known, natural languages in this
spectrum.
1. Under what plausible assumptions (if any) is there a uniform upper bound for PH

that cannot compute the jump of any other uniform upper bound? (It must be slow.)
These are languages which are outside PH, have enough resources to provide easy
computation of PH, but not much more (not a jump more). Such languages, if part
of a p-HYP would have to sit at level !.
More generally, one can ask: Are there any ordinals 6 and languages L such that L
is at level 6 in some p-HYP, but is not at level 7¿6 for any p-HYP?

2. What are the possible structures of hyper-polynomial hierarchies ?
In Section 3 we gave some indication of how far apart PSPACE is from PH by
building an image H of O in the PSPACE degrees that respects the polynomial

S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256 255

jump operator and upper bounds, and (assuming PH is in8nite) has no polynomial
jump 8xed points. Furthermore, it is evident from our construction of H that Ha is
a quick uniform upper bound for every a ∈ O with ‖a‖¿!. Section 4 showed how
every quick uniform upper bound can compute the jump of another quick uniform
upper bound. Combining these results it is possible to give further evidence of the
richness of the quick uniform upper bounds with respect to the polynomial jump
by iterating the construction of Section 4. The iterated constructions illuminate a
very complex structure of constructible hyper-polynomial hierarchies. It would be
interesting to understand the limits of such constructions and to try to characterize
the hyper-polynomial hierarchies.

3. Which languages are hyper-polynomial?
Since there is no canonical notion of the hyper-polynomial hierarchy, it does not
make sense to de8ne the hyper-polynomial languages to be those languages which
are at or below some level of it (as one de8nes the hyper-arithmetic sets). However,
we could call a language A hyper-polynomial if there is some p-HYP, H , and some
a ∈ O such that A6p

THa. This says that A is far (more than !CK
1 polynomial jumps)

from being PSPACE-complete. Assuming P �=PSPACE, the PSPACE-complete lan-
guages are not hyper-polynomial under this de8nition. Are there any other languages
in PSPACE which are not hyper-polynomial? These languages would in some sense
be much harder than PH yet still not PSPACE-complete. En route to answering this
question, the following pair of questions arises:
(a) Can a p-HYP be placed above any PSPACE set which is not within a 8nite

number of jumps from PSPACE-complete?
(b) Is there an A with PA �=NPA =PSPACE? (Such an A would ot be PSPACE-

complete, but would be “only one jump away”.)
4. Where are the PP-complete languages in this scheme?

A careful look at the exponents on the polynomials in the proof of Toda’s Theorem
suggests that PP-complete languages might not be uniformly hard for any ptime
unbounded alternation class. This would make them slow uniform upper bounds for
PH, and indicate that PP is only very slightly larger than PH. Can this be made
precise using hyper-polynomial hierarchies?

5. One of our primary motivations for this work is the logical theory of the hyperarith-
metic sets which provides a well-developed link between the arithmetic sets and the
analytic sets of integers [8]. In this generalization of classical computability theory,
admissible recursion theory, the hyperarithmetic sets play the role of the computable
sets and �1

1 corresponds to the computably enumerable sets. We have only begun
to explore the resource bounded theory in this work and there remains much to be
done. We mention here a few key aspects of this research.
The well-known theorem of Spector and Markwald [12, 6] shows that !CK

1 is
the supremum of the lengths of all computable well-orderings of the integers. A
careful proof of this result can be made to yield this same fact for ptime well-
orderings of the integers (that is !CK

1 =!p
1). There is a quite natural (though not

fully invariant) alternating quanti8er characterization of levels of the hyperarithmetic

256 S. Fenner et al. / Theoretical Computer Science 262 (2001) 241–256

hierarchy. What is the corresponding characterization of alternations of polynomial-
bounded quanti8ers? The crowning result of basic hyperarithmetic theory is the
theorem of Kleene that 81

1 =HYP (the sets Turing reducible to some level of the
hyperarithmetic hierarchy). What corresponds to 81

1 in this setting? PSPACE (less
the complete languages) seems the obvious and most reasonable candidate, but see
2(b) above.

We believe continued work in this area will result in further insights into the complexity
of hard combinatorial problems in PSPACE.

References

[1] K. Ambos-Spies, On the relative complexity of hard problems for complexity classes without complete
problems, Theoret. Comput. Sci. 63 (1989) 43–61.

[2] J.L. BalcNazar, J.DNYaz, J. GabarrNo, Structural Complexity I, EATCS Monographs on Theoretical Computer
Science, vol. 11, Springer, Berlin, 1988.

[3] A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. ACM 28 (1) (1981) 114–133.
[4] S.A. Fenner, Inverting the Turing jump in complexity theory, in: Proc. 10th IEEE Structure in

Complexity Theory Conference, 1995, pp. 102–110.
[5] R. Ladner, On the structure of polynomial-time reducibility, J. ACM 22 (1975) 155–171.
[6] Markwald, Zur theorie der konstruktiven wohlordnungen, Math. Ann. 127 (1954) 135–149.
[7] H. Rogers, Theory of Recursive Functions and EKective Computability, McGraw-Hill, New York, 1967

(Reprinted. MIT Press, Cambridge, MA, 1987).
[8] G.E. Sacks, Higher Recursion Theory, Springer, Berlin, 1990.
[9] U. SchEoning, A note on complete sets for the polynomial-time hierarchy, SIGACT News, June, 1980.

[10] U. SchEoning, A low and high hierarchy within NP, J. Comput. Systems Sci. 27 (1993) 14–28.
[11] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer, Berlin, 1987.
[12] C. Spector, Recursive well-orderings, J. Symbolic Logic 20 (1955) 551–563.
[13] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 1–22.
[14] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20 (5) (1991) 865–877.
[15] M. Townsend, A polynomial jump operator and complexity for type two relations, Ph.D. Thesis,

University of Michigan, 1982.
[16] M. Townsend, A polynomial jump operator, Inform. and Control 68 (1986) 146–169.

