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Abstract

For reasons of e,ciency, term rewriting is usually implemented by graph rewriting. Barendregt
et al. showed that graph rewriting is a sound and complete implementation of (almost) orthogonal
term rewriting systems. Their result was strengthened by Kennaway et al. who showed that graph
rewriting is adequate for simulating term rewriting. In this paper, we extend the aforementioned
results to a class of conditional term rewriting systems which plays a key role in the integration
of functional and logic programming. In these systems extra variables are allowed in conditions
and right-hand sides of rules. Moreover, it is shown that orthogonal conditional rules give rise to
a subcommutative conditional graph rewrite relation. This implies that the graph rewrite relation
is level-con3uent. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Attempts to combine the functional and logic programming paradigms have recently
been receiving increasing attention; see [8] for an overview of the 9eld. It has been
argued in [9] that strict equality is the only sensible notion of equality for possibly non-
terminating programs. In this paper, we adopt this point of view; so every functional-
logic program is regarded as an (almost) orthogonal conditional term rewriting system
(CTRS) with strict equality. The standard operational semantics for functional-logic
programming is conditional narrowing. It is well-known that extra variables in con-
ditions (not to mention right-hand sides) cause problems because narrowing may be-
come incomplete or con3uence may be lost. Therefore, many e:orts have been made
to characterize classes of con3uent functional-logic programs with extra variables for
which narrowing is complete; see [9] for details. In [9], new interesting completeness
results are provided. However, all of these results are standing on shaky ground. This
is because all of them depend on the fact that conditional graph rewriting is a sound
and complete implementation (w.r.t. the computation of normal forms) of CTRSs with
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strict equality ([9, Theorem 3:5, p. 676]: “Conditions 1 and 2 are necessary to extend
Theorem 3:5 . . .”). Informally, soundness ensures that the graph implementation of a
CTRS cannot give incorrect results and completeness means that graph rewriting gives
all results; see [4]. But the proof of the above-mentioned fact (given in [7, Theorem
3:8]) is incorrect. There is the following counterexample:

R =



a→ x ⇐ g(x) == e

g(b)→ e; g(c)→ e
h(x)→ f(x; x); f(b; c)→ d

Since a→R b and a→R c it follows that h(a)→R f(a; a)→+
R f(b; c)→R d. The term

d is the result of this term rewriting computation because it is irreducible. In the
corresponding graph rewrite system, however, h(a) does not reduce to d because the
two occurrences of a are shared in f(a; a):

So the example shows that conditional graph rewriting is in general not a complete
implementation of orthogonal CTRSs with strict equality. However, the example is
somehow pathological because the CTRS is not con3uent; the term a can be reduced
to two di:erent normal forms.
The objective of this paper is to prove that conditional graph rewriting is a sound

and complete implementation of a subclass of orthogonal CTRSs with strict equality
which we call almost functional CTRSs. As a matter of fact, we will prove a stronger
statement, viz. that graph rewriting is an adequate implementation of almost functional
CTRSs (the notion “adequacy” originates from [10]). Moreover, it will be shown that
every almost functional CTRS is level-con3uent and that its graph implementation
bene9ts from the same property. The former is not a new result but rather a special
case of a theorem in [19]. Our proof, however, is simpler than that in [19].
Aside from the reasons already mentioned, our new results are interesting on their

own, simply because term rewriting is usually implemented by term graph rewriting
(the name “term graph rewriting” was coined by Barendregt et al. [4]). Term graph
rewriting is more e,cient than term rewriting because the representation of expressions
as directed acyclic graphs allows a sharing of common subexpressions and a graph
rewrite step corresponds thus to several term rewrite steps. Details on acyclic term
graph rewriting can be found in the overview article [16] which was recently published.
In this paper, however, we neither follow the approach of [4] nor that of [16]. Instead,
we use the term-based model of [12] in which directed acyclic graphs are modeled by
well-marked terms.
A preliminary version of this paper appeared in [14]. In this revised paper, the results

reported in the preliminary version are improved in several respects: In [14], every rule
l→ r⇐ s1==t1; : : : ; sk==tk in a CTRS R had to satisfy:
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1. Var(si)⊆Var(l)∪ ⋃i−1
j=1 Var(tj) for all 16i6k.

2. Every tj, 16j6k, is a linear constructor term.
In this paper, it is only necessary that
1. Var(si)⊆Var(l)∪ ⋃i−1

j=1 Var(tj) holds if Var(r) �⊆Var(l).
2. Every tj, 16j6k, is a constructor term.

Moreover, in [14] it is only shown that conditional term graph rewriting is a sound
and complete implementation of (almost) functional CTRSs. By means of a new
proof idea, it is shown here that conditional term graph rewriting is even an adequate
implementation of that class of CTRSs. The fact that orthogonality can be weakened
to “almost orthogonality” is also new.
The paper is organized as follows. In the next section, we recapitulate the basics

of conditional term rewriting. In Section 3, almost functional CTRSs are introduced.
Unfortunately, almost functional CTRSs do not satisfy the parallel moves lemma. In
order to overcome this obstacle, we de9ne a closely related “deterministic” reduc-
tion relation in which extra variables are instantiated by ground constructor terms
only. We obtain as a consequence that almost functional CTRSs are level-con3uent.
Section 4 is dedicated to graph rewriting. Its main result states that graph rewriting is
an adequate implementation of almost functional CTRSs. The proof is based on the fact
that the deterministic reduction relation satis9es the parallel moves lemma. Finally, we
will show that the graph rewrite relation associated with an almost functional CTRS is
level-con3uent.

2. Preliminaries

The reader is assumed to be familiar with the basic concepts of term rewriting which
can for instance be found in [3, 11, 6]. Here, we will just recall less common de9nitions
and some basic facts concerning conditional term rewriting.
Let (F;R) be a term rewriting system (TRS for short). A function symbol f∈F

is called a de/ned symbol if there is a rewrite rule l→ r ∈R such that l=f(t1; : : : ; tk)
for some terms t1; : : : ; tk , otherwise it is called a constructor. The set of de9ned symbols
is denoted by D while C stands for the set of constructors. A constructor term is a
term consisting of constructors and variables only. A non-overlapping left-linear TRS
is called orthogonal. In an almost orthogonal TRS, the non-overlapping restriction is
a bit more relaxed in the sense that it allows trivial overlays.
In a CTRS (F;R), rules have the form l→ r⇐ s1 = t1; : : : ; sk = tk with l; r; s1; : : : ; sk ,
t1; : : : ; tk ∈T(F;V). It is required that l is not a variable. We frequently abbreviate
the conditional part of the rule, i.e. the sequence s1 = t1; : : : ; sk = tk , by c. If a rewrite
rule has no conditions, we write l→ r, demand that Var(r)⊆Var(l), and call l→ r
an unconditional rule. As in [13], rewrite rules l→ r⇐ c will be classi9ed according
to the distribution of variables among l, r, and c, as shown in Table 1. An n-CTRS
contains only rewrite rules of type n. For every rule l→ r⇐ c, we de9ne the set of
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Table 1. Classi9cation of CTRSs

Type Requirement

1 Var(r)∪Var(c)⊆Var(l)
2 Var(r)⊆Var(l)
3 Var(r)⊆Var(l)∪Var(c)
4 No restrictions

extra variables by

EVar(l→ r⇐ c) = (Var(r) ∪Var(c))\Var(l):
Thus a 1-CTRS has no extra variables, a 2-CTRS has no extra variables on the right-
hand sides of rules, and a 3-CTRS may contain extra variables on the right-hand sides
of rules provided that these also occur in the conditions.
The = symbol in the conditions can be interpreted in di:erent ways which lead to

di:erent rewrite relations associated with R. In this paper, we are interested in CTRSs
with strict equality. As already mentioned, these systems play a fundamental role in
functional-logic programming.

De�nition 2.1. In a 3-CTRS (F;R) with strict equality the = symbol in the conditions
of the rewrite rules is interpreted as follows: the instantiated terms in the conditions
are reducible to a common ground constructor term in R. Formally, the rewrite relation
→R associated with (F;R) is de9ned by →R =

⋃
n∈N →Rn, where→R0 = ∅ and for

n¿0 the relation →Rn is de9ned by: s→Rn t if there exists a rewrite rule � : l →
r⇐ s1 = t1; : : : ; sk = tk in R, a substitution � : V→T(F;V) with D(�)=Var(�), a
context C[ ], and ground constructor terms u1; : : : ; uk such that s=C[l�], t=C[r�],
si�→∗

Rn−1
ui and ti�→∗

Rn−1
ui for all 16i6k.

The depth of a rewrite step s→R t is the minimum n with s→Rn t. A CTRS R is
called level-con1uent if every relation →Rn is con3uent.
The unconditional TRS obtained from a CTRS R by omitting the conditions in its

rewrite rules is denoted by Ru. Note that (F;Ru) is an unconditional TRS in the
usual sense provided that (F;R) is a 2-CTRS. This is not true for 3-CTRSs because
rules of type 3 may contain variables on the right-hand sides of rules which do not
occur on the corresponding left-hand side. For a CTRS R, notions like left-linearity,
orthogonality, and constructor term are de9ned via the system Ru. So a CTRS R is for
instance called orthogonal if Ru is orthogonal. Since the properties mentioned above
solely depend on the left-hand sides of the system Ru, they are well-de9ned even if
Ru is not a TRS in the usual sense. In contrast to orthogonality, almost orthogonality
does depend on the right-hand sides of rules and we have to explain this property for
3-CTRSs. So suppose R is a 3-CTRS. If the critical pair 〈s; t〉 originates from two
rules l1 → r1 and l2 → r2 (renamed such that they have no variables in common) in
Ru, then it is trivial if s= t. Now if one of the rules, say l1 → r1, has an extra variable
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z on its right-hand side (so z ∈Var(r1)\Var(l1)), then the critical pair 〈s; t〉 cannot be
trivial because z occurs in t but not in s. In other words, in an almost orthogonal
3-CTRS none of the rules of type 3 may overlap another rule.
If the equality signs = in the conditions are interpreted as reachability (→∗

R), then
we obtain an oriented CTRS. A normal CTRS R is an oriented CTRS whose rules
l→ r⇐ s1→ t1; : : : ; sk → tk are subject to the additional constraint that every tj is a
ground normal form with respect to Ru. According to the next proposition, every CTRS
with strict equality can be viewed as a normal CTRS.

Proposition 2.2. Let (F;R) be a CTRS with strict equality. The following state-
ments are equivalent for all terms s and t in T(F;V):
(i) s and t can be reduced to a common ground constructor term in (F;R);
(ii) s==t can be evaluated to true in the normal CTRS (F �Feq ;R

′ �Req);
where Feq ; Req ; and R′ are de/ned as follows:
1. Feq = {==;∧; true; false}; and ∧ is assumed to be right-associative.
2. The TRS Req consists of the rules (C is the set of constructors in R)

c == c → true ∀0-ary c ∈ C

c == d → false ∀c; d ∈ C; c �=d

c(x1; : : : ; xn) == c(y1; : : : ; yn) →
n∧
i=1

(xi == yi) ∀n-ary c ∈ C

c(x1; : : : ; xn) == d(y1; : : : ; ym) → false ∀c; d ∈ C; c �=d
true ∧ x → x
false ∧ x → false

3. and R′ = {l → r ⇐ s1==t1 → true; : : : ; sk==tk → true | l → r ⇐ s1 = t1; : : : ; sk
= tk ∈R}

Proof. Similar to the proof for unconditional TRSs; see [1].

From now on rewrite rules of a CTRS with strict equality will be written as l→ r ⇐
s1==t1; : : : ; sk==tk .
In the following, we need a result obtained by Staples [17]. An abstract reduction

system (ARS) A2 = (A;→2) is called a re/nement of another ARS A1 = (A;→1) if
→1 ⊆ →∗

2 . Such a re9nement is called compatible if for all a →∗
2 b, there is a c∈A

such that a→∗
1 c and b→∗

1 c. Staples’ result states that a compatible re9nement A2 of
A1 is con3uent if and only if A1 is con3uent. In fact, we also need the following
generalization of this result, a proof of which can be found in [15]. Let A1 = (A;→1)
and A2 = (A;→2) be ARSs. Let ∼ be an equivalence relation on A such that →1

⊆ →∗
2 and, for all a→∗

2 b, there are c; d∈A such that a→∗
1 c, b→∗

1 d, and c∼d.
Let i∈{1; 2}. If Ai is con3uent modulo ∼ (i.e., for all c ∗

i ← a∼ b→∗
i d, there are

e; f∈A such that c→∗
i e∼f∗

i ← d) and, for all a∼ b→∗
3−i c, there is a d∈A such

that a→∗
3−i d∼ c, then A3−i is con3uent modulo ∼.
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3. Almost functional CTRSs

We start with a result from Bergstra and Klop [5]. They have shown that orthogonal
normal 2-CTRS satisfy the parallel moves lemma. Hence these systems are level-
con3uent.

De�nition 3.1. Let A : s→p; l→r⇐c t be a rewrite step in a CTRS R and let q∈Pos(s).
The set q\A of descendants of q in t is de9ned by

q\A =



{q} ifq¡p or q ‖p;
{p · p3 · p2 | r|p3 = l|p1} if q = p · p1 · p2 with p1 ∈VPos(l)
∅ otherwise:

If Q⊆Pos(s), then Q\A denotes the set
⋃
q∈Q q\A. The notion of descendant is

extended to rewrite sequences in the obvious way.

De�nition 3.2. Let R be a CTRS. We write s ‖→Rn t if t can be obtained from s by
contracting a set of pairwise disjoint redexes in s by →Rn . We write s ‖→t if s ‖→Rn t
for some n∈N. The minimum such n is called the depth of s ‖→t. The relation ‖→ is
called parallel rewriting.

The parallel moves lemma for orthogonal normal 2-CTRS now reads as follows.

Lemma 3.3. If t ‖→Rm t1 and t ‖→Rn t2; then there is a term t3 such that t1 ‖→Rn t3
and t2 ‖→Rm t3. Moreover; the redexes contracted in t1 ‖→Rn t3 (t2 ‖→Rm t3) are the
descendants in t1 (t2) of the redexes contracted in t ‖→Rn t2 (t ‖→Rm t1).

It is an immediate corollary to Lemma 3.3 that every orthogonal normal 2-CTRS
is level-con3uent. It is our next goal to show that almost functional 3-CTRS have the
same property. It should be pointed out that oriented systems which satisfy condition
(1) in De9nition 3.4 were called properly oriented in [19].

De�nition 3.4. A 3-CTRS R with strict equality is called almost functional if it is
orthogonal and every rule l→ r⇐ s1==t1; : : : ; sk==tk in R satis9es:
1. If Var(r) �⊆Var(l), then Var(si)⊆Var(l)∪ ⋃i−1

j=1 Var(tj) for all 16i6k.
2. Every tj, 16j6k, is a constructor term.

As an example consider the almost functional CTRS Rfib which computes the
Fibonacci numbers.

R/b =



0 + x → x
s(x) + y → s(x + y)
/b(0) → 〈0; s(0)〉
/b(s(x)) → 〈z; y + z〉 ⇐ /b(x) == 〈y; z〉
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Almost functional CTRSs do not satisfy the parallel moves lemma as seen by the
following variant of Example 4:4 in [19].

Example 3.5. Let

R =



f(x)→ y ⇐ x == y

a→ b
b→ c

Then f(a) ‖→R2
a and f(a) ‖→R2

c but not a ‖→R2
c.

Next, we will introduce a special “deterministic” rewrite relation →R d which is
closely related to →R (the only di:erence is that in →R d extra variables on right-
hand sides must be instantiated by ground constructors terms). In the rest of the paper,
R denotes an almost functional CTRS unless stated otherwise.

De�nition 3.6. Let →Rd0
= ∅ and for n¿0 de9ne s→R dn

t if there exists a rewrite
rule � : l → r ⇐ s1==t1; : : : ; sk==tk in R, a substitution � :V→T(F;V) with
D(�)=Var(�), a context C[ ], and ground constructor terms u1; : : : ; uk such that
s=C[l�], t=C[r�], si� →∗

Rdn−1
ui and ti� →∗

Rdn−1
ui for all 16i6k, and if Var(r) �⊆

Var(l), then x� must be a ground constructor term for every x∈EVar(�). Finally,
de9ne →R d =

⋃
n∈N →R dn

.

For example, in the CTRS R from Example 3.5 we have f(a)→R d c, but neither
f(a)→R d a nor f(a)→R d b.
It is easy to prove (by induction on the depth n) that s→R dn

t implies s→Rn t but not
vice versa. The 9rst statement of the next lemma shows that →R d is deterministic
in the sense that the contractum of a redex is uniquely determined. Furthermore, in
contrast to →R, the relation →R d satis9es the parallel moves lemma. Because of
the 9rst statement of Lemma 3.7, the proof of the second statement bears a strong
resemblance to that of Lemma 3.3 given in [5].

Lemma 3.7. For all m; n∈N; the following holds:
1. If s= l1�1→R dm

r1�1 and s= l2�2→R dn
r2�2; then r1�1 = r2�2.

2. If t ‖→R dm
t1 and t ‖→R dn

t2; then there is a term t3 such that t1 ‖→R dn
t3 and

t2 ‖→R dm
t3. Moreover; the redexes contracted in t1 ‖→R dn

t3 (t2 ‖→R dm
t3) are the

descendants in t1 (t2) of the redexes contracted in t ‖→R dn
t2 (t ‖→R dm

t1).

Proof. The proof proceeds by induction on m + n. The base case m + n=0 holds
vacuously. Suppose the lemma holds for all m′ and n′ with m′+n′¡‘. In the induction
step, we have to prove that the lemma holds for all m and n with m+ n= ‘. Observe
that the inductive hypothesis implies the validity of the diagrams in Fig. 1, where
m′ + n′¡‘.
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Fig. 1. The induction hypothesis in Lemma 3.7.

(1) Suppose s= l1�1→R dm
r1�1 and s= l2�2→R dn

r2�2. Since R is orthogonal, the
rewrite rules coincide and will be denoted by � : l→ r⇐ s1==t1; : : : ; sk==tk in the
following. Obviously, �1 = �2[Var(l)], i.e. the restrictions of �1 and �2 to Var(l) coin-
cide. So if Var(r)⊆Var(l), then r1�1 = r2�2. Suppose otherwise that Var(r) �⊆Var(l).
We show by induction on i that �1 = �2[Var(l)∪

⋃i
j=1 Var(tj)]. It then follows �1 =

�2[EVar(�)] and hence r1�1 = r2�2. If i=0, then �1 = �2[Var(l)]. Let i¿0. According
to the inductive hypothesis, �1 = �2[Var(l)∪

⋃i−1
j=1 Var(tj)]. Since Var(si)⊆Var(l)∪⋃i−1

j=1 Var(tj), it is su,cient to show �1 =�2[Var(ti)]. By de9nition of ‖→R dm
and

‖→R dn
, there exist ground constructor terms u1 and u2 such that si�1→∗

R dm−1
u1 ∗

R dm−1
← ti�1

and si�2→∗
R dn−1

u2 ∗
R dn−1
← ti�2. It is an immediate consequence of si�1 = si�2; si�1 ‖→∗

R dm−1

u1, si�2 ‖→∗
R dn−1
u2, and the inductive hypothesis on ‘ that the two ground normal forms

u1 and u2 coincide. Hence ti�1→∗
R dm−1
u1 ∗

R dn−1
← ti�2. Thus, for all variables x∈Var(ti)\

(Var(l)∪ ⋃i−1
j=1 Var(tj)), it follows from the de9nition of →∗

R dm−1
and →∗

R dn−1
that x�1

and x�2 are ground constructor terms because x∈EVar(�). Therefore, the fact that ti
is a constructor term implies x�1 = x�2.

(2) Since parallel reduction contracts pairwise disjoint redexes, it is su,cient to
prove the lemma for the case where both t ‖→R dm

t1 and t ‖→R dn
t2 consist of a sin-

gle →R d step. In other words, we may assume t→R dm
t1 and t→R dn

t2. Furthermore,
because →R d is deterministic, the only interesting case is that where t is a redex, say
t= l�→R dm

r�= t1 for some rule l→ r⇐ c∈R, containing a proper subredex s which
is contracted to s′ in the step t→R dn

t2.
Since R is orthogonal, there is a variable x∈Var(l) such that s is a subterm of
x�. So x�=C[s] for some context C[ ]. Let q be the position in t such that t|q= s.
Consequently, for every descendant q′ of q in t1, we have t1|q′ = s. De9ne t3 = t1[q′ ←
s′ | q′ ∈ q\t→R dm

t1]. Clearly, t1 ‖→R dn
t3.

It remains to be shown that t2 ‖→R dm
t3. To this end, let us consider t= l�→R dm

r�= t1
again. By de9nition of ‖→R dm

, there exist ground constructor terms ui such that si�
‖→∗

R dm−1
ui and ti� ‖→∗

R dm−1
ui for all si==ti in c. De9ne �′ by y�=y�′ for all y �= x and

x�′ =C[s′]. We show si�′ ‖→∗
R dm−1
ui and ti�′ ‖→∗

R dm−1
ui. It then follows that t2 = t[q←

s′] = l�′→R dm
r�′ = t3. Since si� ‖→∗

R dn
si�′, si� ‖→∗

R dm−1
ui, and ui is a normal form, it
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follows from the inductive hypothesis that si�′ ‖→∗
R dm−1
ui. Analogously, we obtain ti�′

‖→∗
R dm−1
ui.

Corollary 3.8. →R d is level-con1uent (i.e.; for every n∈N; →R dn
is con1uent).

Proof. Immediate consequence of Lemma 3.7.

Theorem 3.9. Every almost functional CTRS R is level-con1uent.

Proof. It follows from →R dn
⊆ →Rn and Proposition 3.10 that →Rn is a compatible

re9nement of →R dn
. Hence, by the aforementioned result of Staples [17], →Rn is

con3uent if and only if →R dn
is con3uent.

As a matter of fact, by carefully checking the proofs in [19], one 9nds that
Theorem 3.9 can be proven in the same manner. The proof techniques, however, are
totally di:erent. Suzuki et al. [19] came to the result by using an extended parallel
rewriting relation.

Proposition 3.10. If s→∗
Rn
t; then there is a term u such that s→∗

R dn
u and t→∗

R dn
u.

Proof. We proceed by induction on the depth n of s→∗
Rn
t. The proposition holds vac-

uously for n=0. So let n¿0. We further proceed by induction on the length ‘ of the
reduction sequence s→∗

Rn
t. Again, the case ‘=0 holds vacuously. Suppose the claim

is true for ‘. In order to show it for ‘+1, we consider s=C[l�]→Rn C[r�] = t
′→‘Rn t,

where s→Rn t
′ by the rule � : l→ r⇐ s1==t1; : : : ; sk==tk . It follows from the induc-

tive hypothesis on ‘ that there is a term u′ such that t′→∗
R dn
u′ and t→∗

R dn
u′. Since

s→Rn t
′, there are ground constructor terms ui such that si�→∗

Rn−1
ui ∗Rn−1

← ti�. By
the inductive hypothesis on n and the fact that ui is a normal form, we conclude
si� →∗

R dn−1
ui ∗

R dn−1
← ti�. Now if Var(r)⊆Var(l), then s→R dn

t′ and the claim follows.

Suppose otherwise that Var(r) �⊆Var(l) and let x∈EVar(�). Then x∈Var(tj) for
some sj==tj. Since tj� →∗

R dn−1
uj, tj is a constructor term, and uj is a ground con-

structor term, it follows that x� →∗
R dn−1
ux for some ground constructor subterm ux of

uj. Note that ux is unique because →R dn−1
is con3uent (→R d is level-con3uent by

Corollary 3.8). De9ne �′ by x�′ = ux for every x∈EVar(�) and y�′ =y� otherwise.
Observe that z� →∗

R dn−1
z�′ for every variable z ∈D(�). Let s′ =C[r�′]. According to

the above, t′ →∗
R dn−1
s′. Observe that also s→R dn

s′ because sj�′ →∗
R dn−1
uj ∗

R dn−1
← tj�′ for

every sj==tj in c (it is a consequence of sj� →∗
R dn−1
uj, sj� →∗

R dn−1
sj�′ and con3uence

of →R dn−1
that sj�′ →∗

R dn−1
uj). It now follows from con3uence of →R dn

in conjunction

with t′ →∗
R dn−1
s′ and t′→∗

R dn
u′ that s′ and u′ have a common reduct u w.r.t. →R dn

.

Clearly, u is a common reduct of s and t w.r.t. →R dn
as well.
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Since term rewriting is mainly concerned with computing normal forms, the next
lemma is of interest.

Lemma 3.11. For every n∈N, the sets of normal forms NF(→Rn ) and NF(→R dn
)

coincide.

Proof. Obviously, NF(→Rn)⊆NF(→R dn
) because →R dn

⊆ →Rn. We prove NF(→R dn
)

⊆NF(→Rn ) indirectly. To this end, suppose there is a term s∈NF(→R dn
) but

s �∈NF(→Rn). Since s is not a normal form w.r.t. →Rn , there is a rule
� : l→ r⇐ s1==t1; : : : ; sk==tk ∈R, a context C[ ] and a substitution � such that
s=C[l�]→Rn C[r�]. In particular, for every sj==tj in c, there is a ground constructor
term uj such that sj�→∗

Rn−1
uj ∗Rn−1

← tj�. It follows as in the proof of Proposition 3.10
that sj�′ →∗

R dn−1
uj ∗

R dn−1
← tj�′. Hence s=C[l�] =C[l�′]→R dn

C[r�′]. This is a contra-

diction to s∈NF(→R dn
).

We would like to point out that all of the preceding results remain valid if we
replace orthogonality with almost orthogonality.

4. Conditional term graph rewriting

In this section, we use the term-based approach of [12] to term graph rewriting
rather than those of [4] or [16]. In so doing, it is possible to completely argue within
the framework of term rewriting and to avoid concepts from di:erent 9elds. We 9rst
recapitulate some basic notions. Most of them stem from [12].
Let F be a signature and V be a set of variables. Let M be a countably in9nite set

of objects called marks (we will use natural numbers as marks). Let F∗ = {f&|f∈
F; &∈M} be the set of marked function symbols. For all f& ∈F∗, the arity of f&

coincides with that of f. Moreover, we de9ne symbol(f&)=f and mark(f&)= &.
Analogously, let V∗ = {x& | x∈V; &∈M} be the set of marked variables, symbol(x&)
= x, and mark(x&)= &. The set of marked terms over F∗ and V∗ is de9ned in the
usual way and is denoted by T(F∗;V∗). The set of all marks appearing in a marked
term t∗ ∈T(F∗;V∗) is denoted by marks(t∗). The set Tw(F∗;V∗) of well-marked
terms over F∗ and V∗ is the subset of T(F∗;V∗) such that t∗ ∈Tw(F∗;V∗) if
and only if, for every pair (t∗1 ; t

∗
2 ) of subterms of t∗, mark(root(t∗1 ))=mark(root(t

∗
2 ))

implies t∗1 = t
∗
2 . For example, the term 01 +0 01 is well-marked but 01 +1 01 is not. If a

term t∗ is well-marked and &∈marks(t∗), then t∗\& denotes the unique subterm s∗ of t∗

for which mark(root(s∗))= & holds. Well-marked terms have an exact correspondance
to directed acyclic graphs; the reader is referred to [12] for details. In contrast to
[12], we are solely interested in well-marked terms. Thus, throughout the whole paper,
marked stands for well-marked. Two subterms t∗1 and t∗2 of a marked term t∗ are shared
in t∗ if t∗1 = t

∗
2 ; e.g. 0

1 and 01 are shared in 01 +0 01.
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If t∗ is a marked term, then e(t∗) denotes the unmarked term obtained from t∗ by
erasing all marks. Two marked terms s∗ and t∗ are bisimilar 1 (denoted by s∗∼ t∗)
if and only if e(s∗)= e(t∗). The marked terms s∗ and t∗ are isomorphic (denoted by
s∗∼= t∗) if and only if t∗ can be obtained from s∗ by a renaming of marks, that is,
there exists a bijective function ( : marks(s∗)→ marks(t∗) such that ((s∗)= t∗, where
the extension of ( to Tw(F∗;V∗) is de9ned by

((s∗) =

{
x((&) if s∗ = x&; x ∈V;

f((&)(((t∗1 ); : : : ; ((t
∗
n )) if s∗ = f&(t∗1 ; : : : ; t

∗
n ):

Note that s∗∼= t∗ implies s∗∼ t∗. The marks of a marked term s∗ are called fresh
w.r.t. another marked term t∗ if marks(s∗)∩marks(t∗)= ∅. A marked substitution �∗ :
V∗→T(F∗;V∗) is a substitution which satis9es x&�∗∼ x)�∗ for all x&; x) ∈D(�∗)
with symbol(x&)= symbol(x)). This de9nition of marked substitution ensures that the
unmarked substitution � obtained from �∗ by erasing all marks is well-de9ned (i.e., �
really is a substitution). Let �∗1 and �∗2 be marked substitutions with D(�∗1 )=D(�∗2 )
= {x&11 ; : : : ; x&nn }. �∗1 and �∗2 are isomorphic (�∗1 ∼= �∗2 ) if D&(x&11 �

∗
1 ; : : : ; x

&n
n �∗1 )∼=D&(x&11

�∗2 ; : : : ; x
&n
n �∗2 ), where D is a fresh symbol of arity n and & is a fresh mark w.r.t.

every x&ii �
∗
j , where 16i6n and 16j62. The notion marked context is de9ned in the

obvious way.
For instance, 01 +0 01∼=02 +0 02 but 01 +0 01 �∼=01 +0 02. On the other hand, 01 +0

01∼ 01 +0 02. Moreover, �∗1 = {x1 �→ 01 +0 01; x2 �→ 01 +0 01} �∼= {x1 �→ 01 +0 01; x2 �→
03 +2 03}= �∗2 .

De�nition 4.1. A rule l∗→ r∗⇐ c∗ is a marked version of a rule l→ r⇐ c in R

if e(l∗)= l, e(r∗)= r, e(c∗)= c, and, for all x&; y) ∈Var(l∗→ r∗⇐ c∗), symbol(x&)
= symbol(y)) if and only if mark(x&)=mark(y)).

The last condition can be rephrased as: every marked occurrence of a variable
x∈Var(l→ r⇐ c) must have the same mark in l∗→ r∗⇐ c∗. For the sake of sim-
plicity, marks on variables in marked rewrite rules will be omitted in the following
because these marks are unique anyway. So on the one hand, variables in rewrite rules
are maximally shared. On the other hand, by using fresh and mutually distinct marks
for the right-hand side and the conditional part of a rewrite rule, we adopt a “minimal
structure sharing scheme” (di:erent structure sharing schemes are discussed in [12]).

De�nition 4.2. Let R be a 3-CTRS with strict equality. Let s∗ and t∗ be marked
terms. Let ⇒R0 = ∅ and for n¿0, de9ne s∗⇒Rn t

∗ if there exists a marked version
l∗→ r∗⇐ s∗1 == t∗1 ; : : : ; s

∗
k == t∗k of a rewrite rule � : l→ r⇐ s1 == t1; : : : ; sk == tk

from R, a marked substitution �∗ and a marked context C∗[; : : : ; ] such that
• s∗ =C∗[l∗�∗; : : : ; l∗�∗] and t∗ =C∗[r∗�∗; : : : ; r∗�∗],
• l∗�∗ is not a subterm of C∗[; : : : ; ],

1 The origin of the notion “bisimilarity” is explained in [2].
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• for every 16i6k, there are marked ground constructor terms u∗i and v∗i such that
s∗i �

∗ ⇒∗
Rn−1
u∗i , t

∗
i �

∗ ⇒∗
Rn−1
v∗i , and u

∗
i ∼ v∗i ; 2

• all marks on function symbols in r∗, s∗i , t
∗
i , and x�∗ (for every variable

x∈EVar(�)) are mutually distinct and fresh w.r.t. s∗.
We call ⇒R =

⋃
n≥0⇒Rn (term) graph rewrite relation w.r.t. R.

l∗�∗ is called the contracted marked redex in s∗. We use the notation s∗⇒l∗�∗Rn
t∗

in order to specify the contracted marked redex. Note that all shared subterms l∗�∗

are replaced simultaneously by r∗�∗.

De�nition 4.3. The deterministic graph rewrite relation ⇒R d is de9ned analogously
to ⇒R : in a ⇒R dn

rewrite step, if Var(r) �⊆Var(l), then it is additionally required that
x�∗ is a marked ground constructor term for every extra variable x in l→ r⇐ c.

In order to illustrate how graph rewriting works, let R be the CTRS Rfib from
Section 3 augmented by the rewrite rules double(x) → x + x and snd(〈x; y〉) → y.
There is the ⇒R (in fact, ⇒R d ) reduction sequence:

double0(snd1(fib2(s3(04)))) ⇒R snd1(fib2(s3(04))) +5 snd1(fib2(s3(04)))

⇒R snd1(t∗) +5 snd1(t∗)

⇒R (08 +12 s9(010)) +5 (08 +12 s9(010))

⇒R s9(010) +5 s9(010)

because fib6(04)⇒R〈08; s9(010)〉7. In the derivation, t∗ denotes the marked term
〈s9(010); 08 +12 s9(010)〉11.

4.1. Adequacy

Next we will show that the mapping e which erases all marks from a well-marked
term is an adequate mapping in the sense of Kennaway et al. [10], that is to say, it
is surjective, preserves normal forms, preserves reductions, and is co9nal. Surjectivity
ensures that every term can be represented as a directed acyclic graph (well-marked
term). The normal form condition ensures that a graph is a 9nal result of a computa-
tion if the term which it represents also is, and vice versa. Preservation of reduction
ensures that every graph reduction sequence represents some term reduction sequence.
Co9nality ensures that for every term rewriting computation, there is a graph rewriting
computation which can be mapped, not necessarily to the term rewriting computation,
but to some extension of it. Recall that R denotes an almost functional CTRS unless
stated otherwise.

2 Note that u∗i ∼= v∗i is not required.
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Theorem 4.4. For all n∈N, ⇒R dn
is an adequate implementation of →R dn

, that is,
1. e is surjective,
2. ∀t∗ ∈Tw(F∗;V∗): t∗ ∈NF(⇒R dn

) if and only if e(t∗)∈NF(→R dn
),

3. ∀s∗ ∈Tw(F∗;V∗): if s∗ ⇒∗
R dn
t∗, then e(s∗)→∗

R dn
e(t∗),

4. ∀s∗ ∈Tw(F∗;V∗): if e(s∗)→∗
R dn
u, then there is a t∗ ∈Tw(F∗;V∗) such that

s∗⇒∗
R dn
t∗ and u→∗

R dn
e(t∗).

Proof. We use induction on n.
(1) Surjectivity is obvious.
(2) The if direction is easily shown. For an indirect proof of the only if direction, sup-
pose e(t∗) �∈NF(→R dn

), i.e., e(t∗)=C[l�]→R dn
C[r�] by using the rule

� : l→ r⇐ s1 == t1; : : : ; sk == tk at position p. So, for every si==ti, there is a ground
constructor term ui such that si� →∗

R dn−1
ui and ti� →∗

R dn−1
ui. Let l∗ and �∗ be marked

version of l and � such that t∗|p= l∗�∗. Let l∗→ r∗⇐ s∗1==t∗1 ; : : : ; s
∗
k==t∗k be a

marked version of � such that all marks on r∗, s∗i , and t∗i are fresh w.r.t. t∗ and
mutually distinct. Furthermore, �∗ is extended to EVar(�) in the usual way: for
all z ∈EVar(�) let z�∗ be a marked version of z� such that all marks are mu-
tually distinct and fresh w.r.t. t∗, r∗, s∗i, and t∗i . Let C∗[; : : : ; ] be the marked con-
text such that t∗ =C∗[l∗�∗; : : : ; l∗�∗] and l∗�∗ is not a subterm of C∗[; : : : ; ]. Since
e(s∗i �

∗)= si� →∗
R dn−1
ui, e(t∗i �

∗)= ti� →∗
R dn−1
ui, and ui is a ground constructor term, it

follows from the inductive hypothesis that there exist marked terms v∗i and w∗
i such

that s∗i �
∗⇒∗

R dn−1
v∗i , t

∗
i �

∗⇒∗
R dn−1
w∗
i , and e(v∗i )= ui= e(w

∗
i ). The latter particularly im-

plies that v∗i and w∗
i are ground constructor terms and v∗i ∼w∗

i . Therefore, t
∗⇒R dn

C∗

[r∗�∗; : : : ; r∗�∗] which contradicts t∗ ∈NF(⇒R dn
).

(3) We proceed by induction on the length ‘ of s∗⇒∗
R dn
t∗. The base case ‘=0 clearly

holds. Thus consider s∗⇒l∗�∗
R dn
u∗ ⇒‘

R dn
t∗. According to the inductive hypothesis on

‘, e(u∗)→∗
R dn
e(t∗). Since s∗⇒l∗�∗

R dn
u∗, we have s∗ =C∗[l∗�∗; : : : ; l∗�∗], l∗�∗ is not

a subterm of C∗[; : : : ; ], u∗ =C∗[r∗�∗; : : : ; r∗�∗], and, for every s∗i ==t∗i , there are
marked ground constructor terms u∗i and v

∗
i such that s∗i �

∗⇒∗
R dn−1
u∗i , t

∗
i �

∗⇒∗
R dn−1
v∗i , and

u∗i ∼ v∗i . Let �= e(�∗), i.e., x�= e(x�∗) for all x∈D(�∗). By the inductive hypothesis
on n, e(s∗i )� →∗

R dn−1
e(u∗i )= e(v

∗
i )

∗
R dn−1
← e(t∗i )�. Hence l�→R dn

r� and e(s∗)→+
Rdn
e(t∗).

(4) We use induction on the length ‘ of e(s∗)→‘
R dn
u. The proof is illustrated in

Fig. 2. The case ‘=0 holds vacuously. So we consider e(s∗)→‘
R dn

Ou→R dn
u. By the

inductive hypothesis on ‘, there exists a Ot∗ ∈Tw(F∗;V∗) such that s∗⇒∗
R dn

Ot∗ and
Ou→∗

R dn
e(Ot∗). Let Ot= e(Ot∗). Suppose Ou=C[l�]→R dn

C[r�] = u by using the rule
� : l→ r⇐ s1 == t1; : : : ; sk == tk at the position p, i.e., C[l�]|p= l�. By the paral-
lel moves lemma for →R dn

, there is a v∈T(F;V) such that u ‖→∗
R dn
v and Ot ‖→R dn

v.
In particular, the redexes contracted in the step Ot ‖→R dn

v are the descendants p\ Ou→∗
R dn

Ot
of p in Ot. Let Q=p\ Ou→∗

R dn
Ot. Note that Q⊆Pos(Ot) consists of pairwise independent

positions. For every q∈Q, Ot ∗|q can be written as Ot ∗|q= l∗q,∗q , where l∗q is a marked
version of l and ,∗q is a marked substitution. As in the proof of (2), one can show
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Fig. 2. Proof of Theorem 4.4.

that l∗q,
∗
q⇒R dn

r∗,∗q . Let

Q′ = {q′ ∈ Pos (Ot∗) | Ot∗|q′ = l∗q,∗q for some q ∈ Q}:

Note that Q⊆Q′. It is not di,cult to prove that Q′ consists of pairwise independent
positions. Let t∗ be the marked term obtained from Ot∗ by contracting all the redexes
l∗q,

∗
q . Let ,q= e(,

∗
q). Since Ot ‖→R dn

v by contracting the redexes in Q and Ot ‖→R dn
e(t∗)

by contracting the redexes in Q′, it follows that v ‖→R dn
e(t∗) by contracting the redexes

in Q′\Q. All in all, s∗⇒∗
R dn
t∗ and u→∗

R dn
e(t∗).

Corollary 4.5. For all n∈N; ⇒Rn is an adequate implementation of →Rn .

Proof. One can prove statements (1)–(3) as in Theorem 4.4. Statement (4) remains
to be shown: for s∗ ∈Tw(F∗;V∗) and u∈T(F;V) with e(s∗) →∗

Rn
u, there must be

a t∗ ∈Tw(F∗;V∗) such that s∗⇒∗
Rn
t∗ and u →∗

Rn
e(t∗).

By Proposition 3.10, there is a term v such that e(s∗) →∗
R dn
v ∗

R dn
←u. By Theorem 4.4,

there is a marked term t∗ such that s∗⇒∗
R dn
t∗ and v→∗

R dn
e(t∗). Now the claim is a

consequence of ⇒R dn
⊆⇒Rn , u→∗

R dn
v→∗

R dn
e(t∗), and →R dn

⊆ →Rn .

Corollary 4.6. ⇒R is an adequate implementation of →R.

Proof. Immediate consequence of Corollary 4.5.

It is a direct consequence of the preceding results that ⇒R is a sound and complete
implementation of →R in the sense of Barendregt et al. [4]. Recall that soundness
ensures that the graph implementation of a CTRS cannot give incorrect results, while
completeness ensures that graph rewriting gives all results.

Corollary 4.7. ⇒R is a sound and complete implementation of →R; i.e.;
1: s∗ ⇒∗

R t
∗ ∈NF(⇒R) implies e(s∗)→+

R e(t
∗)∈NF(→R) (soundness);

2: ∀s∗ ∈Tw(F∗;V∗): if e(s∗)→∗
Rn
u∈NF(→R); then there is a marked term t∗

such that s∗ ⇒∗
R t

∗ ∈NF(⇒R) and e(t∗) = u (completeness).

Proof. Follows directly from Corollary 4.6.
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Note that in the entire subsection, there is only one place at which we made use of
the fact that R is orthogonal: Theorem 4.4(4) crucially depends on the fact that the
parallel moves lemma holds for →R dn

. Since the parallel moves lemma remains valid
if R is almost orthogonal, so do all of the preceding results if we replace orthogonality
with almost orthogonality.
We conclude this subsection by showing why we need u∗i ∼ v∗i but not u∗i ∼= v∗i in

De9nition 4.2.

Example 4.8. In the CTRS

R =

{
g(x) → c(x; x)
f(x) → x ⇐ g(x)→ c(d; d)

f0(d1) rewrites to d1 because g2(d1)⇒Rc3(d1; d1) and e(c3(d1; d1))= c(d; d)=
e(c4(d5; d6)). If c3(d1; d1) ∼= c4(d5; d6) were required, then f0(d1) would be a normal
form w.r.t. ⇒R. Since f(d) is not a normal form w.r.t. →R, graph rewriting would
not be an adequate implementation of conditional term rewriting.

4.2. Con1uence

In this subsection, it will be shown that orthogonal conditional rules give rise to a
subcommutative deterministic graph rewrite relation (up to isomorphism). This implies
that the graph rewrite relation is level-con3uent modulo ∼=. Similar results for uncon-
ditional systems were achieved by Staples [18] and Barendregt et al. [4]. In order to
prove the above-mentioned statement, the following auxiliary result is useful.

Lemma 4.9. Let ⇒n denote ⇒R dn
or ⇒Rn . If s

∗ ∼= t∗ ⇒‘n u∗ (so the reduction of t∗

to u∗ consists of ‘ graph rewrite steps); then there is a marked term v∗ such that
s∗ ⇒‘n v∗ ∼= u∗.

Proof. Since s∗ ∼= t∗, there is a renaming of marks ( : marks(t∗) → marks(s∗) with
((t∗)= s∗. We show that ( can be extended to a renaming on marks(t∗)∪marks(u∗)
such that ((t∗)= s∗ ⇒‘n ((u∗) ∼= u∗.
The claim obviously holds for ‘=0. We show the lemma for ‘=1, the whole

claim then follows by induction on the length of the reduction sequence. We proceed
further by induction on the depth n. Suppose t∗⇒l∗�∗n u∗, where a marked version of
the rule � : l→ r⇐ s1 == t1; : : : ; sk == tk is used. Then for every 16i6k, there are
marked ground constructor terms u∗i and v∗i such that s∗i �

∗⇒∗
n−1 u

∗
i , t

∗
i �

∗⇒∗
n−1 v

∗
i ,

and u∗i ∼ v∗i . Let M1 be the set of all fresh marks used in r∗1 and in the sequences
s∗i �

∗⇒∗
n−1 u

∗
i and t∗i �

∗⇒∗
n−1 v

∗
i , 16i6k. Moreover, let M2 be a set of (fresh) marks

with M2 ∩ (M1 ∪marks(s∗)∪marks(t∗))= ∅ and card(M2)= card(M1), where card(Mi)
denotes the cardinality of Mi. Let (′ : M1 → M2 be an arbitrary bijective function.
Now we extend ( from marks(t∗) to M1 ∪marks(t∗) by

((&) = (′(&) if & ∈ M1:
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Fig. 3. The induction hypothesis of Lemma 4.10.

Note that ( : M1 ∪marks(t∗) → M2 ∪marks(s∗) is bijective. By the inductive hypoth-
esis on n, we have ((s∗i �

∗) ⇒∗
n−1 ((u

∗
i ) ∼= u∗i and ((t∗i �

∗) ⇒∗
n−1 ((v

∗
i ) ∼= v∗i for

all 16i6k. Since e(((u∗i ))= e(u
∗
i )= e(v

∗
i )= e(((v

∗
i )), we infer s∗ =((t∗) ⇒n ((u∗).

Finally, ((u∗) ∼= u∗ because the restriction of ( to marks(u∗) is a renaming of marks.

The next lemma shows that the deterministic graph rewrite relation is subcommutative
modulo ∼=.

Lemma 4.10. For all m; n∈N; the following statements hold:
1: If s∗ = l∗1�

∗
1 ⇒R dm

r∗1�
∗
1 and s

∗ = l∗2�
∗
2⇒R dn

r∗2�
∗
2 ; then r

∗
1�

∗
1
∼= r∗2�∗2 .

2: If s∗ ⇒l∗1 �∗1
Rdm

Os∗; t∗ ⇒l∗2 �∗2
Rdn

Ot∗; and s∗ ∼= t∗; then there are marked terms s̃∗ and t̃∗

such that (i) Os∗ ⇒l∗2 �∗2
Rdn
s̃∗ or Os∗ = s̃∗; (ii) Ot∗ ⇒l∗1 �∗1

Rdm
t̃∗ or Ot∗ = t̃∗; and (iii) s̃∗ ∼= t̃∗.

Proof. The proof is similar to that of Lemma 3.7. Again, we proceed by induction on
m+ n. The base case m+ n=0 holds vacuously. Suppose the lemma holds for all m′

and n′ with m′ + n′¡‘. In the induction step, we have to prove that the lemma holds
for all m and n with m+n= ‘. By using Lemma 4.9, it is not di,cult to prove that the
inductive hypothesis implies the validity of the diagrams in Fig. 3, where m′ + n′¡‘
and → stands for ⇒.
(1) Let s∗ = l∗1�

∗
1⇒R dm

r∗1�
∗
1 and s∗ = l∗2�

∗
2⇒R dn

r∗2�
∗
2 . Clearly, l

∗
1 → r∗1⇐c∗1 and l∗2 →

r∗2 ⇐ c∗2 are marked versions of the same rewrite rule � : l→ r⇐ c∈R because
R is orthogonal. Apparently, the restrictions of �∗1 and �∗2 to Var(l) Coincide. So
if Var(r)⊆Var(l), then r∗1�

∗
1
∼= r∗2�∗2 since r∗1 and r∗2 are freshly marked. Sup-

pose otherwise that Var(r) �⊆Var(l). We show that in this case �∗1 ∼= �∗2 holds. Since
�∗1 = �

∗
2 [Var(l)], it remains to be shown that �∗1 ∼= �∗2 [EVar(�)]. We show by

induction on i that �∗1 ∼= �∗2 [Var(l)∪
⋃i
j=1 Var(tj)]. If i=0, then �∗1 = �

∗
2 [Var(l)]. So

let i¿0. According to the inductive hypothesis, �∗1 ∼= �∗2 [Var(l)∪
⋃i−1
j=1 Var(tj)]. Since

Var(si)⊆Var(l)∪ ⋃i−1
j=1 Var(tj), it is su,cient to show �∗1 ∼= �∗2 [Var(ti)]. There are

marked ground constructor terms u∗1 ; u
∗
2 ; v

∗
1 ; v

∗
2 such that s∗i �

∗
1⇒∗

R dm−1
u∗1 , t

∗
i �

∗
1⇒∗

R dm−1
u∗2 ,

where u∗1 ∼ u∗2 , and s∗i �
∗
2⇒∗

R dn−1
v∗1 , t

∗
i �

∗
2⇒∗

R dn−1
v∗2 , where v∗1 ∼ v∗2 . It now follows

from the inductive hypothesis on ‘ in combination with s∗i �
∗
1
∼= s∗i �∗2 that u∗1 ∼= v∗1 . Thus

u∗2 ∼ u∗1 ∼ v∗1 ∼ v∗2 . As in the proof of Lemma 3.7, for every extra variable x, there are
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Fig. 4.

marked ground constructor terms u∗x and v∗x such that x�∗1 = u
∗
x , x�

∗
2 = v

∗
x , and u

∗
x ∼ v∗x .

Since the marks on instantiated extra variables are fresh and mutually distinct, we
9nally derive �∗1 ∼= �∗2 [Var(ti)].
(2) By Lemma 4.9, it is su,cient to prove that if t∗⇒l∗1 �∗1

Rdm
Os∗ and t∗⇒l∗2 �∗2

Rdn
Ot∗, then

(i) Os∗⇒l∗2 �∗2
Rdn
s̃∗ or Os∗ = s̃∗, (ii) Ot∗⇒l∗1 �∗1

Rdm
t̃∗ or Ot∗ = t̃∗, and (iii) s̃∗∼= t̃∗ for some marked

terms s̃∗ and t̃∗. We distinguish three cases:
(a) l∗1�

∗
1 = l

∗
2�

∗
2 ,

(b) l∗1�
∗
1 is neither a subterm of l∗2�

∗
2 nor conversely,

(c) l∗1�
∗
1 is a proper subterm of l∗2�

∗
2 .

(a) With the aid of (1), this follows easily.
(b) The proof is analogous to Proposition 3:19, (1), case 1 in [12]. We may write
t∗ =C∗[l∗i1�

∗
i1 ; : : : ; l

∗
ip�

∗
ip ], where ij ∈{1; 2} for every index j∈{1; : : : ; p}. Without loss

of generality, we may assume that 1= i16i26 · · ·6ip=2. That is to say, t∗ =
C∗[l∗1�

∗
1 ; : : : ; l

∗
2�

∗
2 ]. Then Os∗ =C∗[r∗1�

∗
1 ; : : : ; l

∗
2�

∗
2 ] and Ot∗ =C∗[l∗1�

∗
1 ; : : : ; r

∗
2�

∗
2 ]. Accord-

ing to Lemma 4.9, we may assume that all marks on function symbols in r∗1 , r
∗
2 , x�

∗
1

and y�∗2 (for every variable x∈EVar(l1 → r1 ⇐ c1) and y∈EVar(l2 → r2) ⇐ c2))
are pairwise distinct and fresh w.r.t. t∗. (If (marks(r∗1 ) ∪ marks(�∗1 )) ∩ (marks(r∗2 ) ∪
marks(�∗2 )) �= ∅, then we take marked versions Or∗2 and O�∗2 with (marks(r∗1 )∪marks(�∗1 ))∩
(marks( Or∗2) ∪ marks( O�∗2)) = ∅, observe that t∗ ⇒l∗2 O�∗2

Rdn
C∗[l∗1�

∗
1 ; : : : ; Or

∗
2 O�

∗
2 ] = Ou∗, and

apply Lemma 4.9; see Fig. 4.) Now if we contract the redex l∗2�
∗
2 in Os∗ to r∗2�

∗
2 ,

then we obtain s̃∗ =C∗[r∗1�
∗
1 ; : : : ; r

∗
2�

∗
2 ]. Analogously, contracting l∗1�

∗
1 in Ot∗ yields

t̃∗ =C∗[r∗1�
∗
1 ; : : : ; r

∗
2�

∗
2 ].

(c) We proceed in analogy to Proposition 3:19, (1), case 2 in [12]. As in (b), we may
write t∗ as

t∗ = C∗[l∗1�
∗
1 ; : : : ; l

∗
2�

∗
2 ] = C

∗[l∗1�
∗
1 ; : : : ; OC

∗[l∗1�
∗
1 ; : : : ; l

∗
1�

∗
1 ]]

where l∗2�
∗
2 = OC

∗
[l∗1�

∗
1 ; : : : ; l

∗
1�

∗
1 ] and l∗1�

∗
1 is neither a subterm of C∗[; : : : ; ] nor of

OC
∗
[; : : : ; ]. Hence

Os∗ = C∗[r∗1�
∗
1 ; : : : ; OC

∗[r∗1�
∗
1 ; : : : ; r

∗
1�

∗
1 ]]

Ot∗ = C∗[l∗1�
∗
1 ; : : : ; r

∗
2�

∗
2 ] = C

∗[l∗1�
∗
1 ; : : : ; C̃

∗
[l∗1�

∗
1 ; : : : ; l

∗
1�

∗
1 ]]

for some context C̃
∗
[; : : : ; ] which does not contain l∗1�

∗
1 . Again, by Lemma 4.9 we

may assume that the marks on function symbols in r∗1 , r
∗
2 , x�

∗
1 and y�∗2 (for all
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Fig. 5.

extra variables x and y) are pairwise distinct and fresh w.r.t. t∗. Observe that no
occurrence of OC

∗
[r∗1�

∗
1 ; : : : ; r

∗
1�

∗
1 ] can be found in Os∗ aside from those obtained by

contracting the marked redex l∗1�
∗
1 because we use fresh marks. For the same reason,

C∗[; : : : ; C̃
∗
[; : : : ; ]] does not contain l∗1�

∗
1 . Now if l∗1�

∗
1 is not a subterm of Ot∗, then let

t̃∗ = Ot∗. Otherwise de9ne

t̃∗ = C∗[r∗1�
∗
1 ; : : : ; C̃

∗
[r∗1�

∗
1 ; : : : ; r

∗
1�

∗
1 ]]

and observe that Ot∗⇒l∗1 �∗1R t̃∗. The situation is depicted in Fig. 5, where l∗2�
∗
2 =

OC∗[l∗1�
∗
1 ; : : : ; l

∗
1�

∗
1 ]⇒RC̃

∗
[l∗1�

∗
1 ; : : : ; l

∗
1�

∗
1 ]= r

∗
2�

∗
2 .

Next, we will show that OC∗[r∗1�
∗
1 ; : : : ; r

∗
1�

∗
1 ]⇒Rdn

C̃
∗
[r∗1�

∗
1 ; : : : ; r

∗
1�

∗
1 ]. To this end, re-

call that l∗2�
∗
2 = OC

∗
[l∗1�

∗
1 ; : : : ; l

∗
1�

∗
1 ]⇒R dn

r∗2�
∗
2 . Thus, for every s

∗
i ==t∗i in c∗2 , there exist

marked ground constructor terms u∗i and v∗i such that s∗i �
∗
2⇒∗

R dn−1
u∗i , t

∗
i �

∗
2

⇒∗
R dn−1
v∗i , and u

∗
i ∼ v∗i . Since R is orthogonal, for every occurrence of l∗1�

∗
1 , there is

a variable x∈Var(l2) such that x�∗2 =C
∗
x [l

∗
1�

∗
1 ; : : : ; l

∗
1�

∗
1 ] contains this particular occur-

rence. De9ne O�∗2 by x O�∗2 =C
∗
x [r

∗
1�

∗
1 ; : : : ; r

∗
1�

∗
1 ] for all those variables x and y O�∗2 =y�

∗
2

otherwise. Now l∗2 O�
∗
2⇒Rdn

r∗2 O�∗2 = C̃
∗
[r∗1�

∗
1 ; : : : ; r

∗
1�

∗
1 ]. In order to see this, infer from

the inductive hypothesis on ‘ in conjunction with s∗i �
∗
2 ⇒∗

R dn−1
u∗i and s∗i �

∗
2 ⇒R dm

s∗i O�
∗
2

that there is a marked ground constructor term Ou∗i such that s∗i O�
∗
2 ⇒∗

R dn−1
Ou∗i and u∗i ∼= Ou∗i .

Analogously, there is a marked ground constructor term Ov∗i such that t∗i O�
∗
2 ⇒∗

R dn−1
Ov∗i ,

and v∗i ∼= Ov∗i . Hence the claim follows from Ou∗i ∼ u∗i ∼ v∗i ∼ Ov∗i .

Corollary 4.11. For every n∈N; ⇒R dn
is con1uent modulo ∼= .

Proof. Immediate consequence of Lemma 4.10.

Theorem 4.12. For every n ∈ N; ⇒Rn is con1uent modulo ∼= .

Proof. Because of ⇒R dn
⊆⇒Rn ; Proposition 4.13, and Lemma 4.9, we conclude by the

generalization of Staples’ result (see Section 2) that ⇒Rn is con3uent modulo ∼= if
and only if ⇒R dn

is con3uent modulo ∼= .

Proposition 4.13. If s∗ ⇒∗
Rn
t∗; then there are marked terms u∗ and v∗ such that

s∗⇒∗
R dn
u∗; t∗⇒∗

R dn
v∗; and u∗∼= v∗.

Proof. We proceed by induction on the depth n of s∗ ⇒∗
Rn
t∗. The proposition holds

vacuously for n=0. So let n¿0. We proceed further by induction on the length ‘ of
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the reduction sequence s∗⇒∗
Rn
t∗. Again, the case ‘=0 holds vacuously. Suppose the

claim is true for ‘. In order to show it for ‘+ 1, we consider s∗ =C∗[l∗�∗; : : : ; l∗�∗]
⇒ l∗�∗

Rn
C∗[r∗�∗; : : : ; r∗�∗] = Ot ∗⇒ ‘

Rn
t∗; where s∗⇒Rn

Ot ∗ by a marked version of the rule
� : l→ r⇐ s1==t1; : : : ; sk==tk . We show that there are marked terms Ou∗ and Ov∗ such
that s∗⇒R dn

Ou∗, Ot ∗⇒R dn
Ov∗, and Ou∗∼= Ov∗. The whole claim then follows from the inductive

hypothesis on ‘ in combination with Corollary 4.11 and Lemma 4.9. Since s∗⇒Rn
Ot ∗,

there are marked ground constructor terms u∗i and v∗i such that s∗i �
∗ ⇒∗

Rn−1
u∗i ,

t∗i �
∗ ⇒∗

Rn−1
v∗i , and u∗i ∼ v∗i . By the inductive hypothesis on n and the fact that u∗i

is a normal form, we conclude that there are marked terms Ou∗i and Ov∗i such that
s∗i �

∗⇒∗
R dn−1

Ou∗i ∼= u∗i and t∗i �∗⇒∗
R dn−1

Ov∗i ∼= v∗i . Note that Ou∗i ∼ u∗i ∼ v∗i ∼ Ov∗i . So if Var(r)⊆
Var(l), then s∗⇒R dn

Ot ∗ and the claim follows. Suppose otherwise that Var(r) �⊆Var(l)
and let x∈EVar(�). Then x∈Var(tj) for some s∗j==t∗j . Since t

∗
j �

∗⇒∗
R dn−1

Ov∗j ∼= v∗j , t∗j
is a marked constructor term, and Ov∗j is a marked ground constructor term, it follows
that x�∗⇒∗

R dn−1
Ov∗x for some ground constructor subterm Ov∗x of Ov∗j . Note that even if x

occurs more than once in t∗j , every occurrence of x�∗ in t∗j �
∗ is reduced to Ov∗x because

redexes with identical marks are shared and are thus reduced simultaneously by ⇒R dn−1
.

De9ne O�∗ by x O�∗ = Ov∗x for every x∈EVar(�) and y O�∗ =y�∗ for every y∈Var(l). Let
Ov∗ =C∗[r∗ O�∗; : : : ; r∗ O�∗]. Since z�∗ = z O�∗ for every z ∈Var(l) and z�∗⇒∗

R dn−1
z O�∗ for ev-

ery z ∈EVar(�) we derive Ot ∗⇒∗
R dn−1

Ov∗ (taking into account that z�∗ gets fresh marks for

every z ∈EVar(�)). We claim that also s∗⇒R dn
Ov∗. This is because for every i, 16i6k,

we can conclude from s∗i �
∗⇒∗

R dn−1
Ou∗i , s

∗
i �

∗⇒∗
R dn−1
s∗i O�

∗, and con3uence of ⇒R dn−1
that

s∗i O�
∗⇒R dn−1

ũ∗i ∼= Ou∗i . for some ũ∗i . Analogously, t
∗
i O�

∗⇒∗
R dn−1
ṽ∗i ∼= Ov∗i . It then follows from

ũ∗i ∼ Ou∗i ∼ Ov∗i ∼ ṽ∗i that l∗�∗ = l∗ O�∗⇒R dn
r∗ O�∗. Hence s∗ =C∗[l∗ O�∗; : : : ; l∗ O�∗]⇒l∗�∗

Rdn
C∗[r∗ O�∗; : : : ; r∗ O�∗] = Ov∗.

In contrast to the preceding sections, the results in this subsection do not ex-
tend to almost orthogonal systems. This can be seen in the following example taken
from [16].

Example 4.14. In the almost orthogonal TRS

R=



f(x) → g(x; x)

f(a) → g(a; a)

we have f0(a1)⇒R g2(a1; a1) and f0(a1)⇒R g2(a3; a4) but g2(a1; a1) �∼= g2(a3; a4).

We conclude this section with a simple corollary.

Corollary 4.15. For every n∈N; the sets NF(⇒Rn) and NF(⇒R dn
) coincide.
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Proof. Follows from Theorem 4.4(2), Corollary 4.5(2), and Lemma 3.11.

5. Concluding remarks

In this paper we have considered the class of almost functional CTRSs. It has
been shown that graph rewriting is adequate for simulating term rewriting in these
systems. In particular, conditional graph rewriting proved to be a sound and complete
implementation (w.r.t. the computation of normal forms) of almost functional CTRSs.
Furthermore, every almost functional CTRS is level-con3uent and the same holds for its
graph implementation. All these results can be extended to almost orthogonal systems
except for the last one.
We stress that the results remain valid if we continue to allow infeasible conditional

critical pairs. A conditional critical pair

〈C[r2]�; r1�〉 ⇐ c1�; c2�
induced by an overlap of the two conditional rewrite rules l1 → r1⇐ c1 and l2 →
r2⇐ c2 is called infeasible if the condition c1�; c2� is unsolvable. For example, in the
CTRS

split(x; [ ]) → ([ ]; [ ])

split(x; y : ys) → (xs; y : zs)⇐ x6y == True; split(x; ys) == (xs; zs)

split(x; y : ys) → (y : xs; zs)⇐ x6y == False; split(x; ys) == (xs; zs)

qsort([ ]) → [ ]

qsort(x : xs) → qsort(ys) ++(x : qsort(zs))⇐ split(x; xs) == (ys; zs)

the conditional critical pair

〈(xs; y : zs); (y : xs′; zs′)〉⇐ x6y == True; split(x; ys) == (xs; zs);

x6y == False; split(x; ys) == (xs′; zs′)

is infeasible because the condition x6y==True; x6y==False has no solution.
It has been shown by Suzuki et al. [19] that every orthogonal-oriented 3-CTRS is

level-con3uent provided it is properly oriented and right-stable. It is quite natural to
ask oneself whether graph rewriting is an adequate implementation of these systems too.
Our proof for almost functional CTRSs heavily depends on the fact that there exists
a closely related deterministic reduction relation which satis9es the parallel moves
lemma. In case of oriented 3-CTRSs, however, this approach does not work. Consider
for example the orthogonal properly oriented right-stable 3-CTRS

a → b
b → a
c → y ⇐ a→ y:
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Then c→R a as well as c→R b but c is a normal form w.r.t. →R d because neither
a nor b are (ground constructor) normal forms. So the question of whether our results
also hold for orthogonal properly oriented right-stable 3-CTRSs remains open.
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