Theoretical Computer Science

On β-skeleton as a subgraph of the minimum weight triangulation

Siu-Wing Cheng ${ }^{\mathrm{a}, *, 1}$, Yin-Feng Xu ${ }^{\text {b, } 2}$
${ }^{\text {a }}$ Department of Computer Science, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
${ }^{\mathrm{b}}$ School of Management, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China

Received 9 June 1999; revised 30 May 2000; accepted 18 July 2000
Communicated by D.-Z. Du

Abstract

Given a set S of n points in the plane, a triangulation is a maximal set of non-intersecting edges connecting the points in S. The weight of the triangulation is the sum of the lengths of the edges. In this paper, we show that for $\beta>1 / \sin \kappa$, the β-skeleton of S is a subgraph of a minimum weight triangulation of S, where $\kappa=\tan ^{-1}(3 / \sqrt{2 \sqrt{3}}) \approx \pi / 3.1$. There exists a four-point example such that the β-skeleton for $\beta<1 / \sin (\pi / 3)$ is not a subgraph of the minimum weight triangulation. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Minimum weight triangulation; Beta skeleton; Computational geometry

1. Introduction

Let S be a set of n points in the plane. A triangulation $T(S)$ of S is a maximal set of non-intersecting straight line edges connecting points in S. Let $C H(S)$ denote the set of edges bounding the convex hull of S. Then $|T(S)|=3 n-3-|C H(S)|$ [6]. The length of an edge in $T(S)$ is equal to the Euclidean distance between its two endpoints. The weight of $T(S)$ is the sum of the lengths of edges in $T(S)$. The minimum weight triangulation problem is to compute $T(S)$ with minimum weight for a given point set S. The problem finds applications in numerical analysis $[5,8,18]$. However, the complexity of the problem remains open.

[^0]

Fig. 1.

Several heuristics have been proposed to obtain a triangulation to approximate the MWT [4, 9, 12-14]. The heuristic in [14] is known to have a bound of $\mathrm{O}(\log n)$ on the approximation ratio in the worst case. The more recently discovered heuristic [12] computes in $\mathrm{O}(n \log n)$ time a triangulation with constant approximation ratio. Relatively little is known about the structure of the MWT. It is shown in [7] that the shortest edge between two points in S belongs to any MWT. Mark Keil [10] proves that a much larger graph, $\sqrt{2}$-skeleton, is always a subgraph of a MWT. The $\sqrt{2}$-skeleton is the β-skeleton defined by Kirkpatrick and Radke [11] for $\beta=\sqrt{2}$. Given two points x and y, define $x y$ to be the edge connecting x and y and define $|x y|$ to be the length of $x y$. For $\beta \geqslant 1$, the forbidden neighborhood of x and y is the union of two disks with radius $\beta|x y| / 2$ that pass through both x and y. Given a point set S and $x, y \in S$, $x y$ belongs to the β-skeleton of S if no point in S lies in the interior of the forbidden neighborhood of x and y (refer to Fig. 1). Let $\alpha_{x y}$ be the angle that the chord $x y$ subtends at one of the circles. Then $\beta=1 / \sin \alpha_{x y}$.
It is conjectured in [10] that the β-skeleton is a subgraph of a MWT for $\beta \geqslant 1 /$ $\sin (\pi / 3)$. Recently, it is reported in [16] that the value of β can be improved to $1 / \sin (2 \pi / 7) \approx 1.279$. Yang et al. [17] formulated and proved a different property: if the union of the two disks centered at x and y with radius $|x y|$ is empty, then $x y$ is in a MWT (this interpretation of the original statement in [17] is from [1]). Note that the subgraph generated by the above condition and the β-skeleton do not contain each other for $\beta>1 / \sin (\pi / 3)$, but for $\beta \leqslant 1 / \sin (\pi / 3)$, the β-skeleton contains the subgraph generated by the above condition.
In this paper, we show that the β-skeleton is a subgraph of a MWT, for $\beta>1 / \sin \kappa \approx$ 1.17682, where $\kappa=\tan ^{-1}(3 / \sqrt{2 \sqrt{3}}) \approx \pi / 3.1$. Both our result and the result in [16] are based on proving an improved version of the key lemma, Remote Length Lemma, in [10]. Moreover, the proof strategy in [10] cannot be pushed further to improve upon our result. There exists a four-point example such that the β-skeleton for $\beta<1 /$ $\sin (\pi / 3) \approx 1.1547$ is not a subgraph of any MWT (refer to Fig. 1). The two circles
define the forbidden region for $x y$ for $\beta_{0}=1 / \sin (\pi / 3)$. The triangle $a x y$ is equilateral. The two shaded disks define the forbidden region for $x y$ for $\beta_{1}<1 / \sin (\pi / 3)$. Thus, $b x<a x=x y$. We can pick a point c on the boundary of the lower shaded disk such that $b c<x y$. So $x y$ belongs to the β_{1}-skeleton of $\{b, c, x, y\}$ but the MWT of $\{b, c, x, y\}$ contains $b c$ instead of $x y$. After the appearance of a preliminary version of this paper [3], it has been proved recently [15] that $1 / \sin \kappa$, where $\kappa=\tan ^{-1}(3 / \sqrt{2 \sqrt{3}})$, is indeed a lower bound on β for β-skeleton to be a subgraph of a MWT.
In Section 2, we shall review Keil's proof. Our result is presented in Section 3.

2. Preliminaries

Keil's proof follows the edge insertion paradigm [2]. Assume to the contrary that $x y$ is an edge of a β-skeleton that does not belong to an MWT \mathscr{T}. The strategy is to add $x y$ to \mathscr{T} and remove the existing edges that intersect $x y$. Then the two resulting polygonal regions on both sides of $x y$ are retriangulated carefully to obtain a new triangulation. A contradiction is derived by arguing that the new triangulation has a smaller weight than \mathscr{T}. We describe the main ideas below. Assume throughout that $\alpha_{x y}<\pi / 3$.

Let $e_{j}, 1 \leqslant j \leqslant m$, be the edges intersected by $x y$ and let $\left|e_{j-1}\right| \leqslant\left|e_{j}\right|, 2 \leqslant j \leqslant m$. Let P be the polygonal region above $x y$ to be retriangulated incrementally. (The polygonal region below $x y$ can be dealt with similarly.) During the incremental retriangulation, we shall obtain a sequence of triangulated polygons $P_{j}, 0 \leqslant j \leqslant m$, such that P_{0} is the degenerate polygon $x y, P_{m}$ is a triangulation of P, and $P_{j-1} \subseteq P_{j} . P_{j}$ is obtained from P_{j-1} by expanding P_{j-1} to include the endpoint v_{j} of e_{j} as follows (v_{j} is the endpoint on the same side of $x y$ as P). If v_{j} lies in P_{j-1}, then $P_{j}=P_{j-1}$. Otherwise, e_{j} intersects a boundary edge $v_{i} v_{k}$ of P_{j-1}. In general, the triangle $v_{i} v_{j} v_{k}$ contains a subsequence σ_{1} of vertices on P from v_{i} to v_{j} and another subsequence σ_{2} from v_{j} to v_{k} (see Fig. 2): the polygon with solid boundary is P_{j-1}, the bold triangle is $v_{i} v_{j} v_{k}$, the polygon with dashed boundary is P, the white dots inside the bold triangle is σ_{1}, and the grey dots inside the bold triangle is σ_{2}. We arbitrarily triangulate the polygon $v_{i} \sigma_{1} v_{j} \sigma_{2} v_{k}$ and P_{j} is the union of this triangulated polygon and P_{j-1}. We claim that all the new edges added are shorter than e_{j}. Thus, we shall inductively obtain a new triangulation of lesser weight than \mathscr{T} (and so the contradiction).
The proof of the claim is as follows. All new edges added have length at most $\max \left\{\left|v_{i} v_{j}\right|,\left|v_{j} v_{k}\right|,\left|v_{i} v_{k}\right|\right\} . v_{i} v_{k}$ is shorter than e_{j-1} by induction assumption. Consider $v_{i} v_{j}\left(v_{j} v_{k}\right.$ can be handled similarly). If v_{i} lies in triangle $x v_{j} y$, then by triangle inequality and the fact that $\alpha_{x y}<\pi / 3, v_{i} v_{j}$ is shorter than e_{j}. Otherwise, consider the convex hull of the chain from x to v_{j} on $P_{j} . v_{i}$ must lie in a triangle $v_{a} v_{b} v_{j}$, where v_{a} and v_{b} are hull vertices. Thus, $\left|v_{i} v_{j}\right| \leqslant \max \left\{\left|v_{a} v_{j}\right|,\left|v_{a} v_{b}\right|,\left|v_{b} v_{j}\right|\right\}$. Since v_{a} and v_{b} are hull vertices, v_{a} and v_{b} were added in the growth process in the past. Thus, the edges e_{a} and e_{b}, with endpoints v_{a} and v_{b}, respectively, were processed before e_{j}. So $\left|e_{a}\right| \leqslant\left|e_{j}\right|$ and $\left|e_{b}\right| \leqslant\left|e_{j}\right|$. Applying the following Lemma 1 to $v_{a} v_{j}$ implies that $\left|v_{a} v_{j}\right|<\left|e_{j}\right|$. Similarly,

Fig. 2.

Fig. 3.
we obtain $\left|v_{b} v_{j}\right|<\left|e_{j}\right|$ and $\left|v_{a} v_{b}\right|<\left|e_{j}\right|$. Thus, $\left|v_{i} v_{j}\right|<\left|e_{j}\right|$ and this completes the proof. Refer to Fig. 3 for an illustration of the Remote Length Lemma.

Lemma 1 (Remote Length Lemma, Keil [10]). Suppose that $\beta \geqslant \sqrt{2}$. Let x and y be the endpoints of an edge in the β-skeleton of a set S of points in the plane. Let p, q, r, and s be four other distinct points of S such that pq intersects the interior of $x y$, rs intersects the interior of $x y, p q$ and rs do not intersect the interior of each other and p and slie on the same side of the line through $x y$. Then either $|q r|<|p q|$ or $|q r|<|r s|$.

As observed in [10], for $1 / \sin (\pi / 3) \leqslant \beta<\sqrt{2}$, the only part of the entire proof in [10] that may fail is the Remote Length Lemma. We achieve our result by showing that the Remote Length Lemma is true for $\beta>1 / \sin \kappa \approx 1.17682$, where $\kappa=\tan ^{-1}(3 / \sqrt{2 \sqrt{3}}) \approx$ $\pi / 3.1$.

3. The proof

Let x and y be the endpoints of an edge in the β-skeleton of a set S of points in the plane. Let (p, q, r, s) be a four tuple of distinct points (not necessarily in S) outside or on the boundary of the forbidden neighborhood of $x y$, such that $p q$ intersects $x y$, rs intersects $x y, p q$ and $r s$ do not intersect the interior of each other and p and s lie on the same side of the line through $x y$. If $|q r| \geqslant|p q|$ and $|q r| \geqslant|r s|$, then we say that (p, q, r, s) satisfies the remote length exception with respect to $x y$ (refer to Fig. 3). Let the two circles be C_{1} and C_{2}. Throughout this paper, we assume that $\alpha_{x y}$ is some fixed constant such that $\alpha_{x y}<\pi / 3$ and there exists some (p, q, r, s) that satisfies the remote length exception with respect to $x y$.
Define $\Phi(x, y)$ be the set of four tuples of points (p, q, r, s) such that (p, q, r, s) satisfies the remote length exception with respect to $x y$. The basic idea of our proof is to compute the smallest value κ for $\alpha_{x y}$ such that $\Phi(x, y) \neq \emptyset$. In other words, for all values of $\alpha_{x y}<\kappa, \Phi(x, y)=\emptyset$ and therefore, the Remote Length Lemma holds in general. The corresponding value, $1 / \sin \kappa$, for β will give us an improvement upon the result in [10].

Since there can be an infinite number of four tuples (p, q, r, s) that belong to $\Phi(x, y)$, it is not clear how to compute κ and hence β directly. Instead, we restrict our attention to a critical structure that must exist in $\Phi(x, y)$ if $\Phi(x, y) \neq \emptyset$. We first fully characterize this critical structure. Select a subset $\mathscr{A}=\{(p, q, r, s) \in \Phi(x, y): \max (|p q|,|r s|)$ is minimized $\}$. Then select a subset $\Phi^{*}(x, y)=\{(p, q, r, s) \in \mathscr{A}:|p q|+|r s|$ is minimized $\}$. $\Phi^{*}(x, y)$ turns out to be a singleton set containing this critical structure. Then, we compute κ based on this knowledge. The characterization of the critical structure is given in the next section. The calculation of κ and β is given in Section 3.2.

3.1. Characterizing $\Phi^{*}(x, y)$

The main result in this section is that if $(p, q, r, s) \in \Phi^{*}(x, y)$, then $|q r|=|p q|=|r s|$, $\angle q x y=\angle r y x$ and they are obtuse (see Fig. 4). There are several geometric facts Observation A, Observation B, and Observation C that we will use in our argument. Observation A refers to Fig. 5(a), Observation B refers to Fig. 5(b) and Observation C refers to Fig. 5(c).

Observation A. Let $c d$ be a line segment through x with endpoints on C_{1} and C_{2}. Then $|c d|$ is a continuous concave function F in $\angle c x y$. Moreover, the slope of F becomes zero only when $\angle c x y=\pi / 2, F$ is symmetric around $\angle c x y=\pi / 2$, and $|c d|$ is maximized when $\angle c x y=\pi / 2$.

Fig. 4.

Fig. 5.

Fig. 6.

Observation B. Let ef be a line segment with endpoints e on C_{1} and f on C_{2} such that the two centers of C_{1} and C_{2} lie on the same side of ef and ef intersects the interior of $x y$. If f (resp. e) slides on C_{2} (resp. C_{1}) such that ef rotates away from the centers and ef still intersects $x y$, then $|e f|$ decreases.

Observation C. Let ef be a line segment with endpoints e on C_{1} and f on C_{2} such that the two centers of C_{1} and C_{2} lie on opposite sides of ef and ef intersects the interior of $x y$. If f is closer to y (resp. x), then sliding f along C_{2} clockwisely (resp. counter-clockwise) decreases $|e f|$, provided that ef still intersects $x y$. If e is closer to x (resp. y), then sliding e along C_{1} clockwise (resp. counter-clockwise) decreases $|e f|$, provided that ef still intersects $x y$.

Lemma 2. If $(p, q, r, s) \in \Phi^{*}(x, y)$, then p and s lie on $C_{1}, p \neq s$, and q and r lie on C_{2}.

Proof. Refer to Fig. 3. If p does not lie on C_{1}, then we can shorten $p q$ to make p lie on C_{1}. This contradicts that $|p q|+|r s|$ is minimized. The same argument holds for s. So p and s lie on C_{1}. Assume to the contrary that $p=s$. Then $q r$ is the longest side of the triangle $p q r$, which implies that $\angle q p r \geqslant \pi / 3$. However, $\angle x p y \geqslant \angle q p r \geqslant \pi / 3$ which contradicts our assumption that $\alpha_{x y}=\angle x p y<\pi / 3$. In the following, assume to the contrary that q does not lie on C_{2}. The treatment for r is similar.

Case(1): $\angle r q p \geqslant \pi / 2$. Refer to Fig. 6(a). Let C^{\prime} be the circle with center p and radius $|p q|$. Draw a circular arc A through q with center r and radius $|q r|$ such that A does not intersect C_{2} or $r s$ and A intersects C^{\prime} exactly once at q. The endpoint q^{\prime} of A shown in the figure must lie inside C^{\prime} but outside C_{2}. Thus $\left|q^{\prime} r\right|=|q r|$, $\max \left(\left|p q^{\prime}\right|,|r s|\right) \leqslant \max (|p q|,|r s|)$, but $\left|p q^{\prime}\right|<|p q|$. Hence, $\left(p, q^{\prime}, r, s\right) \in \Phi(x, y)$ and

Fig. 7.
$\left|p q^{\prime}\right|+|r s|<|p q|+|r s|$. This contradicts our assumption that $|p q|+|r s|$ is the minimum possible.

Case(2): $\angle r q p<\pi / 2$. Refer to Fig. 6(b). Let C^{\prime} be the circle with center p and radius $|p q|$. Draw a circular arc A through q with center r and radius $|q r|$ such that A does not intersect C_{2} or $r s$ and A intersects C^{\prime} exactly once at q. The endpoint q_{0} of A shown in the figure must lie outside the quadrilateral pqrs and C_{2} but inside C^{\prime}. If $p q$ does not pass through x, then A can be made short enough such that $p q_{0}$ intersects $x y$. Then $\left(p, q_{0}, r, s\right) \in \Phi(x, y)$ and $\left|p q_{0}\right|<|p q|$ which contradicts the minimality of $|p q|+|r s|$. Suppose that $p q$ passes through x. Draw a line segment from q_{0} through x to p_{0} on C_{1}. Let the other endpoint of A be q_{1}. Draw another line segment from q_{1} through x to p_{1} on C_{1}. Denote by B the circular arc on C_{1} traversed clockwise from p_{0} to p_{1}. For an arbitrary point q_{t} on A, define p_{t} to be the point on B such that $p_{t} q_{t}$ passes through x (see Fig. 7). Let $\theta_{0}=\angle q_{0} x y, \theta_{1}=\angle q_{1} x y$, and $c=\angle r x y$. Let $\theta^{*}=\angle q x y$ and $\theta=\angle q_{t} x y$. Then

$$
\begin{aligned}
\left|q_{t} x\right| & =|r x| \cos (\theta-c)+\sqrt{\left|q_{t} r\right|^{2}-|r x|^{2} \sin ^{2}(\theta-c)}, \\
\left|p_{t} x\right| & =|x y| \sin \left(\theta-\alpha_{x y}\right) / \sin \alpha_{x y} .
\end{aligned}
$$

It is clear from the figure that both $\left|q_{t} x\right|$ and $\left|p_{t} x\right|$ are concave in $\left[\theta_{1}, \theta_{0}\right]$. Moreover, since $\left|q_{t} x\right|$ and $\left|p_{t} x\right|$ are trigonometric, they are concave functions with a unique maximum in $\left[\theta_{1}, \theta_{0}\right]$. Therefore, within $\left[\theta_{1}, \theta_{0}\right],\left|p_{t} q_{t}\right|=\left|p_{t} x\right|+\left|q_{t} x\right|$ must have at most one stationary point (the unique maximum if it exists) and $\left|p_{t} q_{t}\right|$ achieves the minimum at θ_{0} or θ_{1} or both. Since $\theta^{*} \in\left(\theta_{1}, \theta_{0}\right)$, we conclude that $\left|p_{0} q_{0}\right|<|p q|$ or $\left|p_{1} q_{1}\right|<|p q|$.

Fig. 8.

So $\left(p_{0}, q_{0}, r, s\right) \in \Phi(x, y)$ or $\left(p_{1}, q_{1}, r, s\right) \in \Phi(x, y)$ and this contradicts the minimality of $|p q|+|r s|$.

Lemma 3. Let v and w be the centers of C_{1} and C_{2}. If $(p, q, r, s) \in \Phi^{*}(x, y)$, then v and w lie on the right of $p q$ and on the left of rs, respectively.

Proof. By Lemma 2, p and s lie on C_{1} and q and r lie on C_{2}. Assume to the contrary that the lemma is not true. Then either v and w lie on the same side of $p q$ and $r s$ (Case(1)), or v and w lie on opposite sides of $p q$ or $r s$ (Case(2)).

Case(1): Assume without loss of generality, that v and w lie on the left of $p q$ and $r s$. Refer to Fig. 8(a). Since $r s$ lies to the right of $p q, p q$ does not pass through y. Since $p \neq s$, by Observation B, we can slide p along C_{1} counter-clockwise to decrease $|p q|$, but this contradicts the minimality of $|p q|+|r s|$.

Case(2): Assume without loss of generality, that v and w lie on opposite sides of $p q$. Refer to Fig. 8(b). By Observation C, we can slide p along C_{1} either clockwise or counter-clockwise to decrease $|p q|$, depending on whether p is closer to x or y. This contradicts the minimality of $|p q|+|r s|$.

Lemma 4. If $(p, q, r, s) \in \Phi^{*}(x, y)$, then $p q$ passes through x and r s passes through y.
Proof. First, (p, q, r, s) satisfies Lemmas 2 and 3. If $p q$ (resp. rs) does not pass through x (resp. y), then by Observation B , we can slide p along C_{1} clockwise (resp. s along C_{1} counter-clockwise) and decrease $|p q|$ (resp. $|r s|$). This contradicts the minimality of $|p q|+|r s|$.

Lemma 5. If $(p, q, r, s) \in \Phi^{*}(x, y)$, then $|q r|=|p q|=|r s|$ and $\angle q x y$ and $\angle r y x$ are obtuse.

Proof. First, (p, q, r, s) satisfies Lemmas 2-4. Since $(p, q, r, s) \in \Phi^{*}(x, y),|q r| \geqslant$ $\max (|p q|,|r s|)$. Without loss of generality, assume that $|p q|=\max (|p q|,|r s|)$. Let w be the center of C_{2}. For brevity, rotating pq about x or rs about y means that we keep p and s on C_{1} and q and r on C_{2} during the rotation.

Assume to the contrary that $|q r|>|p q|$. If $\angle p x y \leqslant \pi / 2$, then we can rotate $p q$ about x counter-clockwise by an infinitesimal amount and still maintain that $|q r|>\max (|p q|$, $|r s|)$. However, by Observation A, $|p q|$ decreases which contradicts the minimality of $|p q|+|r s|$. If $\angle p x y>\pi / 2$, then $\angle q x y<\pi / 2$. We can rotate $p q$ about x clockwise by an infinitesimal amount and still maintain that $|q r|>\max (|p q|,|r s|)$. By Observation A, $|p q|$ decreases which contradicts the minimality of $|p q|+|r s|$. Hence, we conclude that $|q r|=|p q|$.

We claim that w does not lie inside the quadrilateral pqrs or on $p q$ or on r. Assume to the contrary, this is not true. Observe that $\angle r y x<\pi / 2$; otherwise, we can rotate $r s$ about y clockwise to increase $|q r|$ and decrease $|r s|$, which contradicts the minimality of $|p q|+|r s|$. By a similar argument, $\angle q x y$ must also be acute. If $|q r|=|p q|>|r s|$, then we can rotate $r s$ about y clockwise by an infinitesimal amount to increase $|q r|$ and $|r s|(|p q|$ remains unchanged) such that $|q r|>|p q|>|r s|$. But then we can rotate $p q$ about x clockwise by an infinitesimal amount to decrease $|q r|$ and $|p q|$ such that $|q r|>|p q|>|r s|$. However, we have decreased $\max (|p q|,|r s|)$ which contradicts its minimality by assumption. Therefore, $|q r|=|p q|=|r s|$. By Observation A, pqrs must be a regular trapezoid with $|p s|>|q r|=|p q|=|r s|$ (see Fig. 9). Now, we can rotate $p q$ about x clockwise and $r s$ about y counter-clockwise by some amount to decrease $|p q|$ and $|r s|$, while maintaining that $|p s|>\max (|p q|,|r s|)$. Then we can switch the roles of $q r$ and $p s$ to obtain the four tuple $(r, s, p, q) \in \Phi(x, y)$ with a smaller $\max (|p q|,|r s|)$. This contradicts our assumption. In all, we conclude that w does not lie inside pqrs or on $p q$ or on $r s$. So w either lies outside pqrs or on $q r$.

Suppose that w lies on $q r$. Then $q r$ must be horizontal in order that $\max (|p q|,|r s|)$ is minimized. At this position, $|p q|=|r s|$. Since we have proved before that $|q r|=|p q|$, we conclude that $|q r|=|p q|=|r s|$. It is clear that both $\angle q x y$ and $\angle r y x$ are obtuse at this position.

Suppose w lies outside pqrs. Assume to the contrary that $|q r|>|r s|$. Observe that $\angle r y x$ and $\angle q x y$ are obtuse; otherwise, we can rotate $r s$ about y counter-clockwise (resp. rotate $p q$ about x clockwise) to decrease $|r s|$ (resp. decrease $|p q|$) and increase $|q r|$. This contradicts the minimality of $|p q|+|r s|$. We rotate $r s$ about y counterclockwise by an infinitesimal amount to increase $|q r|$ and $|r s|$ ($|p q|$ remains unchanged) such that $|q r|>|p q|>|r s|$. Now, we can rotate $p q$ about x counter-clockwise by an infinitesimal amount to decrease $|q r|$ and $|p q|$ such that $|q r|>|p q|>|r s|$. But we have decreased $\max (|p q|,|r s|)$ and this contradicts our assumption. Hence, $|q r|=|p q|=|r s|$ and this completes the proof.

Fig. 9.

Fig. 10.

By Observation A and Lemma 5, we conclude that every element (p, q, r, s) in $\Phi^{*}(x, y)$ represents a regular trapezoid as shown in Fig. 10.

3.2. Calculating β

Consider a $(p, q, r, s) \in \Phi^{*}(x, y)$. Let $\angle p q r=\theta$. By applying the sine law to triangle $q r x$ and $r s x$, we obtain the equalities $|r x| / \sin \theta=|q r| / \sin \left(2 \theta-\alpha_{x y}\right)$ and $|r x| / \sin \alpha_{x y}=$ $|r s| / \sin 2 \alpha_{x y}$. By eliminating $|r x|$ from the above equations and cancelling $|q r|$ and $|r s|$, we obtain $2 \sin \theta \cos \alpha_{x y}=\sin \left(2 \theta-\alpha_{x y}\right)$. By rearranging terms, we get

$$
\begin{equation*}
\tan \alpha_{x y}=\frac{2 \sin \theta(\cos \theta-1)}{\cos 2 \theta} \tag{1}
\end{equation*}
$$

For a fixed $\alpha_{x y}$, we can solve Eq. (1) for the smallest positive θ. This corresponds to minimizing $\max (|p q|,|r s|)$ and minimizing $|p q|+|r s|$. Thus, $\Phi^{*}(x, y)$ is a singleton set.

Our goal is to find the smallest $\alpha_{x y}$ such that $\Phi(x, y) \neq \emptyset$. Therefore, we differentiate Eq. (1) with respect to θ and set $\mathrm{d}\left(\alpha_{x y}\right) / \mathrm{d} \theta=0$ to obtain $\cos \theta \cos \alpha_{x y}=\cos \left(2 \theta-\alpha_{x y}\right)$. By rearranging terms, we get

$$
\begin{equation*}
\tan \alpha_{x y}=\frac{\cos \theta-\cos 2 \theta}{\sin 2 \theta} \tag{2}
\end{equation*}
$$

By equating Eqs. (1) and (2) we obtain

$$
\begin{aligned}
& 2 \sin \theta(\cos \theta-1) \sin 2 \theta=(\cos \theta-\cos 2 \theta) \cos 2 \theta \\
& \quad \Rightarrow 4\left(1-\cos ^{2} \theta\right) \cos \theta(\cos \theta-1) \\
& \quad=\left(2 \cos ^{2} \theta-1\right)\left(\cos \theta-2 \cos ^{2} \theta+1\right) \\
& \Rightarrow 2 \cos ^{2} \theta+2 \cos \theta-1=0 \\
& \Rightarrow \cos \theta=\frac{\sqrt{3}-1}{2} \quad \text { as } \cos \theta>0 .
\end{aligned}
$$

Substituting $\cos \theta=(\sqrt{3}-1) / 2$ into Eq. (1), we obtain $\alpha_{x y}=\tan ^{-1}(3 / \sqrt{2 \sqrt{3}}) \approx \pi / 3.1$. The corresponding β value is slightly less than 1.17682. Thus, we conclude that for any $\alpha_{x y} \geqslant \tan ^{-1}(3 / \sqrt{2 \sqrt{3}}), \Phi(x, y) \neq \emptyset$. Conversely, the Remote Length Lemma is true for any $\alpha_{x y}<\tan ^{-1}(3 / \sqrt{2 \sqrt{3}})$. This completes the proof of our main result.

Theorem 1. Given a set S of points in the plane, the β-skeleton of S is a subgraph of a minimum weight triangulation of S for any $\beta>1 / \sin \left(\tan ^{-1}(3 / \sqrt{2 \sqrt{3}})\right.$.

Acknowledgements

We would like to thank Oswin Aichholzer for reading the manuscript carefully and suggesting helpful comments on the presentation.

References

[1] O. Aichholzer, F. Aurenhammer, M. Taschwer, G. Rote, Triangulations intersect nicely, Proc. 11th Annual Symp. on Computational Geometry, 1995, pp. 220-229.
[2] M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, T. Tan, Edge insertion for optimal triangulations, Discrete Comput. Geom. 10 (1993) 47-65.
[3] S.W. Cheng, Y. Xu, Approaching the largest β-skeleton within a minimum weight triangulation, Proc. 12th ACM Symp. on Computational Geometry, 1996, pp. 196-203.
[4] M. Dickerson, S. McElfresh, M. Montague, New algorithms and empirical findings on minimum weight triangulation heuristics, Proc. 11th ACM Symp. on Computational Geometry, 1995, pp. 238-247.
[5] R. Duppe, H. Gottschalk, Automatische interpolation von isolinen bei willkurlichen stutzpunkten, Allg. Vermessungsberichten 77 (1970) 423-426.
[6] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, Berlin, 1987.
[7] P. Gilbert, New results on planar triangulations, Master's Thesis, Report No. UILUENG 78 2243, University of Illinois, 1979.
[8] L. Gray, L. Martha, A. Ingraffea, Hypersingular intergrals in boundary element fracture analysis, Internat. J. Numer. Methods Eng. 20 (1990) 1135-1158.
[9] L. Heath, S. Pemmaraju, New results for the minimum weight triangulation problem, Algorithmica 12 (1994) 533-552.
[10] M. Keil, Computing a subgraph of the minimum weight triangulation, Comput. Geom. Theory Appl. 4 (1994) 13-26.
[11] D. Kirkpatrick, J. Radke, A framework for computational morphology, in: G. Toussaint (Ed.), Computational Geometry, Elsevier, Amsterdam, 1985, pp. 217-248.
[12] C. Levcopoulos, D. Krznaric, Quasi-greedy triangulations approximating the minimum weight triangulation, Proc. Annual ACM-SIAM Symp. on Discrete Algorithms, 1996, pp. 392-401.
[13] A. Lingas, A new heuristic for minicmum weight triangulation, SIAM J Algebraic Discrete Methods 8 (1987) 646-658.
[14] D. Plaisted, J. Hong, A heuristic triangulation algorithm, J. Algorithms 8 (1987) 405-437.
[15] C.A. Wang, B. Yang, A tight bound for β-skeleton of minimum weight triangulations, Proc. 6th Internat. Workshop on Algorithms and Data Structures, 1999, pp. 265-275.
[16] B. Yang, A better subgraph of the minimum weight triangulation, Proc. Internat. Conf. on Computing and Combinatorics, 1995, pp. 452-455.
[17] B. Yang, Y. Xu, and Z. You, A chain decomposition algorithm for the proof of a property on minimum weight triangulation, Proc. Internat. Symp. on Algorithms and Computation, 1994, pp. 423-427.
[18] P. Yoeli, Compilation of data for computer-assisted relief cartography, in: J. Davis, M. McCullagh (Eds.), Display and Analysis of Spatial Data, Wiley, New York, 1975.

[^0]: * Corresponding author.

 E-mail address: scheng@cs.ust.hk (S.-W. Cheng).
 ${ }^{1}$ Research partially supported by RGC grant HKUST 190/93E.
 ${ }^{2}$ Research partially supported by RGC grants HKUST 190/93E and HKUST 181/93E, and NSF of China project no. 19731001.

