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Abstract

We consider a transitive so$c shift T and a SFT cover f : S → T . We de$ne the multiplicity
of the cover (S; f) to be the largest number of preimages of a point. The intrinsic multiplicity
of T is the minimum of the multiplicities over all covers of T , denoted by m(T ). Is m(T )
computable? We do not answer this question. However the attempt to solve this problem led us
to $nd sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a
problem posed by Trow. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

We assume that the reader is familiar with the basic theory of shifts of $nite type
and so$c shifts as presented in [5] or [4].
Let T be a so$c shift, S a transitive shift of $nite type (SFT) and f : S→T a

factor map, i.e., f is continuous, shift commuting and onto. Then either there is a
point y∈T such that f−1y is an uncountable set of points or there is some inte-
ger M such that #f−1y6M for all y∈T . We de$ne the multiplicity of (S; f) to
be m(S; f)= max{#f−1y |y∈T} if all f−1y are $nite and m(S; f)=∞ otherwise.
The intrinsic multiplicity of T , denoted by m(T ), is the minimum of all multiplici-
ties, that is m(T ) := min{m(S; f) |f : S→T is a factor map; S is a transitive SFT}.
Then m(T )¡∞ for all so$c T . Since m(S; f)= 1 iE f is a conjugacy, m(T )= 1
iE T is a SFT. The intrinsic multiplicity is a conjugacy invariant, i.e., if R; T are
so$c shifts and g :R→T is a conjugacy (a shift commuting homeomorphism) then
m(R)=m(T ).
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To compute m(S; f) it is often possible to just consider periodic points in T , that
is points in T which are $xed under some power of the shift. We de$ne the periodic
multiplicity of (S; f) to be pm(S; f)= max{#f−1y |y∈T periodic} if for all y peri-
odic the set f−1y is $nite, and pm(S; f)=∞ otherwise. The intrinsic periodic mul-
tiplicity of T is pm(T )= min{pm(S; f) |f : S→T is a factor map; S is a transitive
SFT}. Since pm(S; f)6m(S; f), we have pm(T )6m(T ). Furthermore pm(S; f)¡∞
iE m(S; f)¡∞. The periodic multiplicity of T is also a conjugacy invariant. We show
that pm(T )¡m(T ) is possible (Example 2.5).
Let A be a $nite set. Let G be a $nite irreducible graph with a set E of directed edges

and vertex set V and let � :E→A be a map. Then (G;�) de$nes a transitive SFT
SG whose points are the bi-in$nite paths along edges in G and � de$nes a continuous
shift commuting map f� : SG →AZ by f�(x)i : =�(xi); i∈Z. Then T :=f�(SG) is a
so$c shift and f� : SG →T is a factor map. We call (G;�) a cover for T . On the other
hand, if S is a transitive SFT and f : S→T is a factor map, then there is a cover (G;�)
for T and a conjugacy g : S→ SG such that f� ◦ g=f [5]. Since g is a conjugacy, we
thus have m(S; f)=m(SG; f�). We call m(SG; f�) the multiplicity of the cover (G;�)
and denote it by m(G;�). Thus, m(T )= min{m(G;�) | (G;�) is a cover for T}.
Observe that either pm(G;�)=∞ or pm(G;�)6 number of vertices of G, since a

bounded-to-1 map has no diamonds, [5].
Given any labeled graph (G;�) there is a decision procedure to see if (G;�) is a

cover for T , [5]. We show how to compute the multiplicity of a cover (G;�) for T
(Lemma 2.1).
Since there are only countably many covers of a so$c shift and the multiplicity of

a cover (G;�) is computable, it is natural to ask:

“Is the intrinsic multiplicity of a so$c shift computable?”

We do not answer this question. Though the attempt to solve this problem led us to
$nd sharp estimates for the intrinsic multiplicity (Theorems 2.6 and 2.7), sharpen a
result of Williams (Theorem 5.1), and solve a problem of Trow (Example 4.2).
Before we proceed we give a rough outline of the content of the paper.
Every so$c shift has two distinguished covers, the right and the left Fischer cover

[5]. These covers are conjugacy invariants for the so$c shift. Every right closing cover
factors through the right Fischer cover [5]. Thus the multiplicity of the right Fischer
cover is the least multiplicity under all right closing covers, and the multiplicity of the
left Fischer cover is the least multiplicity under all left closing covers. Furthermore,
if T is AFT, that means that the right Fischer cover is conjugate to the left Fischer
cover, then every cover factors through one of the Fischer covers [2]. Thus, if T is
AFT, then m(T ) is the multiplicity of the right and of the left Fischer cover. In general
however, the intrinsic multiplicity can be strictly smaller than the minimum over the
multiplicities of the Fischer covers (Examples 3.2, and 4.1). We show that if one of the
Fischer covers of a so$c shift T has multiplicity ¿2n−1 then m(T )¿n (Theorem 2.6)
and that this lower bound for the intrinsic multiplicity is sharp (Theorem 2.7).
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There are several $nite subsets of covers of a so$c shift which can be computed.
Since the multiplicity of a given cover can be computed, if one could show that for
every so$c shift there is a cover of least multiplicity in a $nite computable sub-
set of covers, then one would have a computing procedure for the intrinsic mul-
tiplicity. Examples for those $nite subsets of covers which can be computed
are

C1(T ) := {(G;�) | the number of vertices in G is at most the number of

vertices in either of the Fischer covers}:
C2(T ) := {(G;�) | (SG; f�) is a factor of the $bre product of the Fischer

covers}:
C3(T ) := {(G;�) | (G;�) is a minimal lifting cover}:

The set C2(T ) is computable [1], and the set C3(T ) is computable [6]. The set C3(T )
is closely related to C2(T ), since a degree 1 cover is lifting iE it is a factor of
the $ber product of the Fischer covers [6]. We do not know if multiplicity consid-
ered only for degree 1 covers could be strictly bigger than multiplicity of all cov-
ers.
We show however, that for every i∈{1; 2} there is a so$c shift T such that no cover

with least multiplicity is in Ci(T ). A variation of the last of these examples solves a
problem of Trow [6]. One can easily use those examples to construct a so$c shift T
such that no cover of least multiplicity lies in C1(T )∪C2(T ), (but we do not here).
Thus, there is no easy way to compute the intrinsic multiplicity.
We show that for every positive integer k there is a positive integer N (k) such that

if T is a so$c shift which has a cover with k vertices, then there is a cover with
least multiplicity having at most N (k) vertices. However, we do not know how to
compute N (k).
Finally we investigate how many covers with least multiplicity a so$c shift can have.

We show that for every so$c non-AFT shift there is some N and in$nitely many non-
conjugate covers having multiplicity N and having no proper factors (Theorem 5.1).
This sharpens a result of S. Williams [7, 8]. As an application of Theorem 5.1 we
obtain a so$c shift having in$nitely many non-conjugate covers having least multiplicity
(Example 5.2).

2. A sharp lower bound for the intrinsic multiplicity

Throughout this paper all so$c shifts considered will be transitive. We start with the
simple observation that for a given cover the multiplicity is computable. Let T be a
transitive so$c shift. For a point y∈T and n6m we denote by y[n; m] the subblock
ynyn+1 : : : ym−1ym of y. We denote by Bn(T )= {y[1; n] |y∈T} the T-blocks of length
n. Let (G;�) be a cover for T . Let p=p1 : : : pn be a path of length n in G. Let
ai =�(pi) and w= a1 : : : an. Then we say the path p is labeled by the block w. We
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say that two distinct paths p; q in G with the same length, say n, both starting at
the same vertex and ending at the same vertex and such that p and q are labeled by
the same block w form a diamond of length n. Then m(G;�)¡∞ iE (G;�) has no
diamonds [5].

Lemma 2.1. The multiplicity m(G;�) of a cover (G;�) of T is computable.

Proof. Let n be the number of edges in G. First we check if the cover has a di-
amond. If p, q form a diamond of length N¿n2 then there are some 16i¡j6n2

such that pi =pj and qi = qj. Thus p′ =p1 : : : pipj+1 : : : pN and q′ = q1 : : : qiqj+1 : : : qN
form a diamond of length ¡N . Thus, if the cover has a diamond then it has a dia-
mond of length 6n2. Thus, we can decide if m(G;�)¡∞ by considering all paths of
length 6n2.

Now let (G;�) be a cover without diamonds. Let S = SG and f=f�. We com-
pute d :=m(S; f). Since the cover has no diamonds, d6n2. Let y∈T such that
f−1y= {x1; : : : ; xd}. There is some M606K such that #{x[M;K] | x∈f−1y}=d. For
i∈Z let Ei =((x1)i ; : : : ; (xd)i). Let N = n(n

2) + 1. If M +K +1¿N then there is some
M6i¡j6K with Ei =Ej. Let uk be the points in S with uk(−∞; i] = xk(−∞; i] and
uk [i;∞)= xk [j;∞), 16k6d. Then, since there are no diamonds, #{uk [M;K − (j −
i)] | 16k6d}=d and, since f=f�, it holds f(uk)=f(uk

′
); 16k; k ′6d. Thus, re-

peating the argument at most M +K +1−N times shows, there is a point z ∈T with
#{v[a; b] | v∈f−1z}=d and b− a+ 16N .
Thus we can compute m(S; f) as follows: For a T-block m of length 3N let D(m)

:= {v | |v|=N and there are u, w with |u|= |w|=N such that uvw is a path in G
with �(uvw)=m}. Let m be a T-block such that #D(m) is maximal. Then by the
above m(S; f)6#D(m). For v∈D(m) let uv; wv be paths in G of length N such
that uvvwv is a path in G with �(uvvwv)=m. Write uv = uv1 : : : u

v
N and wv =wv

1 : : : w
v
N .

Since N = n(n
2) + 1 and #D(m)6n2, there are 16i¡j6N; 16k¡l6N such that

uvi = uvj and wv
k =wv

l for each v∈D(m). Let av = uvi : : : u
v
j−1; bv =wv

k : : : w
v
l−1. Then

xv := (av)∞uvj : : : u
v
N vw

v
1 : : : w

v
k−1(b

v)∞ are #D(m) periodic points in S with f(xv)=
f(xv

′
) for all v; v′ ∈D(m). Thus f(xv) is a point with #D(m) preimages and thus

m(S; f)= #D(m). Thus, we can compute m(S; f) by checking all paths in G of
length 3N .

We need a compact way to describe a labeled graph (G;�). We introduce a matrix
M =M (G;�) as follows. Say, G is a graph with vertex set V and edge set E and
� :E→A is a map assigning labels to the edges in E. For i; j∈V and a∈A let
ni; j(a) := #{e∈E | e is an edge from vertex i to vertex j and �(e)= a}. Then we
de$ne Mi; j =

∑
a∈A ni; j(a)a for i; j∈V and M is a #V × #V matrix with entries in the

free abelian group with generators A. In particular Mi; j =0 iE there is no edge in G
from vertex i to vertex j. On the other hand, given an n× n matrix M with entries
Mi; j =

∑
a∈A ni; j(a)a; ni; j(a)¿0, then M de$nes a labeled graph (GM ;�M ) where GM

is a graph with vertex set V = {0; : : : ; n − 1} and there are
∑

a∈A ni; j(a) edges from
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i to j if Mi; j =
∑

a∈A ni; j(a)a. Then �M is de$ned so that for all i; j we have �M (e)= a
for exactly ni; j(a) edges from i to j. The graphs G and GM de$ne conjugate shifts and
� and �M induce factor maps with the same multiplicity.
We now start with an easy example showing that every integer occurs as the intrinsic

multiplicity of some so$c shift. For that recall that a labeled graph (G;�) is called
1-step right-closing (resp. 1-step left-closing), if e; e′ are distinct edges in G with the
same initial vertex (resp. terminal vertex) then �(e) �=�(e′). Recall further that the
follower set of a vertex ' is the set of T-blocks w such that there is a path p in G
starting at ' with label w. Similarly predecessor sets are de$ned.

Example 2.2. Let n¿1. We de$ne T ⊂{a; b}Z. Let M be the n× n matrix with
Mi; j = a if j= i + 1mod n; M0;0 = b and Mi; j =0 otherwise. The labeled graph (G;�)
de$ned by M is 1-step right- and left-closing and has all follower sets distinct, and
is thus the Fischer cover of the AFT system T =f�(SG) [5]. Thus m(T )=m(G;�)=
pm(T )= n [2].

Lemma 2.3. Let (G;�) be a cover for T with � 1-step right- or 1-step left-closing.
Then pm(G;�)=m(G;�).

Proof. Let � be 1-step left closing. Let (S; f)= (SG; f�) and y∈T with #f−1y=
m(G;�). Since � is 1-step left closing, there is some K such that for all k¿K
the #{xk | x∈f−1y}=m(G;�). Thus there are K6i¡j¡∞ such that xi = xj for all
x∈f−1y. Hence, y[i; j − 1]∞ is a periodic point in T with m(G;�) preimages. The
case � 1-step right closing is symmetric.

Recall that the right Fischer cover (F+; )+) of a transitive so$c shift T is the
unique transitive cover which has all follower sets of vertices distinct and is 1-step
right-closing. A cover is right-closing (left-closing) if there is some N such that any
two distinct paths of length N starting (ending) with the same edge have distinct labels.
Every right-closing cover (G;�) factors through the right Fischer cover, that means
there is a (surjective) factor map g : SG → SF+ such that f� =f)+ ◦ g [2] and thus
m(G;�)¿m(F+; )+) for any right-closing cover (G;�).
Let (G;�) be a cover for T . If (G;�) is not right-closing there is a vertex ' and

two distinct right in$nite paths x1; x2 starting at ' with the same labels. Similarly if the
cover is not left-closing there is a vertex * and two distinct left in$nite paths y1; y2

ending at * with the same labels. Thus if a cover is neither right- nor left-closing then
we can choose a path p from * to ', and then the four distinct points yipxj ∈ SG with
the zero coordinate at the $rst symbol of xj say, i; j∈{1; 2} all have the same image.
Thus a cover which is neither right- nor left-closing has multiplicity at least 4, thus

Lemma 2.4. Let (F+; )+) and (F−; )−) be the right and left Fischer cover of a so9c
shift T . If min(m(F+; )+); m(F−; )−))64; then m(T )= min(m(F+; )+); m(F−; )−)).
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Example 2.5. A so$c shift T with pm(T )¡m(T ). Let (G;�) be the labeled graph
de$ned by

M =




a b b
0 a+ b e
c d a+ b


 ;

and T =f�(SG). Then G has only 3 vertices, (G;�) has no diamonds and thus
pm(G;�)= 3, since f−1

� (a∞)= 3. It is easy to check that both Fischer covers (for
an easy way to construct these, see the paragraph below) have multiplicity 4, thus by
Lemma 2.4, m(T )= 4. And thus pm(T )¡m(T ).
Example 2.9 below provides an example with pm(T )= 2 and m(T )= 3.

The multiplicity of a Fischer cover is trivially an upper bound for the intrinsic
multiplicity of the so$c shift. Now we shall give a lower bound for the intrinsic
multiplicity of a so$c shift in terms of the multiplicity of a Fischer cover. We shall
show that this lower bound is sharp. For these purposes we recall the construction of
the “subset follower cover” of a given cover [5, 6].
Let (G;�) be a cover for a so$c shift T . We $rst construct the complete subset

follower graph as follows: The vertices are the non-empty subsets of the set of vertices
of G. Let E; F be non-empty subsets of the set of vertices of G. Draw an edge labeled
a from E to F iE F is exactly the set of terminal vertices of all the edges starting
in E, which are labeled a. This de$nes a 1-step right-closing labeled graph, which is
in general not irreducible. But it always has an irreducible component factoring onto
T : For any T-block w let E(w) be the set of vertices ' in G for which there is a
path in G ending at ' labeled w. Let w be a T-block such that #E(w) is minimal.
Then for all T-blocks wuw it holds that E(w)=E(wuw), and thus E(w) is contained
in an irreducible component of the subset graph which factors onto T . Let G+ be the
irreducible component containing the vertex E(w) and �+ be the restriction of � to
the edges of G+. Then (G+; �+) is called the subset follower cover of (G;�) and it
is a 1-step right-closing cover for T . Recall that (G+; �+) factors through the right
Fischer cover by identifying the vertices with the same follower sets [5].
The subset predecessor cover (G−; �−) is constructed similarly using predecessors

instead of followers.

Theorem 2.6. Let T be a transitive so9c shift and (G;�) be a cover of T with
pm(G;�)= n. Then both Fischer covers have multiplicity at most 2n−1. Thus; if one
of the Fischer covers has multiplicity ¿2n − 1 then m(T )¿pm(T )¿n.

Proof. We shall show that the subset follower cover (G+; �+) of (G;�) has multi-
plicity at most 2n − 1. The argument for the subset predecessor cover is symmetric.
Since the Fischer covers are factors of the subset covers, the result follows.
Let E; F be vertices in G+ such that there is an edge from E to F labeled a,

say. Then for every v∈F there is some u∈E and an edge e in G from u to v with
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�(e)= a. Thus, if there is a path in G+ of length n from vertex E to vertex F with
labels a= a1 : : : an then for all v∈F there is some u∈E and a path of length n in G
from u to v with label a. We apply this to periodic points as follows.
Let y∈T be periodic, with least period p, say. Let a=y[1;p] and let x∈(f�+)−1(y).

Then there is some k¿1 and distinct vertices E0; E1; E2; : : : ; Ek−1 in G+ such that for
each 06i6k − 1 the block x[1+ ip; p+ ip] is a path labeled a from Ei to E(i+1)mod k .
Thus, for every v∈E0 there is u(v)∈E0 such that in G there are paths from u(v) to
v labeled ak . Since E0 is a $nite set, there is some m and a vertex u∈E0 such that
there is a path in G from u to u labeled akm.
Let F = {v a vertex in G | there is some m¿1 and a path from v to v in G labeled

am} and let E=F ∩E0. Since E is a non-empty subset of E0 and there is a path in
G+ from E0 to E0 labeled ak , we get that every path in G that starts in a vertex of E
and has label akm for some m¿1, ends in a vertex of E0. But, for v∈E0 − E there is
some w∈E and some large m¿1 and a path in G from w to v labeled akm. Therefore,
E0 is the set of terminal vertices of paths in G which start in E and have a label akm

for some m¿1.
Thus

#(f�+)−1(y) = #{E0 |E0 is initial vertex of x1 for some x ∈ (f�+)−1(y)}
= #{F ∩ E0 |E0 is initial vertex of x1 for some x ∈ (f�+)−1(y)}
6 #{E |E⊂F; E �= ∅}
= 2#F − 1

6 2n − 1;

since #F =#f−1
� (y)6pm(G;�)= n. This holds for all periodic points y∈T and thus

pm(G+; �+)62n−1. Since �+ is right closing, by Lemma 2.3, this proves the theorem.

This theorem gives thus a lower bound for the intrinsic multiplicity: If T is so$c and
one of the Fischer covers has multiplicity ¿2n − 1 then m(T )¿n. The next theorem
shows that this lower bound is sharp. Furthermore it provides an example where the
Fischer covers have diEerent multiplicities.

Theorem 2.7. Let n¿2. Then there is a transitive so9c shift T where the left Fischer
cover has multiplicity n and the right Fischer cover has multiplicity 2n − 1. And thus
m(T )= n.

Proof. We de$ne a so$c shift T with symbols {a}∪ {b1; : : : ; bn}∪ {aE | ∅ �=E⊂
{1; : : : ; n}}. Let M =A+B+C be the n× n matrix where A= a · Id; Bi;1 = bi; 16i6n
and Bi; j =0 for j �=1 and C1; j =

∑
{E|j∈E} aE and Ci; j =0 if i �=1.

Let (G;�) be the labeled graph de$ned by M and let T be the so$c shift de$ned by
(G;�). Then the $x point a∞ ∈T has exactly n preimages in SG. Since every T-symbol
occurs at most once in each column of M , the labeling � is 1-step left closing. Thus,
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m(G;�)=pm(G;�)= n, by Lemma 2.3. The T-symbol a{ j} occurs in the matrix M
only in column j. Thus the vertices in G have distinct predecessor sets, and thus (G;�)
is the left Fischer cover of T .
Consider the complete follower subset graph (G′; �′) of (G;�). Let E; F be vertices

in G′, that is E; F are non empty subsets of {1; : : : ; n}. Say i∈E. Then in (G′; �′)
there is an edge from E to {1} labeled bi and there is an edge from vertex {1} to F
labeled aF . Thus G′ is irreducible, and thus (G′; �′)= (G+; �+). Let E be a vertex in
(G+; �+). Then there is an edge with label bi in (G+; �+) starting from E iE i∈E.
Thus in (G+; �+) the follower sets are distinct, and thus (G+; �+) is the right Fischer
cover of T .
Since for each vertex i of G there is an edge from i to i labeled a, for each vertex E

in G+ there is an edge from E to E labeled a. Thus m(G+; �+)= number of vertices
of G+ =2n − 1.

We conclude this section with the consideration of a special class of covers, the bi-
synchronizing covers. We shall see that a bi-synchronizing cover with $nite multiplicity
is always a cover with least periodic multiplicity. Thus a bi-synchronizing cover is
useful for determining the intrinsic periodic multiplicity. However bi-synchronizing
covers not always exist, so this concept is not always applicable.
Let (G;�) be a cover for a so$c shift T . We say that a vertex v is (cosynchronizing)

synchronizing if there is a T-block xv, such that every path in G with label xv (starts)
ends at vertex v. We say that (G;�) is (cosynchronizing) synchronizing if every vertex
is (cosynchronizing) synchronizing. Thus, the right Fischer cover is synchronizing and
the left Fischer cover is cosynchronizing. A cover (G;�) is bi-synchronizing if it is
both synchronizing and cosynchronizing.
A bi-synchronizing cover (G;�) has the least number of vertices in any possible

cover ([3, Theorem 10:1]). Thus, it is easy to compute if a so$c shift has a bi-
synchronizing cover or not. There is a SFT that has no bi-synchronizing cover, for
example the SFT given by the labeled graph de$ned by the matrix




0 a c
0 b c
b a 0


 ;

but there are non-AFT shifts with bi-synchronizing right Fischer cover, for example
the so$c shift given by the matrix




a c b
0 a b+ e
d 0 0


 :

Theorem 2.8. Let (G;�) be a bi-synchronizing cover of a so9c shift T . Then m(G;�)
¡∞ implies pm(T )=pm(G;�).
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Proof. Since m(G;�)¡∞, there is a periodic point p∞ ∈T with least period |p| such
that #f−1

� (p∞)=pm(G;�). The preimages of p∞ in SG can be partitioned into say n
orbits, the i’th orbit of length, say |p| · k(i). There are thus n vertices, say v1; : : : ; vn in
G such that there is a loop at vi labeled pk(i), for 16i6n and for i �= j there is no path
from vi to vj labeled pr , for some r¿1. Since the cover (G;�) is bi-synchronizing,
we can $x for each i a T-block xiyi such that xi is synchronizing for vi and yi is co-
synchronizing for vi. Now consider a cover (G′; �′) with pm(G′; �′)=pm(T ). Let s¿
number of vertices in G′ and $x 16i6n. Then there is a path in G′ labeled xipsk(i)yi.
By the choice of s, there is a vertex ui in G′ and integers a(i); b(i); c(i)¿0; b(i)¿1
such that there is a path labeled xipa(i) which ends in vertex ui, there is a loop labeled
pb(i) at ui and there is a path labeled pc(i)yi starting from ui. Now let r¿0 and 16i,
j6n such that there is a path from ui to uj in G′ labeled pr . Then xipa(i)+r+c( j)yj
is a T-block. Since xi is synchronizing for the vertex vi and yj is cosynchronizing
for the vertex vj in G, it follows that there is a path from vi to vj in G labeled
pa(i)+r+c( j). But G is a $nite-to-1 cover and by the choice of the vertices vi it follows
b(i)= 0mod k(i). Thus, #(f�′)−1(p∞)¿k(1) + k(2) + · · · + k(n)=pm(G;�). Thus
pm(G;�)6pm(G′; �′)=pm(T ) and the theorem is proved.

The last theorem thus shows that a $nite-to-1 bi-synchronizing cover always has
least periodic multiplicity. However it need not be a cover of least multiplicity:

Example 2.9. Let T ⊂{a; b; c; d; u; v; x; y; r}Z be given by the matrix

M =




b u d 0 0
v b d 0 0
0 0 0 c c
0 0 0 a x
0 r 0 y a




:

Let (G;�) be the labeled graph de$ned by M . In each row (column) of M there
is a symbol which occurs only in this row (column). Thus each vertex in G is bi-
synchronizing and thus, since the cover has no diamonds m(G;�)¡∞; pm(T )=pm
(G;�)= 2. Considering the T-orbit b∞dca∞ shows m(G;�)¿4. Constructing the Fis-
cher covers shows that m(F+; )+)=m(F−; )−)= 3 and thus, by Lemma 2.4, m(T )= 3.

Thus this is also an example for a so$c shift with pm(T )= 2¡3=m(T ).

3. So&c shifts for which every cover with least multiplicity has more vertices than
the Fischer covers

In the last section we have seen that a bi-synchronizing cover with $nite multiplicity
always has least periodic multiplicity. Bi-synchronizing covers always have the least
number of vertices, [3, Theorem 10:1]. So one might ask if there is always a cover
with least multiplicity also having the least number of vertices. We shall see however
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that there are so$c shifts where no cover with least multiplicity has least number of
vertices (Example 3.1). In this example the right Fischer cover is a cover with least
multiplicity. However, we shall use Example 3.1 to show in fact stronger, that there is
a so$c shift such that every cover with least multiplicity has more vertices than both
of the Fischer covers (Example 3.2).

Example 3.1. A so$c shift where no cover with least multiplicity has the least number
of vertices.

The following matrix represents the right Fischer cover of a so$c shift. It has 14
vertices and (periodic) multiplicity 9. The left Fischer cover of this so$c shift has
multiplicity ¿11 and 13 vertices. Any cover of this so$c shift with 613 vertices has
multiplicity ¿9. The intrinsic multiplicity is 9.
In the following we prove our claims. Let M be the matrix




: a1 a2 a3 a4 a5 a6 a7 a8 u1 u2 u3 u4 u5
b1 a c : : : : : : : : : : :

b1 + b : a+ c : : : : : : : : : : :
b2 : : a c : : : : : : : : :

b2 + b : : : a+ c : : : : : : : : :
b3 : : : : a c : : : : : : :

b3 + b : : : : : a+ c : : : : : : :
b4 : : : : : : a c : : : : :

b4 + b : : : : : : : a+ c : : : : :
v1 : : : : : : : : a+ c : : : :
v2 : : : : : : : : a c : : :
v3 : : : : : : : : a : c : :
v4 : : : : : : : : a : : c :
v5 : : : : : : : : a : : : c




:

Here Mi; j =. means Mi; j =0. Let T be the so$c shift given by the cover de$ned by M .
Thus the T-symbols are

{a; c} ∪ {ai | 16i68} ∪ {bi | 16i64} ∪ {b}
∪ {ui | 16i65} ∪ {vi | 16i65}:

Since in every row of M a T-symbol occurs at most once, the labeling is 1-step right
closing. Using the $rst column of M one gets that in the labeled graph de$ned by
M all follower sets are distinct. Thus the labeled graph de$ned by M is the right
Fischer cover (F+; )+) of T . Recall that a T-block m is called synchronizing, if it
holds that um; mv are T-blocks then umv is a T-block. All symbols except {a; c} are
synchronizing. Thus, if y∈T periodic with yi =∈{a; c} for some i∈Z then y has a
unique preimage in SF+. If y∈T periodic and yi ∈{a; c} for all i, then y has at most
9 preimages and if y is a $x point then it has 9 preimages in SF+. Thus, the right
Fischer cover of T has 14 vertices and multiplicity 9.
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We want to determine the number of vertices of the left Fischer cover of T . For this
we use the fact that (F−; )−) is the subset predecessor cover of (F+; )+) [6]. Let the
rows of M , and thus the vertices of F+ also, be enumerated with 0; 1; 2; : : : ; 13. For a
T-block m let E(m) be the set of vertices ' in F+ such that there is a path labeled m
starting in '.
Then

E(ai) = E(uj) = {0}; 16i68; 16j65;

E(vi) = E(cvi) = {8 + i}; 16i65;

E(av1) = E(wav1) = {9; 10; 11; 12; 13}; w ∈ {a; c};
E(bi) = E(wbi) = {2i − 1; 2i}; 16i64; w ∈ {a; c};
E(b) = E(ab) = {2; 4; 6; 8};
E(cb) = E(wcb) = {1; 2; 3; 4; 5; 6; 7; 8}; w ∈ {a; c}:

These are all vertices of the subset predecessor cover of (F+; )+). Thus the left Fischer
cover has 13 vertices. Furthermore, the above list shows that each of the 11 vertices
E(vi), E(av1), E(bi), E(cb) has a loop labeled c and thus the $xed point y= c∞ has
at least 11 preimages in the left Fischer cover, thus the multiplicity of the left Fischer
cover is ¿11.
Let (G;�) be any cover for T with at most 13 vertices. We want to show that

m(G;�)¿9. Assume m(G;�)69. Let V be the vertex set of G. Let '0 be the terminal
vertex of an edge labeled b1. Since b1y being a 2-block of T implies y =∈{a; c}, there
is no edge in G labeled with a or c which begins in '0.
We shall now use frequently the following trivial fact:

(∗) If there is a path labeled m1 ending at vertex ' and a path labeled m2 starting
at ' then m1m2 is a T-block.

For 16i65 the block uic13vi is a T-block, thus, since G has at most 13 vertices,
we can $x a vertex 0i such that for some m;p¿0, n¿1 (m;p; n depend on i) with
m+ n+ p=13 there is a path labeled uicm ending at 0i, a loop labeled cn at 0i and
a path labeled cpvi starting at vertex 0i.
Similarly for 16j64 the block a2j−1c13bj is a T-block and thus there is a vertex

1j and some m;p¿0, n¿1 (m;p; n depend on j) with m + n + p=13 and there is
a path labeled a2j−1cm ending at 1j, a loop labeled cn at 1j and a path labeled cpbj
starting at vertex 1j.
By (∗) the set V (c) := {0i | 16i65} ∪ {1j | 16j64} has cardinality 9. Furthermore

from (∗) it follows that if for ', *∈V (c) there is a path from ' to * labeled ck

then '= *. Since by assumption m(G;�)69, it follows that m(G;�)= 9 and at every
vertex from V (c) there is a loop labeled c. (This shows that m(T )= 9, too.)
Thus if ' is a vertex and 16j64 such that there is a path labeled a2j−1c13 ending at

' and a path labeled c13 starting at ', then '= 1j. Similarly if ' is a vertex and 16i65
such that there is a path labeled uic13 ending at ' and a path labeled c13 starting at '
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then '= 0i. Since a2j−1c26a13, 16j64, and uic26a13, 16i65 are T-blocks, this also
shows that the points c∞a∞, say with zero coordinate at the $rst a, have exactly 9
preimages. Therefore, in particular for 16j64 there is a unique vertex 'j such that
if a path labeled c13a13 starting at vertex 1j and ends at vertex ' and there is a path
labeled a13 starting at ' then '= 'j. Thus, since a2j−1c26a26bj and a2j−1c26a26b are
T-blocks we obtain that there is a path starting at 'j which is labeled a13bj and also a
path labeled a13b.
Since an edge labeled a starts at 'j, we get that 'j �= '0. Since a2j−1c26a13 is a path

ending at 'j and a13bj is a path starting at 'j we obtain from (∗) that 'j �= 0i for all
16i65 and that the set {'j | 16j64} has cardinality 4.
Now since for 16j64 the block a2j−1abj is a T-block, there is a vertex *j �= '0

such that there is an edge labeled a2j−1 ending at *j and a path labeled abj beginning
at *j. Since a2j−1a13b is not a T-block, by (∗) {'j | 16j64} ∩ {*j |; 16j64}= ∅ and
#{*j | 16j64}=4. But {'j | 16j64} ∪ {*j | 16j64} is contained in V − ({'0} ∪
{0i | 16i65}), a set of cardinality at most 7. This contradiction proves that the as-
sumption m(G;�)69 was wrong and thus m(G;�)¿9.

Example 3.2. A so$c shift such that every cover of least multiplicity has strictly more
vertices than the Fischer covers.

We start with the matrix M from the last example. Let 0; 1; 2; : : : ; 13 be the vertices
of the graph de$ned by M . We $rst add 55 vertices, named 14; 15; : : : ; 68. For each
new vertex i∈{14; : : : ; 68} we add an edge from 0 to i with label qi, two loops at
i one with label a, the other with label c and we add an edge from i to 0 labeled
ri. Call the obtained labeled graph (G;�) and let S denote the so$c shift de$ned by
(G;�). The symbol set of S is

A= {a; c} ∪ {ai | 16i68} ∪ {bi | 16i64} ∪ {b}
∪{ui; vi | 16i65} ∪ {qi; ri | 146i668}:

Then (G;�) is the right Fischer cover of S, has 69 vertices, m(G;�)=pm(G;�)664
and a∞ has 9+ 55=64 preimages. Arguments as in the last example show that every
cover of S with 668 vertices has multiplicity ¿65.
Let (G′; �′) be the labeled graph obtained from (G;�) by reversing the direction

of the edges and replacing a label x by the label x′. Let S ′ denote the so$c shift
de$ned by (G′; �′). Then (G′; �′) is the left Fischer cover of S ′, has 69 vertices and
multiplicity 64. A cover of S ′ with 668 vertices has multiplicity ¿65.
The shift S ′ has symbol set {x′ | x∈A} which is disjoint from A and we denote by 0′

the unique vertex of G′ which is the initial vertex of any edge labeled b′. Finally add
an edge from vertex 0 to vertex 0′ labeled u and an edge from 0′ to 0 labeled u′. Call
this labeled graph (R; 2) and the so$c shift de$ned by it T . The right Fischer cover
of T is obtained from (R; 2) by replacing the subgraph (G′; �′) by the right Fischer
cover of S ′ and has thus 69+(11+55)=135 vertices. Similarly the left Fischer cover
of T has also 135 vertices.
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The graph R has 2× 69=138 vertices and the symbol set of T is A∪{u}∪{x′ | x∈A
∪{u}}. Observe that S and S ′ are disjoint subsets of T . If y∈ S then f−1

2 y is contained
in SG and thus #f−1

2 y664. Similarly for y′ ∈ S ′. If y∈T − (S∪S ′) then there is some
i∈Z such that yi ∈{u; u′}. Let x∈f−1

2 (y). If y[i; i + n] is a T-block beginning and
ending with a symbol from {u; u′}, then x[i; i+n] is uniquely determined by y[i; i+n].
If y[i+1;∞) does not see a symbol from {u; u′} then y[i+1;∞) is a ray in S or in S ′

and x[i;∞) starts in vertex 0 resp 0′. Thus there are at most 8 possibilities for x[i;∞)
(namely if y[i+1;∞)= b′c′a′a′ : : :). Similarly for the past. Thus #f−1

2 (y)68× 8=64.
Since #f−1

2 (a∞)= 64, we obtain thus m(R; 2)= 64.
Now let (H; 4) be a cover of T with 6137 vertices. Let ' be a vertex of H . Assume

there is an edge e starting in ' with a label in A∪{u} and there is an edge e′ starting
at ' with a label in A′∪{u′}. Let f be an edge with terminal vertex '. Since 4(f)4(e)
is a T-block, 4(f)∈A ∪ {u′}. But, since 4(f)4(e′) is a T-block, 4(f)∈A′ ∪ {u}, a
contradiction. Thus either all edges starting in a vertex have their label in A ∪ {u} or
all have their label in A′∪{u′}. Thus we can partition the vertex set of H into two sets
V and V ′ according to the labels of the outgoing edges. The subgraph of H consisting
only of edges with initial and terminal vertices in V resp V ′ contains a cover for S
resp S ′. Since #V + #V ′6137, one of the sets has 668 vertices. Thus by the above
this has already multiplicity ¿65. Thus m(R; 2)¿65.
Thus the cover (R; 2) of T has 138 vertices and multiplicity 64 and every cover of

T with 6137 vertices has multiplicity ¿65.

Thus there are so$c shifts where every cover of least multiplicity has more vertices
than the Fischer covers. But, as we shall see in the next lemma, there is a bound on
the number of vertices for a cover with minimal multiplicity given the Fischer cover
has k vertices. However we do not know how to compute or estimate this bound.

Lemma 3.3. For each k ∈N there is some N (k) such that if T is a so9c shift which
has a cover with k vertices then T has a cover with least multiplicity having at most
N (k) vertices.

Proof. For a so$c shift T let d(T ) denote the minimal number of vertices in a cover
(G;�) of T with m(G;�)=m(T ). We shall show that for every so$c shift T that has
a cover with k vertices, there is a so$c shift T ′ with at most 2k

2
symbols, with cover

of k vertices, with m(T )=m(T ′) and d(T )=d(T ′).
The lemma then follows from the fact that the number of labeled graphs with k

vertices, having no parallel edges with the same label, and at most 2k
2
symbols is

$nite. We can take N (k)= max{d(T ) |T is a so$c shift with at most 2k
2
symbols and

has a cover with k vertices}.
Let (G;�) be a cover for T with k vertices. To each T-symbol a assign the

set L(a)= {(i; j) | there is an edge labeled with a from vertex i to vertex j}. Let
L(G;�)= {L(a) | a is a T-symbol}. For L∈L(G;�) let ML denote the k × k matrix
with entries 0 or L which has (ML)i; j =L iE (i; j)∈L. Let M =

∑
L∈L(G;�) ML and let

T ′ :=TL(G;�) denote the so$c shift with symbol set L(G;�) which is de$ned by M .
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Let (R′; 1′) be a cover for T ′. Let A=M(R′ ; 1′) be the matrix describing the cover
(R′; 1′). If Ai; j =

∑
L∈L(G;�) ni; j(L)L, then let

Bi;j =
∑

L∈L(G;�)
ni;j(L)

∑
{a | L(a)=L}

a:

Let (R; 1) be the labeled graph with labels being the T-symbols a, de$ned by the
matrix B. By the de$nition of the sets L(a), (R; 1) is a cover for T with the same
number of vertices as R′. There is a factor map g : T →T ′ given by (gx)0 =L(x0).
Let t′ ∈T ′ and let t ∈T such that gt= t′. Then #1−1t6#(1′)−1t′, since a preimage
s′ ∈ (1′)−1t′ consists of edges s′i which have label 1′(s′i)=L(ti) and thus there is s∈ S
with 1(si)= ti. This assignment s′ → s is onto 1−1(t), thus m(R; 1)6m(R′; 1′) and there-
fore m(T )6m(T ′), since (R′; 1′) was an arbitrary cover for T ′.
Now $x for each T′-symbol L a T-symbol aL with L(aL)=L. Then de$ne a shift

commuting map i : T ′ →T by (ix)0 = aL iE x0 =L. Observe that i embeds T ′ into T as
an isolated subsystem. Thus, if (R; 1) is a cover for T , then R contains an irreducible
subgraph R′ such that (R′; 1|R′) is a cover for i(T ′). Since m(R′; 1|R′)6m(R; 1), we get
m(T ′)6m(T ).
Thus we have shown that m(T )=m(TL(G;�)) and T has a cover with least multiplicity

and d vertices iE TL(G;�) has a cover with least multiplicity and d vertices. Since
L(G;�) can be considered as a subset of the set of k × k matrices with entries 0 or 1,
there are only 2k

2
possible sets for L(G;�). This concludes the proof.

4. So&c shifts with no cover of least multiplicity being a factor of the &ber product
of the Fischer covers

Let (F+; )+) and (F−; )−) be the right and left Fischer cover of a so$c shift T . Then
the SFT {(x; y)∈F+ ×F− | )+(x)= )−(y)} contains an unique irreducible component
F factoring onto F+ and F− by coordinate projections. We call the cover (F; )) of T ,
where )(x; y) := )+(x), (x; y)∈F , the $ber product of the right and left Fischer cover.
Since (F; )) is a bounded-to-1 cover of T , it has only $nitely many factors, i.e. there
are only $nitely many covers (S; f) of T such that there is a factor map 7 :F → S
with )=f ◦ 7 [1]. Furthermore there is an algorithm to compute these factors [1].
Thus if there would be always a cover of least multiplicity which is a factor of the
$ber product of the Fischer covers, then one would have a computing algorithm for
the intrinsic multiplicity of the so$c shift. In this section however we shall give an
example for a so$c shift such that no cover with least multiplicity is a factor of the
$ber product of the right and left Fischer covers.
A more general concept is that of lifting covers [6]. A cover which is 1–1a.e. is

lifting iE it is a factor of the $ber product of the Fischer covers [6]. Trow asked
whether a right lifting cover which has no proper factors is already lifting. We shall
answer this question into the negative.
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Example 4.1. A so$c shift such that no cover of least multiplicity is a factor of the
$ber product of the right and left Fischer cover. Let

M =




: e f g h u1 u2 c + d : :
x + y a+ c : : : : : : : :
z + w : a+ c d d : : : : :
x + w c c a+ d : : : : : :
z + y : : : a+ d : : : : :
v1 + b : : : : a : : : :
v2 + b : : : : : a : : :

: : : : : : : : c + d :
: : : : : : : : : c + d

c + d : : : : : : : : :




:

Let T be the so$c shift de$ned by the labeled graph (G;�) which is given by the ma-
trix M . We enumerate the rows of M from 0 to 9. Thus G has vertices {0; 1; : : : ; 8; 9}.
We shall show that T has no cover with least multiplicity that is a factor of the $ber
product of the Fischer covers.
We $rst study the Fischer covers. The symbols v1, v2, x, y, z, w, b are all synchro-

nizing symbols for T and they have pairwise distinct predecessor sets. For any symbol
s in this list the T-block as has the same predecessor set as s. Thus (f)−)−1(a∞)¿7
and thus m(F−; )−)¿7. The blocks u1, u2, e, f, g, h, gc are synchronizing for
T , they do have pairwise distinct follower sets and for each block m in this list
the follower set of ma is the same as that of m. Thus (f)+)−1(a∞)¿7 and
m(F+; )+)¿7.
For later use also observe that (f)+)−1(a∞)= 7, since if m is a synchronizing

T-block such that ma is a T-block, then the follower set of m coincides with the
follower set of one of the blocks u1, u2, e, f, g, h, gc, since the follower set of the
block gc coincides with the follower set of the block fd.
We shall now see that m(G;�)= 6. There are only two symbols which occur twice in

a row of the matrix M , namely the symbols c and d in row 3 (resp: 2): M3;1 =M3;2 = c
and M2;3 =M2;4 =d. The only common symbols in row 3 and 4 are a and d: M3;3 =
M4;4 = a+d. Similarly, the only common symbols in row 1 and 2 are a and c: M1;1 =
M2;2 = a+ c. Thus, starting from any $xed vertex of the graph, there are at most two
paths with the same label and the labeling has no diamonds. Now consider two distinct
edges in G with the same label and the same terminal vertex. Let {i; j} be the initial
vertices of these edges. Then {i; j} �= {1; 2} and {i; j} �= {3; 4} by inspection of M. Thus
the only common symbol in column i and column j of M is a, namely Mi; i =Mj; j = a.
Thus there are at most two paths with the same label ending in the same vertex.
Thus, since all symbols =∈ {a; c; d} determine a vertex in G, if y∈T; y =∈{a; c; d}Z
then #f−1

� y64. Now let y∈T ∩ {a; c; d}Z. If y= a∞ then #f−1
� y=6. If y∈{c; d}Z

then #f−1
� y66. And $nally if y �= a∞ and y =∈{c; d}Z then every preimage of y has

all its vertices in {1; 2; 3; 4}. Let x∈f−1
� y. If y[i; i + n + 1]= cand for some n¿0
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and some i∈Z then xi ends in vertex 2, similarly if y[i; i + n + 1]=danc then xi
ends in vertex 3 and by inspection of the subgraph with vertices {1; 2; 3; 4} and edges
with labels {a; c; d} we see that # f−1

� y64. Thus, we get m(G;�)= 6. In particular
m(T )66.
Now let (R; 2) be a cover for T with m(R; 2)66. We shall show that

(R; 2) is not a factor of the $ber product of the left and right Fischer cover. Recall
that (f)+)−1(a∞)= 7. Thus if #(f2+)−1(a∞)¿8 then (R+; 2+) is not conjugate to
(F+; )+) and thus (R; 2) is not a factor of the $ber product of the left and right
Fischer cover, [6]. Thus we only need to show that m(R; 2)66 implies
#(f2+)−1(a∞)¿8.

Let K be the number of vertices of the cover (R; 2) and $x N¿2K . Since eaN x
is a T-block, there is a vertex, '(e) say, so that there is a path labeled eai leading
to '(e), a loop labeled aj at '(e) and a path labeled akx starting at '(e), with i +
j + k =N and j¿1. Similarly the blocks faNz, gaNw, haNy, u1aNv1 and u2aNv2
yield vertices '(f), '(g), '(h), '(u1) and '(u2). Since for no m the block eamz is a
T-block, '(e) �= '(f). Analoguosly, the vertices '(e), '(f), '(g), '(h), '(u1) and '(u2)
are pairwise distinct. Thus f−1

2 (a∞)¿6. (In particular, m(T )= 6.) Since m(R; 2)66,
it follows that f−1

2 (a∞)= 6. By the arguments as above it follows also that no two of
the six vertices lie in the same orbit labeled an for some n¿2 and thus each of the
six vertices '(e), '(f), '(g), '(h), '(u1) and '(u2) has a loop labeled a and there is
no other vertex with a loop labeled ak for some k¿1.
For a T-block m let E(m) denote the set of vertices ' in R such that there is a path

ending at ' labeled m. Let W be a T-block such that xWe is a T-block and such that
#E(W ) is minimal. Let X = {WeaN , WfaN , WgaN , WhaN , Wu1aN , Wu2aN , WgcNaN ,
WfdNaN}. We want to use the vertices '(e), '(f), '(g), '(h), '(u1) and '(u2) to
show that

#{E(m) |m ∈ X } = 8;

which then implies #(f2+)−1(a∞)¿8, since N¿2k¿#VR+ and thus E(m)=E(mai)
for some 16i6N since #E(W ) is minimal.
First observe that if m, m′ ∈X , m �=m′ and {m;m′} �= {WgcNaN , WfdNaN} then the

follower sets of m and m′ are distinct and thus E(m) �=E(m′). Thus all we need to
show is that E(WgcNaN ) �=E(WfdNaN ).
For that, as before, considering the T-blocks ecN x, fcN z and v1c4Nu1 shows there

are six vertices 1(e), 1(f) and 11; : : : ; 14 with every loop labeled cj starting at one
of these. Since gcN+mu1 is not a T-block, there is no path labeled gcN ending in
one of the 11; : : : ; 14. By the choice of N thus every path labeled gcNaN has a
subpath labeled ciaj from a vertex in {1(e), 1(f)} to a vertex in {'(e), '(f),
'(g), '(h)}.
Consider now a subpath p labeled ciaj of a path which is labeled gcNaNx. Then,

since fcNaNx is not a T-block, p begins in vertex 1(e). Since faNx and haNx are not
T-blocks, p does not end at '(f) and not at '(h). Since ecNaNW is not a T-block and
p begins in 1(e), p does not end at '(g). Thus p ends in '(e) and we have shown
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that every path P which is labeled WgcNaNx has a subpath from 1(e) to '(e) labeled
ciaj, this subpath being a subpath of the suQx path of P labeled gcNaNx, and thus
'(e)∈E(WgcNaN ).
Consider now a subpath q labeled ci

′
aj

′
of a path which is labeled WgcNaN z. Since

ecNaN z is not a T-block, q begins in 1(f). Since eaN z and gaN z are not T-blocks, q
does not end in '(e) and not in '(g). Since fcNaNy is not a T-block, q does not end
in '(h). Thus q begins in 1(f) and ends in '(f). Thus every path which is labeled
WgcNaN z has a subpath labeled ci

′
aj

′
from vertex 1(f) to '(f) (of the suQx path

with label gcNaN z) and thus '(f)∈E(WgcNaN ).
Thus {'(e), '(f)}⊂E(WgcNaN ). In the same way (or by the observation that

exchanging the symbols e with h, f with g, x with z and c with d keeps the cover
(R; 2) $xed) one shows {'(g), '(h)}⊂E(WfdNaN ).
Recall that we want to show that E(WgcNaN ) �=E(WfdNaN ). Assume that {'(g);

'(h)}⊂E(WgcNaN ). Every path labeled WeaNxWgcNaNx has a subpath labeled akxWgcm

from vertex '(e) to 1(e). Thus there is a path labeled aNxWgcN from vertex '(e) to
1(e). Considering the block WeaNxWgcNaN z yields that there is a path also labeled
aNxWgcN from vertex '(e) to a vertex 1′ with a loop labeled cj starting and ending
at 1′. Note that 1′ = 1(f), since otherwise #(f2)−1(c∞)¿6. Since {'(e), '(f), '(g),
'(h)}⊂E(WgcNaN ) and for each '∈{'(e), '(f), '(g), '(h)} there is a path labeled
cNaN from a vertex in {1(e), 1(f)} to ', there are thus four distinct paths starting from
'(e) and being labeled aNxWgcNcNa∞. Since 6=m(R; 2)¡m(F−; )−), the map 2 is
not left closing, thus there are two distinct paths ending at '(e) having the same label
x−. Thus (f2)−1(x−aNxWgcNcNa∞)¿2× 4=8, a contradiction. Thus the assumption
{'(g), '(h)}⊂E(WgcNaN ) was wrong.

Since {'(g), '(h)}⊂E(WfdNaN ), we have E(WgcNaN ) �=E(WfdNaN ) and this
$nishes the proof that (R; 2) is not a factor of (F; )).

We conclude this section with an example that a right lifting cover, which has no
proper factors need not be left lifting, answering a question of Trow [6].

Example 4.2. Let

M =




0 e + c f + c g+ d h+ d
x + y a 0 0 0
z + w 0 a 0 0
x + w 0 0 a 0
z + y 0 0 0 a




and let (G;�) be the labeled graph de$ned by M and let T denote the so$c shift
obtained from (G;�).
We shall show that (G+; �+) factors properly onto the right Fischer cover, that

(G−; �−) is the left Fischer cover and $nally that (G;�) has no proper factors.
Then in Trow’s terminology, (G;�) is a minimal right li$ng cover which is not left
lifting.
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One checks that (G−; �−) is given by the matrix

M− =




0 e + g+ c + d e + h+ c + d f + h+ c + d f + g+ c + d
x a 0 0 0
y 0 a 0 0
z 0 0 a 0
w 0 0 0 a




:

Since for any two distinct columns of M− there is a symbol occurring only in one of
those columns, all predecessor sets in (G−; �−) are distinct and (G−; �−) is the left
Fischer cover of T . (G+; �+) is given by the matrix

M+ =




: e f g h c d
x + y a : : : : :
z + w : a : : : :
x + w : : a : : :
z + y : : : a : :

x + y + z + w : : : : a :
x + y + z + w : : : : : a




:

The last two rows of M+ show that the corresponding vertices in G+ do have the same
follower sets both of them having a $xed point loop labeled a. Thus, the corresponding
$xed points will be identi$ed when factoring through the right Fischer cover and thus
#(f)+)−1(a∞)65, while #(f�+)−1(a∞)= 6. Thus (G+; �+) is not conjugate to the
right Fischer cover.
As in Example 4.1, consider the 8 blocks of the form eanx, eany; : : : ; hanz, hany

for very large n. Assume that there are 3 of those blocks, say uianvi, 16i63, and
ui ∈{e; f; g; h}, vi ∈{x; y; z; w}, which are realized at the same vertex in some cover
of T . If u1 = u2 then {v1, v2} is one of the sets {x; y}, {z; w}, {x; w}, {z; y}, since
otherwise #{uianvi, 16i63}62. But since u3anv1 and u3anv2 are also T-blocks, this
implies u3 = u1, and v3 ∈{v1, v2} and thus #{uianvi, 16i63}62, a contradiction. This
shows ui �= uj for i �= j. But since for v∈{x; y; z; w} the set {u∈{e; f; g; h} | uanv is a
T-block} has cardinality 2, we get again a contradiction, and thus the assumption that
there are 3 blocks uianvi, 16i63, with ui ∈{e; f; g; h}, vi ∈{x; y; z; w}, which are real-
ized at the same vertex in some cover of T was wrong. Since the uianvi are 8 blocks,
thus in every cover a∞ has at least 4 preimages.
Now (G;�) has no proper factor maps: Assume we have a factor, say given by

the labeled graph (H; 2). Let f : SG → SH be a factor map from (SG; f�) onto (SH ; f2).
Then, since #(f�)−1(a∞)= 4, also #(f�)−1(a∞)= 4 and thus, there have to be four
vertices, each of which has a $xpoint loop labeled a. Thus f restricts to a bijection
between the four $xpoints of SG and the four $xpoints in the factor SH . Assume that
f is not injective. Then there are s; t ∈ SG with s0 �= t0 and fs=ft. Since f� =f2f,
the points s and t have the same label. Since s �= t, they are not $xpoints. If s0 does
not end in vertex 0 then s0 �= t0 and f�(s)=f�(t) implies �(si)=�(ti)= a for all i¿1
and thus s[1;∞) and t[1;∞) are rays of distinct $xpoints in SG, a contradiction to the
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fact that f is injective on the $xpoints. If s0 does end in vertex 0 then s0 �= t0 implies
that �(si)=�(ti)= a for all i6 − 1 and thus s(−∞;−1] and t(−∞;−1] are rays of
distinct $xpoints in SG, a contradiction. Thus the assumption that f is not injective is
wrong and so, f is a conjugacy.

5. So&c shifts with in&nitely many non-conjugate minimal covers all of which have
least multiplicity

In this section we shall $rst strengthen a result of Williams in showing that for
every so$c shift which is not AFT there is an integer N and in$nitely many covers
of multiplicity N , no two of them having a common factor. From this we construct
a so$c shift having in$nitely many covers of least multiplicity all of which have no
proper factors.
In the proof of the next theorem we need to split graphs with respect to sub-

graphs. Consider a bounded-to-1 cover (R; 2) of T and let H be an irreducible sub-
graph of R. We want to de$ne an incoming splitting with respect to H . For an edge
e∈ER let i(e) denote the initial vertex of e and t(e) the terminal vertex of e. Let
E1 := {e∈ER − EH | t(e)∈VH}. If #E161 then we cannot income split. Now assume
#E1¿1 and choose a partition of E1 into two non-empty sets, say A and E1 − A. We
create from (R; 2) a new labeled graph as follows: The vertex set is V := {(i; 1) | i∈
VR} ∪ {(i; 0) | i∈VH}. For each edge e∈ER − A there is an edge from (i(e); 1) to
(t(e); 1) labeled 2(e). For each edge e∈A there is an edge from (i(e); 1) to (t(e); 0)
labeled 2(e). For each e∈EH there is an edge from (i(e); 0) to (t(e); 0) with label
2(e). And for each edge e∈ER − EH with i(e)∈VH there is an edge from (i(e); 0) to
(t(e); 1) with label 2(e). This de$nes the incoming splitted graph with respect to the
subgraph H and the partition {A; E1 − A}, which we call (R′; 2′).
Then (R′; 2′) is a cover for T , and since H is irreducible, R′ is irreducible. Further-

more m(R′; 2′)62m(R; 2)¡∞ and if f2 is a 1–1ae map then f2′ too.
The outgoing splitting with respect to H is de$ned analogously using a partition of

the set E2 := {e∈ER − EH | i(e)∈VH} and producing a copy of H also.

Theorem 5.1. Let T be a transitive so9c shift which is not AFT . Then there are
in9nitely many minimal pairwise non-conjugate covers for T of the same 9nite mul-
tiplicity.

Proof. The outline of the proof is as follows: The $rst step is to construct a bounded-
to-1 cover (G;�) of T such that G contains a subgraph H such that (H;�|H ) is of a
certain type, see the $rst picture below or the description at the end of step 1. Then
by repeated splittings we obtain a graph G in which the subgraph H is “isolated” in
the sense that there is a unique edge which does not belong to H but has terminal
vertex in H and there is another unique edge which does not belong to H but has
initial vertex in H and this distinguished terminal and initial vertex are the same. Then
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we shall replace H by a graph Hn, see the second picture below, obtaining a family
of covers (Gn; �n). The constructions are made that all these graphs (Gn; �n) have
the same $nite multiplicity and the structure of their subgraphs Hn ensures that no
two of them have a common factor. By [1, Corollary 2:8] every cover (Gn; �n) has
a factor (G′

n; �
′
n) which is minimal, in the sense that it has no proper factors. Since

no two of the covers (Gn; �n) have a common factor, the covers (G′
n; �

′
n) are pairwise

not conjugate. Being factors of covers with the same $nite multiplicity, there are thus
in$nitely many of the covers (G′

n; �
′
n) having all the same $nite multiplicity.

Step 1: Constructing a cover (G;�) which contains a subgraph H of a certain type.
For that consider the right Fischer cover (F+; )+) of T . Since T is not AFT, the

labeling )+ is not left-closing. Thus, there is a vertex '′ and two paths with distinct
terminal edges leading to '′ and having the same labels. Since the cover is $nite, there
is a pair of vertices, say (*′; 1′) which is visited by these paths at the same times
twice. Since the labeling is 1-step right-closing, *′ �= 1′. Thus, there are loops at *′

resp 1′, both labeled with a block, say a′. And there are paths from *′ resp 1′ to
'′ both labeled b′. By extending these paths to the right we may assume that b′ is
a synchronizing block. Since )+ is 1-step right closing we may assume that the $rst
symbol of a′ is distinct from the $rst symbol of b′. Since the follower sets of *′ and
1′ are distinct, we can $nd a block c′ which is in the follower set of *′, say, but not
in the follower set of 1′. By extending the block c′ to the right we may assume that
c′ is a synchronizing block and that there is a path from *′ to 1′ labeled c′. Finally
choose a path from '′ to *′ labeled with a synchronizing block d′. Notice that '′ = *′

or '′ = 1′ is possible. Fix N¿2:(|a′| + |b′| + |c′| + |d′|) such that N is a multiple of
|a′| and of |d′b′|. Pass to the higher block system, say (G;�) of (F+; )+) where now
the vertices are F+ – blocks of the form e−N : : : :eN−1 and the edges are F+− blocks
of the form e−N : : : eN with label )+(e0) which starts at vertex e−N : : : eN−1 and ends
at vertex e−N+1 : : : eN .
Let x′ ∈ SF+ be the periodic point which has label (d′b′)∞ and x′0 starts in vertex

'′. Let y′; z′ ∈ SF+ be the periodic points which have label (a′)∞ and y′
0 starts in

vertex *′ and z′0 starts in vertex 1′. Then let ' := x′[−N; N −1]; * :=y′[−N; N −1] and
1= z′[−N; N −1]. Then '; *; 1 are three distinct vertices in G. There is a simple loop
p*;* at * with label say a′′ such that for some i(*)¿1 it holds that a′ =(a′′)i(*); and
a simple loop p1; 1 at 1 with label a′′′ such that for some i(1)¿1 it holds a′ =(a′′′)i(1).
Note however that it may be that the orbit of (p*;*)∞ in SG is the same as of (p1; 1)∞.
Let i; j¿1 be such that |(a′)i|= |(d′b′) j|=N . Since in (F+; )+) there is a path p

with label (a′)2ib′(d′b′)2j starting with the path y′[−N; N − 1] and ending with the
path x′[−N; N − 1], there is a path p*;' in the higher block system (G;�) from * to '
labeled b := (a′)ib′(d′b′) j. Since the $rst symbol of a′ is distinct from the $rst symbol
of b′, all the subpaths of length 2N of p in F+ are pairwise distinct, and thus the path
p*;' in G has |p*;'| distinct edges and |p*;'|+ 1 distinct vertices.
Similarly, there is a path p1;' from 1 to ' labeled b, there is a path p';* from ' to *

labeled d := (d′b′) jd′(a′)i and there is a path p*; 1 from * to 1 labeled c := (a′)ic′(a′)i.
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Let H ′ be the subgraph of G consisting of the vertices and edges used in the paths
p*;'; p1; '; p';* and p*; 1. By the choice of N and since the $rst symbol of the block
a′ is distinct from the $rst symbol of the block b′, the paths p*;'; p1; ' and p';* consist
of |p*;'|+ |p1;'|+ |p';*| distinct edges, being also distinct from the edges in the loops
p*;* and p1; 1. The paths p*;' and p*; 1 share the $rst k edges if c′ and b′ begin with
the same pre$x of length k. Since c′ and b′ are synchronizing T-blocks with distinct
follower sets, however p*;' �=p*; 1; p*; ' is not a pre$x path of p*; 1 and p*; 1 is not a
pre$x path of p*;'. In particular, the paths p*;'; p1; '; p';* and p*; 1 visit the vertices
'; * and 1 only at their initial and at their terminal vertex.
So far we have chosen a distinguished subgraph H ′ of G and two simple loops p*;*

and p1; 1 in G. If in SG the orbit of (p*;*)∞ is the same as of (p1; 1)∞ then p*;* =p1p2

and p1; 1 =p2p1 where p1 is a path from * to 1 and p2 a path from 1 to *. Let ai
be the label of pi; i=1; 2. Then a1a2 = a2a1. We now perform an incoming splitting
of the graph (G;�) according to the subgraph K consisting of the simple loop p*;*,
where we choose A= {last edge of the path p*; 1}. Call the splitted graph (G′; �′). In
G′ there are paths p′

*; ' and p′
1; ' from (*; 1) (resp. (1; 0)) to ('; 1) both labeled b,

there is a path p′
'; * from ('; 1) to (*; 1) labeled d, there is a path p′

*; 1 from (*; 1) to
(1; 0) labeled c. Furthermore at vertices (1; 0) and (*; 1) there are simple loops labeled
a1a2 = a2a1, which do not share a vertex.
Thus, by performing a splitting if necessary, we may assume that in (G;�) the orbits

of (p*;*)∞ and of (p1; 1)∞ are distinct. Finally, we want to see that we can assume that
the simple loops p*;* and p1; 1 have the same length. If |p*;*| �= |p1; 1|, then we proceed
as follows: Let n= |p*;*| and e0; e1; : : : ; en−1 denote the edges of the simple loop p*;*,
that is p*;* = e0e1 : : : en−1. Recall further that a′ =(a′′)i(*) and thus |a′|= ni(*). We
delete the edge en−1 from G and add (i(*) − 1)n + 1 edges, named fn−1+k , with
label )+(en−1+k mod n); 06k6(i(*) − 1)n, such that i(fn−1)= i(en−1); i(fn−1+k+1)=
t(fn−1+k) for 06k¡(i(*)−1)n and t(fn−1+(i(*)−1):n)= *. Furthermore if in G for some
06m¡n there is an edge e with i(e)= i(em) and e �= em then we add an edge from
i(fn−1+k) to t(e) with label )+(e) for each 06k6(i(*)− 1)n such that n− 1+ k =m
mod n. The new labeled graph is again a bounded-to-1 cover for T , and at the vertex
* there is now a simple loop labeled a′ which has no vertices with H ′ in common
except *. We do the same procedure with the simple loop p1; 1 and obtain a bounded-
to-1 cover of T , which we call again (G;�), with the following properties:

There is a T-block a, there are synchronizing T-blocks b; c; d, there are three distinct
vertices '; *; 1∈VG such that:
• there is a simple loop p*;* at * labeled a,
• there is a simple loop p1; 1 at 1 labeled a,
• there is a path p*;' from * to ' labeled b,
• there is a path p1;' from 1 to ' labeled b,
• there is a path p*; 1 from * to 1 labeled c,
• there is a path p';* from ' to * labeled d.
We call (H;�|H ) the subgraph of (G;�) consisting of the edges and vertices of those 6 paths
p*;*; p1; 1; p*; '; p1; '; p*; 1 andp';*. Note that ifN was large enough then #EG − #EH¿2.
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Fig. 1. Cover (H;�|H ).

For the special case that |a|= |b|= |c|= |d|=1 the labeled graph (H;�|H ) is depicted
in Fig. 1.
Step 2: Making the subgraph H “isolated” in G, that is we shall perform splittings

on G to obtain a cover (R; 2) which contains a copy of (H;�|H ) and such that there is
a unique edge e∈ER − EH with t(e)∈VH and this edge has t(e)= ', and that there is
a unique edge f∈ER −EH with i(f)∈VH and this edge has i(f)= ' and furthermore
e �=f.

Since #(EG − EH )¿2 we can $x edges e′; f′ ∈EG − EH ; e′ �=f′ with t(e′)∈VH
and i(f′)∈VH . If t(e′)= ' then let e= e′. If t(e′) �= ', then we do the following “soft
splitting” on G: Fix k¿1 such that there is a path of length k in H from t(e) to '∈VH .
Let Q := {q= q1 : : : qk |q is a path of length k in G starting at t(e)}. Now change G as
follows: Erase the edge e and then add for each q= q1 : : : qk ∈Q a new path of length
k + 1 from i(e) to t(qk) with label �(e)�(q1) : : : �(qk). The new graph is conjugate
to (G;�), it contains all the edges from EG − {e}, thus has also a copy of H and
there is now an edge e which does not belong to H but has terminal vertex ' and
e �=f′. If i(f′)= ', then we let f=f′. Otherwise we perform again a soft splitting
by erasing the edge f′ and use paths which end in initial vertex of f′. We obtain a
cover, which we call again (G;�), which contains a copy of H and there is an edge
e∈EG − EH with t(e)= ' and an edge f∈EG − EH with i(f)= ' and e �=f. Since
e; f =∈EH ; i(e); t(f) =∈VH .
Now let E1 := {e′ ∈EG − EH | t(e′)∈VH}.
Then e∈E1. If E1 = {e} then let (R; 2)= (G;�). If #E1¿2 then let A= {e}. Perform

an incoming splitting of (G;�) with respect to H and partition {A; E1−A} to obtain the
splitted graph (R; 2). By this splitting the edges of R corresponding to H which have
initial and terminal vertex in {(i; 0) | i∈VH} give a copy of H , call it H ′. Since A= {e},
there is a unique edge in ER − EH ′ which has terminal vertex in VH ′ = {(i; 0) | i∈VH},
namely the edge from (i(e); 1) to (t(e); 0)= ('; 0). Observe that there is an edge in
ER − EH ′ which has initial vertex (i(f); 0)= ('; 0), call this edge f′.
Now we want to do an outgoing splitting of (R; 2). For that let E2 := {f∈ER −

EH ′ | i(f)∈VH ′}. Thus f′ ∈E2. If #E2 = 1 then let R′ =R; H ′′ =H ′. If #E2¿2 let
A= {f′}. Do an outgoing splitting of (R; 2) with respect to H ′ and partition {A; E2−A}
to obtain the splitted graph (R′; 2′). Let H ′′ be the subgraph of R′ which consists of the
edges which do have initial and terminal vertex in {(i; 0) | i∈VH ′}= {((i; 0); 0) | i∈VH}
and correspond to H ′. Then H ′′ is a copy of H ′. There is a unique edge f′′ in ER′−EH ′′
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with initial vertex in VH ′′ , and this edge begins in (i(f′); 0) = (('; 0); 0). Also, there
is a unique edge e′′ in ER′ − EH ′′ with terminal vertex in VH ′′ , and this edge ends
in ((t(e); 0); 0)= (('; 0); 0) and furthermore e′′ �=f′′. For convenience we call (R′; 2′)
again (G;�) and the subgraph (H ′′; 2′|H ′′) again (H;�|H ), the edge e′′ again e; f′′

again f and the vertices (('; 0); 0); ((*; 0); 0) and ((1; 0); 0) of H ′′ again '; * and 1 resp.
We thus have the desired cover (G;�) which contains a copy of H sitting “isolated”
in G.
Step 3: Construction of the labeled graphs Hn which shall replace H .
For that let X =f�(SH ). Then (H;�|H ) is a cover for X . For each n¿2 we de$ne

a cover (Hn; �n) as follows: The vertex set of Hn is Vn and it contains

V ∗
n = {i ∈ Z | − (n+ 2)6i62} ∪ {(i; j) | 16i6n+ 4; j ∈ {0; 1}}:

To give a compact description of the labeled edges of Hn we use the following notion:
For a block w∈{a; b; c; d} and v1; v2 ∈V∗

n we mean by “there is a path labeled w from
v1 to v2” that if |w|= k and w=w1 : : : wk then there are vertices (v1; v2; w; i)∈Vn; 16i6
k − 1 and an edge labeled w1 from v1 to (v1; v2; w; 1), an edge labeled wi from
(v1; v2; w; i − 1) to (v1; v2; w; i) for 26i6k − 1 and $nally an edge labeled wk from
(v1; v2; w; k − 1) to v2.
With this notion we can describe the edges of Hn: There are loops labeled a at the

vertices 1, 2 and −(n+2). There is a path labeled d from 0 to 1, a path labeled c from
1 to 2 and a path labeled b from 2 to 0. There is a path labeled d from 0 to −1, a path
labeled a from i to i−1 for −(n+2)¡i6−1. There is a path labeled b from i to 0 for
−(n+2)6i6−1; i �= − (n+1). There is a path labeled d from 0 to (1; j); j∈{0; 1}.
There is a path labeled a from (i; j) to (i + 1; j); 16i¡n + 1; j∈{0; 1}. There is a
path labeled b from (n + 1; j) to (n + 2; j) and a path labeled d from (n + 2; j) to
(n + 3; j); j∈{0; 1}. There is a path labeled a from (n + 3; j) to (n + 4; j) and from
(n + 4; j) to (n + 3; j); j∈{0; 1}. There is a path labeled c from (n + 3 + i; 0) to
(n+3+ j; 1) for i; j∈{0; 1}. Finally there is a path labeled b from (n+4; 0) to 0 and
from (n+ 3; 1) to 0. We call the vertices V∗

n the essential vertices of Hn.
For the special case that |a|= |b|= |c|= |d|=1 we have V∗

n =Vn and the labeled
graph (Hn; �n) is presented in Fig. 2.
Now we check that (Hn; �n) is a cover for X . Let Sn := SHn and fn :=f�n . Observe

that the $rst return loops at vertex 0∈Vn in Hn are labeled by X-blocks beginning with
d and ending with b. Since b; d and bd are synchronizing X-blocks, fn(Sn)⊂X . For
every X-block m=dwb where w is a $nite concatenation from blocks from {a; c} and
w �= an there is a unique $rst return loop at vertex 0∈Vn with label m. It uses only
essential vertices from {i∈Z |−(n+2)6i62}. For every X-block m=danbdakb; k¿0
there is a unique $rst return loop at vertex 0∈Vn with label m. It uses essential
vertices from {(i; 1) | 16i6n + 4} if k is even and from {(i; 0) | 16i6n + 4} if k
is odd. And $nally for a X-block m=danbdakcamb; k; m¿0 there is a unique $rst
return loop at vertex 0∈Vn with label m. It uses $rst essential vertices from the set
{(i; 0) | 16i6n + 4} and then from {(n + 3; 1); (n + 4; 1); 0}. Thus fn(Sn)=X and
(Sn; fn) is a cover for X .
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Fig. 2. Cover (Sn; fn).

Furthermore #(fn)−1(a∞)= 7 · period (a∞) and the above argument shows that
#(fn)−1(p)= 1 for every periodic point p∈X−{a∞; (danb)∞} and #(fn)−1((danb)∞)
= 2. Thus pm(Sn; fn)= 7 · period(a∞).
Now let x∈X − {a∞; (danb)∞} and let y∈ Sn with fn(y)= x. If there is some i

such that x(−∞; i − 1] ends with a block from {cakb | k¿0}∪ {dakb | k¿0; k �= n}
or x(−∞; i − 1]= a∞b then xi starts in vertex 0. By inspection, the number of paths
starting in vertex 0 having label x[i;∞) is at most 2 and the number of paths ending
in 0 having label x(−∞; i − 1] is at most 4. Thus #(fn)−1(x)68 in this case. Now
consider the case that no such i exists. If there is some i such that xi = c then this i
is unique and x[i;∞)= ca∞. Then either x is in the orbit x(−∞; i − 1]= a∞ and, by
inspection, x has 5 preimages or x(−∞; i−1] determines a unique vertex from {1; (n+
3; 0); (n+ 4; 0)} in which yi starts. Thus #(fn)−1(x)68 in this case, too. If xi �= c for
all i then x is from the orbit (danb)∞da∞. By inspection of the cover, #(fn)−1(x)= 3.
Thus m(Sn; fn)= max (8,7period (a∞)). Every point in the orbit of a∞bda∞ has 8
preimages. Thus all the covers (Sn; fn) of X have the same $nite multiplicity.
Step 4: Replacing the subgraph H of G by Hn.
Consider the cover (G;�) constructed in step 2 which contains (H;�|H ). Recall that

there is a unique vertex '∈VH , there is a unique edge e∈EG −EH with t(e)∈VH and
this edge e has terminal vertex t(e)= ' and there is a unique edge f∈EG − EH with
i(f)∈VH and this has i(f)= ' and furthermore e �=f.
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For n¿2 we de$ne (Gn; �n) to be the disjoint union of (G − H;�) and (Hn; �n)
where the vertices '∈VG and 0∈Vn are identi$ed and furthermore an edge f′ is added
starting in the essential vertex (n+2; 0)∈Vn and ending in t(f)∈VG−VH having label
�n(f′)=�(f). Then (Gn; �n) is a cover of T : The loops in H (resp. Hn) at vertex '
resp 0 begin with the synchronizing block d and end with the synchronizing block b.
For every $rst return loop at ' in H which is not labeled danb there is a $rst return
loop at ' in Hn with the same labels. A loop in G which starts with the $rst return
loop at ' having label danb has as its n+2′th edge either the distinguished edge f or
the edge in H starting at vertex ' which is the initial vertex of the path p';* leading
from ' to * and having label d. In the $rst case by construction there is a path in Gn

from ' to t(f) having label danb�(f) and in the second case there is a $rst return
loop at ' in Hn with the same label. Thus (Gn; �n) is a cover of T .

We compare the multiplicity of (G;�) with that of (Gn; �n). Let x∈ SG and y∈ SGn .
We say x≈y if f�x=f�ny and xi =yi whenever xi ∈EG − (EH ∪{f}). Let )(x)
:= #{y∈ SGn | x≈y}. Now $x x∈ SG and let y∈ SGn with x≈y.

First we consider the case that for some i the edges xi and yi both begin in vertex '.
If for some i¡k the block x[i; k] is a $rst return loop at vertex ', then since yi begins
in ' too, y[i; k] is uniquely determined by x[i;∞) except if (f�x)[i;∞] =danbda∞. In
this latter case y[i;∞] has at most two possibilities. If xj does not begin in ' for j¿i
then either xi =f and xj ∈EG − (EH ∪{f}) for all j¿i and y[i;∞) is determined by
x[i − n − 2;∞) or xj ∈EH for all j¿i and f�x[i;∞)∈{da∞; dakca∞ | k¿0} and in
this case y[i;∞) has at most two possibilities.
Thus if xi begins in vertex ' then #{y[i;∞) |y∈SGn ; x≈y and yi begins in '}62 and

a similar argument shows that #{y(−∞; i− 1] |y∈SGn ; x≈y and yi begins in '}64.
If xi = e then x≈y implies yi = e. If xi =f then x≈y implies yi =f′ if f�(x)(−∞;

i−1] ends with the block danb and otherwise yi =f, since xi+1 =yi+1 ∈
EG−(EH ∪{f}). Thus if x sees the edge e or the edge f then there is some i such that
xi starts in ' and x≈y implies yi starts in ' too and thus )(x)68 in this case. Now
consider the case that x never sees e and never sees f. Then either xi ∈EG−(EH ∪{f})
for all i and thus )(x)= 1 or xi ∈EH for all i and then f�(x)∈X and thus x≈y im-
plies yi ∈EHn for all i and thus by the argument in step 3 )(x)68 · period (a∞). Thus
)(x)68 · period (a∞) in any case and thus m(Gn; �n)68m(G;�)period (a∞).
Note that the argument also showed that f�n is 1–1a.e., since f� is 1–1a.e. Let m

be a T-block of length 2k + 1, say, such that whenever s∈ SG with f�(s)[−k; k] =m
then s0 begins in '. By prolongating m if necessary, we may assume that m be-
gins and ends with the block dcb and there is a loop in G at vertex ' with label
m. By the argument above, there is also a loop in Gn at vertex ' labeled m and if
s∈ SGn with f�n(s)[−k; k] =m then s0 begins in vertex '. We call m a strong magic
T-block.
Step 5: Veri$cation that no two of the covers (Gn; �n) have a common factor.
Now let for notational convenience Sn := SGn and fn =f�n . Let (K; =) be a cover for

T; S = SK ; f=f= and let g : Sn → S be a factor map such that fn =f ◦ g. (Thus, (S; f)
is a factor of (Sn; fn).)
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Claim. Let x∈ Sn be the point of least period 2|a| which has fn(x)= a∞ and x0 begins
in vertex (n+ 3; 0)∈Vn. Then gx is a point of least period 2|a|.
Proof of the Claim. Assume that gx has period less than 2|a|. Let y∈ Sn be the
point of least period 2|a| which has fn(y)= a∞ and y0 begins in vertex (n + 3; 1).
Let M be so large that s; t ∈ Sn with s[−M;M ] = t[−M;M ] implies (gs)0 = (gt)0. Let
m be a strong magic T-block. Let s∈ Sn such that fns(−∞; (M + 1)|a| + |bm| − 1]
ends with mdanbda2M+1bm. Then s[−M; |a| − 1 +M ] = x[−M; |a| − 1 +M ] and thus
gs[0; |a|−1]= gx[0; |a|−1]. By assumption gx has period less than 2|a| and the period
of gx divides |a|, thus gx[0; |a|−1] is a loop in K at some vertex with label a, there is
thus a point z ∈ S with z[0; |a| − 1]= gx[0; |a| − 1] and fz(−∞; (M + 2)|a|+ |bm| − 1]
ends with mdanbda2M+2bm. Let t ∈ g−1z. Then, since fnt(−∞; (M + 2)|a|+ |bm| − 1]
ends with mdanbda2M+2bm, and m is a strong magic block, we get that t[−M; 2|a|+
M ] =y[−M; 2|a| +M ]. Thus gy[0; |a| − 1]= gy[|a|; 2|a| − 1]= gx[0; |a| − 1] and thus
gy= gx. Now let r ∈ Sn with r(−∞;−1]= x(−∞;−1] and r[|c|;∞)=y[0;∞) and
fnr= a∞ca∞. Then, since gx= gy, there is thus a loop in S labeled aMcaM , thus
ca2Mc is a T-block, a contradiction. Thus the assumption that the period of gx is less
than 2|a| was wrong, and thus gx is a point of least period 2|a|. The claim is thus
proved.

Now let (S; f) be a common factor of (Sn; fn) and (Sk ; fk), say g is a factor map
from (Sn; fn) onto (S; f) and h is a factor map from (Sk ; fk) onto (S; f). Let m be a
strong magic T-block. Let M¿1 be greater than the coding lengths of g and h. Let
s∈ Sn with fn(s)(−∞;−1]=m∞danbd and fn(s)[0;∞)= a4M+1bm∞. Then s0 begins
in vertex (n + 3; 0). Let t ∈ Sk such that ht= gs. Since in (Gk; �k) there are a loops
at vertex ' labeled m and danda4M+1b, the latter being a loop in the subgraph Hk of
Gk , and since m is a strong magic T-block, t(−∞;−|danbd| − 1] ends in vertex ' and
t[−|danbd|; |a4M+1b|−1] is a loop at '. If n �= k then t[0; |a4M+1|−1] is a loop at vertex
−(k+2), and thus t′ := (t[0; |a4M+1|−1])∞ is a point in Sk of period |a| with label a∞.
Thus ht′ has period 6|a|, and thus by the choice of M , for s′ =(s[0; |a4M+1| − 1])∞

it holds gs′ = ht′, a contradiction to the last claim. Thus the assumption n �= k was
wrong, and thus n= k. Thus we have shown that the covers (Sn; fn) of T are covers
with multiplicity 6m(G;�)·8·period (a∞) and no two of them have a common factor.
By [1, Corollary 2:8] this proves the theorem.

Example 5.2. There is a so$c system such that there are in$nitely many non-conjugate
minimal covers with least multiplicity. Consider the labeled graph (H;�) given by the
matrix




0 d 0
b a c
b 0 a


 :

Call the vertex where the edge labeled d begins '. Now add a loop of length 8 with
label e8 at vertex ', to obtain a labeled graph (G;�). Let T be the so$c shift de$ned
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by (G;�). It is easy to see that m(T )= 8. Then T is not AFT and (G;�) has the
subgraph H as constructed in step 2 of the proof of Theorem 5.1. Now replace H by
Hn and add the special edge f′ as described in step 4 of the proof of Theorem 5.1.
Then by step 3–5 of the proof of Theorem 5.1 these are covers with no common factor
and all have multiplicity 8.

References

[1] M. Boyle, Factoring factor maps, J. London Math. Soc. (20) 57 (1998) 491–502.
[2] M. Boyle, B. Kitchens, B. Marcus, A note on minimal covers for so$c systems, Proc. AMS 95 (3)

(1985) 403–411.
[3] N. Jonoska, So$c systems with synchronizing representations, Theoret. Comput. Sci. 158 (1–2) (1996)

81–115.
[4] B. Kitchens, Symbolic Dynamics, Springer, Berlin, 1998.
[5] D. Lind, B. Marcus, An introduction to symbolic dynamics, Cambridge University Press, Cambridge,

New York, 1995.
[6] P. Trow, Lifting covers of so$c shifts, Monatsh. Math. 125 (1998) 327–342.
[7] S. Williams, A so$c system with in$nitely many minimal covers, Proc. Amer. Math. Soc. 98 (3) (1986)

503–505.
[8] S. Williams, Covers of non-almost-$nite-type systems, Proc. Amer. Math. Soc. 104 (1988) 245–252.


