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Abstract

It is shown that the system of equations {(xr1 : : : xrn)s = (xs1 : : : x
s
n)

r | r; s ∈ N} is equivalent to
its two-element subset {(xa1 : : : xan)b = (xb1 : : : x

b
n)

a, (xa1 : : : x
a
n)

c = (xc1 : : : x
c
n)

a}, whenever a; b; c are
integers such that 1¡a¡b¡c. The result implies that the language L = {xk1 : : : xkn | k ∈ N}
has a three-element test set T = {xk1 : : : xkn | k = a; a+ 1; a+ 2}, with an integer a¿ 1. c© 2001
Elsevier Science B.V. All rights reserved.
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Introduction

Ehrenfeucht’s Conjecture, proved in [2], states that every in?nite system of equations
in free monoids, with ?nitely many unknowns, has an equivalent ?nite subset. The most
simple example is a system of non-trivial equations in two unknowns, equivalent to
any of its elements, a consequence of the Defect Theorem (see, e.g. [8]).
Clearly the system

{(xr1 : : : xrn)s = (xs1 : : : x
s
n)

r | r; s ∈ N} (1)

is equivalent to its (in?nite) subset

{(x1 : : : xn)r = xr1 : : : x
r
n | r ∈ N}: (2)

We consider system (1) to express our result in its most general form. It is not diC-
cult to see that both systems have only cyclic solutions. Therefore a subset of (1) is
equivalent to the whole system if and only if it forces the cyclicity of the solution.
For every exponent k ∈N there exist a number of unknowns n such that the equation

(x1 : : : xn)k = xk1 : : : x
k
n
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has a non-cyclic solution. Put, for example, n=2k−1 and

xi =

{
A; i = 2j; 16j6k − 1;

Ak−jBAj−1; i = 2j − 1; 16j6k

with some letters A, B. There exists also a non-cyclic solution (see [6]) of the equation

(x21 : : : x
2
n)

3 = (x31 : : : x
3
n)

2:

On the other hand, it was shown (see [1]) that the equation yn = xn1 : : : x
n
n has only cyclic

solutions. Especially the cyclicity of the solution is forced by the single equation

(x1 : : : xn)k = xk1 : : : x
k
n (3)

from system (2), if k¿n.
In [4] it is shown that system (2) is equivalent to its subset where r=2; 3; : : : ; �n=2�+

1. In the same paper it is shown that if n=3; 4 or 5 then system (3) with k =2; 3 forces
cyclicity, and if n=7 then (3) with k =2; 3; 4 does so. Interesting results regarding
more general equational systems can be found in [9].
All above results could suggest that the size and=or the maximal exponent of an

equivalent subsystem of (2) depends on the number of unknowns. In contrast to the
expectation we prove that already the pair of equations

(x21 : : : x
2
n)

3 = (x31 : : : x
3
n)

2;

(x21 : : : x
2
n)

4 = (x41 : : : x
4
n)

2;

is good enough for arbitrary n.
A consequence of the result for the existence of a test set is proved in Section 4.

1. Factors, instances and equations

Let � be a ?nite alphabet. Elements of � are called letters and sequences of letters
are called words. The sequence of length zero is called the empty word. The set of
all words (all non-empty words, resp.) is denoted by �∗ (�+, resp.). It is a monoid
(semigroup, resp.) under the operation of concatenation. The length of a word u will
be denoted by |u|. We say that a word u is a factor of a word v if and only if there
exist words z, z′ ∈�∗ such that v= zuz′. The set of all non-empty factors of a word v
we shall denote by F(v). A factor u of a word v can occur in v in diGerent instances
(each of those determined by the length of the word preceding u in v). The number
of instances of a non-empty word u in v will be denoted by f(u; v).
By a cyclic factor of v we shall understand every factor u of vv with |u|6|v|. An

instance of a cyclic factor will be sometimes called a cyclic instance of u, and it
corresponds to an instance of u in vv that starts within the ?rst copy of v. The set
of all non-empty cyclic factors of v will be denoted by C(v). The number of cyclic
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instances of a non-empty word u in v will be denoted by c(u; v). If u is not a factor
(a cyclic factor resp.) of v, set f(u; v)= 0 (c(u; v)= 0 resp.).
We shall say that the word v is p-cyclic if and only if it is power of a word u,

|u|=p. Note that every word v is |v|-cyclic.
Let T be a ?nite set of unknowns. Each pair

(e; e′) ∈ T+ × T+

we shall call an equation in unknowns from T . For a particular equation we often use
the suggestive notation e= e′.

We shall say that a morphism ’ :T+ →�+ is a solution of the system of equations
S ⊆T+ × T+ in the semigroup �+ if and only if for every (e; e′)∈ S the equality
’(e)=’(e′) holds. Two systems of equations S, S ′ are called equivalent if and only
if they have the same set of solutions.
We shall say that a morphism ’ : T+ →�+ is length-preserving if and only if

|’(t)|=1 for each t ∈T (i.e. ’[T ]⊆�).
We shall say that a solution ’ : T+ →�+ is cyclic if and only if there exists a word

v∈�+ such that ’(x) is a power of v for every x∈T .
Now we introduce two easy lemmas that allow to count the number of cyclic in-

stances of given word in another word.

Lemma 1.1. Let u; v; w∈�+ be words such that w∈F(v) and v∈C(u). Suppose that
every cyclic instance of w in u is contained in exactly one cyclic instance of v in u.
Then c(w; u)=f(w; v) · c(v; u).
Proof. Let W be the set of all cyclic instances of w in u, and V the set of all cyclic
instances of v in u. By assumptions, there exists a mapping ’ : W →V that maps an
instance of w to the instance of v that contains the instance of w as a factor. Every
element of V is an image of exactly f(w; v) instances of w.

Lemma 1.2. Let u; v; w∈�+ be words and k¿1 an integer such that c(w; u)= 1;
w∈F(v) and v ∈ C(uk). Then c(v; uk)= k.

Proof. Cyclic shifts by i|u| elements, 16i6k, give exactly k diGerent cyclic instances
of v in uk . Let us suppose, for contradiction, that we have k + 1 diGerent cyclic
instances of v in uk . Then there are two diGerent cyclic instances of v, and thus also
of w, starting within the same copy of u, a contradiction with c(w; u)= 1.

The following lemma is highly intuitive and is crucial for the method described in
Section 2.

Lemma 1.3. Let  :T+ →�+ be a length-preserving morphism; and v∈T+; u∈�+

words such that  (v)= u. Then for each %∈�+;

c(%; u) =
∑

w∈ −1(%)

c(w; v) =
∑

w∈ −1(%)∩C(v)

c(w; v):
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Proof. Every cyclic instance of % in u determines a unique cyclic instance of some
w∈  −1(%) in v. On the other hand, every cyclic instance of a w∈  −1(%) in v de-
termines a unique cyclic instance of  (w)= % in u. If the word w∈  −1(%) is not in
C(v) then, by the de?nition, c(w; v)= 0 and it can be omitted.

An important result in the elementary theory of words is the periodicity lemma of
Fine and Wilf (see [3]). We shall use the following formulation of the lemma:

Lemma 1.4. Assume u; v∈�+ and let some of their powers up; vq have a common
factor of length |v| + |u| − d (d being the greatest common divisor of |u| and |v|).
Then both u and v are d-cyclic.

Next lemma is a direct consequence of the above-mentioned defect theorem and it
allows us to restrict ourselves to the equations with at least three unknowns.

Lemma 1.5. Every equation (e; e′) in two unknowns and with e �= e′; has only cyclic
solutions.

2. Quantitative equalities

In this section we introduce the method that will yield in Section 3 the main result
of this paper. Let R be a non-empty ?nite set of positive integers. Denote by P the
product of all integers in R. For each r ∈R, let Lr = P=r. We shall consider the system
of equations

(xr1 : : : x
r
n)

s = (xs1 : : : x
s
n)

r; r; s ∈ R: (4)

For our purposes, however, it will be more convenient to study an equivalent equational
system

(xr1 : : : x
r
n)

Lr = (xs1 : : : x
s
n)

Ls; r; s ∈ R; (5)

in which all equations have the same length.
Suppose we have an arbitrary, but ?xed solution ’ :X+ → �+; X = {x1; : : : ; xn},

of (5). Denote the word ’(xi) by ui and the length of it by di. Note that the word
’((xr1 : : : x

r
n)

Lr) is independent of the choice of r ∈R. Denote that word by uP .
We shall construct quantitative equalities connected to system (5), by means of

Lemma 1.3. To do this, choose a word %∈C(uP) and trace back all its preimages in
words (xr1 : : : x

r
n)

Lr , r ∈R. In order to classify these preimages according to their structure,
we introduce a new alphabet Y consisting of new letters yi; j, with 16i6n, 16j6di.
Denote by ,j the word yj;1 : : : yj; dj for every j; 16j6n, and by zr the word (,r

1 : : : ,
r
n)

Lr .
The system of equations

zr = zs; r; s ∈ R; (6)
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can be obtained from (5) substituting xi by ,i, but note that it is a system in d
unknowns, with d =

∑n
i=1 di.

The most natural thing to do now is to de?ne a morphism  :Y+ → �+ by the
equality

 (,1 : : : ,n) = u1 : : : un:

Clearly, the de?nition is correct,

’(xi) =  (,i); 16i6n;

uP =  (zr); r ∈ R

holds and the morphism  is a length-preserving solution of (6). We can now classify
preimages of % in  rather than in ’. Denote by W the set

W = WR =
⋃

(C(zr) | r ∈ R): (7)

of all non-empty cyclic factors of words zr (and potential preimages of % in  ).
For elements of the set W we de?ne two parameters (N.B.: sums j + 1; j − 1 will

be further understood modulo n):
For every w∈W denote by J (w) the set of all integers j, 16j6n, for which there

exists an integer i, 16i6dj, such that yj; i occurs in w.
The second parameter of a word w∈W we denote by .(w). First note that w belongs

to just one C(zr), r ∈R, if |J (w)|¿3. In such a case put

.(w) = r:

If J (w) = {j}, then put

.(w) = min{s |w ∈ F(,s
j)}:

If |J (w)| = 2, then clearly J (w) = {j; j + 1}, for some 16j6n, and put

.(w) = min{s |w ∈ F(,s
j,

s
j+1)}:

Observe that 16.(w)6max R holds for every w∈W .
We can summarize that |J (w)| says how many diGerent words ,j are “aGected” by

w, while .(w) says how many copies of the same ,j are “aGected” by w.
Using the values |J (w)| and .(w) we shall classify the words from W . For k and s

with 16k62 and 16s6max R put

W (k; s) = {w ∈ W | | J (w)| = k and .(w) = s}
and

W (3; s) = {w ∈ W | | J (w)|¿3 and .(w) = s}:
It is clear from the de?nition that the above classi?cation is correct, i.e. it is disjoint

factorization of W . The fact is expressed in the following lemma.
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Lemma 2.1. Assume 16ki63 and 16si6max R; i∈{1; 2}. Then

W (k1; s1) ∩ W (k2; s2) �= ∅ if and only if (k1; s1) = (k2; s2):

Furthermore;

W =
⋃

(W (k; s) | 16k63 and 16s6max R):

The main motivation of the classi?cation is that words from the same class have
the same number of instances in words zr . The number of these instances is counted
in the following lemma.

Lemma 2.2. Assume r ∈R and w∈C(zr).
(i) If w∈W (1; s); then s6r and c(w; zr) equals (r − s+ 1)Lr.
(ii) If w∈W (2; s); then s6r and c(w; zr) equals Lr.
(iii) If w∈W (3; s); then s = r and c(w; zr) equals Lr.

Proof. (i) Suppose J (w) = {j} and s¿r. By the de?nition of W (1; s), the word w is
not a factor of ,r

j in contradiction with w∈C(zr). By Lemma 1.1,

c(,s
j; zr) = f(,s

j; ,
r
j)c(,

r
j ; zr) = (r − s+ 1) Lr

holds and

c(w; zr) = f(w; ,s
j)c(,

s
j; zr) = c(,s

j; zr);

by Lemma 1.1 again.
(ii) Suppose J (w) = {j; j+1} and s ¿ r. By the de?nition of W (2; s), the word w

is not a factor of ,r
j,

r
j+1 in contradiction with w∈C(zr). Using again Lemma 1.1 we

obtain

c(w; zr) = f(w; ,r
j,

r
j+1)c(,

r
j,

r
j+1; zr) = c(,r

j,
r
j+1; zr) = Lr:

(iii) The equality s = r is clear. Furthermore there exists an integer j; 16j6n such
that

yj−1;dj−1,
r
jyj+1;1 ∈ F(w):

We have

c(yj−1;dj−1,
r
jyj+1;1; ,r

1 : : : ,
r
n) = 1

and hence c(w; zr) = Lr, by Lemma 1.2.

For each 16k63; 16s6max R and r ∈ R de?ne

c(k; s; r) = c(w; zr) (8)

with w∈W (k; s). The de?nition is independent of the choice of the word w in W (k; s),
according to Lemma 2.2.
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Lemma 2.3. Let 16k63; 16s6max R and r ∈R be integers. Then
(i) c(k; s; r) = 0 if and only if C(zr)∩ W (k; s) is empty; i.e. if either s ¿ r or k = 3

and s �= r.
(ii) If C(zr) ∩W (k; s) is not empty then W (k; s)⊆C(zr).

Proof. It is a direct consequence of the Lemma 2.2.

The desired quantitative equalities are constructed in the following lemma.

Lemma 2.4. Assume %∈C(uP). For each 16k63 and 16s6max R denote

%̃(k; s) = card( −1(%) ∩W (k; s)): (9)

Then

c(%; uP) =
3∑

k=1

max R∑
s=1

c(k; s; r)%̃(k; s)

for each r ∈R.

Proof. Fix r ∈R.

c(%; uP)
Lemma 1:3=

∑
w∈ −1(%)

c(w; zr)

(7)
=

∑
w∈ −1(%)∩W

c(w; zr)

Lemma 2:1=
3∑

k=1

max R∑
s=1

∑
w∈ −1(%)∩W (k;s)

c(w; zr)

(8)
=

3∑
k=1

max R∑
s=1

∑
w∈ −1(%)∩W (k;s)

c(k; s; r)

(9)
=

3∑
k=1

max R∑
s=1

c(k; s; r)%̃(k; s):

Every r ∈R gives another expression of c(%; uP) by means of coeCcients c(k; s; r)
and variables %̃(k; s). We thus obtain |R| diGerent quantitative equalities.

3. The main theorem

In this section we shall assume that

R = {a; b; c};



32 *S. Holub / Theoretical Computer Science 262 (2001) 25–36

where a; b; c are integers such that 1¡a¡b¡c. According to the notation used in
Section 2 we denote P= abc, La= bc, Lb= ac, Lc= ab. Fix an integer n and de?ne

X = {x1; : : : ; xn};
a set of unknowns.
We want to prove the following theorem:

Theorem 3.1. The system of equations

(xa1 : : : x
a
n)

b = (xb1 : : : x
b
n)

a; (10)

(xa1 : : : x
a
n)

c = (xc1 : : : x
c
n)

a; (11)

in unknowns x1; : : : ; xn admits only cyclic solutions.

Proof. Once more we will work with an equivalent system

(xa1 : : : x
a
n)

bc = (xb1 : : : x
b
n)

ac; (12)

(xa1 : : : x
a
n)

cb = (xc1 : : : x
c
n)

ab; (13)

rather than with (10) and (11).
If n=1, then the statement is trivial. Owing to Lemma 1.5, we can assume n¿3.
Let now ’ :X+ →�+ be a solution of S. De?ne ui, di, ,i, d, Y , W , za, zb, zc as in

Section 2.
The crucial point of the proof is the following de?nition of %.
Denote by m the smallest integer for which there exists i, 16i6n, such that ui is

m-cyclic. Denote by B⊂W the set of all 0∈C(zc) for which there exists an integer i,
16i6n, with ,c

i ∈F(0), and, furthermore,  (0) is m-cyclic. The set B is non-empty,
as it contains ,c

i , for any i with 16i6n, for which ui is m-cyclic. Choose 0max ∈B in
such a way that

|0max| = max{|0| | 0 ∈ B}
and put

% =  (0max):

Now suppose that uP is m-cyclic. By the de?nition, m6di and every u2i is a factor of
uP , for each 16i6n. We deduce from Lemma 1.4 and from the minimality of m that
every ui, 16i6n, is a power of a word of length m. As uP is, by the assumption,
also a power of such a word, the solution ’ is cyclic.
To prove that uP is m-cyclic we ?rst prove a consequence of Lemma 1.4.

Lemma 3.2. Assume v∈Y+;  (v) is m-cyclic and ,2i ∈F(v) for some 16i6n. Denote
by v′ the word that results from v when the factor ,2i is replaced by ,k

i ; k¿1. Then
 (v′) and ui are also m-cyclic.
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Proof. Obviously the word u2i is a factor of  (v). As 2|ui|¿|ui|+m, by Lemma 1.4,
the word ui is gcd(m; di)-cyclic. The minimality of m yields gcd(m; di)=m and from
the construction of v′ we deduce that  (v′) is m-cyclic.

The proof of the Theorem 3.1 will be completed by the following Lemma.

Lemma 3.3. The word uP is m-cyclic.

Proof. As uP =(ua
1 : : : u

a
n)

bc is ad-cyclic and m¡ad, Lemma 1.4 implies that it is far
enough to show |0max|= |%|¿2ad. Assume, on the contrary, that |%|¡2ad.
Consider

v∈  −1(%) ∩W (3; t) with 26t ¡ c:

By the de?nition of W (3; t), there exists an integer j, 16j6n, such that ,t
j ∈F(v)

and v∈C(zt). Denote by v′ the word that results from v when every factor of the
form ,t

j is replaced by ,c
j . The length of v′ is less than 2cd¡abcd= |zc| and from its

construction we deduce that it belongs to C(zc). However by Lemma 3.2, v′ belongs to
B as well, and that contradicts the maximality of |0max|. Thus the set  −1(%)∩W (3; t)
must be empty and %̃(3; t)= 0, as soon as 26t¡c.
Let us now consider

v ∈  −1(%) ∩W (2; t) with 36t ¡ c:

We have v= vjvj+1 with vj ∈F(,t
j) and vj+1 ∈F(,t

j+1). As t¿3, ,2j ∈F(vj) or ,2j+1 ∈
F(vj+1) holds. For symmetrical reasons we can suppose ,2j ∈F(vj). Put v′ = ,c

jvj+1.
Then, as above, v′ ∈C(zc), and  (v′)∈B, a contradiction to maximality of |0max| again.
Hence %̃(2; t)= 0, 36t¡c.
Consider ?nally

v ∈  −1(%) ∩W (1; t) with 46t ¡ c:

As t¿4, there exists an integer j, 16j6n, such that ,2j ∈F(v). The word ,c
j ∈C(zc) is

longer than v, as t6c−1, and  (,c
j) belongs to B. A contradiction with the maximality

of |0max| yields %̃(1; t)= 0, 46t¡c.
Using the above knowledge, Lemmas 2.2 and 2.4 yield the following quantitative

equalities:

c(%; uP)

= P%̃(1; 1) + La(a− 1)%̃(1; 2) + La(a− 2)%̃(1; 3) + La%̃(2; 1) + La%̃(2; 2) (14)

= P%̃(1; 1) + Lb(b− 1)%̃(1; 2) + Lb(b− 2)%̃(1; 3) + Lb%̃(2; 1) + Lb%̃(2; 2) (15)

= P%̃(1; 1) + Lc(c − 1)%̃(1; 2) + Lc(c − 2)%̃(1; 3) + Lc%̃(2; 1) + Lc%̃(2; 2)

+ Lc%̃(1; c) + Lc%̃(2; c) + Lc%̃(3; c): (16)
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Substituted La, Lb and Lc with bc, ac and ab, respectively, equalities (14)= (15) and
(15)= (16) yield

%̃(2; 1) + %̃(2; 2) = %̃(1; 2) + 2%̃(1; 3)

and

%̃(2; 1) + %̃(2; 2) = %̃(1; 2) + 2%̃(1; 3) +
b

c − b
(%̃(1; c) + %̃(2; c)) + %̃(3; c)):

We obtain %̃(1; c)+ %̃(2; c)+ %̃(3; c)= 0. However  −1(%)∩W (k; c) must be non-empty
for at least one integer k, 16k63, since 0max ∈  −1(%)∩W and some ,c

i , 16i6n is
a factor of 0max.
We have found a contradiction to |%|¡2ad.
Theorem 3.1 is now proved.

4. Test sets

Let L be a set of words from �+. We say that T ⊂L is a test set of L if and only
if any two morphisms g, h to a monoid agree on L, as soon as they agree on T .
Using Theorem 3.1 we can prove the following theorem.

Theorem 4.1. Denote L= {xi1 : : : xin | i∈N}; a subset of �+. If a¿1 is an integer; then
the set T = {xk1 : : : xkn | k = a; a+ 1; a+ 2} is a (three-element) test set of L.

This is a special case (n=m) of the following statement.

Theorem 4.2. Let u1; : : : ; un; v1; : : : ; vm ∈A+ be words over an alphabet A and a¿2
an integer such that

uk
1 : : : u

k
n = vk1 : : : v

k
m (17)

for k = a; a+ 1; a+ 2. Then (17) holds for all k ∈N.

Proof. First, let n=1 or m=1. Then the statement follows from Theorem 3.1. Indeed,
if e.g. m=1 then

(ur
1 : : : u

r
n)

s = (us
1 : : : u

s
n)

r = vrs1

for all r; s∈{a; a+ 1; a+ 2}.
Suppose m; n¿1 and proceed by induction on m+ n.
If there exist i, j∈N such that |u1 : : : ui|= |v1 : : : vj|, then Eq. (17) splits into two

shorter cases.
Suppose ?nally that no such i, j exist. For symmetrical reasons, we can suppose

|u1|¡|v1|. Let j¿1 be the integer for which

|u1 : : : uj−1| ¡ |v1| ¡ |u1 : : : uj|:



*S. Holub / Theoretical Computer Science 262 (2001) 25–36 35

From (17) we deduce that there exist non-empty words z1; : : : ; za+2 of the uniform
length |v1| − |u1 : : : uj−1|, such that

ua
1 : : : u

a
j−1z1 : : : za = va1; (18)

ua+1
1 : : : ua+1

j−1z1 : : : za+1 = va+1
1 ; (19)

ua+2
1 : : : ua+2

j−1z1 : : : za+2 = va+2
1 : (20)

Furthermore

z1 : : : za = z2 : : : za+1 = z3 : : : za+2;

as all three words are a suCx of va1. Thus

z1 = z2 = · · · = za+2

and we can write (18)–(20) as

ua
1 : : : u

a
j−1z

a
1 = va1; (21)

ua+1
1 : : : ua+1

j−1z
a+1
1 = va+1

1 ; (22)

ua+2
1 : : : ua+2

j−1z
a+2
1 = va+2

1 : (23)

This is already discussed case m=1 and the Theorem 3.1 implies that all words
u1; : : : ; uj, v1, z1; : : : ; za+2 are powers of a common word, say z. Let p; q∈N be such
that

z1 = zp; u1 : : : uj+1 = zq; v1 = zp+q:

Substituted in (17), we obtain that

(zq)kuk
j : : : u

k
n = (zp+q)kvk2 : : : v

k
n (24)

and thus, cancelled zq, also

uk
j : : : u

k
n = (zp)kvk2 : : : v

k
n (25)

hold for k = a; a+1; a+2. By induction, equality (25), and therefore also (24), hold
for all k ∈N.

5. Final observations and acknowledgments

The proof of Theorem 3.1 does not work if a=1, i.e. if R= {1; b; c}, with 1¡b¡c.
The question whether the system of equations (3), k = b; c has a non-cyclic solution
remains open. However, the method described in this paper puts some restriction on
the eventual non-cyclic solution (see [5]).
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The fact that equation

(x1 : : : xn)2 = x21 : : : x
2
n

has a non-cyclic solution was used in [7] to construct an independent system of equa-
tions over n variables of the size 3(n4). Theorem 3.1 implies that similar approach
cannot furnish an independent system of equations of the size 3(n6), in particular not
an exponential one.
The present paper was motivated by the question whether the equational system

(x1 : : : xn)2 = x21 : : : x
2
n; (26)

(x1 : : : xn)3 = x31 : : : x
3
n (27)

has a non-cyclic solution in a free semigroup. This question was introduced by Ale%s
Dr&apal in a Student algebraic seminar as a problem which Juha Kortelainen was inter-
ested in and which has its roots as early as in [1]. As we said, the original question
turned out to be more diCcult than expected but handling it, author discovered the
method described in this paper. Partial results were discussed in the seminar and the
remarks and suggestions of the seminar participants have been very helpful to progress
of the work. Ale%s Dr&apal has decisively inRuenced the formulation and formalization
of the presented ideas. While writing this paper, author was in direct contact with Juha
Kortelainen, who helped to put the result in a wider context of word equations and
to improve the exposition. Moreover, he pointed out the consequence in the theory of
test sets. The content of this paper corresponds to the ?rst part of author’s M.D. thesis
([5]), the second part of which is dedicated to the partial results regarding system (26),
(27).
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