
Theoretical Computer Science 409 (2008) 417–431

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Minimum-cost delegation in service compositionI,II

Cagdas E. Gerede a,∗, Oscar H. Ibarra a, Bala Ravikumar b, Jianwen Su a
a Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
b Department of Computer Science, Sonoma State University, Rohnert Park, CA 94928, USA

a r t i c l e i n f o

Article history:
Received 30 August 2006
Received in revised form 31 March 2008
Accepted 25 August 2008
Communicated by M. Ito

Keywords:
Finite state automata
Service modeling
Automated service composition

a b s t r a c t

The paradigm of automated service composition through the integration of existing
services promises a fast and efficient development of new services in cooperative service
(e.g., business) environments. Although the ‘‘why’’ part of this paradigm iswell understood,
many key pieces are missing to utilize the available opportunities. Recently ‘‘service
communities’’ where service providers with similar interests can register their services
are proposed toward realizing this goal. In these communities, requests for services posed
by users can be processed by delegating them to existing services, and orchestrating
their executions. We use a service framework similar to the ‘‘Roman’’ model departing
from it particularly assuming service requirements are specified in a sequence form.
We also extend the framework to integrate activity processing costs into the delegation
computation and to have services with bounded storage as opposed to finite storage. We
investigate the problem of efficient processing of service requests in service communities
and develop polynomial time delegation techniques guaranteeing optimality.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The framework ofweb services paints a promising picture for future software and applications development.Much of the
expected benefits comes from a systematic approach of sharing program executions, a.k.a. services, as well as data. This has
been clearly demonstrated by applications built on software development tools and platforms including Microsoft’s .NET,
Sun’s J2EE, IBM’s WebSphere, BEA’s Web Logic, etc. The ability of providing services is becoming critical in many business
applications where the integration and performance management of business processes ultimately determine the success
[25]. In spite of the demand from applications and practice, software system design still lacks the fundamental principles
governing rigorous technical analysis in terms of functional adequacy and/or performance metrics [32]. A major challenge
thus lies in the technical advancement in the areas of both formalisms for software design and analysis techniques. The goal
of the present paper is to develop techniques and algorithms for automated composition of services.
Service composition has its similarities with information system integration, workflow system design, and distributed

computing [23,28]. The main task is to assemble existing pieces in a way that the autonomous pieces will cooperate with
each other. The goal is to facilitate a fast and efficient development of new services in cooperative business environments
[23,28]. Towards this goal, service communities have been proposed [4,2] where service providers with similar interests can
register their services for the community use. When the user asks for the execution of some activities, if the community

I The preliminary results from this paper were presented at the International Conference on Services Computing (SCC ’05) [C.E. Gerede, O.H. Ibarra,
B. Ravikumar, J. Su, Online and minimum-cost ad hoc delegation in e-service composition, in: Proc. IEEE Int. Conf. on Services Computing, SCC, 2005].
II Work supported in part by NSF grants IIS-0101134 (Gerede, Ibarra, and Su), CCF-0430945 and CCF-0524136 (Ibarra), and IIS 0415195 (Gerede and Su).
∗ Corresponding author. Tel.: +1 805 637 3212.
E-mail addresses: cagdas.gerede@gmail.com (C.E. Gerede), ibarra@cs.ucsb.edu (O.H. Ibarra), ravi.kumar@sonoma.edu (B. Ravikumar), su@cs.ucsb.edu

(J. Su).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.08.040

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:cagdas.gerede@gmail.com
mailto:ibarra@cs.ucsb.edu
mailto:ravi.kumar@sonoma.edu
mailto:su@cs.ucsb.edu
http://dx.doi.org/10.1016/j.tcs.2008.08.040

418 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

does not have a capable service directly, these activities may be delegated to registered services so that the user needs are
satisfied.
Service composition, generally, consists of two main steps [4]. The first step, sometimes called composition synthesis,

describes the process of (manually or automatically) computing a specification of how to coordinate the components to
answer a service request. The second step, often referred to as orchestration, defines the actual run-time coordination of
service executions, considering also data and control flow among services. This paper focuses on the synthesis part.
Automated composition synthesis problem was studied in [4,6,17]. Given a set of descriptions of existing services (e.g.,

from a ‘‘UDDI++’’ repository) and a desired service, the problem is to construct a ‘‘delegator’’ that will coordinate the
activities of those services to achieve the desired service. All three studies use a model, often referred to as the ‘‘Roman’’
model, where services are represented as activity-based finite state machines (FSMs). Extending these studies, in this paper
we model services as FSMs augmented with linear counters and we integrate activity processing costs into the model. We
then investigate the problem of computing an optimal delegation for a given sequence of service requests.
We depart from the original Roman model in the following ways. First of all, service requirements can be described in

many different forms. One form can be a Turing-machine. Another can be a finite transition system like the case in the
original Roman model. The forms we study here are sequences. A client requests a sequence of activities, and then the
sequence is delegated to available services. Second, we provide a bounded storage to each service and illustrate the cases
where this type of storage is required. Third, we integrate the costs of activity processing into themodel to capture the cases
where the processing cost of an activity varies from one service to another.
In this paper,we study the followingproblem: given a community of services and a sequence of activities, how to compute

an optimal delegation of the sequence, i.e., the cheapest way to process the sequence using the community services in a
collaborative manner. We make the following main contributions:

• We show that for finite state services, there is a linear time algorithm computing an optimal delegation, and that for
services with linear bounded storage, the optimum delegation problem can be solved in polynomial time and space or in
O(log2n) space and slightly super-polynomial time (O(nlog n)) in terms of n where n is the length of the service request.
Note that in the complexity analysis, we consider the service request the only input to the problem. In other words, the
size and the number of services are considered constant.
• When we take the size and the number of services into account, our algorithms for both cases have the exponential
constant factor ck where c is the size of services, and k is the number of services. The algorithm proposed in [4] is also
linear in the size of services and exponential in the number of services. We show that it is very unlikely to have an
algorithm with polynomial time complexity in both the size and the number of services.

The remainder of the paper is organized as follows. In Section 2, we describe our service model and delegation problem
with an example. In Section 3, we formalize the model and the problem. We provide a linear time delegation algorithm for
a restricted version of the model in Section 4. In Section 5, we study the complexity of delegation for the general model.
Related work and conclusions are provided in Sections 6 and 7, respectively.

2. A model for services

In this section, we first summarize the framework we used as a starting point for our model used in this paper. We
then explain the extensions introduced in our model. The explanations are mostly informal. The formal discussion will be
presented in Section 3.
We base our model on the service framework presented in [4] (often referred to as the Roman model). This initial effort

provides a nice formal setting for a precise characterization of automatic composition of services. In this model, a service is
a software artifact interacting with its clients (humans or other services). An external service schema describes the published
service behavior represented as sequences of activitieswith constraints on their execution order, whereas an internal schema
specifies the internal logic of the service meaning how the activities are actually executed. A service instance refers to one
occurrence of a service among several independently running instances. Each instance conforms to its schema during its
execution. We can informally describe the semantics of a service execution as follows: When a client invokes a service
instance, an ‘‘enactment’’ is created for the conversation. Then, the client interacts with the service instance by sending an
activity request and waiting for a response. On the basis of the response, she determines her next activity request. When
the client doesn’t have any more requests, she may explicitly terminate the enactment.
When a service is invoked by a client, each requested task can be performed by either executing certain actions on its

own, or interacting with other services to delegate the processing to them. A simple or atomic service processes all requests
from its client on its own, while a composite service invokes other services to answer the client requests.
An service community consists of an activity alphabet Σ and a set of services of similar interests. A service joins a

community by registering its external schema in terms of the alphabet of the community (which can be done by defining a
mapping from the service alphabet to the community alphabet, e.g., as described in [2]).
The framework described so far is general and does not refer to any specific forms of service schemas. As formalized

in the next section, the study in this paper focuses on the services whose external service schemas are represented as
nondeterministic finite state machines augmented with counters. In our study, we only focus on external schemas; therefore,
from now on we use the word ‘‘service’’ to actually mean an external service schema.

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 419

Fig. 1. A community of services.

Being able to use nondeterminism provides the specification designer more flexibility in describing a service. For
example, consider a music service where you search songs, listen to them, and finally buy the one you listen to the last.
The set of transitions of this service can be described as {(q0, search, q0), (q0, listen, q0), (q0, listen, q1), (q1, buy, q2)} using
a nondeterministic FSM, or can be described as {(q0, search, q0), (q0, listen, q1), (q1, search, q0), (q1, listen, q1), (q1, buy, q2)}
using a deterministic FSM. This interpretation of nondeterminism is similar to ‘‘angelic" nondeterminism [5]. Wewould like
to point out that the nondeterminism can also be interpreted as the result of unknowns in the environment. For example,
consider a shopping service with an operation validateCreditCard. When the client requests the validation of her credit
card, depending on the outcome of the validation, the service can go to a success or failure state, from which different
options would be available for the client. This can be described with two transitions labeled with the same operation
validateCreditCard going nondeterministically in two different states. This interpretation of nondeterminism is also called
‘‘devilish" nondeterminism [5,19]. In this study, we adopted the former interpretation.
The original framework also does not describe activity processing costs. Most of the practical cases, however, require

the modeling of costs because the processing costs may vary from one service to another. These costs can be related, for
instance, to the amount of money charged to a client, or the communication time necessary for the processing. In our study
we extend service specifications with cost functions to capture the cost information explicitly.
The following example illustrates the described notions.

Example 1. Fig. 1 illustrates a community of genomics services. The community alphabet consists of the following activities:
transcription factor binding search (b), cluster and principal components analysis (c), GenBank sequence retrieval (g),
promoter identification (i), microarray analysis (m), NCBI BLAST search (n), and promoter model generator (p). The
community has 6 registered services each with different functionalities and processing costs. For instance, the service A4
can perform c, i and p with costs 1, 0 and 2, respectively. Note that costs are context dependent meaning a service can
process the same activity with different costs depending on the current state of the service, for instance, the activity m in
the service A1.
Each service (schema) is represented by an FSM as illustrated in Fig. 1. In each FSM, the state directed by an arrow head

without a tail represents the start state of the service when the enactment is created. Also, each double circle represents an
accepting state where an enactment can be terminated successfully.
Suppose that a scientist would like to make an experiment on promoter identification by performing the following

activities in that order: microarray analysis, cluster and principal components analysis, Genbank sequence retrieval, NCBI
BLAST search, transcription factor binding search, promoter identification, promoter model generator and transcription
factor binding search. We represent this sequence of activities as a word w = mcgnbipb. Obviously, none of the 6 services
can processw by itself. The services, on the other hand, can be coordinated so that they collaboratively processw.
There are two possible ways to accomplish this. The processing of the activities m, c, g, n, b, i, p, b can be delegated to

A6, A4, A5, A6, A5, A5, A4, A5, respectively (shown as d1(w) in Fig. 1). In other words, A6 processes the subsequence mn, A4
processes the subsequence cp, etc. An alternative way is to perform the same delegation except the subsequence mn is
delegated to A1 (shown as d2(w) in Fig. 1).
The cost of a delegation of a sequence is the sum of the delegation costs of individual activities. Therefore, the cost of d1

is 16 (=5+ 1+ 3+ 1+ 1+ 2+ 2+ 1), and the cost of d2 is 18 (= 3+ 1+ 3+ 5+ 1+ 2+ 2+ 1). We can say that d1 is
the optimal (cheapest) delegation ofw to the service community in Fig. 1. �
In some cases, not all delegations are desirable. System designers very often would like to constrain the delegations

the system is allowed to perform. These constraints can be of different types. They can be about each service in isolation

420 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

such as the number of ‘‘payment" activities processed by a shopping service should be equivalent to the number of ‘‘order"
activities. This type of constraints is especially important to specify service level agreements, where a service requires a
specific usage. They can also be about the relationships of a delegator over multiple services such as the number of ‘‘order"
activities delegated to the shopping service 1 must be more than the number of ‘‘order" activities delegated to the shopping
service 2, because we have an agreement with service 1 to direct the traffic towards that as much as we can. They can also
be about systems generated by single services as a whole. In fact, this type of constraints is widely used in the choreography
literature [7,16].
In this study, we consider linear constraints, a subset of the first type of constraints. For example, in the service A4 in

Example 1, we would like to restrict the delegations based on the usage history so that the service A4 can perform an i only
if the requester has delegated and paid for enough number of c ’s and p’s so far. In other words, the number of i’s performed
by A4 can be at most 4 times the total number of c ’s and p’s A4 has performed so far. To enable the specification of such kind
of constraints, we augment FSMs with linear bounded counters. More details are provided in the next section.
Note that in terms of computing an optimal delegation, a greedy approach such as delegating each activity in a given

sequence to the service with the cheapest processing cost does not work. In the optimal delegation in Example 1, m is
delegated to A6 even though the cost at A1 is lower. The delegation of an activity, in fact, may require more complex analysis
of the whole sequence. For instance, if the number of m’s in w were more than 1, then the first m would be assigned to A1
in the optimal delegation.
We would like to clarify an important departure from the original Roman model of [4,6,5]. In the original Roman model,

the delegation is based on a target transition system. Given a target service as a transition system, the goal is to construct a
delegator which outputs a delegation for every desired sequence of activities in the target service. For instance, for a target
service with the desired activity language {mn, cg}, we can construct a delegator, becausemn can be processed by Service A1
and cg can be processed by Service A3. An important characteristic of the original model is the interactivity of services and
clients.Whenever the service performs an activity, it provides the next possible set of activities and the client can request an
activity from this set. Because of this interactivity, a delegator built on top of existing services also has to work interactively.
In other words, it has to decide the delegation of each activity before the next activity. For example, a target service with
the activity language {mn,mb} cannot be realized, because the delegation of m cannot be determined (either to Service A1
or to Service A2) before knowing whether the next activity is n or b (this will be decided at run time by the client).
A natural question is whether we gain anything if we sacrifice some degree of interactivity. In fact, in [17], the authors

studied a different class of delegators, namely lookahead delegators, where the delegator delays the decision of activities
a fixed amount of steps. For instance, for the target service with the activity language {mn,mb}, there is a 1-lookahead
delegator which delays the delegation of m until it knows whether the next activity is n or b. Practically, this means that
when the client requests the execution of m, the delegator asks whether the client will pick n or b in the next round. It is
shown that the more delays we allow the delegator to have, the more target services we can realize [17]. In this paper, we
study the casewhen a delegator can delay a delegation an unbounded number of steps (i.e., the delay amount depends on the
input length). Practically, the client gives the complete sequence of activities she requests, and the delegator delegates this
sequence from beginning to the end without any other interactions with the client. The batch-style specification of users’
requests are also adopted in many real systems. For instance, in high performance computing systems such as MapReduce
[12] system and Hadoop system [21], which are used by Google and Yahoo, respectively, for their large scale data analysis
jobs emerging in the areas such as web search and online advertisement, users specify the desired computations in-priori.
Then, these systems achieve these computations by delegating them among available services.

3. Formalization

In this section, we formally define the notion of a service, and the optimal delegation problem. We assume some
familiarity with formal languages and finite state machines.
LetΣ be a finite alphabet of symbols, each of which represents an activity. A service request (or word) of length k ∈ N over

Σ is a sequence of k activities (requested by a client). We use λ to denote the empty word, i.e., the word of length 0. LetΣ∗
be the set of all words overΣ . A language is a subset ofΣ∗.
A linear(-bounded) counter machine (or simply, linear CM) is an FSM augmented with a finite number of counters (or

integer variables) (see [13] for counter machines). While making a transition from a state to another state, each counter
(which can only have nonnegative values) can be incremented or decremented by 1 or stay unchanged. The counters can be
tested for zero. Note that these counters are restricted in the sense that there is a constant c such that on any input of length
n, the value stored in each counter during the computationmust be atmost cn; thus, these counters are called linear bounded
counters. (Note that our restriction on the counters being linear can easily be relaxed to counters with values bounded by
cnk for constants c and k.)
A counter is formally represented by a push-down stackwhere the stack can only be checked if it has a top element. More

precisely, the stack has only two symbols ‘‘B’’ and ‘‘0’’ where B can only appear at the bottom of the stack and it is never
erased. Thus, the number of 0’s on top of B represents a number, the content of the counter. Note that there is no direct way
to check the value of a counter other than testing whether it is zero or not, i.e., whether the stack is empty or not.
Example 2. For the service A4 in Example 1, we specify a constraint that the number of i’s performed should be at most 4
times the number of c ’s and p’s performed. To specify this constraint, the FSM of A4 can be augmentedwith 5 linear bounded

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 421

counters. Given a string, each of the 4 counters counts the total number of c ’s and p’s performed (all 4 counters contain the
same count). The 5-th counter counts the number of i’s. At the end of the computation, the 5-th counter is decremented by
the other 4 counters. If the 5-th counter is zero, then the number of i’s is at most 4 times the number of c ’s and p’s; therefore,
the string is accepted. Any string accepted by A4, therefore, any delegation assigned to A4, satisfies the constraint. �

Wewill show that for a set of servicesmodeled as linear CM’s, the (optimal) delegation problem is solvable in polynomial
time. To obtain our results, it is convenient toworkwith 1-way log n space-bounded Turingmachines [22] that are equivalent
to linear CM’s. Roughly, a (possibly nondeterministic) 1-way log n space-bounded Turing machine (TM) A has a one-way read-
only input tape and k two-way read/write work tapes for some k > 0. The TM A uses no more than log n cells on each work
tape for any input of length n. The following can easily be verified (see, e.g., [22]).

Theorem 1. Every linear CM can be simulated by a 1-way log n space-bounded Turing machine, and conversely.
In view of the theorem above, for convenience, we will state our results in terms of 1-way log n space-bounded Turing

machines (TM’s), while the same results can also be obtained in terms of linear CM’s.
We model each service as a 1-way log n space-bounded TM with associated cost on transitions.

Definition 1. An service A is a tuple (S,Σ,Γ , δ, s0, B, F , C)where

• S is the finite set of states, s0 ∈ S is the start state, and F ⊆ S is the set of accepting states (where an enactment can be
terminated successfully),
• Γ is a finite set of tape symbols including the blank symbol B,
• Σ ⊆ Γ − {B} is the set of input symbols (activity alphabet),
• δ ⊆ S ×Σ × Γ k × S × Γ k × {R,−} × {R, L,−}k is a set of transitions (k being the number of work tapes).

Note that each transition in δ is a tuple (s, a, b1, . . . , bk, s′, b′1, . . . , b
′

k,m, n1, . . . , nk) where s, s
′
∈ S, a ∈ Σ ,

bi, b′i ∈ Γ , m ∈ {R,−}, nj ∈ {R, L,−}. The semantics of the transition is defined naturally; for instance, the transition
(s, a, b, c, s′, b′, c ′,−,R, L) of a service with 2 work tapes has the following effect: if the service is in the state s and the
input and work tape heads are scanning symbols a, b, c (respectively), then the service goes to the state s′, and the work
tape heads replaces b, c with b′, c ′. In addition, the input head stays stationary (−), while thework tape headsmove right
and left (respectively) (R, L).
• C is a cost function that maps each transition t in δ to the cost C(t) of performing the transition.

A service A defined as above can be viewed as an acceptor. A accepts a word w = a1a2 · · · an if, when started in its start
state with input #a1 · · · an# (#’s are the end markers) and blank read/write work tapes, it eventually lands in an accepting
state with all work tapes blank. When it is convenient, we may ignore the end markers and assume that two end markers
are added to the original input. When the number of work tapes is 0, we call such a service an Finite State Machine service,
or shortly, an FSM service.
When a client submits a request (a sequence of activities) to a service instance, a new enactment is created and it is

terminated when the processing finishes. Since the termination of an enactment is correct only when it happens at one
of the accepting states, an accepted word represents a service request that can be processed by A successfully. Then, the
(activity) language of a service A, denoted as L(A), is the set of requests accepted by A.

Definition 2. Let A be a service (or a log n space bounded TM with k work tapes). A (partial) configuration of A is a tuple
id = (q, y1, j1, . . . , yk, jk), where q is the current state, yi is the content of the worktape i, and ji is the position of the
read–write head within the worktape i.

The configuration notion defined is partial because it includes neither the position information of the head of the input
tape nor the input tape’s content. Since the size of each worktape content is at most log n space, the total number of such
configurations is |S| × ((|Γ |log n)× log n)k which is bounded by nm for some constantm. For an FSM service, the number of
configurations is |S|.
A service community C of size r is a set A1, . . . , Ar of services. Informally, a delegation of a word w = a1a2 · · · an over C is

a mapping that specifies which service in the community should process each activity. Intuitively, it defines a subsequence
for each service and each service processing a nonempty subsequence should end up in an accepting state.
Now we can formalize the notion of a delegation as follows:

Definition 3. For each wordw, an online pre-delegation ofw over C is a function d : {1, 2, . . . , |w|} → C . Let imagedA(w) be
the subsequence of w obtained by concatenating the symbols assigned to the service A. Then, an online pre-delegation d is
an online delegation if d is total on {1, 2, . . . , |w|}, and imagedA(w) is either λ or in L(A) for every service A in C .

Given a delegation d, for a service A, imagedA(w), unless it is λ, corresponds to a sequence of transitions (or path) in the
service A’s state space. The cost of imagedA(w) is the sum of the cost of these transitions. If it is λ, then the cost is defined as
0. If A is nondeterministic, imagedA(w) may correspond to a set of sequences of transitions. In this case, the cost is defined
as the cost of the sequence having the minimum cost. Finally, the cost of a delegation is defined as the sum of the costs of
imagedA(w) for all A ∈ C .
Definition 4. A delegation d ofw over C is optimal if there are no other delegations ofw over Cwith some cost less than the
cost of d.

422 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

Fig. 2. Services A1, A2 used in the product machine construction.

Fig. 3. The product machine of the FSMs shown in Fig. 2.

To make the presentation of our results on the general model clear, we first present our findings on a restricted version.
In the restricted version, we remove the linear bounded storage from services. In essence, each service becomes an FSM
service.

4. Delegation for FSM services

In this section, we study a restricted version of the model introduced in the previous section such that each service has
no worktapes, therefore, has a finite number of partial configurations.
Before we describe our linear time delegation algorithm, we first introduce the notion of a product machine that is used

in the explanation of the proposed algorithm.
Example 3. Fig. 2 shows two services, A1 and A2. Each has three states numbered as 0, 1, and 2. Each transition is also labeled
with its cost. For example, the cost of A1 making the transition (0, a, 1) is 3. The product machine of A1 and A2 is shown in
Fig. 3. Each (global) state of the product machine represents a ‘‘configuration’’ and it refers to a state for each service. For
instance, the configuration 21 represents a global state where A1 is in its state 2 and A2 is in its state 1. Transitions show how
the system proceeds when an activity is processed. For example, the a/1 transition from 00 to 10 shows that if A1 processes
the activity a, then A1 goes to its state 1, while A2 stays at the state 0. In general, a transition x/i denotes the fact that x is
delegated to the service i, i.e., the service imakes an x transition. �
Next we formally define the product machine of a set of services.

Definition 5. Given a set {A1, . . . , Ar} of services where for each 1 6 i 6 r , Ai = (Si,Σ, δi, s0i , Fi), the product machine
prod = (SP,Σ in,Σout , δP, s0P, FP) is aMealy FSM where

• Input and output alphabets:Σ in = Σ , andΣout = {1, 2, . . . , r},
• States: SP ⊆ (S1 × · · · × Sr),
• Starting state: s0P = [s

0
1, . . . , s

0
r],

• Accepting states1: FP = {[q1, . . . , qr] | ∀i(qi ∈ Fi)}
• The transition mapping δ : SP × Σ in → SP × Σout is defined as follows: Let [q1, . . . , qr] be a state in prod. For each
activity a ∈ Σ and for each i ∈ [1, r], if δi(qi, a) is defined, then there exists a transition δ([q1, . . . , qr], a) in the product
machine such that δ([q1, . . . , qr], a) includes ([p1, . . . , pr], i)where pi = δi(qi, a), and pj = qj if j 6= i}.
Note that the transition above represents the fact that a is assigned to the service i and therefore, the systemmoves to a
new configuration where each machine stays in the same state except Ai.

We note that the product machine is not merely an acceptor, but an acceptor with outputs, i.e., a transducer. Also, in the
description of accepting states, for the simplicity of the discussion, we assume that once a service processes an activity, it
cannot return back to its initial state. In fact, every FSM can be converted to an equivalent FSM satisfying this property.

1 When defining the accepting states, for the simplicity of the discussion, we assume that the initial states are accepting.

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 423

Fig. 4. (a) The full computation tree forw = aaabc generated by unfolding the product machine in Fig. 3, and (b) the final reduced directed acyclic graph.

Note that since a configuration consists of the state information of each service, the number of states in the product of r
services can be at most cr where c is the number of states of the biggest service.
We are now ready to discuss the algorithm for the delegation problem and related analysis.
Let prod denote the product of a set {A1, . . . , Ar} of services. Given a wordw = a1 · · · an, we build a graph that simulates

prod onw and adds costs to the nodes to indicate the cost of every path. The goal is to find the shortest path in this graph.
More precisely, the graph is built by unfolding the prod on the input string a1a2 · · · an as follows. Starting from the initial

state of prod, we can construct a tree, in which at level i, we will have all states of prod that are reachable from the initial
state on the prefix a1 · · · ai and we keep track of the total cost of each path from the initial state to the level i. For instance,
Fig. 4(a) shows the computation tree generated for the word w = aaabc using the services in Fig. 2. This tree shows all
possible paths that can be taken with aaabc in the product machine shown in Fig. 3. The underlined numbers next to each
node shows the cost of the path from the root to that node. For instance, the cost of the path 00-10-11 is 7.
It is important to note that if the structure is constructed as described, the number of nodes can be exponential in the

length of the input word w, because the tree shows all possible paths. Instead of constructing the structure as a tree, we
construct it as a directed acyclic graph by merging the identical states at the same level. For example, in Fig. 4(a), when the
second level of the tree is constructed, two copies of the state 11 appear. In this case, we merge them (Fig. 4(b)). Since we
look for the shortest path, when we merge the states, for each state, we only keep the paths which have the minimum path
cost from the root to the state. For instance, when the two 11 nodes in the second level are merged, there are two paths,
00-10-11 and 00-01-11. Since they both cost 7, both transition a/2 and a/1 are kept. In the next level, again two copies of
the state 11 appear and when they are merged, the path with a/1 transition is kept and the path with a/2 is ignored by
removing the transition a/2 since the paths using a/1 cost 11 while the paths using a/2 cost 12. The final reduced directed
acyclic graph is shown in Fig. 4(b).
This idea of trimming paths in the tree is formalized in the following algorithmDelegate_FSM. The algorithm starts from

the root level of the tree and at each iteration it selects the paths that are shortest to the next level. Note that Step 5 in the
algorithm implements the selection.

Delegate_FSM(a1, . . . , an) {
/∗ c(x) denotes the cost of transition x
c(x) also denotes the shortest path cost arriving at configuration x
t(x, y) denotes a transition from configuration x to configuration y ∗/

1: E := { initial configuration }; /∗ E contains frontier configurations ∗/
2: For each ai from a1 to an
3: Let G be the set of reachable configurations from E with ai
4: ∀g ∈ G
5: record each transition t(e, g)where e ∈ E such that

∀e′ ∈ E ∀t ′ t ′(e′, g) implies c(e)+ c(t) 6 c(e′)+ c(t ′)
6: c(g) := c(e)+ c(t)
7: E := G
8: Find an accepting configuration x ∈ E with minimum c(x)
9: Backtrack the path from x to the initial configuration and
output the corresponding delegation }

424 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

We can prove the following Lemma.

Lemma 1. Let A1, . . . , Ar be a community of services, a1 · · · an be the input sequence of activities, and T be the complete
computation tree constructed by unfolding the product machine of A1, . . . , Ar , with respect to a1 · · · an. For each 1 6 j 6 n,
if p is a path from the root of T to the j-th level of T with the lowest cost, then every configuration on the path p is assigned to the
frontier set E by the algorithm Delegate_FSM.

Proof. Let f0 denote the initial configuration. Each node is labeled with a configuration. The root of the tree T is labeled f0.
Each edge ak/z represents the delegation of the activity ak to a service z where z ∈ {A1, . . . , Ar} and 1 6 k 6 n. The cost of
an edge ak/z is the cost of the corresponding transition in service z.
The tree T has n levels where the root level is 0. Each path from the root to an accepting configuration at level n

corresponds to a valid delegation of a1 · · · an. We call such a path an accepting path. The cost of each (accepting) path is
the sum of the cost of the edges and represented by c(p) for a path p. Let p = f0 a1/i1 f1 a2/i2 · · · aj/ij fj be a path with the
smallest cost for a1 · · · aj where fk represents the configuration the path visits at level k. We prove the claim by induction
on j.

• Basis: Let g be a configuration at level 1 and ty1 , . . . , tyq be the transitions from f0 to g . Also assume that c(ty1) 6 c(ty2) 6
· · · 6 c(tyq). In Line 5, the algorithm removes all transitions except ty1 .
. Case 1: g 6= f1

The path p is not removed.
. Case 2: g = f1 and ty1 = a1/i1

The path p is not removed.
. Case 3: g = f1 and ty1 6= a1/i1

For the path p′ = f0ty1 f1a2/i2f2 · · · aj/ijfj, it must be that c(p
′) = c(p), otherwise the cost of p cannot be the lowest;

therefore, both paths p, p′ have the lowest cost and they are not removed.
• Inductive Step: Assume the reduction in Line 5 doesn’t remove all optimal paths up to levelm (i.e., the prefix a1 · · · am is
delegated). We prove that the reduction at levelm+ 1 also keeps all paths with the lowest cost at that level.
Let h be a configuration at levelm+1, and let G be the configurations at levelm each having a transition to h. Suppose

that p = f0 a1/i1 f1 · · · am−1/im−1 fmam/im fm+1 is a path with the lowest cost in the current reduced tree. For some g ∈ G,
let c(g) represent the cost of the paths reaching g (Note that there is only one such cost because of the reductions applied
up to levelm). Let X(G, h) = {x | x is a transition from g to h for some g ∈ G} and X(g, h) = {x | x is a transition from g
to h}.
Let’s say, for a transition t from g1 to h, the cost c(g1) + c(t) is the minimum of {c(gi) + c(tj) | gi ∈ G and tj is in

X(gi, h)}. The reduction thus removes all transitions in X(G, h) except for t . We have the following cases:
. Case 1 : h 6= fm.

The path pwith the lowest cost is not removed.
. Case 2 : h = fm.

Subcase 2.1 : g1 = fm−1 and t 6= am−1/im−1
The pathwhere t is replaced by am−1/tm−1 in p is also an optimal path, since c(t)must be equal to c(am−1/im−1),

otherwise, p is not an optimal path.
Subcase 2.2 : g1 = fm−1 and t = am−1/im−1
The path p is not removed.

Subcase 2.3 : g1 6= fm−1
The path reaching to g1 followed by t fm am/im fm+1 . . . an/in fn is an optimal path because c(g1) + c(t) 6

c(fm−1)+ c(am−1/im−1).
In all cases, all pathswith the least cost remain in the reduced tree (i.e., the end node of the path is assigned in the frontier
set). �

The following follows immediately.

Lemma 2. The reduction of the transitions done at Line 5 in Algorithm Delegate_FSM does not remove any optimal delegations.

From this lemma, we can conclude the following:

Theorem 2. Algorithm Delegate_FSM correctly computes an optimal delegation (nondeterministically).

Proof. Lemma 2 implies that the final structure contains at least one optimal path. It is clear that the cost of each path
reaching to a configuration is computed correctly. At the end, in the final level, an accepting configuration labeled with the
minimum cost represents the final configuration reached with the delegation of the activities. Backtracking the path from
this configuration to the root gives the optimal delegation of the sequence. �

Theorem 3. An optimal delegation of a wordw of length n over a community of r FSM services each with at most c states can be
computed in O(cr ∗ n) time.

Proof. The time complexity of the proposed technique can be analyzed as follows: At each level of the reduced tree
construction,wemerge the identical states; therefore, there are atmost cr states at each level (where c =maximumnumber

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 425

of states in the Ai’s) which is themaximumnumber of states in prod as explained in the previous section. Merging the states
means merging some paths. When a merge happens, only the shortest path among those paths is kept and the others are
ignored. Therefore, in each level, the number of paths arriving to a node is 1 (the shortest one) and because of that, the
number of paths in the final tree equals the number of states in the final level which is at most cr . Since the length of the
stringw is n, there are cr paths of length n. Therefore, the construction of the reduced tree takes O(ncr) time.When the final
level is reached, by backtracking from the leaf level to the root level, the shortest path with the delegations can be extracted
which takes O(n) since there are n levels. As a result, the algorithm Delegate_FSM takes O(cr ∗ n) time. �

In our case the community of services is not part of the input to the problem, therefore, we conclude the following.

Theorem 4. An optimal delegation of a word w can be computed in time linear in the length of w (the community of services is
considered fixed).

Proof. Follows from Theorem 3 and the fact that the community of services is not an input to the problem. �
It can be shown that the algorithm can be implemented on a deterministic linear-time two-way Turing Machine (TM)

transducer T (i.e., T has a two-way read-only input tape that contains the input string a1a2 · · · an including endmarkers to
be processed, read–write work tapes, and a one-way write-only output tape to write the assignments). The TM essentially
makes two passes on the input. On the first pass, it carries out the computation of the costs of the paths. After it has found
a shortest path, the TM makes another pass on the input to output the delegation for each symbol in the input string.
Note that the algorithm Delegate_FSM has an exponential constant factor cr where r is the number of services each

with at most c states. One natural question is whether we can improve this result by reducing this factor to a bound that
is polynomial in c and r . Such an algorithm would be preferable. The following result, however, shows that this is unlikely
since such an algorithm would imply P = NP .

Theorem 5. For the optimal delegation problem, suppose there is an algorithm of time complexity f (c, r)∗nwhere f is a function
of c and r, r is the number of services each has atmost c states, n is the length of the inputword. If f (c, r) is bounded by a polynomial
in c and r, then P = NP.

Proof. Suppose such an algorithm A exists. Consider the following problem: Given a finite collection of r + 1 strings
x, y1, . . . , yr (over a fixed alphabet of length at least 3), determine if x can be written as a shuffle of strings y1, . . . , yr .
[36] shows that this problem is NP-complete. We can now use the algorithm A to solve this problem as follows: For each
i, let Ai be a deterministic FSM (DFSM) that accepts the string yi, and assign cost 0 for all the edges for all DFSMs. Apply
the algorithm A and output ‘‘yes’’ if and only if the optimal cost is 0. Note that |Ai| = |yi| + 1. This gives an algorithm of
polynomial time complexity for the shuffle problem and it follows that P = NP . �

Note that this theorem essentially proves that the optimal delegation problem is NP-hard. While the complexity of the
problem could be higher, in Theorem 3 we provide an EXPTIME upper-bound.

5. Delegation for linear counter services

In this section, we generalize Theorem 4 to FSMs with storage. More specifically, each service is modeled as an FSM
augmented with linear counters (i.e., an FSM having a finite number of counters, each of which can have value at most
linear in the length of the input). We show that the (optimal) delegation problem is solvable in polynomial time.
Recall that for convenience we obtain the results using log n space bounded TMs (see Section 2). Let {A1, . . . , Ar} be a

community of services, where each Ai is a log n space bounded TM (recall that the input is 1-way). The product machine
prod is defined similar to the FSM case. Rather than defining it formally, we just give a brief informal description. Like in the
FSMs case, prod simulates the computations of the Ai’s faithfully by keeping track of the state changes and the changes in
the worktapes. prod is also a log n space bounded TM and have as many worktapes as the Ai’s. When a new input symbol
has to be processed, prod nondeterministically simulates the move of exactly one of the Ai’s that requests (i.e., reads a new
symbol). Note that the Ai’s are not operating in real-time (i.e., their input heads do not move right at every step) and, hence,
their input heads are not synchronized. So, e.g., A1 might be requesting to read a symbol at time t1 while A2 might request
to read the (same) symbol at a later time t2. prodmay then delegate the symbol to A1 at time t1 (hence simulating the move
of A1 on the input symbol) or guess that A2 will read at a later time and delegates the symbol to A2 at time t2.
More formally, the configuration of the product machine PROD will be of the form < a1a2 . . . an, S, j, T1, T2, . . . , Tr >.

Here, the input string is a1a2 . . . an, S ⊂ S1 × . . . × Sr (Si is the state set of Ai), 1 6 j 6 n, and Tk (1 6 k 6 r) is a partial
configuration of Ak. This configuration represents the following scenario: at this point, the first j − 1 symbols have been
collectively processed by the services {Ak}, and as a result, they have advanced from their respective starting configurations
to the tape configurations {Tk}.

5.1. Polynomial-time optimal delegation algorithm

Let prod denote the product of a set of services and id0 be the initial configuration of prod. For every possible
configuration id, prodID represents the same machine with prod except the initial configuration of prodID is id instead
of id0.

426 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

Next we propose an algorithm which given a sequence of requests, computes a delegation over a community of log n-
space bounded TMs.

Delegate_LC(a1, . . . , an) {
1: if a1a2 · · · an is not accepted by prodID0
2: output error
3: else
4: current = id0
5: for each i from 1 to n
6: E = set of configurations reachable from current configuration

with ai in prod
7: if i < n
8: Find a configuration, say idp, in E such that

ai+1 . . . an is accepted by prodIDp
9: else
10: Find an accepting configuration, say idp, in E
11: Output Aj that corresponds to the transition

from current configuration to idp (thus ai is delegated to Aj)
10: current = idp }

Lemma 3. Let a1 . . . an be a word accepted by prod. Let ci represent the configuration assigned to the variable current at the end
of ith iteration of the loop starting in Line 5. For all i < n, there exists a path of length n− i from ci to an accepting configuration
in prod with the word ai+1 . . . an, and cn is always an accepting configuration.

Proof. Let (ID1, w, ID2) represent the fact that the configuration ID2 is reachable from ID1 with the word w. We prove the
first part by induction on the number of iterations.

• Basis (i = 1): Since a1 . . . an is accepted by prod (otherwise the iteration will not be entered), there must exist
a configuration x such that (ID0, a1, x) and (x, a2 . . . an, IDf) for some accepting configuration IDf in prod. Line 8
assigns such a configuration x to the variable current . Therefore, at the end of the first iteration, current holds x. Since
(x, a2 . . . an, IDf) is true, (c1, a2 . . . an, IDf) is also true. Therefore, there exists a path of length n−1 from c1 to an accepting
configuration.
• Inductive Step: Let’s assume for all i < k < n, it is true that there exists a path of length n − i from ci to an accepting
configuration in prod. By this assumption, (ck−1, ak . . . an, IDf) is true for some accepting configuration IDf . This implies
that there exists a configuration x and an accepting configuration IDf ′ such that (ck−1, ak, x) and (x, ak+1 . . . an, IDf ′) hold.
Line 8 assigns such a configuration x to the variable current . Therefore, at the end of the kth iteration current holds x. Since
(x, ak+1 . . . an, IDf ′) is true, (ck, ak+1 . . . an, IDf ′) is also true. Therefore, there exists a path of length n − k from ck to an
accepting configuration.

This further implies that there must exist a path of length 1 from cn−1 to an accepting configuration x and in the kth
iteration, Line 10 assigns such a configuration x to the variable current . Therefore, cn is always an accepting configuration. �

Lemma 4. For an input word a1, . . . , an, Delegate_LC computes a delegation, if there exists one.

Proof. By construction of the product machine there exists an accepting path in the product machine with a wordw if and
only if w can be delegated to the services successfully. In addition, the outputs generated by traveling such a path gives
one possible delegation of w. We prove that the algorithm ‘‘travels" such an accepting path for every word which can be
successfully delegated (let’s call such words ‘‘delegable").
Let ci represent the configuration assigned to the variable current at the end of ith iteration of the loop starting in Line 5.

For a delegableword a1 . . . an, the path the algorithm travels is ID0a1c1a2c2 . . . ancn. According to Lemma 3, cn is an accepting
configuration; therefore, the path is an accepting path which concludes the proof. �

Lemma 5. Delegate_LC terminates in time polynomial in the length of the input word (the community of services is considered
fixed).

Proof. A log n space-bounded nondeterministic TM can be simulated by a polynomial time-bounded deterministic TM
[22]; therefore, Line 1 can be implemented in polynomial time. Briefly, we can do a breadth first search and mark reached
configurations. Since there is a polynomial number of configurations, at each step, marking takes polynomial time. The
process continues n times, therefore, the total complexity of Line 1 is polynomial. Line 6 also takes a polynomial number of
steps, because, there is a polynomial number of configurations and for each configuration the reachability can be checked
in polynomial time similar to Line 1. The same analysis applies to Line 8. Therefore, the algorithm is polynomial-time
bounded. �

Theorem 6. For a set of services of log n space-bounded TMs where n is the input length, a delegation of an input wordw can be
computed in polynomial time in the length ofw (the community of services is considered fixed).

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 427

Proof. Follows from Lemmas 4 and 5. �
Corollary 1. For a set of services of log n space-bounded TMs where n is the input length, an optimal delegation of an input word
w can be computed in polynomial time in the length ofw (the community of services is considered fixed).
Proof. Briefly, the algorithmDELEGATE_LC can be adapted to take processing costs into consideration. The technique is very
similar to the technique we described previously in FSM services. First, at each iteration, a set of frontier configurations and
their costs are recorded. Whenmultiple versions of one configuration emerges, only the one with the minimum cost is kept
and the rest is eliminated from the frontier configurations for the next iteration. Since the number of configurations in a log n
space-bounded TMs is polynomial, each iteration takes polynomial time. At the end of the nth iteration, the configuration
with the minimum cost can be found in polynomial time. Then, a path from this configuration to the initial configuration is
backtracked in linear time to produce the delegation. �

5.2. log2 n-space Algorithm for Optimal Delegation

The algorithm proposed in the previous section uses polynomial space. In this section, we propose a log2 n-space
algorithm for the optimal delegation problem by sacrificing time.
First we need a space efficient way to check whether one configuration can reach to another in s steps with a given input

string on the tape. The next algorithms are due to Savitch [22]. More precisely, we start with two base cases to deal with a
single input symbol a on the input tape. Test1(a, id1, id2, s) represents the case in which the input head is scanning a at the
start as well as at the end of the computation, with ID1 and ID2 representing the worktape configurations at the start and at
the end. Test2(a, id1, id2, s) represents the case in which the input head is scanning a at the start and has just moved to the
right of a at the end, with ID1 and ID2 representing the worktape configurations at the start and at the end. In both cases, s
represents the number of computation steps.
Test1(a, id1, id2, s) { //Reachability with a symbol a in s steps with
//input head stationary
1: if s = 1
2: if id2 is reachable from id1 in one step with symbol a
3: on the input tape, with input head not moving
4: return true
5: else
6: return false
7: else
8: for each possible configuration id3
9: if (Test1(a, id1, id3, b s2c)) and
10: (Test1(a, id3, id2, d s2e))
11: return true
12: return false
}
Test2(a, id1, id2, s) { //Reachability with a symbol a in s steps with
//input head moving right one step
1: if s = 1
2: if id2 is reachable from id1 in one step with symbol a
3: on the input tape, with the input head moving to the right
4: return true
5: else
6: return false
7: else
8: for each possible configuration id3
9: if [(Test1(a, id1, id3, b s2c)) and
10: (Test2(a, id3, id2, d s2e))] OR
11: [(Test2(a, id1, id3, b s2c)) and
12: (Test1(a, id3, id2, d s2e))]
13: return true
14: return false
}
The next algorithm checks the reachability between two configurations with a string of length greater than one on the

input tape. The procedure Reachable takes i, j, ID1, ID2 and t as parameters and determines if the following is true: The
Turing machine, starting with the input head scanning the leftmost symbol of the input string aiai+1 . . . aj with ID1 on the
worktapes, can reach the configuration ID2 on theworktapes, andwith the input head justmoving past the rightmost symbol
aj in t steps.

428 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

Reachable(i, j, id1, id2, t) { //Reachability with the substring ai . . . aj
1: if i = j
2: if Test2(ai, id1, id2, t)
3: return true
4: else
5: return false
6: else
7: for each possible configuration id3
8: for each k from 1 to t − 1
8: if Reachable(i, b (i+j)2 c, id1, id3, k) and
9: Reachable(d (i+j)2 e, j, id3, id2, t − k)
10: return true
11: return false
}
The space complexity analysis of the algorithm provides the following result:

Lemma 6. Reachable(i, j, id1, id2, t) takes O(log2 n) space where id1, id2 are two configurations of a log n space-bounded TM,
0 6 j− i 6 n and t = O(nm) for some constant m.
Proof. Since theworktapes are bounded byO(log n), the number of steps in a nonlooping computation sequence is bounded
by O(nm) and so, t = O(nm). The algorithm Reachable consists of two phases. In the first phase, recursive calls are made by
dividing the substring by 2 each time. When the substring length is 1, the second phase starts where the algorithm Test2 is
used to check if two configurations are reachable in t = O(nm) steps (which is an upper-bound on the number of all possible
configurations). The height of the call stack (the depth of the recursion) in the first phase is atmost log nwhere n is the input
length. Then, because of the second phase, log nm more frames are added on top of log n frames. Therefore, the stack height
is O(log nm) = O(log n). Each stack frame keeps 2 substring index positions, 3 configurations and the number of steps left.
It can easily be seen that the size of one frame is O(log n). As a result, the stack size is at most O(log n ∗ log n) = O(log2 n)
which is the space complexity of the algorithm Reachable. �
Now we are ready to define our delegation algorithm. Let prod be the product machine of a set of services. Let id0 be

the initial configuration of prod. Without loss of generality, assume that prod has only one (i.e., unique) accepting id, say
idf . The algorithm Delegate_LC_SpaceEfficient describes how to determine the delegation of symbols to the Ai’s of a string
w = a1a2 · · · an.
Delegate_LC_SpaceEfficient(a1, . . . , an) {
1: if Reachable (1, n, id0, idf , nm) is false
2: output error
3: else
4: current = id0
5: i = 1
6: for each possible configuration ID
7: if Reachable (i, i, current, ID, nm) and

Reachable (i+ 1, n, ID, IDf , nm)
8: Output Aj that corresponds to the transition

from current configuration to id (thus ai is assigned to Aj)
9: i++
10: current = id
}
Theorem 7. For a set of services modeled as log n space-bounded TM’s where n is the input length, a delegation of a wordw, can
be computed in O(log2 n) space.
Proof. The algorithm Delegate_LC_SpaceEfficient basically determines the first move that moves the head past i on the
input tape of the prodmachine and assigns the i-th symbol to the appropriate service. It can be implemented on a log2 n-
space bounded TM. For each input symbol, the algorithm Reachable is executed which requires log2 n space by Lemma 6.
Each substring position and configurations require log n space. As a result, the total space complexity of is log2 n. The
correctness of the algorithm is obvious since the algorithm exhaustively searches all possible paths through which idf is
reachable from id0. �
We informally describe how to extend this algorithm for finding an optimal delegation. Line 2 of Reachable can be

changed to return the cost of the transitionswith ai. Also, The costs returned from Line 8 and 9 can be summed and returned.
Then,Delegate_LC_SpaceEfficienthas twopasses. In the first pass, it computes the costs of all paths, and keep theminimum
cost value. The cost of a path can be stored in O(log n) space (the cost value can be at most nm × c × n for some constant c
representing the cost of a step). In the second pass, the costs returned with Line 7 can be summed and check whether it is
equal to theminimumcost value. If it is, then the corresponding delegation is output. Therefore,we have the following result.

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 429

Corollary 2. For a set of services of log n space-bounded TMs where n is the input length, an optimal delegation of an input word
w can be computed in O(log2 n) space.

Note that the algorithm above takes time O(nlog n) and its main advantage is the reduced space requirement.

6. Related work

The preliminary results from this paper were presented in [18]. This paper is related to the work presented in a series of
papers [1–4,6,11,10,17,20,31]. [4] defines a service framework and studies the problemof automated composition synthesis.
One input is a set of descriptions of services, each given as an automaton. The second input is a desired global behavior,
also specified as an automaton, which describes the possible sequences of activities. The output is a subset of the atomic
web services, and a delegator that will coordinate the activities of those services, through a form of delegation. Finding a
delegator, if it exists, is proven to be computable in EXPTIME. It has been brought to our attention by one of the referees that
this problem has been shown to be EXPTIME-complete by Muscholl and Walukiewicz [29]. [11,10] study generalizations
to automata with unbounded storage where decidability and undecidability of the composability problem are shown. [6]
extends the framework to allow interactions among existing services, which provides more flexibility to the services to
achieve the desired service behavior. In [17], the notion of delegator was extended to have ‘‘look ahead", i.e., the delegation
of an activity is determined by looking at the future activities. In all three approaches, a desired service is a part of the
input and a composite service is created through composition of existing services. This construction happens offline. In this
study, instead of a desired service, an instance of an execution is given. As a result, we don’t have any knowledge to use for
preprocessing before run time. In addition, the earlier work in [4,6,17] were based only on standard finite state machines
and did not have cost functions associated with the activities.
In [1], the notion of ‘‘parallel composition’’ is introduced and some results are obtained regarding the degree of parallelism

that can be achieved in the composition of services. The authors define the notion of speedup to measure the amount of
parallelism. It is proven that the speedup problem has the same complexity lower bound as the limitedness for distance
automata, which lies between PSPACE and EXPTIME. Also, a parallel PTIME transducer for the composition problem is shown
which runs with maximal parallelism. In [20], Roman model is extended with a merge operator allowing for simultaneous
execution of actions. At each step, multiple services are allowed to process an input symbol. In other words, one or more
symbols are processed by multiple services simultaneously at each step. Forward simulation technique is used for the
computation of a delegator.
Recently, the Roman model of [4] was extended to include messages among services [3] and the impacts of activities

on the real world are modeled as a relational database. Two types of composition models are studied namely, composition
synthesis problem and choreography synthesis problem. The desired behavior is achieved via a central mediator in the
former, while in the latter, the coordination of existing services is done in a distributed manner. This work also considers
devilish nondeterminism.
The idea of service communities we used in this study has a similar flavor with the ones studied in [4,2]. Our notion

of service communities is closer to the one of [4]. An important difference between [2] and [4] is that in [2], communities
define services theywould like to have, and service providers register their services if they think they can provide the desired
service. In [4], service providers export their services with respect to a community alphabet and the community figures out
what services it can provide using the registered services.
The batch-style specification of users’ requests has similarities with a choreography specification. A choreography

specification is a collaboration protocol amongmultiple services describing their interactions to achieve a desired goal [24].
There are studies such as [8,14,24] in the literature that focus on verifying whether services can interact in a way that is not
conformant to the desired choreography. There are two main differences between these studies and ours. First, we model
the desired sequence of actions performed by services while they focus on the sequence of messages exchanged by services.
Second, our goal is to compute a way to delegate desired actions to available services while theirs is to verify if service
interactions can result in an undesired state.
Service composition is also closely related to planning [27], where existing tasks are put together for a given goal. An

approach to automated composition [30] has been developed for the OWL-S model [9]. The basic question in that work is
whether a given collection of atomic services can be combined, using the OWL-S constructors, to form a composite service
that accomplishes a stated goal. The approach taken is to encode the underlying situation calculus world view, the desired
goal, the individual services (or more specifically, their pre-conditions and effects), and the OWL-S constructors into a Petri
net model. This reduces the problem of composability to the problem of reachability in the Petri net. The main difference in
our approach is that we use finite state machines to represent services and the desired goal is represented as a sequence of
activities. [31] uses planning via symbolic model checking and proposes a promising technique to generate an executable
BPEL process from a set of abstract BPEL descriptions.
The problem was also considered in the context of workflows. In [35], the global dependencies are given as a tree, with

‘‘optional’’ and ‘‘choices’’ on some dependencies, resembling the event algebra [34]. An algorithm was given to map to a
Petri net that generates the root of the tree without violating the dependencies. In a simpler model, [26] starts from a pair
of pre- and post-conditions and assembles the workflow by selecting tasks from a library.

430 C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431

Another approach on the automated composition problem is considered in [7,15] where the desired global behavior
described as a conversation (a family of permitted message sequences) specified as a finite state automaton. These studies
use message-based models whereas our model is activity-based.
In terms of service modeling, there are three main approaches: Activity-centric modeling (such as [4,6,17]), message-

centricmodeling (such as [7,15]), and hybridmodels (such as [33,3]). In this paper, we adopted the activity-centric approach
where the focal point of the modeling is service activities (excluding message sends and receives). Compared to this
approach, in message-centric models [7,15], exchanged messages are the center of attention. In [33,3], hybrid models
are proposed where both performed activities and exchanged messages are specified. Each approach gives a different
perspective on the composition problem and has different complexity characterizations.
We also would like to point out the tutorial by De Giacomo and Mecella [28] which categorizes service composition

studies in 4 dimensions the dimensions being the statics of the system, the dynamics of the target service, the dynamics of
the component services, and the degree of completeness. According to this categorization, our study lies in the high parts
of the dynamics of target services and component services dimensions, and in the low parts of the statics of the system
dimension. For more information on the categorization and the categorization of other service composition studies, we
refer the interested reader to this tutorial.

7. Conclusion and future work

We investigated online and minimum-cost delegation problem in service communities where services are modeled
as FSMs augmented with linear counters. We formally analyzed the problem and give complexity bounds. We hope to
see software implementations inspired from the techniques presented in this paper. In future, we plan to extend the
model in various ways. For instance, the current model doesn’t capture data requirements and data dependencies among
services. It also doesn’t address the possible impacts of activities on the real world such as what data each service
creates/updates/deletes. The first results on this matter can be found in [3].

Acknowledgements

We are grateful to anonymous referees for their truly helpful comments that improve the presentation of our results.

References

[1] T. Ahmed, G. Grahne, Parallel composition of finite state activity automata, in: Proc. Descriptional Complexity of Formal Systems, DCFS, Las Cruces,
NM, USA, 2006.

[2] B. Benatallah, M. Dumas, Q.Z. Sheng, A. Ngu, Declarative composition and peer-to-peer provisioning of dynamic web services, in: Proc. Int. Conference
on Data Engineering, ICDE, 2002.

[3] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Mecella, Automatic composition of transition-based semantic web services with messaging, in:
Proc. Very Large Databases, VLDB, 2005.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, M. Mecella, Automatic composition of e-services that export their behavior, in: Proc. Int. Conf.
on Service Oriented Computing, ICSOC, in: LNCS, vol. 2910, 2003.

[5] D. Berardi, D. Calvanese, G. De Giacomo, M. Mecella, Composition of services with nondeterministic observable behavior, in: Proc. Int. Conf. on Service
Oriented Computing, ICSOC, 2005.

[6] D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, D. Calvanese, Synthesis of underspecified composite e-services based on automated reasoning,
in: Proc. Int. Conf. on Service Oriented Computing, ICSOC, 2004.

[7] T. Bultan, X. Fu, R. Hull, J. Su, Conversation specification: A new approach to design and analysis of e-service composition, in: Proc. Int. World Wide
Web Conf., WWW, 2003.

[8] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, G. Zavattaro, Choreography and orchestration conformance for systemdesign, in: Proc. Int. Conf. on Coordination
Models and Languages, ICCML, 2006.

[9] OWL Services Coalition. OWL-S: Semantic markup for web services, 2003.
[10] Z. Dang, O.H. Ibarra, J. Su, On composition and lookahead delegation of e-services modeled by automata, Theoretical Computer Science 341 (2005)

344–363.
[11] Z. Dang, O.H. Ibarra, J. Su, Composability of infinite-state activity automata, in: Proc. Int. Symp. on Algorithms and Computation, ISAAC, Hong Kong,

2004.
[12] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters, Communications in ACM 51 (1) (2008) 107–113.
[13] P.C. Fischer, A.R. Meyer, A.L. Rosenberg, Counter machines and counter languages, Mathematical Systems Theory 2 (1968) 265–283.
[14] H. Foster, J. Kramer, S. Uchitel, J. Magee, Ws-engineer: A rigorous approach to engineering web service compositions and choreography, in: Proc. XML

2006 Conference, 2006.
[15] X. Fu, T. Bultan, J. Su, Conversation protocols: A formalism for specification and verification of reactive electronic services, in: Proc. Int. Conf. on

Implementation and Application of Automata, CIAA, 2003.
[16] X. Fu, T. Bultan, J. Su, Analysis of interacting BPEL web services, in: Proc. Int. World Wide Web Conf., WWW, May 2004.
[17] C.E. Gerede, R. Hull, O.H. Ibarra, J. Su, Automated composition of e-services: Lookaheads, in: Proc. of Int. Conf. on Service Oriented Computing, ICSOC,

2004.
[18] C.E. Gerede, O.H. Ibarra, B. Ravikumar, J. Su, Online and minimum-cost ad hoc delegation in e-service composition, in: Proc. IEEE Int. Conf. on Services

Computing, SCC, 2005.
[19] G. De Giacomo, S. Sardina, Automatic synthesis of new behaviors from a library of available behaviors, in: Proc. Int. Joint Conf. on Artificial Intelligence,

IJCAI, 2007.
[20] G. Grahne, V. Kricenko, Process mediation in an extended roman model, in: Proc. Mediation in Semantic Web Services, MEDIATE, 2005.
[21] Hadoop home page. http://hadoop.apache.org/core/.
[22] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley, 1979.
[23] R. Hull, J. Su, Tools for design of composite web services, in: Proc. ACM SIGMOD Int. Conf. on Management of Data, 2004.

C.E. Gerede et al. / Theoretical Computer Science 409 (2008) 417–431 431

[24] R. Kazhamiakin, M. Pistore, Choreography conformance analysis: Asynchronous communications and information alignment, in: Proc. Web Services
and Formal Methods, WSFM, 2006.

[25] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Computer 1 (2003) 41–50.
[26] S. Lu, Semantic Correctness of transactions and workflows, Ph.D. Thesis, SUNY at Stony Brook, 2002.
[27] S.A.McIlraith, T.C. Son, AdaptingGolog for composition of semanticweb services, in: Proc. Int. Conference on Principles andKnowledge Representation

and Reasoning, KR-02, 2002.
[28] M. Mecella, G. De Giacomo, Automatic web service composition, in: Proc. IEEE Int. Conf. on Web Services, ICWS, 2006.
[29] A. Muscholl, I. Walukiewicz, A lower bound on web services composition, in: Proc. Int. Conf. on Foundations of Software Science and Computation

Structures, FoSSaCS, 4423, 2007.
[30] S. Narayanan, S. McIlraith, Simulation, verification and automated composition of web services, in: Proc. Int. World Wide Web Conf., WWW, 2002.
[31] M. Pistore, P. Traverso, P. Bertolli, A. Marconi, Automated synthesis of composite bpel4wsweb services, in: Proc. IEEE Int. Conf. onWeb Services, ICWS,

2005.
[32] R. Ramakrishnan, et al., Science of design for information systems, ACM SIGMOD Record 33 (1) (2004) 133–137.
[33] Z. Shen, J. Su, Web service discovery based on behavior signatures, in: Proc. Int. Conf. on Service Oriented Computing, ICSOC, 2005.
[34] M. Singh, Semantical considerations on workflows: An algebra for intertask dependencies, in: Proc. Workshop on Database Programming Languages,

DBPL, 1995.
[35] W.M.P. van der Aalst, On the automatic generation of workflow processes based on product structures, Computer in Industry 39 (2) (1999) 97–111.
[36] M.K. Warmuth, D. Haussler, On the complexity of iterated shuffle, Journal of Computer System Sciences 28 (3) (1984) 345–358.

	Minimum-cost delegation in service composition
	Introduction
	A model for services
	Formalization
	Delegation for FSM services
	Delegation for linear counter services
	Polynomial-time optimal delegation algorithm
	log2n-space Algorithm for Optimal Delegation

	Related work
	Conclusion and future work
	Acknowledgements
	References

