
Theoretical Computer Science 262 (2001) 101–115
www.elsevier.com/locate/tcs

Minimizing roundo" errors of pre$x sums via dynamic
construction of Hu"man trees�

Ming-Yang Kaoa ;1, Jie Wangb ;∗ ; 2

aDepartment of Computer Science, Yale University, New Haven, CT 06520, USA
bDepartment of Mathematical Sciences, University of North Carolina at Greensboro,

Greensboro, NC 27402, USA

Received 28 September 1999; accepted 23 March 2000

Abstract

The pre$x-sum operation, which returns all pre$x sums on a sequence of numbers, plays an
important role in many applications. We study how to e5ciently evaluate pre$x sums on positive
6oating-point numbers such that the worst-case roundo" error of each sum is minimized. A
direct approach to this problem builds a Hu"man tree for each pre$x subsequence from scratch,
requiring exactly quadratic time for every input X . We can do better by taking advantage of
the current Hu"man tree to build the next Hu"man tree, using dynamic insertions and deletions
on Hu"man trees. Consequently, subquadratic time su5ces for various input patterns. We also
provide experimental comparisons of all the algorithms studied in this paper on inputs that are
randomly and uniformly generated. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

We study how to e5ciently evaluate all pre$x sums of a $nite sequence of 6oating-
point numbers such that the worst-case roundo" error of each sum is minimized. Com-
putation of pre$x sums, $rst suggested by Iverson as an operation for the language
APL [9], is a primitive building block in many applications (e.g., see [1, 2]). Previous
research on pre$x sums focused on their implementations and applications in various
settings (e.g., see [1–3, 6, 15, 17, 19, 20]). For inputs of 6oating-point numbers, the only
known algorithm that can minimize worst-case roundo" errors of pre$x sums requires
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a quadratic time on every input sequence. This paper presents improvements using
dynamic algorithms.
Summation of a set of nonzero 6oating-point numbers is ubiquitous in numerical

analysis, where the central issue is to obtain a summation e5ciently with roundo"
errors as small as possible. This topic has been studied extensively (e.g., see [5, 7, 8, 12–
14, 18, 21]). Kao and Wang [12] recently showed that, when the input set contains both
positive and negative 6oating-point numbers, it is NP-hard to $nd a summation of these
numbers with the minimum worst-case roundo" errors. This paper only considers inputs
that are either all positive or all negative. Without loss of generality, we assume the
former.
Let X = 〈x1; : : : ; xn〉 be a sequence of positive 6oating-point numbers. Denote by Xk

the kth pre4x subsequence 〈x1; : : : ; xk〉 of X for k =1; : : : ; n. We want to evaluate all
pre$x sums Sk = x1 + x2 + · · · + xk , which we call the kth pre4x sum. We use the
standard model of 6oating-point arithmetic for error analysis:

fl(x + y) = (x + y)(1 + �xy);

where |�xy|6�, and ��1 is the unit roundo".
Since operator + is applied to two operands at a time, any method that adds all

numbers in Xn corresponds to a binary addition tree of n leaves and n − 1 internal
nodes, and vice versa; where a leaf node is a number xi and an internal node is the
sum of its two children. Di"erent ways of summing Xn yield di"erent addition trees,
which may produce di"erent computed sums Ŝn in 6oating-point arithmetic. We want
to $nd an algorithm that minimizes the error En= |Ŝn − Sn|. Let I1; : : : ; In−1 be the
internal nodes of an addition tree T over Xn. Since � is very small even on a desktop
computer, any product of more than one � is negligible in our consideration, resulting
in the following approximation: En ≈ |

∑n−1
i=1 Ii�i|6�

∑n−1
i=1 |Ii|. This gives rise to the

following de$nitions [11, 12].
– The worst-case error of T , denoted by E(T ), is �

∑n−1
i=1 |Ii|.

– The cost of T , denoted by C(T ), is
∑n−1

i=1 |Ii|.
Our goal here is to minimize E(T ), which is equivalent to minimizing C(T ). The
following notations are useful:
– E∗n is the minimum worst-case error over all orderings of evaluating Sn.
– S∗n denotes a computed sum of Sn with error E∗n .
– Tmin denotes an optimal addition tree over Xn, i.e. E(Tmin)=E∗n or equivalently
C(Tmin)=C∗n .
The 7oating-point pre4x-sum problem (FPPS) asks for all S∗k for k =1; : : : ; n.
Let Tn be an addition tree over Xn, then C(Tn)=

∑n
i=1xi·di, where di is the number

of edges on the path from the root to the leaf xi in Tn. Thus, $nding an optimal
addition tree over Xn is equivalent to constructing a Hu"man tree over Xn.

We observe that solving FPPS by constructing a Hu"man tree for each subsequence
incurs a quadratic lower time bound. On the other hand, as discussed in Section 2,
quadratic time su5ces for solving FPPS, since by using van Leeuwen’s algorithm
[16], we can construct a Hu"man tree for each subsequence from scratch in linear
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time on sorted inputs. However, this approach requires quadratic time for every input
X . In Sections 3 and 4 we present improved algorithms by taking advantage of the
current Hu"man tree to build the next tree, using dynamic deletions and insertions on
Hu"man trees. Our dynamic algorithms can solve FPPS in subquadratic time for various
input patterns. Finally, in Section 5 we provide experimental comparisons of all the
algorithms studied in this paper on inputs that are randomly and uniformly generated.
Our experimental results show that the dynamic algorithms are faster algorithms in
practice.

2. List-insertion and list-deletion pre�x sums

Since $nding an optimal addition tree over Xn is equivalent to constructing a Hu"man
tree over Xn, we can solve FPPS using the following two general algorithms.

Algorithm 1. Insertion pre4x sums (IPS)
(1) Set k← 1.
(2) Construct a Hu"man tree for Xk and return the root value, which is S∗k .
(3) If k¡n, set k← k + 1 and go to Step 2.

Algorithm 2. Deletion pre4x sums (DPS)
(1) Set k← n.
(2) Construct a Hu"man tree for Xk and return the root value, which is S∗k .
(3) If k¿1, set k← k − 1 and go to Step 2.

Both IPS and DPS have quadratic lower-time bounds in the worst case. For instance,
if we use IPS to solve FPPS on input X = 〈bn+2; bn+1; : : : ; b3〉, where bk is the kth
Fibonacci number, then no previous trees can be reused to build a Hu"man tree over
Xk . Thus, no matter what methods are used, k−1 new additions are required to compute
S∗k . The case for DPS is similar.
When Xn is sorted, van Leeuwen [16] showed that a Hu"man tree can be constructed

on Xn in P(n) time as follows.

Algorithm 3. The algorithm takes a list L as input, where L contains Xn in nonde-
creasing order.
(1) Create another sorted list L′, which is empty initially.
(2) Until L is empty, extract the $rst two smallest numbers x and y from both L and

L′, and insert x + y at the end of L′.
(3) If L′ has more than one element, repeat Step 2 on L′ (i.e., L′ becomes L and L

becomes L′ in Step 2). Repeat Step 2, alternating between the lists, until only one
element remains in both the lists.

(4) Return the last element.
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Lemma 1 (van Leeuwen [16]). Assume that Xn is sorted in nondecreasing order, then
Algorithm 3 constructs a Hu:man tree over Xn in P(n) time.

Hence, we can solve FPPS in P(n2) time by $rst sorting Xn, and then constructing
a Hu"man tree for each subsequence Xk using Algorithm 3 as follows.

Algorithm 4. List-deletion pre4x sums (LDPS)
The algorithm takes X as input.

(1) Sort the numbers x1; : : : ; xn in nondecreasing order using a O(n log n)-time-sorting
algorithm. Store the sorted numbers in a sorted list L.

(2) Set k← n.
(3) While k¿1, repeat the following steps.

(a) Use Algorithm 3 on L to compute S∗k .
(b) Set L←L− {xk} and decrease k by 1.

Lemma 2. LDPS solves FPPS in O(n2) time. Moreover, LDPS requires Q(n2) time
for every input X .

Proof. Straightforward.

Similarly, we can obtain list-insertion pre4x sums (LIPS) to solve FPPS in quadratic
time by substituting insertion for deletion. We use a balance binary search tree, such
as a red-black tree [4], to store Xk so that inserting a new number xk+1 into the sorted
list of Xk only takes O(log k) time.
Both LDPS and LIPS require Q(n2) time for every input X . However; we note that

for some inputs X , FPPS can actually be solved in subquadratic time. For example,
consider the following commonly used procedure that evaluates all pre$x sums in linear
time: Set S←∅ and k← 1; while k6n, set S← S+xk , output S, and set k← k+1.
If xk¿Sk−1 for all k, then this algorithm evaluates all S∗k because the ordering of
adding the numbers in Xk corresponds to a Hu"man tree over Xk .
In Sections 3 and 4 we present algorithms that capture such phenomena, using

dynamic operations on Hu"man trees.

3. Hu man-tree-deletion pre�x sums

Given a Hu"man tree T over Xn and a value x ∈ X , we want to delete x from T
so that the resulting tree is still a Hu"man tree.
A binary addition tree over Xn is said to satisfy the sibling property if the nodes

can be numbered in the nondecreasing order of their values so that for i=1; : : : ; n− 1,
nodes 2i− 1 and 2i are siblings and their parent is higher in the numbering. We call i
the sibling number of node i. The sibling numbers correspond to the order in which the
nodes are combined: Nodes 1 and 2 are combined $rst, nodes 3 and 4 are combined
second, and so on. For any Xn, there must be a Hu"man tree over Xn that satis$es the
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sibling property, and any binary addition tree over Xn that satis$es the sibling property
must be a Hu"man tree. Hence, without loss of generality, we assume that all the
Hu"man trees we deal with satisfy the sibling property.
Our goal is to carryout deletion on Hu"man trees in O(‘) time, where ‘ is the

number of nodes whose sibling numbers are greater than the sibling number of the
node deleted; hence, ‘ ranges from 1 to 2n− 2. We can then use deletion to calculate
the next S∗k by taking advantage of the current S∗k to reduce redundant computation.
We use a doubly linked list to store a tree in which each node has three pointers:

one to its parent, one to its left child, and one to its right child. A list A of size n is
used to store pointers such that A[i] points to the ith node in the tree. The weight of
a node refers to the numerical value of a node.
The idea for deletion is to keep replacing the current node i, starting from the node

to be deleted, by node j, where j= i + 1 if node i + 1 is not the parent of node i, or
j= i + 2 otherwise. The weight of the parent of node i is updated accordingly. The
following two constant-time operations are useful.
– Replace(i; j): Replace the left (respectively, right) child of i by the left (respectively,
right) child of j, and replace wi by wj.

– WeightUpdate(i; j; k): Set the weight of node i’s parent to wj + wk .
The e"ect of calling Replace(i; j) moves the entire left (respectively, right) subtree

of node j to become the left (respectively, right) subtree of node i in constant time.
Node j may then be viewed as a dummy leaf. If we color the node to be replaced
black, then the deletion can be viewed as the process of pushing the black node up
until the root is reached. The black node and the root will then be deleted from the
tree. The following algorithm deletes node i0 from a Hu"man tree T of n leaves.

Algorithm 5. Hu:man-tree deletion
The algorithm takes (T; i0) as input, where T is a Hu"man tree of n leaves and i0

is the sibling number of the node to be deleted.
Set i← i0, and m← 2n− 1.
Case A: Node i is a right child. We have the following three subcases.
Case A1: Node i + 1 is the root.
Set m←m− 2 and return A[m]. The algorithm ends. (Remark: Now root m− 2 is

the root of the new tree.)
Case A2: Node i + 1 is not the root but is the parent of node i.
First call WeightUpdate(i; i−1; i+2), next call Replace(i; i+2). Then set i← i+2.
Case A3: Node i + 1 is neither the root nor the parent of node i.

(1) First call WeightUpdate(i; i − 1; i + 1).
(2) If wi−16wi+1, call Replace(i; i + 1); otherwise, call Replace(i; i − 1)

and then call Replace(i − 1; i + 1).
(3) Increase i by 1. Node i is now a left child, go to Case B.

Case B: Node i is a left child.
If wi−16wi+1, then call Replace(i; i + 1); otherwise, call Replace(i; i − 1) and

Replace(i − 1; i + 1). Set i← i + 1. Node i is now a right child, go to Case A.
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Theorem 3. Let T be a Hu:man tree over X and let i0 be the sibling number of an
x ∈ X in T . Then deleting x from T using Algorithm 5 results in a Hu:man tree T ′

of n− 1 leaves in P(2n− i0) time.

Proof. It su5ces to show that T ′ satis$es the sibling property. Let i= i0. Let wj denote
the weight at node j in T . Let w′

j denote the weight at node j in T ′. Note that w′
j =wj

if node j’s content is never updated.
Algorithm 5 increases i until the new root is reached. Hence, it su5ces to show

that the sibling property is satis$ed up to node i during the deletion process. Namely,
for every j¡i and k¡i, j¡k if and only if w′

j6w′
k , where nodes 2l − 1 and 2l are

siblings, and the weight of each internal node is the sum of the weight of its two
children. We will prove this property using an induction argument on the value of
i; i= i0; : : : ; 2n − 2. We will also prove for i¿2, w′

i−26wi+1 in the meantime. This
inequality is useful in the proof. The induction basis is obvious because we begin
with T .
Case A: Node i is a right child.
Case A1: Node i+1 is the root. Then T ′ is the subtree rooted at node i− 1, which

satis$es the sibling property by induction hypothesis. We are done.
Case A2: Node i + 1 is not the root but is the parent of node i. Since node i + 1

is the parent of node i, node i cannot have any cousin on the right, and node i + 1
cannot have any cousin on the left. In other words, the tree must be in the form as
shown in Fig. 1(a). Therefore, node i+2 must be a leaf and must be the right sibling
of node i + 1. Let x=w′

i−1 and z=wi+2. Since the nodes that have been updated so
far must be descendants of node i + 1; x=wi−1 − wi0 + wi¡wi+1. Thus, x¡wi+2 = z.
Since the sibling property is satis$ed up to node i, we can replace node i by node
i+2, and reset wi+1 to be x+y, which preserves the sibling property up to node i+2
(see Fig. 1(b)). Let j= i+2, which is the new value of i. Node j is still a right child
and Case A applies. We also have w′

j−2 = z=wi+26wi+3 =wj+1.
Case A3: Node i+1 is neither the root nor the parent of node i. Assume that node

i − 1 is an internal node and node i + 1 is a leaf in T . Note that w′
i−1¿wi−1 because

a node is always replaced by a node with the same or larger weight. But it is possible
that w′

i−1¿wi+1 if node i+1 is a leaf. Assume that this is the case. Since w′
i−26wi+1

and the sibling property is satis$ed up to node i, we can replace node i by node i− 1,
replace node i − 1 by node i + 1, and still preserve the sibling property up to node
i + 1.
For the case that w′

i−16wi+1, we have w′
i−16w′

i+1 by the induction hypothesis and
the fact that a deleted node is always replaced by a node with the same or larger
weight. Thus, we can simply replace node i by node i+1 without a"ecting the sibling
property. Hence, the sibling property is satis$ed up to node i+1. Let j= i+1, which
is the new value of i. Then node j becomes a left child, and Case B applies.

Next, we prove w′
j−26wj+1. If node j − 2 is a leaf, then w′

j−2 equals wi−1 or wi+1.
So w′

j−26wi+2 =wj+1. We now focus on the case that node j− 2 is an internal node.
Let k and k + 1 be the numberings of node j − 2’s children. If node j − 1 is also
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Fig. 1. Case A2, where y′ = x + z. The black node is the node to be replaced. Shaded nodes and the black
node are the ones being visited.

an internal node, then it is the right sibling or the left uncle of node j − 2. In either
case, w′

k6wk+1 and w′
k+16wk+2, and so w′

j−26wk+1 + wk+2 =wi+16wi+2 =wj+1. If
node j − 1 is a leaf, then w′

i−16wi+16wi+2, and thus w′
j−26wj+1.

Case B: Node i is a left child. This case is handled in a similar manner as in
Case A3, and we omit the details here.
Next, we analyze the running time of the algorithm. Note that replacing a node by

another node takes O(1) time, for it only involves O(1) pointer manipulations. Also,
nodes whose numberings are smaller than i0 are never visited, and each node whose
numbering is at least i0 is visited at most twice for its replacement and a possible
weight update. Consequently, the running time of Algorithm 5 is P(2n − i0), since
there are exactly 2n− 1 nodes in a Hu"man tree of n leaves.

Fig. 2 demonstrates the deletion process using Algorithm 5.

Algorithm 6. Hu:man-tree-deletion pre4x sums (HDPS).
The algorithm takes X as input.

(1) Construct a Hu"man tree Tn over Xn. Set k← n.
(2) While k¿1, repeat the following steps:

(a) Output the value of the root of Tk , and $nd xk from the list A.
(b) Use Algorithm 5 to delete xk and produce a Hu"man tree Tk−1 over Xk−1.
(c) Set A←A− {A[2k − 2]; A[2k − 1]}, and decrease k by 1.

Theorem 4. Let the sibling number of xk in Tk be s(k); where 16s(k)62k − 2.
Algorithm 6 solves FPPS (in the order of k = n to 1) in P(f(n)+

∑n
k=1(2k − s(k)))

time; where f(n)= n log n if Xn is not sorted; and n otherwise.
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Fig. 2. Deleting node 4 from Hu"man tree T . The black node is the node to be replaced. Shaded nodes and
the black node are the ones being visited. (a) Case A3. (b) Case B. (c) Case A3. (d) Case B. (e) Case A3.
Now i=8, w′

i−1¡wi+1. (f ) Case B. (g) Case A3. (h) Case B. (i) Case A1.

Proof. The P(f(n)) cost comes from the construction of the $rst Hu"man tree Tn over
Xn. Once Tn is constructed, it follows from Theorem 3 that for each xk with k6n,
Step 2 of Algorithm 6 takes P(2k − s(k)) time to delete node s(k). This completes
the proof.
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Theorem 5. Let �(k) be an integer function with 06�(k)¡k. If for all k; there exist
xi1 ; : : : ; xi�(k) ∈Xk with 16i1¡ · · ·¡i�(k)¡k such that xk¿

∑�(k)
j=1 xij ; then Algorithm 6

solves FPPS in P(f(n) +
∑n

k=1(k − �(k))) time; where f(n)= n log n if Xn is not
sorted; and n otherwise.

Proof. Let T be a Hu"man tree over X and x a node in T . Denote by sib(x) the
sibling number of node x. It su5ces to show that sib(xk)¿2�(k) for every k.

Sort Xk in increasing order such that

x′16x′26 · · ·6x′k ;

where Xk = {x′1; : : : ; x′k}. Hence, xk = x′j for some j. Since, by assumption, xk¿
∑�(k)

j=1 xij ,
where 16i1¡ · · ·¡i�(k)¡k, we have the following two inequalities:

j¿�(k); (1)

x′j¿
�(k)∑

i=1

x′i : (2)

Let ‘¿�(k) be the largest index and s6j be the smallest index such that

x′s¿
‘∑

i=1

x′i :

Then sib(xk)= sib(x′j)¿sib(x′s). We will show that sib(x′s)¿2‘. We have the following
two cases.
Case A: s= ‘ + 1. It follows from Inequality (2) that all x′i (i=1; : : : ; ‘) must be

added together before x′j is added. In other words, x′j is added to C =
∑‘

i=1 x
′
i , which

corresponds to an addition tree of exactly 2‘−1 nodes whose sibling numbers are less
than sib(x′s). Hence, sib(x

′
s)¿2‘.

Case B: s¿‘ + 1. Let U = {x′1; : : : ; x′‘} and V = {x′‘+1; : : : ; x
′
s−1}. We have the fol-

lowing two subcases.
Case B1: x′s is added to a number C1 and there are numbers C2; : : : ; Cm such that

C16x′s6C2 · · ·6Cm, where Cr (r=1; : : : ; m) is the summation of ur numbers from
U and vr numbers from V, and each number in U and V occurs exactly once in all
these numbers. Hence,

∑m
r=1 ur = |U |= ‘ and

∑m
r=1 vr = |V |= s− ‘ − 1.

Since all the summations needed to obtain C1; : : : ; Cm were done before x′s is added,
where each Cr has exactly 2(ur + vr)− 1 nodes, there are exactly

∑m
r=1[2(ur + vr)− 1]

nodes whose sibling numbers are less than sib(x′s). By Inequality (2), we have vr¿0
for all r=2; : : : ; m. This implies that m− 16|V |= s− ‘− 1. Thus, s−m¿‘. We have

sib(x′s)¿
m∑

r=1

[2(ur + vr)− 1] + 1

= 2
mu∑

r=1

ur + 2
m∑

r=1

vr − m+ 1
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= 2‘ + 2(s− ‘ − 1)− m+ 1

= 2s− m− 1

= s+ (s− m)− 1

¿ (‘ + 2) + ‘ − 1

= 2‘ + 1:

Case B2: x′s is added to a number C1 and there are numbers C2; : : : ; Cm such that
x′s6C16 · · ·6Cm, where Cr (r=1; : : : ; m) is the summation of ur numbers from U
and vr numbers from V, and each number in U and V occurs exactly once in all these
numbers. Hence,

∑m
r=1 ur = |U |= ‘ and

∑m
r=1 vr = |V |= s− ‘ − 1.

Similar to Case B1 we know that there are exactly
∑m

r=1[2(ur + vr) − 1] nodes
whose sibling numbers are less than sib(x′s). By Inequality (2), we have vr¿0 for
all r=1; : : : ; m. This implies that m6|V |= s − ‘ − 1. Thus, s − m¿‘ + 1. Similar to
Case B1 we have

sib(x′s) = s+ (s− m)− 1

¿ (‘ + 2) + (‘ + 1)− 1

= 2‘ + 2:

This completes the proof.

The following corollary of Theorem 5 is straightforward.

Corollary 6. (1) If there exist an $ with 0¡$¡1 such that for all k; �(k)¿k − n$;
then FPPS can be solved in O(n1+$) time.

(2) If �(k)¿k − log n for all k; then FPPS can be solved in O(n log n) time.
(3) If Xn is sorted and �(k)¿k − O(1) for all k; then FPPS can be solved in O(n)
time.

4. Hu man-tree insertion pre�x sums

Given a Hu"man tree T over Xn and a new value x, we want to insert x into T in
O(‘) time so that the resulting tree T ′ is still a Hu"man tree, where ‘ is the number of
nodes whose sibling numbers are greater than the sibling number of the inserted node
in T ′. We will use the same data structure as in Hu"man-tree deletion. In addition
to the two constant-time operations Replace and WeightUpdate de$ned in Section 3,
the following constant-time operation is also useful.
– Swap(i; j): Swap the left (respectively, right) child of i with the left (respectively,
right) child of j, and swap wi with wj.
Denote by parent(i) the sibling number of the parent node of node i.
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The idea for insertion is to start from the root and keep swapping the new leaf x
down until x is in the correct position; namely, if x is at node i, then x¿wi−1. After
x is inserted, we need to restore the sibling property of the new tree.

Algorithm 7. Hu:man-tree insertion
The algorithm takes (T; x) as input, where T is a Hu"man tree of n leaves, and x

is a new number to be inserted into T .
(1) Copy T into the $rst 2n − 1 cells of a list A of 2n + 1 cells. Create two nodes,

one being a new root with weight x+w2n−1, and the other being a leaf node with
weight x.

(2) Make the new root have T as the left child and the leaf for x as the right child.
Let A[2n+ 1] point to the new root and A[2n] to the leaf for x.

(3) If x¿w2n−1, the algorithm ends; otherwise, set i← 2n.
(4) While i¿1 and x¡wi−1, repeat the following: Call Swap(i; i − 1); set i← i − 1.

(Now x is in the correct position. The following steps restore the sibling property
of the new tree.)

(5) Update the weights of nodes from node i’s parent to node i’s grandparent:
Set p← parent(i); while i6p, repeat the following.
(a) If node i is a left child, call WeightUpdate(i; i; i + 1).
(b) If node i is a right child, call WeightUpdate(i; i; i − 1).
(c) Set i← i + 1.

(6) Find the smallest node downward from node p that is out of order:
Set j←p; while wj¡wj−1 , set j← j − 1

(7) Create a list L to hold leaf nodes and a list B to hold internal nodes; both are
initially set to empty. Set k← j. While k¡2n− 1, repeat the following.
(a) If node k is a leaf, add k to the end of L; otherwise, add node k to the end

of B.
(b) Set k← k + 1.

(8) Let b represent the $rst node in B and ‘ be the $rst node in L. Set j0 = j. While
j¡2n− 1. Repeat the following:
(a) If w‘¡wb, call Replace(j; ‘); otherwise, call Replace(j; b).
(b) If j≡ 0(mod2) (i.e., node j is a right child), call WeightUpdate(j; j; j − 1).

(This WeightUpdate call also updates the weight of parent(j) in lists.)
(c) Set j← j + 1.

Lemma 7. Let T be a Hu:man tree of n leaves and x be a new value. Then
Algorithm 7 produces a new Hu:man tree by inserting x into T as a new leaf in
O(2n− i0) time; where i0 is the sibling number of the leaf for x in the new tree.

Proof. Algorithm 7 $rst $nds a correct place for the new leaf node for x in the new
tree. This is done by Steps 1–4. In particular, Step 4 swaps the new leaf down until x
is in the correct position. Let i0 be the sibling number of this position. Let p be the
sibling number of the parent of node i0. After updating the weights of nodes from p
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to p’s parent by Steps 5, we note that p may now be out of place. Namely, the value
of p may become smaller than the value of another leaf node whose sibling number
is greater than i0 but is less than the sibling number of p. This situation may happen
if x is smaller than the original value of node i0. Even if p is not out of place, it is
still possible to have a node out of place on the right-hand side of p or in an upper
level of p. Hence, we need to restore the sibling property.
Note that in the new tree after x is inserted, all internal nodes are in order with

respect to internal nodes and all leaf nodes are in order with respect to leaf nodes. In
other words, the list of all leaf nodes from bottom up is sorted in increasing order, and
the list of all internal nodes from bottom up is sorted in increasing order. We also note
that swapping a internal node with a leaf node does not a"ect the sibling property of
all the nodes below. Based on these two properties we can restore the sibling property
for the new tree as follows. We $rst $nd the smallest sibling number j0 from which
the sibling property needs to be restored. This is done by Step 6. We then create two
sorted lists L and B, where L stores pointers to all the leaf nodes from j0 up, and B
stores pointers to all the internal nodes from j0 up. We then start from node j= j0,
replace node j by the smaller node y of the $rst node in L and the $rst node in B.
Extract node y from its list. Update the weight of node j’s parent, increase j by 1,
and continue until the root is reached.
Hence, the algorithm runs in O(2n − j0) time. Since j0¿i0, the algorithm runs in

O(2n− i0) time. This completes the proof.

Algorithm 8. Hu:man-tree-insertion pre4x sums (HIPS).
The algorithm takes X as input.

(1) Construct a binary addition tree T2 over X2. Set k← 2.
(2) While k6n, repeat the following steps.

(a) Output the value of the root of Tk ;
(b) Use Algorithm 7 to insert xk+1 to Ti to obtain a Hu"man tree Tk+1 over Xk+1;
(c) Increase k by 1.

As a straightforward corollary of Lemma 7 we have the following theorem.

Theorem 8. Let the sibling number of xk in Tk be s(k); where 16s(k)62k − 2.
Algorithm 6 solves FPPS (in the order of k =1 to n) in O(

∑n
k=1(2k − s(n))) time.

It is straightforward to see that Theorem 5 holds true without the P(f(n)) term if
Algorithm 8 is used to solve FPPS; Corollary 6 also holds true and the requirement
of Xn being sorted is no longer needed in Corollary 6(3).

5. Running examples and time analysis

We implemented all four of the algorithms LDPS, LIPS, HDPS, and HIPS in C++
with the help of Paul Nelson, an undergraduate student at the University of North
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Table 1

n TLD(n) TLI(n) THD(n) LHI(n) n TLD(n) TLI(n) THD(n) LHI(n)

1 1.43 2.05 1.86 1.12 16 357.00 484.07 261.87 397.05
2 5.91 8.22 3.79 5.57 17 414.11 550.82 299.19 447.41
3 11.79 17.39 8.43 11.21 18 467.33 622.22 338.34 503.40
4 19.52 29.87 14.32 20.99 19 523.73 693.31 381.49 564.65
5 30.74 45.51 22.24 32.92 20 586.50 772.21 425.84 630.09
6 44.44 65.19 31.92 47.56 21 651.94 854.66 475.71 694.46
7 60.38 89.11 44.72 65.34 22 720.95 936.96 519.67 761.05
8 78.38 114.92 58.05 88.45 23 795.17 1029.24 571.68 833.29
9 98.91 146.96 73.73 112.45 24 871.98 1130.72 624.93 913.76
10 126.87 181.96 92.77 142.52 25 957.71 1243.94 683.59 999.61
11 157.62 221.94 115.15 176.56 26 1030.35 1360.28 732.93 1092.60
12 188.61 265.57 139.35 212.26 27 1114.65 1471.02 790.84 1178.49
13 225.48 313.82 166.93 253.25 28 1212.54 1589.61 856.91 1271.72
14 268.09 366.17 199.14 298.81 29 1305.28 1708.09 918.78 1365.42
15 304.67 424.48 227.68 346.03 30 1435.47 1831.64 1002.36 1454.61

Carolina at Greensboro. For more information about the implementation, the reader
is referred to [10]. We compiled our programs using the GNU project C ++ com-
piler 2.5.0 and ran numerical experiments on a SUN Ultra-10 workstation. The input
numbers were generated using the standard random number generator srand() with a
di"erent seed for each run. We ran the algorithms on randomly generated Xn for n from
100 to 30,000. For each n, we ran the algorithm for $ve times on di"erent, randomly
generated Xn. We timed the algorithm LDPS, LIPS, HDPS, and HIPS after inputs were
generated, and then took the average of the running time.
Let TLD(n) denote the average running time of LDPS on input of n numbers.

TLI(n); THD(n), and THI(n) are de$ned similarly. Table 1 shows the average running
time (in s) of the four algorithms for selected values of n (in thousands).
Fig. 3 shows the result of plotting all the numerical values of the algorithms from

n=5000 to 30,000 using MATLAB. From Fig. 3(a) and (d), we observe that the
following comparison functions

inf
TLD(n)
THD(n)

; inf
TLI(n)
THI(n)

; inf
TLD(n)− THD(n)

TLD(n)
; and inf

TLI(n)− THI(n)
TLI(n)

are increasing when n is su5ciently large. Moreover, we observe from Fig. 3(c) the
following relations:

TLD(n)=THD(n) + �(n); (3)

TLI(n)=THI(n) + '(n); (4)

where �(n) and '(n) are superlinear functions. Thus, HDPS is asymptotically faster
than LDPS, and HIPS is asymptotically faster than LIPS. Due to the extra cost of
inserting xk+1 into a sorted Xk , LIPS is slower than LDPS. Similarly, HIPS is slower
than HDPS.
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Fig. 3. (a) The plotting of the average running time of the four algorithms. (b) The plotting of two com-
parisons that compare the asymptotic growth rates of TLD(n)=THD(n) and TLI(n)=THI(n). (c) The plotting of
the two di"erences: TLD(n)− THD(n) and TLI(n)− THI(n). (d) The plotting of two comparisons that show
the percentage savings in average running time of HDPS over LDPS and HIPS over LIPS.

For instance, when n=30; 000, LDPS takes 1435.47 s on average on a SUN Ultra-10
workstation, while HDPS takes only 1002.36 s on average; hence, compared to LDPS,
HDPS saves 433.11 s, resulting in a saving of more than 30% of the running time on
average. Moreover, the larger the number of elements is, the more saving we will get
using our dynamic algorithms.
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